HIROSHIMA MATH. J.
6 (1976), 421-428

Certain Functional of Probability Measures
on Hilbert Spaces

Ry6ji KonDb and Akira NEGORO
(Received February 9, 1976)

§1. Introduction and results

Let E be a real separable Hilbert space with inner product < , > and &
the g-algebra of all Borel subsets of E. We denote by £ the set of all probability

measures u on (E, &) with a finite second moment; S Ix2du(x)<oo. For each
ne P there exist a vector m (mean vector) and a bounded linear operator V
(covariance operator) with S<x, u>du(x)=<m, u> and S <x—m,u> <x—m,

v>du(x)= <Vu, v> forallu, ve E. Since the covariance operator is symmetric,
non-negative and nuclear, we can find a unique Gaussian measure y, on (E, &)
which has the same mean vector and covariance operator as those of u [4; p. 14
and p. 18]. Let .#(u) be the set of all probability measures M on (EXE, £®&)
with M(A x E)=pu(A) and M(E x A)=1v,(A) for all Ae&. We consider a func-

tion: M—e[u; M]=gg||x—y||2dM(x, y) on .#(u), and define a functional e on
2 by

e[p]=inf prc o(yelu; M].

The functional e was first introduced by H. Tanaka in the case where E is the one-
dimensional space and its basic properties were studied also by himself [5].
H. Murata and H. Tanaka [2] extended the results to the case of multi-dimen-
sional Euclidean spaces.

The purpose of this paper is to show that some of their results can be ex-
tended to the case of Hilbert spaces, by the method similar to that of [2] with
a slight simplification. That is, we shall prove:

THEOREM 1. For each pe P there exists an M e .#(u) with e[u]l=e[u;
M7] and such a measure M has the form; M(Ax B)=y,(f~'(A) n B) for all A,
Be & with a Borel measurable mapping f from E into itself. Consequently

elud={ 1F = y12dn,».

THEOREM 2. Let u, and p, be measures in 2 and u,*u, their convolution.
Then
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eluxp] < efu ] +elp,],
and the equality holds if and only if both u, and u, are Gaussian. -

Using the results we shall prove also that a sequence of probability distribu-
tions of certain stochastic processes X,=(X,(f))o<,<; converges to a Gaussian
measure in L,[0, 1).

§2. Lemmas

In this section we denote by #(E") the Banach space of all real valued,
bounded and continuous functions on E" with the supremum norm; @], =
sup |o(x)|, and by €*(E") the topological dual of #(E"). Since, for each M

€ # (), the function: (p—»M((p)=S @dM on %(E?) is continuous and linear, we
E2
consider .#(u) as a subset of ¥*(E?).

LEMMA 1. For each pe P there exists an M e .#(u) with e[u]=e[u; M].

Proor. We shall prove first that .#(u) is a weakly compact subset of €*(E?).
Let U? be the closed unit ball in €*(E?), which is known to be weakly compact.
Since .#(p) is contained in U?, it is enough to show that .#(u)is weakly closed.
Let- M, be an element in the weak closure of .#(x). Then there is a net (M),
in .# (1) which converges weakly to M,. It is easily seen that M|, is linear and posi-
tive, and satisfies My(1)=1. For a given £¢>0, we can find a compact subset F
of E with u(F)=1—¢/2 and y,(F)=1—¢/2. Let K=FxF. Then M (K)2u(F)
—7,(F¢)=1—¢ for all Le A. Therefore if a function ¢ in ¥(E?) vanishes on K,
|[Mo(p)|=1lim,; |M ,(p)| Z¢|l@|l,, Which implies that M, is a Baire (hence Borel)
probability measure on E2. For any ¢ e %(E), since @om,;e ¥(E?) (i=1, 2)V,
we have My(@on,)=lim; M,(¢om,)=pu(¢p) and similarly, My(pon,)=17,(p), which
shows that M, belongs to .#(u). Thus .#(p)is weakly closed. Now let ¢,(x, y)
=inf(n, |x—y|?) and ¢,,(M)=SEz(p,, dM for each M e .#(1). Then @, are con-

tinuous on #(x) and &, 1 e[u; -] as n—oo. Therefore e[u; -] is lower semi-
continuous on .#(u) and hence, there is an M € #(u) with e[u]=e[u; M].

From now on we use .#,(u) to denote the set of M, in .#(u) and with e[u]
=e[u; M]. We set I'={(x, y, x’, y)eE*: <x—x', y—y'>20} and (1)
={Me.#(p): MM(I')=1}, where ‘“‘®" denotes the direct product of measures.

LemMA 2. A=A (n)  forall ue?.

