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§ 1. Introduction and results

Let E be a real separable Hubert space with inner product < , > and &
the σ-algebra of all Borel subsets of E. We denote by & the set of all probability

measures μ on (£, «?) with a finite second moment; \ \\x\\2 dμ(x)<ao. For each

μe& there exist a vector m (mean vector) and a bounded linear operator V

(covariance operator) with \ < x, u > dμ(x) = < w, u > and \<x-m,u> <x-m9

v>dμ(x) = <Vu, v> for all w, v e E. Since the covariance operator is symmetric,
non-negative and nuclear, we can find a unique Gaussian measure γμ on (£, β )
which has the same mean vector and covariance operator as those of μ [4; p. 14
and p. 18]. Let Jt(μ) be the set of all probability measures M on (E x E9 β®&)
with M(AxE) = μ(A) and M(E x A) = γμ(A) for all Ae#. We consider a func-

tion: M-»e[μ; M] = \ \ | | x — }> || 2dM(x,y) on ~ (̂μ), and define a functional e on

0> by

The functional e was first introduced by H. Tanaka in the case where E is the one-
dimensional space and its basic properties were studied also by himself [5].
H. Murata and H. Tanaka [2] extended the results to the case of multi-dimen-
sional Euclidean spaces.

The purpose of this paper is to show that some of their results can be ex-
tended to the case of Hubert spaces, by the method similar to that of [2] with
a slight simplification. That is, we shall prove:

THEOREM 1. For each μe& there exists an MeΛ(μ) with e[μ] = e[μ;
M] and such a measure M has the form; M(AxB) = yμ(f~1(A) ftB) for all A9

with a Borel measurable mapping f from E into itself. Consequently

THEOREM 2. Let μ^ and μ2 be measures in UP and μ^μ2 their convolution.
Then
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and the equality holds if and only if both μ{ and μ2 are Gaussian.

Using the results we shall prove also that a sequence of probability distribu-
tions of certain stochastic processes Xn = (Xn(t))0^t<ί converges to a Gaussian
measure in L2[0, 1).

§ 2. Lemmas

In this section we denote by ^(En) the Banach space of all real valued,
bounded and continuous functions on En with the supremum norm; |Mloo =
sup|φ(x)|, and by #*(£") the topological dual of #(£"). Since, for each M

e^(μ), the function: φ-»M(φ)=\ φdM on ^(E2) is continuous and linear, we
j£2

consider Jt(μ) as a subset of

LEMMA 1. For each μeό? there exists an Me^(μ) with e[μ] = e[μ; M].

PROOF. We shall prove first that ̂ (μ) is a weakly compact subset of ^*(E2).
Let 17° be the closed unit ball in #%E2), which is known to be weakly compact.
Since (̂μ) is contained in 17°, it is enough to show that ^(μ)is weakly closed.
Let MO be an element in the weak closure of (̂μ). Then there is a net (MA)AeΛ

in Jt(μ) which converges weakly to M0. It is easily seen that M0 is linear and posi-
tive, and satisfies M0(l) = l. For a given ε>0, we can find a compact subset F
of E with μ(F) ̂  1 - ε/2 and γμ(F) ^ 1 - ε/2. Let K = F x F. Then Mλ(K} ^ μ(F)
— yμ(jFc)^l — ε for all λeλ. Therefore if a function φ in #(E2) vanishes on K,
IMo^^lim^lM^^l^εllφlloo, which implies that M0 is a Baire (hence Borel)
probability measure on E2. For any φe#(E), since φoπiG^(E2) (ΐ = l, 2)X),
we have M0(φoπι) = limAMA((/)oπ1) = μ(φ) and similarly, M0(φoπ2) = yμ(φ), which
shows that M 0 belongs to Jt (μ). Thus (̂μ) is weakly closed. Now let φn(x9 y)

= inf(n, || x — y\\2) and ΦΠ(M)=\ φndM for each Me^(μ). Then ΦM are con-
j£2

tinuous on c^f(μ) and Φnϊ e[μ', •] as n->>oo. Therefore e\_μ\ •] is lower semi-
continuous on e^f(μ) and hence, there is an Me^(μ) with e\_μ~\ = e\_μ\ M].

