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It is known that some roles played by Lie algebras attached to algebraic
groups over a field of characteristic zero are played instead by Hopf algebras
attached to them in the case of positive characteristic. This is essentially due to
the fact that the enveloping algebra of the Lie algebra attached to an algebraic
group over a field of positive characteristic is a proper subalgebra of the Hopf
algebra attached to it in contrast to the case of characteristic zero, where the
Hopf algebra attached to an algebraic group coincides with the enveloping algebra
of the Lie algebra attached to it. Hence there arises a motivation to study Hopf
algebras attached to group schemes over a field of arbitrary characteristic. In
other words if we want to develop an infinitesimal theory of group schemes over a
field of arbitrary characteristic, it would be natural to treat rather Hopf algebras
than Lie algebras.

The purpose of this paper is to give a theory of Hopf algebras attached to
group schemes over an algebraically closed field of arbitrary characteristic, which
corresponds to the theory of Lie algebras attached to algebraic groups over a
field of characteristic zero developed by C. Chevalley and A. Borel in their books
[2] and [1] respectively. In particular we shall show some interesting results on
algebraic Hopf subalgebras in connection with adjoint representations of group
schemes. Although there are some results on this subject obtained already by
J. Dieudonné and M. Takeuchi in their papers [3] and [11] respectively, it seems
to the author that their results do not cover the whole which would correspond
to the results on Lie algebras in characteristic zero case. For example there is
no result on joins of connected group subschemes which are not necessarily
reduced.

In § 1 we recall the definition and some properties of group schemes, and then
we define Hopf algebras attached to group schemes and other notions necessary
in the later sections. The notion and basic properties of h-inverses of Hopf
subalgebras by a Hopf algebra homomorphism will be given in §2. We shall
show some basic results on algebraic Hopf subalgebras in §3. In particular we
define the algebraic hull of a Hopf subalgebra of the Hopf algebra attached to

1) This work was completed during the period when the author stayed at Genova by a
financial support of Consiglio Nazionale delle Ricerche in Italy.
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a group scheme corresponding to the algebraic hull of a Lie subalgebra in the case
of characteristic zero. In §4 we show the existence of the join and the intersec-
tion of connected group subschemes, and we show that the join and the intersec-
tion of algebraic Hopf subalgebras are also algebraic. A theory of rational
representations of group schemes in a vector space is developed in terms of Hopf
algebras in § 5. Next we shall show a useful result on adjoint representations of
group schemes in §6 which plays very important roles in the following sections.
§ 7 is concerned in normalizers of Hopf subalgebras, formal subgroups and group
subschemes. In particular we shall show that the normalizer of any Hopf sub-
algebra of the Hopf algebra attached to a group scheme is algebraic. Similarly
we shall show results on centralizers of them in §8. We study commutators of
Hopf subalgebras, formal subgroups and group subschemes in §9. Furthermore
the existence of commutators of connected but not necessarily reduced group
subschemes is shown. In the last section we shall show how to get most results
on algebraic Lie subalgebras of Lie algebras attached to algebraic groups over a
field of characteristic zero from the results on algebraic Hopf subalgebras given
in the preceding sections, and some new results on algebraic Lie subalgebras will
be shown.

Mostly we follow the terminology and the notations from [5] and [7] on
scheme theory, from [6] on commutative algebras and from [10] on Hopf algebras.

§1. Preliminaries

Let k be an algebraically closed field of an arbitrary characteristic. In the
following we assume that an algebraic scheme X over k means always a scheme
of finite type over k, and we denote by my the structure morphism of X to Spec (k).
Moreover morphisms and fiber products of algebraic schemes over k are always
assumed to be k-morphisms and products over k respectively, and we denote
by 1y the identity morphism of X. An algebraic scheme G over k is called a
group scheme over k if the following conditions are satisfied: (i) There exists
a morphism g of GXx G to G such that u(1gx p)=pu(ux15). (i) There exist a
morphism y of G to itself and a morphism ¢ of Spec(k) to G such that the com-
positions u(lsxy)4g and u(y x 15)45 are equal to erng, where 4 is the diagonal
morphism of G. (ii) Identifying Spec (k) x G and G x Spec (k) with G canonically,
the compositions u(e x 1) and u(1;x¢) are both equal to 1;. The morphisms
U, ¢ and y are called the multiplication, the identity morphism and the inverse
morphism of G respectively, and the image e of ¢ in G is called the neutral point
of G.