1) Throughout this paper, =, and r, denote the first and the second coordinate mappings of
E? onto E.
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PrROOF. To avoid the trivial case we assume gux~m |2dp(x) >0, where m

is the mean vector of u. Under the assumption any M € .#(u) has no atomic point.
Suppose that there is an M e .#(u) with M@M(I')<1. There then exist &2-
measurable sets A and B with AxBcTl'c and M(A)M(B)=M®M(A x B)>0.
We choose two compact sets K and K’ with K< A4 and K’<B and M(K)M(K')
>0. The function: (x, y, x’, y'))><x—x', y—y'> is continuous and strictly
negative on K x K’ and hence, there is a constant §>0 with <x—x', y—y'>
< —dforall (x, y, x’, y)e Kx K’. This implies also that K and K’ are disjoint.
Now we consider an ergodic automorphism T acting on (E2, &2, M) (such an
automorphism always exists, for the space (E2, £2, M) is isomorphic mod 0
to the interval [0, 1) with the Lebesgue measure). By ergodicity there is an inte-
ger n=0 with M(KNnT-"K')>0. We set C=KnT "K', C'=T"C and D
=(Cu C)c. The sets C and C’ are disjoint since they are subsets of K and K’
respectively. We define a mapping S from E? into itself by

[(an"z, T,2) for zeC,
S(z) =< (n, T "z, m,2) for ze(C’,
1 (nyz, m,2) for zeD.

Let Mg(A)=M(S~1(A)) for all Ae £2. Then it is easy to see that Mg belongs to
A (1) and that

e[u; M]—e[u; Mg]

[ m =2 am={ 1z, —mo12ams
E? E2

= —2S <mz—n,T"z, n,z—7n,T"z>dM(z)
c

= IM(C)>0,

because (z, T"z) e Cx C'c K x K’ whenever ze C. This contradicts the assump-
tion that M belongs to . y(u).

Let Me.#(1). A Markov kernel P, defined on & x E, is called a regular
conditional probability of M (with respect to y,) if M(A4 x B)=g Py(A, y)dy,(y)
B
for all A, Be&.

LemMMA 3. Let M e .#(1). Then there exist a set N in & and a regular
conditional probability Py of M such that y,(N)=O0 and, for any y, y'e N¢

Py( s NOPy(, y)(I(y, ¥) =1,
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where I'(y, y)={(x, x'): (x, y, X', y)eT}.

Proor. Let (G,),>; be a countable open base of E. For each nz1 we
define a partition #,={B,;: 0<j<2"—1} of E as follows; if j=k,2"" !+
k,2""24...+k, is the binary expansion of j, B,;=G%: nG%2n - nGk», where
G! and G° are understood to be G and G¢ respectively. We denote by &, the
o-algebra generated by #,. Then the algebra £#=U,,,;#, contains at most
countable number of elements, and generates the g-algebra £. For a fixed 4
€ & we define functions Q%(4, ) on E by

M(A xB,))[7,B,;) if yeB,; and y,(B,;) >0

(4, y) = [ :
0 if yeB,; and y,(B,)=0.

Then (Q%(A, ), £,),>1 is a martingale on the probability space (E, &, y,) and
hence, there is a set N, with y,(N,)=0 such that, for each y¢N,, Qu(4, y)=
lim Q4(4, y) exists. Now let N=U 44N, Then y,(N)=0 and, for each y¢N,
Oum( , y) is a finitely additive probability measure on #. Using the injection:
x—=(I,(X)n=1 of E into {0, 1}¥°, we can extend each Qy( , y) to a probability
measure on &, where I; denotes the indicator of a set G (for the details, see [3]).
We define probability measures P,( , y) by; Py( , »)=0um( , ¥) for y¢ N and
Py( , y)=uo for ye N, where p, is an arbitrary probability measure on E. Then
P,, is a regular conditional probability of M. We remark here that, for each y¢ N,
the sequence of measures (Q%( , ¥)),», converges weakly to Py( ,y). Infact,
for an £€>0 and an open set G in E, we can find Ae & with AcG and Py(G, y)
—&e<Py(A, y), for # contains the open base (G,),>;. Hence Py(G, y)—e
<lim Q%(A, y)<liminfQ%(G, y), and so, Pu(G, y)<liminfQ%(G, y), which
implies that (Q%( , y)) converges weakly to Py( ,y). By the assumption Q%( ,
»®Qx( , y)I'(y, y))=1 for almost all (y, y') with respect to y,®y,, however,
for any A€ &, since the function Q%(4, ) is equal to a constant on each B,;,
the equality holds for all (y, y’)e E2. The sequence (Q%( , ¥)),»1 converges
weakly to Py,( , y) for any y ¢ N and the set I'(y, y’) is closed, tending n to infinity,
we have Py( , »)®Py( , y)(I(y, y'))=1 for all y, y'¢N.