From now on we use Jί$(μ) to denote the set of M, in Jt(μ) and with
= έ?[μ;M]. We set Γ={(x, j, χ'9 /)e£4: <x-x r, j-/> ^0} and
= {Me^f(μ): M(χ)M(Γ)=l}, where "®" denotes the direct product of measures.

LEMMA 2. ^^(μ)^J^Γ(μ) for all

1) Throughout this paper, πt and π 2 denote the first and the second coordinate mappings of
E2 onto E.
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PROOF. To avoid the trivial case we assume \ ||x — w||2ί:/μ(x)>0, where m

is the mean vector of μ. Under the assumption any M e Λ(μ) has no atomic point.
Suppose that there is an Me^0(μ) with M®M(Γ)<1. There then exist <f2-
measurable sets A and B with AxBc:Γc and M(A)M(B) = M®M(AxB)>Q.

We choose two compact sets K and K' with KaA and K'cβ and M(K)M(K')

>0. The function: (x, y, x'9 y')-*<x — x', y — y'> is continuous and strictly
negative on KxK' and hence, there is a constant <5>0 with <x — x', y — y'>
g — δ for all (x, y, x', y') e K x K'. This implies also that K and K' are disjoint.
Now we consider an ergodic automorphism T acting on (E2, «f2, M) (such an
automorphism always exists, for the space (E2, (f2, M) is isomorphic mod 0
to the interval [0, 1) with the Lebesgue measure). By ergodicity there is an inte-

ger n^O with M(K(]T-»K')>Q. We set C = K n T~nK', C' = T"C and D
= (C U C')c. The sets C and C" are disjoint since they are subsets of K and K'
respectively. We define a mapping S from E2 into itself by

S(z)=

(π1T"z, π2z) for zeC,

(π^^z, π2z) for z 6 C',

(πjZ, π2z) for zeD.

Let MS(̂ ) = M(5~1(^)) for all A e ̂ 2. Then it is easy to see that Ms belongs to
and that

ju; M] — β[μ; Ms]

= -2 <πίz-πίT
nz9π2z-π2T

nz>dM(z)

because (z, TMz) eCxC'aKxK' whenever z e C. This contradicts the assump-
tion that M belongs to u^0(μ).

Let M e ̂ (μ). A Markov kernel PM, defined on <f x £, is called a regular

conditional probability of M (with respect to γμ) if M(̂ 4 x B) = \ PM(^4, y)dyμ(y)

for all >1, 5 e g .

LEMMA 3. Let M e^Γ(μ). Then there exist a set N in £ and a regular
conditional probability PM of M such that /yμ(-/V) = 0 and, for any y, y' eNc

PM( ,
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where Γ(y, /)={(*, x')ι (x, y, x', y')eΓ}.

PROOF. Let (Gn\^l be a countable open base of E. For each n^l we
define a partition 0n = {BnJ:Q^j£2n-l} of E as follows; if j^k^"1 +
k22

n-*2 + + kn is the binary expansion of 7, BnJ = G\l Π G|2 n ••• n G*», where
G1 and G° are understood to be G and Gc respectively. We denote by <£„ the
σ-algebra generated by &n. Then the algebra ^= U^i^*,, contains at most
countable number of elements, and generates the σ-algebra &. For a fixed A
e g we define functions QSf(A9 ) on £ by

( M(AxBnJ)lγμ(Bnj)if yeBnj and yμ(BΛj) > 0
Q"M(A, y) =

I 0 if ye*,,,, and γβ(BnJ) = 0.