If X and Y are algebraic schemes over k, we denote by Mor (X, Y) the set of
morphisms of X to Y. Then if (G, u, ¢, y) is a group scheme over k, it can be seen
easily that Mor (X, G) is a group under the composition fxg=pu(f x g)4 for f
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and g in Mor (X, G). In particular if we identify the set G(k) of the closed points
of G with Mor(Spec(k), G), G(k) has a group structure such that the neutral
element of G(k) is e and that u(x, y)=xx*y for x and y in G(k). Let (G, g, ¢, y)
and (G', i, ¢, 7") be group schemes over k and let f be a morphism of G to G'.
If f satisfies fu=p'(f xf), we say that f is a homomorphism of G to G’. Then
f satisfies necessarily fy=y’f and fe=¢" as seen easily. If x is a closed point of
a group scheme (G, y, & y) over k, we denote by L, the morphism (xmg)*1g
=u(xngx 15)4¢ and call it the left translation of G by x. Similarly we define
the right translation R, by 1x(x7g)=u(lg x xng)dg.

We say that a closed subscheme H of a group scheme (G, y, &, y) over k is
a group subscheme of G if u|y « y and y|; decompose through H. It is easy to see
that the neutral point e of G is contained in H and (H, plgxpn, & 7lg) is @ group
scheme over k. Moreover the canonical injection iy of H into G is a homomor-
phism. Now denoting by p; the projections of G x G to its i-th factor for i=1, 2,
let S be the morphism of G x G to G x G such that p,S=p, and p,S=p,. We
say simply S is the exchange of the factors of Gx G. We put

¢ =Mmpux15) (g x 1 xy)(1g x S)(4g % 15)

and a group subscheme H of G is called normal in G if ¢ | « y decomposes through
H. Then we have the following

ProrosiTiON 1. Let H be a closed subscheme of a group scheme (G, p,
&, y) over k. Then H is a group (resp. a normal group) subscheme of G if and only
if Mor (X, H) is a subgroup (resp. a normal subgroup) of Mor (X, G) for any
algebraic scheme X over k.

This is well known and hence we omit the proof. If (e, k) is the closed
subscheme of G with the base space e isomorphic to Spec(k), (e, k) is a normal
group subscheme of G which we call the neutral group subscheme of G. 1t is
also known that any connected component of a group scheme G over k is irreduci-
ble. In particular the connected component G, of G containing e is a normal
group subscheme of G.

Let (G, u, ¢, 7) be a group scheme over k, and let @ and ¢’ be the stalks of
G and G x G at e and e x e respectively. Then p and y give naturally local homo-
morphisms p* and y* of @ to ¢’ and O respectively. Then the next theorem
plays an essential role in the following sections.

THEOREM 1. Let (G, p, &, ), 0, 0, u* and y* be as above. Then there is a
one to one correspondence between the set of connected group subschemes H of
G and that of ideals a of 0 satisfying u*(a)c(a®0+0®a)0’' and y*(a)=a. If
H corresponds to a.in this way, the stalk of H at e is 0/a.
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This is Lemma 2 in [15]. We call the ideal a corresponding to H the de-
fining ideal of H in @. Now let m be the maximal ideal of @, and let @ and @’ be
the m-adic and (0 ®@m+m®0O)¢’-adic completions of @ and ¢’ respectively. If 2
and ¢ are the natural continuous extensions of u* and y* from 0 to @ and 0
respectively, (0, A, n, ) is a formal group over k in the sense of §5 in [13],

where # is the canonical homomorphism of ¢ to O/m=k. We call this formal
group the formalization of the group scheme G. Then the set $H(G) of continuous
k-linear maps of ¢ with the m-adic topology to k with the discrete topology may

be identified with the set $(0) of continuous k-linear maps of @ with the mo-

adic topology to k with the discrete topology. As seen in §5 in [13] $H(G)=H(0)
has a structure of a Hopf algebra over k whose algebra structure ($H(G), m, i)
comes from the homomorphisms A and . The coalgebra structure (H(G), 4, €)

is the dual of the algebra structure of @ and the antipode ¢ of $(G) is the dual
of . If H is a connected group subscheme of G with the defining ideal a in 0,
the Hopf algebra $H(H) attached to H may be identified with the Hopf subalgebra
of $(G) consisting of the elements x in H(G) such that x annihilates a. Then we
see easily in a similar argument to the proof of Prop. 4 in [13] that the set of
connected group subschemes of G corresponds injectively to a subset of Hopf
subalgebras of $(G). We understand by an algebraic Hopf subalgebra of
$(G) a Hopf subalgebra corresponding to a connected group subscheme of G
in this way.2)