§3. Proofs of the theorems

In this section we assume that the covariance operators of measures in 2
are non-singular since the other case is reduced easily to this case. For each p
€ 2# we denote by #(u) the set of all Borel measurable mappings f from E into it-
self with y,(f~*(4))=u(A4) for all Ae&. For each fe F(u) there exists exactly
one probability -measure M, in .#(u) with M (AxB)=y,(f"'(4A)nB). We
denote by .# ¢(u) the set of all M, with fe #(u).

First we shall prove Theorem 1. To this end it is enough to show that
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M (1)< A (u), for, by Lemma | and Lemma 2, .# (1)@ and 4 o(u) = A ().
Now let M € 4 (1). By Lemma 3, there exist a set N € £ and a regular condition-
al probability P, of M with y,(N)=0 and Py( , y))@Py( , y)YT(y, y))=1 for
all y, y'¢ N. We denote by S(y) the support of P,,( , y); the smallest closed set
with full measure. For each y, y"¢N, since I'(y, y')¢ is open and Py , y)
®Py( 5 y)I(y, y))=0, S(») xS(y)=I(y, y'), that is, <x—x', y—y'>20
for all (x, x) € S(y)x S(y"). Let V be the covariance operator of u and (e,),,
an orthonormal basis of E consisting of eigen vectors of V. For each n=>1, we
set Y, =7, Pl ! and vz =7,(pre,jt)"*.2> Notice that y, is equivalent (mutual-
ly absolutely continuous) to the one-dimensional Lebesgue measure. A family
(C(M)yer: of non-empty subsets of R! is said to be monotone if there is a set Ng
with Lebesgue measure zero such that if 5, ' ¢ N, then ((—&)(n—#")=0 for all
(& &) eCm)xC(n'). It is known that if (C(1)),eg: is monotone, Card (C(1))=1
for all n¢ N, (see [2], the following statements are also the same as those of [2]).
For each z € [e,]*, we set

Sz(n) = {<x, ¢,>: x€ S(ne,+2)},
Nz ={neR':ne,+zeN}.

Assume that y,(Nz)=0 for some ze€[e,]*. Then the Lebesgue measure of Nz
is equal to zero and if 5, n'¢ Nz then, for any (<x, e,>, <x', e,>)€ Si(n)
x Si(n),

(<x,e,>—<x',e,>)(n—1")
= <x—Xx', (ne,+2z)—(n'e,+2)> =0,

which implies that (S%(1)),cg: is monotone. Thus Card (Si(n))=1 for all n¢ NZ.
Now let

B,={ze[e,]*: N7 = 0},
D,=(pri,,1+)"*(Bj)

and D= U,», D,. Since y,(N)=0, using the Fubini theorem, we can easily prove
that y,(D,)=7y+(B5)=0 for all n=1 and hence, y,(D)=0. Now let y¢ DUN
and let y=n,e,+z, for each n=1, where z,e[e,]t. Then y,(Nz»)=0 and 1,
¢ Nz~ for all n=1, and so, Card({<x, e,>: xeS(y)})=1 for all n=1, which
implies that Card (S(y))=1 for all y¢ DU N. We define a mapping f of E into
itself by

2) For each ACE, [A] denotes the closed linear subspace generated by 4, and prp,; is the
orthogonal projection to [4]. If (X, &, v) is a measure space and f is a measurable map-
ping of X into (Y, &), we use vf~! to denote the measure defined by v(f-(B)) (Be®).
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for y¢DUN, where S(y) = {x,},
fy) =
, for yeDUN,
then for each y¢DUN, Py( , y)=¢;), the unit distribution at f(y). Thus
M =M, with fe F(p).
Next we shall prove Theorem 2. Let u,, u,€ 2. For any M;e .#(u)
(i=1, 2), since M *M, e M (u,*1,),

eluyp,] = elpy*pys My*xM,]
= e[u; M J+elu,; M,],
it follows that e[u *u,]<e[u;]+e[u,]. Now assume that the equality holds.

By Theorem 1, there exist f;e #(u;) with e[u;]=e[y;; M, ] (i=1,2). The rela-
tion;

elpyxpss My *Mp ] = e[py; My 1+elpy; My, ]
= e[y ]+elpn,] = e[pyxuz],

implies that M ; *M , € .# o(u;*1;) and hence, by Theorem 1, there is an fe F(u*
My) with M, M, =M, Thus

70, @70, ¥): L +£2(y) € A, y+y' e B})
=7, @7,y ¥y): f(y+y)e A, y+y €B})

for all A4, Be&. Consequently f(y+y)=/,(y)+f2(y') for almost all (y, y’)
with respect to y,,®7,,. Let (¢,),>, be an orthonormal basis of E consisting of
eigen vectors of the covariance operator of u,xu, and let L,=[e,, e,,..., €,].
We denote by ., the Borel g-algebra of L, and set Z,=pr ;-1(%,). Itisclear that
(B,)nz1 is increasing and generates &. We denote by y™ and y{® [resp.
o™ and ¢{™] the probability measures on L, [resp. Lt] induced by pr,, [resp.
prp:] from y and y,, respectively (i=1, 2), where y is a short for y, *y,,. We
consider the Bochner integrals;

fn(yn) = SLJ_f(y"‘*"Z”)dO'(")(Z")

Il = § St zdol0 @) (= 1,2),

where y,eL,. Then f,(y,+y,)=fu(ya)+/2(y,) for almost all (y,, y,) with
respect to YW ®7y. Therefore f, is equal almost everywhere to an affine
transformation from L, into E and hence yf,! is a Gaussian measure on E.