Then (QjfG4, ), On^i is a martingale on the probability space (E, #9 yμ) and
hence, there is a set NA with γμ(NA) = Q such that, for each yφNA, QM(A, y) =
lim Q5I,(A, y) exists. Now let N = U ̂  NA. Then γμ(N) = 0 and, for each yφN9

QM( 9 y) is a finitely additive probability measure on .̂ Using the injection:

x-K/Gn(
χ))π£i °f ^ *nto ί̂ ' ^N°' we can extend each QM( , j) to a probability

measure on <f, where 7C denotes the indicator of a set G (for the details, see [3]).

We define probability measures PM( , y) by; PM( , }>) = QM( 5 )0 f°Γ yφN and
^M( 5 y) = Juo f°r J7 e ̂ » where μ0 is an arbitrary probability measure on E. Then
PM is a regular conditional probability of M. We remark here that, for each yφN9

the sequence of measures (QM( > jOXi^i converges weakly to PM( , y). In fact,
for an ε>0 and an open set G in £, we can find A e 38 with ;4cG and PM(G> )̂

, y), for ^ contains the open base (G^n^ι. Hence PM(G, y) —ε
^^liminfρ^G, y), and so, PM(G, y)^liminfβJ,(G, y), which

implies that (Q^( , j)) converges weakly to PM( , .y). By the assumption Q^( ,

^)®QM( > y')(^Cv> /)) = ! for almost all (y, y') with respect to yμ®yμ, however,
for any A e #, since the function QM(A, ) is equal to a constant on each Bnj9

the equality holds for all (y, y')eE2. The sequence (QXf( , yj)n^ι converges
weakly to PM( , y) for any y φN and the set Γ(>>, y') is closed, tending n to infinity,
we have PM( , y)®PM( , y')(Γ(y9 /)) = ! for all y, y'φN.

§ 3. Proofs of the theorems

In this section we assume that the covariance operators of measures in 0>
are non-singular since the other case is reduced easily to this case. For each μ
e & we denote by "̂(μ) the set of all Borel measurable mappings / from E into it-
self with yμ(f~l(A)) = μ(A) for all Ae#. For each/e^"(μ) there exists exactly
one probability measure Mf in (̂μ) with Mf(AxB) = yμ(f~1(A) n B). We
denote by ̂ f(μ) the set of all Mf with/e ̂ "(μ).

First we shall prove Theorem 1. To this end it is enough to show that
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), for, by Lemma 1 and Lemma 2, ̂ 0(μ)^0 and Λ0(μ)

Now let M 6 ΛΓ(μ). By Lemma 3, there exist a set N e g and a regular condition-

al probability PM of M with yμ(N) = 0 and PM( , y)®PM( , /)(Γ(y, /))=! for

all y, y'φN. We denote by S(y) the support of PM( , j;); the smallest closed set

with full measure. For each y,y'φN, since Γ(y, y')c is open and PM( , y)

®PM( , y')(Γ(y, /)c) = 0, SGOxSGOcΓfo /), that is, <x-x', );-/> ^0
for all (x, x') e 5(y) x S(y'). Let F be the covariance operator of μ and (Oπ^i
an orthonormal basis of E consisting of eigen vectors of V. For each n^l, we

set 7π = yμpr[en]~
1 and 7^ = 'yμ(pr[en]-ι-)~1.2) Notice that yn is equivalent (mutual-

ly absolutely continuous) to the one-dimensional Lebesgue measure. A family

(C(η))ηeRι of non-empty subsets of R1 is said to be monotone if there is a set N0

with Lebesgue measure zero such that if η, η'φN0 then (ξ — ξ')(η — η')*£Q for all

(ξ, ξ') e C(ιy) x C(ιy'). It is known that if (C(^)\eRι is monotone, Card (C(ι/)) = 1
for all ?;^NO (see [2], the following statements are also the same as those of [2]).