Let (4, m) be a noetherian local ring containing the residue field k=A4/m,
and let (4’, m’) be the quotient ring of A®,A with respect to the maximal ideal
m®A+A®m. We denote by a 4 and A’ the m-adic and m’-adic completions of
A and A’ respectively, and we assume that there are a local homomorphism A
of A to A’ and an automorphism ¢ of A4 such that (4, 1, 77, 6) is a formal group
over k, where 1, & and # are the continuous extensions of 4, ¢ and the canonical
map 1: A—k=A/m to the completions. Then we say that 4 has a quasi-bigebra
structure (4, n, o) over k. In particular if the image A(4A) of A is contained in
A'c A', we say that A has a strict quasi-bigebra structure (4, 3, ) over k.

§2. h-inverses by Hopf algebra homomoprhisms

In the following we understand by a Hopf algebra (B, m, i, 4, ¢, ¢) a Hopf
algebra B over k with an antipode ¢ whose algebra and coalgebra structures are
given by (B, m, i) and (B, 4, ¢) respectively. A Hopf algebra (B, m, i, 4, ¢, ¢)
is called colocal® if (B, 4, &) is cocommutative and has only one minimal sub-

2) In [14] and [15] we called such a Hopf subalgebra algebraic in wider sense.
3) In [10] a colocal coalgebra is called irreducible.
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coalgebra. Then the unique minimal subcoalgebra of B is i(k) and i(1) is the
unique grouplike element of B which we denote by 1. A colocal Hopf algebra
B is called of finite type if the space £(B) of primitive elements in B is finite di-
mensional. It is well known that the dual space B* of a colocal Hopf algebra B
of finite type over k is a formal group over k whose Hopf algebra $(B*) is canoni-
cally isomorphic to B as Hopf algebras. Conversely if 4 is a formal group over
k, the Hopf algebra $H(A) attached to A is a colocal Hopf algebra of finite type over
k and the dual space H(A)* of H(A) is isomorphic to A as formal groups over k.
Thus there is a one to one correspondence between the set of isomorphism classes
of colocal Hopf algebras of finite type over k and that of formal groups over k.

Let (B, m, i, 4, ¢, c¢) be a colocal Hopf algebra of finite type over k, and let
(A, A, n, o) be its dual formal group over k. Then B has an A-module structure
as follows: if @ and x are in 4 and B respectively such that A(x)= (Z) X(1)®X(2)

X

we put a.x= Y <X a>X.;), where we denote by <x, a> the image of x
X

in k by the linear map a. It is easy to see that this composition gives an A-
module structure of B and that a subspace C of B is a subcoalgebra of B if and only
if C is an A-submodule of B. (cf. C.3 in [12], pp. 177-178).

Now we want to give the definition of h-inverses by Hopf algebra homomor-
phisms which are generalizations of h-kernels. For this purpose we need the fol-
lowing

ProposITION 2. Let (B, m, i, 4, &, ¢) and (B, m', i’, 4', ¢, ¢') be colocal
Hopf algebras over k. Let f be a Hopf algebra homomorphism of B to B' and
D’ a Hopf subalgebra of B'. Then there exists a Hopf subalgebra D of B satisfy-
ing the following conditions:

(i) f(D) is contained in D'.
(ii) If Dy is a subcoalgebra of B such that f(D,)<D’, then D, is contained in
D.

