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R. K. Amayo and I. Stewart have asked the following among "some open
questions" at the end of their book [1]: Do there exist Lie algebras satisfying
the maximal condition for subalgebras that are not finite-dimensional? The
purpose of this paper is to give the affirmative answer to this question.

They have shown in [1, p. 177] that the Lie algebra Wovεr a field ! of charac-
teristic 0 with basis {w(l), w(2),...} and multiplication

satisfies the maximal condition for subideals. We shall show that the same Lie
algebra W actually satisfies the maximal condition for subalgebras.

We first show the following

LEMMA. Let S be a subset of N satisfying the condition: If s, teS and
, s + teS. Then there exist the different elements sl9 s2,..., sr of S such that
(i) s1 is the smallest element of S,
(ii) S={s1}(J{s2 + ns1\n = Q, 1, 2,...} U — U K + nsJ n = 0, 1, 2,...}.

PROOF. We define recursively subsets Si of S and integers st for integers
z> 1 as follows: Define s.x as the smallest element of S and put Sl = {sι}. Let
i > 1 and assume that Sί9 sf are already defined and St Φ S. Let st + 1 be the smallest
element of S\St and put Si+1=St U {S^H-HS^ n = 0, 1, 2,...}. Then {seS\
s<s ί+1}cS ί+1 and, for Tί+1 = {seS| s>s ί+1}, if seΓ ί + 1 and t is the smallest
element of T ί+1 such that t>s then t — s<sί — z + 1. Therefore the construction
terminates after a finite number of steps. Thus there exists an integer r such

We now show the following

THEOREM. W satisfies the maximal condition for subalgebras.

PROOF. For any element x of W, let m(x) be the integer m such that

X = Σ «MO» αm ^ 0.

Let H be any subalgebra of W and let S be the set of all m(x) for x e H. If s, t e S



486 Fujio KUBO

and s 7* ί, then

5 = m(x), t = m(y) for some x9 ye H.

and therefore

= m([χ,

Hence there exist the elements s1? s2,..., sr of 5 satisfying the conditions (i),
(ii) in the lemma. For i = 1 , 2, . . . , r, we take an element zi of H such that ra(Zf) = sf.
We assert that any element x of H belongs to <z l5 z2,..., z r>-

Let us define recursively elements xt of H and integers pf for integers i > 0
as follows. Put x0 = x and p0 = w(x). Assume that xf and pi = m(xi) are already
defined and that xt φ <zl9 z2,..., zr>. If Pt = sl9 then m(xi — βz1)<sί for some
βeϊ. Since xi — βzίEH9 we have xi — βzί=0 by the minimality of 5 X . This
contradicts our assumption. Therefore

Pi = -S/iίί) + WIS1» MO ^ l

Then there exists a yt in ϊ such that

m(xi-yi[zμ(i)ίnιzl']) < p^

We now define xί+1 and pί+1 by

Xί-yι[zμ(o,», ^i] and

Since pi+i<Pi, the recursive construction terminates after a finite number of
steps. This shows that xne <zίt z2,..., zr> for some n. It follows that x
e<zl9 z2,...,zr>.

Thus we conclude that H— <zl9 z2,..., zr> . Consequently every subalgebra
of W is finitely generated. It is now immediate that W satisfies the maximal
condition for subalgebras.

We denote, as usual, by Max, Min and Min -<ι respectively the classes of
Lie algebras satisfying the maximal condition for subalgebras, the minimal
condition for subalgebras and for ideals. Then we have the following

COROLLARY. Max φ Min and Max φ Min-o.

PROOF. Let /„ be the subspace of W spanned by all w(ι') with i>n. Then
/! > /2 > ••• is a strictly descending series of ideals of W. Therefore W φ Min-
<] and a priori W φ Min.
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