On the other hand, sinceg I f)I?dy(y)< oo and E[f|#,]=f, (as E-valued ran-
E
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dom variables on (E, &, 7)), by a martingale theorem, due to Chatterji [1],
g 1AM —=fI2dy(y)»0 as n—oo. Therefore p,*u,=yf~! is Gaussian and
E

hence, e[u,*u,]=0. Consequently e[y;]=0 (i=1, 2), which implies both gy,
and u, are Gaussian. Thus the proof of Theorem 2 is completed.

§4. An application

Let (Q, %, P) be a probability space. A measurable stochastic process
X(w)=(X(t, w))o<,<, is considered as an L,[0, 1)-valued random variable if

1
E[g (X(®))?dt]< . We denote by uy the probability distribution (in L,[0, 1))

0
of X. In this section we use e[ X] to denote e[uy].

Now we consider a family of real random variables {¢,;: j=1, 2,..., 2"~ 1,
n=1, 2,...} with the following properties; (i) all ,; have the same distribution,
(ii) for each nz1, (£,))1<j<2n is independent and (iii) E{j;=c<oo, EEZ;=1
and E¢,;=0. Using the family we define a sequence of processes (X,),>; by

X,(t, w) = 2"'/221§j<2'- Snj(w)fnj(t)

for (t, w)e [0, 1)x Q, where S,;=3", <;<; &, and f,; are the indicators of intervals
[j27", (j+1)27"). Itis known that the sequence (X ), 5, of stochastic processes con-
verges in law to a Brownian motion. The purpose of this section is to prove this
in a wider space L,[0, 1) by making use of the functional e. Since EBI (X,() 2dt}
=(1-2"")/2< w0, X, are L,[0, 1)-valued random variables, and [l"=(:txn have the
mean vectors 0 and the covariance operators V,, the integral operators with kernel
v,(s, )=([s27"J A [£27"])/2".  We prove that (u,),>, converges to the Gaussian
measure with mean vector 0 and covariance operator V, with kernel v(s, t)=s At.
Using the random variables S9;=3 <i<;i¢p+1,2i and Sli=3 <iciCus1,2i-1
(1= j<2m), we define the processes X9, X! and Z, by

X0 =223 cicanSYifnjs
Xo =223 <jc2nShifnj (ni =Sovr,2i-1H ae1,20)»
Z, =208 o farname— g

respectively. By our assumptions, for each n, (X9, X!, Z,) is independent and
X,, X2 and X! have the same distribution as random variables taking values in
the (2"—1)-dimensional Euclidean space. Since X,,;=2"1/3(X?+X)+Z,
and e[Z,]<47", we have e[ X, 1<e[X,]+4 " for all n=1. Therefore the limit
a=lim,e[X,] exists. Let go=1 and g, =20""1/2(f, . —fu) for k=1,3,..,
2"—1and m=1, 2,.... It is known that {gy, g«: odd k<2™ m=1} is an ortho-
normal basis in L,[0, 1) (the Haar functions). For any m,, since
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sup 3 E[<X,, gm>2] < 27(mo™ D),
n oddk<2m
m2mo

(Mn)nz 1 is relatively, weakly compact [3; p. 154]. Hence we can choose a sub-
sequence (i,);>1 Of (1,)n>1 that converges weakly to a probability measure u

on L,[0, 1). From (iii) it follows that S Ixl4du,(x)=E[| X, I*]1<27"c+3(1-27")

and SIIxII"'dy,,"(x)gS, and hence we have

lim,, sup, S llx 11 2dp,(x)

{IX|1zm}

= lim,, sup,,g eram 1122, = 0.
{ m}

1 X112

Using the relations, we can prove that e[u]=Ilim;e[X,]. Let u, and u, be the
limit distributions of (X9,/+/2);z, and (X},/\/2)i» respectively. Then pu=pg*
i;. On the other hand, since

elu] < (e[pol+eln,1)/2

lim; (e[ X0,/\/2]1+e[XL/ 2 +Z,])
lim; (e[X 9,/ /2] +e[ X}/ /2] +e[Z,])
=a/2+0a/2 = a,

o

IIA

we have e[u]=e[uo]+e[u,], which implies, by Theorem 2, that u is Gaussian.
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