ProOF. Put D={x€e B|(1;® f)4(x)—x®1 e B®,D’°}, where D'° is the ker-
nel of the linear map ¢'|,.. Since f and 4 are k-algebra homomorphisms, it is easy
to see that D is a subalgebra of B. To see that D is a subcoalgebra of B, it is
sufficient to show that D is an A-submodule of B, where A= B* is the dual algebra
of the coalgebra B. If A’ is the dual algebra B'* of B', B®B' is an A®,A’-
module defined by (a®a’) (x®x")=a'x®a’-x' for a in 4, a’ in A, x in B and
x'in B’. Since ¢’ is the unit of the algebra A’, we see

@®&) (1®NAx) =(a®¢)( E)x(x) ® f(x2))
= (1®1)( (Zx) a° X1y ® X))
= (1 ®.f)4(a"x)
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for a in A and x in B by the cocommutativity of B and the equality 4(a-x)=
Y x1)®(a - xz)) (cf. p. 177 in [12]), where A(x)= (Z)x(,)®x(2). Therefore if
(x) X

x is in D, we have
(1®@NMa'x)—ax®@1=@®e) {(1;®NAx) - x® 1}
e(a®¢e) (BR,D°)=B®,D".

This means that a - x is contained in D if x is in D, and hence D is a subcoalgebra
of B. Moreover we see

(*) (13 ®)4c(x) = (1@ ) (c ® )A(x) = (¢ ® ') (13 ® f)A(x)

for any x in B. Since we have ¢'(D'°)c=D’°, we see ¢(D)<=D by () and ¢(1)=1.
Therefore D is a Hopf subalgebra of B. Now let x be an element in D. Then we
see, by the definition of D, (f® f)4(x)—f(x)®1 € B'®D’°, and hence, using the
equality (f®fA=4f, A'(f(x))—f(x)®1eB' xD'°. Then we have 1® f(x)
—&(f(x))®1e€k®D’°. This means that f(x) is contained in D’, and therefore
we see f(D)cD'. Finally let D; be a subcoalgebra of B such that f(D,)=D’,
and let x be an element of D, where D] is the intersection B°n D,. Then we see
A(x)—x®1—-1®xe DI ®D] (cf. p. 181~ 182 in [12]) and hence (1@ f)4(x)
—x®1eD,®D'°cB®D’'°, because we have f(x)ef(D])=D’® from f(D,)<D’.
Therefore we have D] = D by the definition of D and also D, =k@® D] = D identify-
ing i(k) with k. q.e.d.

Let B, B, D’ and f be as above. Then the Hopf subalgebra D obtained in
Prop. 2 is called the h-inverse of D’ by f and is denoted by h-f~'(D’). In par-
ticular if D’ is the smallest coalgebra i'(k)= B’ which is also a Hopf subalgebra of
B’, h—f~1(B5) is called the h-kernel of f and is denoted by h-kerf.

Let (A;, 44, 1y, 01) and (A4,, 4,, 115, 6,) be formal groups over k with the
maximal ideals m; and m, respectively. Then a local homomorphism ¢ of A4,
to A, is called a formal group homomorphism if the diagram

A, —° , A,
(+) y| Js»
A 5 A
is commutative, where A; is the (m;®A4;+4;®m,)-adic completion of 4;®A4,

and §®¢ is the continuous extension of p@¢: 4, @4, > 4,QA4,.

LemMAa 1. Let (A, A1, 1y, 0,) and (A,, A,, 15, 6,) be as above, and let
(Bj, my, ij, 4;, €, ¢;) be the Hopf algebra $(A;) for j=1,2. Let ¢ be a local
homomorphism of A, to A, and ¢* the transpose of ¢. Then we have the follow-
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ings:

(i) ¢ is a formal group homomorphism if and only if ¢*=¢*|s, is a bigebra
homomorphism of B, to B,.

(i1) If ¢ is a formal group homomorphism, we have n,=n,¢ and ¢o,=0,¢.

ProoF. Since A4 is the dual algebra of the coalgebra B;®B; for j=1, 2,
we see easily that ¢*® @* is the restriction of the transpose of ¢®@¢ to B,®B,.
Therefore if ¢ is a formal group homomorphism, we have m,(¢*® ¢*)= ¢*m,
from (*+) and m;=1%|p gs, for j= 1, 2. On the other hand since we see #, =7,¢
by the definitions of 5, and 5,, we have i, =@*i,. This means that ¢* is an
algebra homomorphism of B, to B,. Similarly we see that ¢* is a coalgebra
homomorphism, because ¢ is a local homomorphism of 4, to 4,. A similar argu-
ment shows the converse. Now assume that ¢ is a formal group homomorphism.
Then since ¢* is a bigebra homomorphism as seen in the above, we have ¢*o%
=0*¢* as seen easily. This means ,¢=do,. q.e.d.