For each z e [ej1, we set

S fa) = { < x, e,, > : x e S(ιyeπ + z)} ,

Assume that yn(N2

n) = Q for some zeJXJ1. Then the Lebesgue measure of Nz

n

is equal to zero and if η,η'φNz

n then, for any (<x, en>, <x'9 en>)ε S^(η)

χs;(ι/'),

(<x, e r t>-<x', en>)(η-η')

which implies that (Sz

n(η)\eRι is monotone. Thus Card (Sz

t(η)) = 1 for all ηφNz

n.

Now let

and D= V n^ιDn. Since yμ(N) = 09 using the Fubini theorem, we can easily prove
that yμ(DM) = ?£(££) = () for an π^ι and hence, yμ(D) = 0. Now let yφDuN

and let y = ηnen + zn for each n^l, where z^e^J1. Then yn(Njn) = 0 and ηn

φNz

n» for all n^l, and so, Card({<x, en> : xeS(y)})=l for all n^l, which

implies that Card(S(^))= 1 for all y φD U N. We define a mapping f of E into

itself by

2) For each /4c/s, [A] denotes the closed linear subspace generated by A, and pr^j is the
orthogonal projection to [A]. If (X, <%> v) is a measure space and/ is a measurable map-
ping of X into (y, $0, we use vf~l to denote the measure defined by v(f~l(B)}
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for y φD U N, where S(y) = {xy},
/ω = ,

0 for j; e D U W,

then for each yφD()N,PM( , y) = ε/(y), the unit distribution at /(>')• Thus

Next we shall prove Theorem 2. Let μ l 5 μ2e^. For any

(ϊ = l, 2), since Mί*M2eΛr(μ1*μ2),

it follows that e[μi*μ2]^e[μι] + £[μ2] Now assume that the equality holds.
By Theorem 1, there exist ft e ^(μt) with β[μί] = e[/ιί; M/£] ( i=l , 2). The rela-
tion;

Mfl*MfJ = e\_μ{\ Mf^ + e[μ2\ M/2]

implies that Mfl*Mf2 6 -^0(μ1*μ2) and hence, by Theorem 1, there is

μ2) with M/1*M/2 = M/. Thus

for all A, Be <f. Consequently /(>' + /) =/ι(>') -f/zί)'') for almost all (,y, /)

with respect to y^l®yfl2- Let (O«>ι ^e an orthonormal basis of £ consisting of
eigen vectors of the co variance operator of μι*μ2 and let LΛ = [el5 e2,..., βn].

We denote by 3?n the Borel σ-algebra of Ln and set &n = pr L- '(.£?„). It is clear that

(^«)«^ι is increasing and generates <f. We denote by 7 ίn) and y n) [resp.
σ ( w ) and σjn)] the probability measures on Ln [resp. L^] induced by prLn [resp.

prL^] from 7 and yμ. respectively (/=!, 2), where y is a short for yμv*yμ2> We
consider the Bochner integrals;

fni(yn) = Jtyn + zM*\Zn) (i = 1, 2),

where y r teLπ. Then fn(yn + yr

n) =fn M+^y'n) for almost all (yH, y'n) with
respect to y^Oy^. Therefore /„ is equal almost everywhere to an affine
transformation from Ln into E and hence y/"1 is a Gaussian measure on E.

On the other hand, since \ l!/(jOII2dy(v)< 0° and £[./Ί^J=/,, (as E-valued ran-
J E
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dom variables on (£, g, γ)), by a martingale theorem, due to Chatterji [1],

\\fn(y)~f(y)\\2dy(y)-*Q as n-^co. Therefore μ\*μ2 — yf~i is Gaussian and
E

hence, £[μι*μ2] = 0. Consequently e[μj = 0 (i = l, 2), which implies both

and μ2 are Gaussian. Thus the proof of Theorem 2 is completed.

