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R. K. Amayo and I. Stewart have asked the following among ‘‘some open
questions”’ at the end of their book [1]: Do there exist Lie algebras satisfying
the maximal condition for subalgebras that are not finite-dimensional? The
purpose of this paper is to give the affirmative answer to this question.

They have shown in [1, p. 177] that the Lie algebra W over a field f of charac-
teristic 0 with basis {w(1), w(2),...} and multiplication

[w(@, w()] = (i =j)w(i+))

satisfies the maximal condition for subideals. We shall show that the same Lie
algebra W actually satisfies the maximal condition for subalgebras.
We first show the following

LEMMA. Let S be a subset of N satisfying the condition: If s, teS and
s#t, s+teS. Then there exist the different elements s, s,,..., s, of S such that

(i) s, is the smallest element of S,

(i) S={s;}U{sy+ns;|n=0,1,2,..}U - U{s,+ns,|n=0,1,2,..}.

ProOF. We define recursively subsets S; of S and integers s; for integers
i>1 as follows: Define s, as the smallest element of S and put S, ={s,;}. Let
i>1 and assume that S;, s; are already defined and S;#S. Lets,;,, be the smallest
element of S\S; and put S;,;=S;U{s;y;+ns;|n=0,1,2,...}. Then {seS|
$<8;413E8;4, and, for T, ={seS| s>s;.,}, if seT;,, and ¢ is the smallest
element of T;,, such that t>s then t—s<s,;—i+1. Therefore the construction
terminates after a finite number of steps. Thus there exists an integer r such
that S=S,.

We now show the following

THEOREM. W satisfies the maximal condition for subalgebras.

Proor. For any element x of W, let m(x) be the integer m such that
x = f: o w(i), o, # 0.
i=1

Let H be any subalgebra of Wand let S be the set of all m(x) for xe H. Ifs, teS
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and s#t, then
s = m(x), t = m(y) for some x, ye H.
and therefore
s+t =m([x, y])eS.

Hence there exist the elements s, s,,..., s, of S satisfying the conditions (i),
(ii) in thelemma. Fori=1, 2,..., r, we take an element z; of H such that m(z;)=s;.
We assert that any element x of H belongs to <z, z,,..., z,>.

Let us define recursively elements x; of H and integers p; for integers i>0
as follows. Put xo=x and p,=m(x). Assume that x; and p;=m(x;) are already
defined and that x; ¢ <z,, z,,..., z,>. If p;=s,, then m(x;— fz,)<s, for some
pet. Since x;—fz; € H, we have x;—fz, =0 by the minimality of s,. This
contradicts our assumption. Therefore

Di = Syt MiS1, u(@) # 1.
Then there exists a y; in f such that
m(xi—)’i[zu(i), m Z211) < p;.
We now define x;,, and p;,, by
Xi+1 = xi—)’i[zu(i), n z;] and  piyy = m(x;4q).

Since p;.,<p; the recursive construction terminates after a finite number of
steps. This shows that x,e <z,, z,,..., z,> for some n. It follows that x
€ <Zyy Zsees Z,>.

Thus we conclude that H= <z,, z,,..., z,>. Consequently every subalgebra
of W is finitely generated. It is now immediate that W satisfies the maximal
condition for subalgebras.

We denote, as usual, by Max, Min and Min—-<a respectively the classes of
Lie algebras satisfying the maximal condition for subalgebras, the minimal
condition for subalgebras and for ideals. Then we have the following

CoROLLARY. Max ¢ Min and Max ¢ Min-<.

Proor. Let I, be the subspace of W spanned by all w(i) with i>n. Then
I, >1,>- is a strictly descending series of ideals of W. Therefore W ¢ Min -
<1 and a priori W ¢ Min.
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