ProPoSITION 3. Let A, and A, be formal groups over k, and let ¢ be a
formal group homomorphism of A, to A,. Let A /a; and A,|a, be formal sub-
groups of A; and A, respectively. Then we have the followings:

(i) A,/¢~Ya,) is a formal subgroup of A,. If D, is the Hopf subalgebra of
$(A,) corresponding to A,la,, A,/¢p1(ay) corresponds to the Hopf subalgebra
¢*(D,) of H(4,).

(ii) A,/¢p(a,)A, is a formal subgroup of A,. If D, is the Hopf subalgebra of
9S(A,) corresponding to A,la,, A,/¢(a,)A, corresponds to the h-inverse h-
¢*=1(D,) of D, in H(A4,;) by ¢*=*|5(4,)

Proor. (i) If a is any element in A,, we have the following: ae¢@~1(a,)

<p(a)ea,e<x, P(a)>=0 for any x in D,<><¢*(x), a>=0 for any x in
Dy<>a e (¢p*(D,))*t, where ¥+ means the null space in 4, of Vin $(A,) with respect
to the inner product < , > of $(A4,) and 4,. This means that ¢~1(a,) is the null
space (¢*(D,))* of ¢*(D,) in 4,. Then ¢*(D,) is a Hopf subalgebra of $H(4,)
and A,/¢~1(a,) is the formal subgroup of 4, corresponding to ¢*(D,).
(ii) From the commutative diagram (x*) we see easily that A,(¢(a;)4,) is con-
tained in (¢(a,)A,®A4,+4,¢(a,)4,)A,. Moreover since ¢o,=0,4¢ by
Lemma 1, (ii), we see o,(¢(a,)4,)=¢(0,(a,))A,=¢d(a,)4,. Therefore we see
easily from the definition that A,/¢(a,)A, is a formal subgroup of 4,. Denote
by D’ the Hopf subalgebra of $(A4,) corresponding to the formal subgroup 4,/
¢(a)A,. If x is any element of D', we see <¢*(x), a;>=<x, ¢(a;)>c<x,
¢(a,)A,>={0}. This means ¢*(D')c=D,. Moreover let D" be any subcoalgebra
of $(A4,) such that ¢*(D")=D,. Let x be any element of D” and put 4,(x)=
z?_:) X1)®X(2), Where 4, is the comultiplication of $(A4,), and x(;, and x,) are in
X

D”. Let a, and a, be any elements of A, and A, respectively. Then we see
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<x, p(a,)a,> = <4,(x), p(a,) ® a,> =(Z)<xm, d(a)><x;ya,>
X
= (Z)<¢*(x(1)), a,> <X@y a,>=0,
X

because ¢*(D”) is contained in D,. This means D" <D’ =(¢(a,)A4,)*. Therefdre
D’ is the h-inverse of D, by ¢* from Prop. 2. q.e.d.

COROLLARY. Let A, Ay, ¢ and ¢* be as in Prop.3. Then the image
O*(DH(A4,)) in H(A,) corresponds to the formal subgroup A,[/¢p~1(0) of A, and the
h-kernel of ¢* corresponds to the formal subgroup A,/¢p(m,)A, of A,, where m,
is the maximal ideal of A,.

Let A, A5, a;,a, and ¢ be as in Prop. 3. Then the formal subgroup
A.ld~1(a,) of A, is called the image of the formal subgroup A,la, of A, by @,
and the formal subgroup A4,/¢(a,)A, of A, is called the inverse imageof the formal
subgroup A,[a; of A, by ¢. In particular A,/¢~1(0) and A4,/¢p(m,)A, are called
the image and the kernel of the formal group homomorphism ¢ respectively,
where m, is the maximal ideal of A4,.

§3. Algebraic Hopf subalgebras

First we need the following elementary lemma.

LeMMA 2. Let V be a vector space over k, and let U, W and T be subspaces
of Vsuch that W> T. Then we have

WRV+VanDnUeU)=UnwWeU+UWUnT).