§ 4. An application

Let (Ω9 US, P) be a probability space. A measurable stochastic process
X(ω) = (X(t, o)J)0ζt<1 is considered as an L2[0, 1)- valued random variable if

£[\ (X(i))2dt]«π. We denote by μx the probability distribution (in L2[0, 1))
Jo

of X. In this section we use e[X~\ to denote e[μx~].
Now we consider a family of real random variables {ξnj:j=l, 2,..., 2" — 1,

n = l, 2,...} with the following properties; (i) all ξnj have the same distribution,

(ii) for each /i^l, (ζnj)ι^j<2« is independent and (iii) ££,?/ = c<oo, Eξ%j = l
and Eξnj = Q. Using the family we define a sequence of processes (Xn)n^ι by

Xn(t, ω) = 2-"'*Σιzj<2»Snj<ω)fnj(t)

for (£, ω) e [0, ί) x Ώ, where Snj = Σ i ̂ y ζnί and /»./ are trιe indicators of intervals
[y2~", (j + 1)2~"). It is known that the sequence (Xn)n^ί of stochastic processes con-
verges in law to a Brownian motion. The purpose of this section is to prove this

in a wider space L2[0, 1) by making use of the functional e. Since £ \ (Xn(t))2dt

= (1 —2~")/2< oo, Xn are L2[0, l)-valued random variables, and .μn = μχn have the
mean vectors 0 and the covariance operators Vn, the integral operators with kernel

vn(s, 0 = ([s2"Λ] Λ [ί2~M])/2". We prove that (μ,,),,̂ ! converges to the Gaussian
measure with mean vector 0 and covariance operator F, with kernel φ, t) — s / \ t .

Using the random variables S2_/ = Σ1^ /^π + l f 2 ί and . Sn

1

y.=-
(I ^j<2"), we define the processes X°, X^ and Zn by

respectively. By our assumptions, for each n, (XJJ, X|, Zrt) is independent and
Xn, X® and X}t have the same distribution as random variables taking values in
the (2"-l)-dimensional Euclidean space. Since Xn+1=2-1/2(X^ + X ί l ) + Zn

and έ>[ZJ^4-", we have e[Xll+1]^e[Ar

n] + 4-11 for all rc^l. Therefore the limit

α = limn^[ΛΓJ exists. Let g0=\ and gmk = 2(m~ί}/2(fm,k-ι-fmk) for fe=1, 3,...,
2 rn— 1 and m = l, 2,... . It is known that {^r0, ^mfc: odd/v<2w, m ^ l } is an ortho-
normal basis in L2[0, 1) (the Haar functions). For any mQ, since
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supΣ
oddfc<2

(μΛ)n^ι is relatively, weakly compact [3; p. 154]. Hence we can choose a sub-
sequence (μΠlX £i of (μrt)π^ι that converges weakly to a probability measure μ

onL2[0, 1). From (iii) it follows that \ ||;

and \\\x\\4dyμn(x)^39 and hence we have

limmsup^ \\x\\2d^(x)

= limmsupw (̂\\X\fem}

Using the relations, we can prove that e[μ] = limίβ[^Πί]. Let μ0 and μί be the

limit distributions of (X%J ^/2)i^i and (Jί^ ί/x/2)^1 respectively. Then μ = μ0*
μj. On the other hand, since

= limf (e[

^ lim, ̂ [A

= α/2-f α/2 = α,

we have e[μ] = e[μo] + e[μι]» which implies, by Theorem 2, that μ is Gaussian.

References

[ 1 ] S. D. Chatterji, A note on the convergence of Banach space valued martingales,
Math. Annalen 153 (1964), 142-149.

[ 2 ] H. Murata and T. Tanaka, An inequality for certain functional of multidimensional
probability distributions, Hiroshima Math. J. 4 (1974), 75-81.

[3 ] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, 1967.
[4] A. V. Skorohod, Integration in Hubert space, Springer- Verlag, 1974.
[ 5 ] H. Tanaka, An inequality for a functional of probability distributions and its ap-

plication to Kac's one-dimensional model of a Maxwellian gas, Z. Wahrscheinlich-
keitstheorie verw. Geb. 27 (1973), 47-52.

Faculty of Science,
Shizuoka University

and
Department for Liberal Arts,

Shizuoka University