PrROOF. Let {x,|oc€S,} be a basis for TnU over k, and let {x|teS,}
and {x,;|1 € S,} be subsets of Tand W n U such that {x,} U {x.} and {x,} U {x;}
are bases for Tand W n U over k respectively. Then {x,} U {x.} U {x,} is a linearly
independent subset of W over k and hence there is a subset {x,|ve S,} of W such
that {x,} U {x,} U {x;} U {x,} is a basis for W over k. Similarly there exists a sub-
set {x,|u€ Ss} of U such that {x,} U {x;} U {x,} is a basis for U over k. Then we
see as above that {x,} U {x,} U {x,} U{x.} U {x,} is a linearly independent subset
of V over k and hence there exists a subset {x,|m € S¢} of V such that {x,} U {x;}
u {x,} U{x}U{x,}U{x,} is a basis for V over k. If y is an element of W@V
+V®T, we can express y uniquely as follows:

y= (;Z’) U Xe® Yy g€k and ag, =0 for almost all (&, 1),
N

where 3’ runs over all (£, n) which are contained in S;xS; for 1<i<4 and
1<j<é6orfor 1<i<6and 1<j<2. Similarly if y is in U® U, we can express
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y uniquely as follows:
y= ’:Z” ,Bg,,x¢® Yy Bey€k and B, =0 for almost all (&, n),
' &)

where X" runs over all (£, n) which are contained in S;xS; for i, j=1, 3, 5.
Therefore if y belongs to (W®V +V®T)n(URU), we see

y= 2" X ® ¥y 7Vey€k and y; =0 for almostall (¢, n),
(G»n)

where 3" runs over all (£, ) which are contained in §;x S; for i=1, 3 and j=1,
3,5orfori=1,3,Sand j=1. This means that the left hand side of our equality
is contained in the right hand side. The inverse inclusion is clear. q.e.d.

LemMMA 3. Let (A, m) be a local ring with a quasi-bigebra structure
over k. Then the canonical homomorphism ¢ of A®,A to the quotient ring
(A®1A) sm+m®a4 IS injective.

Proor. If A4 is the m-adic completion of A4, 4 is a formal group over k.
If the characteristic of k is zero, 4 is an integral domain as well known. In
particular 4 has no non-trivial zero-divisor and hence ¢ is injective. If the
characteristic of k is p>0, A is isomorphic to the tensor product of a formal
power series ring and an artinian local ring of the form k[T,,..., T,J(T?",...,
TP?1) by Prop. 2 in [14]. Therefore we can see easily that the zero ideal of
A®,A is primary and the nilradical of A®,4 is contained in AQmA+mARA.
Hence the zero ideal of A®,A4 is also primary and its nilradical n is contained in
(A@mA+mARA) n (A®,A), which coincides with m®A4+A®m by Lemma 2.
This means that A —(m® A4+ A®m) does not contain any zero-divisor of A®,A4,
and hence ¢ is injective. q.e.d.

ProposITION 4. Let (A, m) be a local ring with a strict quasi-bigebra
structure (A, n, o) over k. Let A and A|a be the m-adic completion of A and a
formal subgroup of it respectively. Then if we put a=an A, we have A(a)c
(a®A+A®a)A’ and a(a)=a, where A'=(A®A) @1+ 4@m:

Proor. Let (1,7, &) be the quasi-bigebra structure of the formal group
A defined by (4, 1, 0) and let A’ be the (m®A + A®m)A’-adic completion of A’.
By Lemma 3 we may consider A®,4, A®,A4 and A’ as subrings of 4. By our
assumptions we have A(4)c A4’ and A(@)c(@a®A+A®ad)A’ and hence we see
Ma)c(@a®A+AQ®a)A' N A’. Therefore if x is an element of i(a), there is an
element s in A®,A—(m®A+ A®m) such that sx is in A®,4. This means that
sx is in (IQA+ARTA N(A®A)=(ARA+ARTA' N (A®,A) N (AR,A)=(a
RA+ A7) N (A®,A), because a®A+ AR is a primary ideal of A®,4 con-
tained in mA® A+ A®mA as seen easily in a similar way to the proof of Lemma
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3. But the right hand side of the above equality coincides with a®@A+A®a
by Lemma 2. Therefore sx is in a® A+ A®a and hence x is in (a@A4+A®@a)A’".
On the other hand we see g(a)c A4 N G(a)=A4 n a=a and hence o(a)=a. q.e.d.

ProprosITION 5. Let (G, u, &, 7) be a group scheme over k and $(G) the
Hopf algebra attached to G. If D is a Hopf subalgebra of $(G), there is the least
algebraic Hopf subalgebra C of $(G) such that C>D.

ProoF. Let @ be the ideal of the formalization 4 of G corresponding to
D, i.e., ais the null space D+ of D in A. If ¢ is the stalk of G at e which we con-
sider as a subring of 4, we put a=an¢@. Then by Prop. 4 a satisfies u*(a)
<(a®0+0®a)®’ and y*(a)=a, because ¢ has the quasi-bigebra structure
(u*, ¢*, y¥). But this means by Th. 1 that there exists a unique connected group
subscheme H ‘of G having a as the defining ideal in ¢. We put C=$H(H). If
C’ is any algebraic Hopf subalgebra of $(G) containing D, we denote by A/a’
the formal subgroup of A corresponding to C’. Then we see a>a’. Since C’
is algebraic, there exists an ideal a’ of @ such that a’=a’4A. Then we see a’
=a’'n0, and hence a=anodoa’'n@=a’. If H' is the connected group sub-
scheme of G defined by a’, we see H is a group subscheme of H’, and hence C’
contains C. This means that C is the least algebraic Hopf subalgebra of $H(G)
containing D. q.e.d.

Let G, $(G) and D be as above, and let C be the unique least algebraic Hopf
subalgebra of $(G) containing D. Then C is called the algebraic hull of D in
$(G) and is denoted by /(D). D is algebraic if and only if D=./(D).

Let (Gy, 1y, €15 71) and (G,, Uy, &,, ) be group schemes over k and let f
be a homomorphism of G, to G,. Denoting by 0, the stalk of G; at the neutral
point ¢; of G; for i=1, 2, let f* be the comorphism of @, to ¢, defined by f.
If A; is the formalization of G, for i=1, 2, we denote by f the continuous exten-
sion of f* from A4, to A,. Itis easy to see that f* is a formal group homomor-
phism. Then there is a unique Hopf algebra homomorphism f, of $(4,)=
H(G,) to H(4,)=9H(G,) such that f* is the transpose of f, by Lemma 1. We
say f* and f, to be the formal comorphism and the tangential homomorphism
of f respectively.

LemMMA 4. Let (R,, m,) and (R,, m,) be noetherian local rings, and ¢
a local homomorphism of R, to R,. Denoting by R; the mi-adic completion of
R, for i=1, 2, let ¢ be the continuous extension of ¢ from R, to R,. Then we
have the followings:
(i) If ay is an ideal of R,, ¢~1(a,) is dense in ¢~1(ayR,).
(ii) If a, is an ideal of R, ¢(a,)R, is dense in ¢(a,R,)R,.
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Proor. (i) Since ¢ gives an injective local homomorphism ¢’ of R,/
¢~ 1(a,) to R,/a, naturally, we have a local homomorphism @’ of the completion
R/~ (ay) of R,/¢~!(a,) to the completion R,/a, of R,/a,. Then it is easy to
see that @' is also injective. On the other hand we have R,/¢~1(a,)
=R;/¢7'(a)R, and Ry/a;=R,/a,R,. This means ¢~ !(a,R;)=¢"!(az)R,
and we see that ¢~1(a,) is dense in ¢~1(a,R,).

(ii) This is a direct consequence of the fact that R, is dense in R,. g.e.d.

ProrosITION 6. Let G,, G,, H(G,), 9(G,), f and f, be as above. Let
D, and D, be algebraic Hopf subalgebras of H(G{) and H(G,) respectively.
Then the image f (D) of D, and the h-inverse h—f3'(D,) of D, are algebraic.

Proor. Let A; be the formalization of G; for i=1, 2, and let f* be the for-
mal comorphism of f. If 4,/d; is the formal subgroup of A4; corresponding to D,
for i=1, 2, then fu(D,) (resp. h—f31(D,)) corresponds to A,/f*1(a,) (resp.
A,/f*(@@,)4,) by Prop. 3. Now put a;=a, N0, and a,=4a, N 0, denoting by
0; the stalk of G; at the neutral point ¢; for i=1, 2. Since D, and D, are alge-
braic, we have a;4,=4a, and a,4,=ad,. By Lemma4 f* !(a,) is dense in
f*1(a;4,) and hence f* !(a,) is equal to f* '(a;,4,)n0,=f*"1(a)no,
as easily seen. Moreover we have f* !(a,)4,=f*"1(a,). Similarly we see
f*(ay)0,=f*@,)A, N0, and (f*(a,)0,)4,=f*@,). Therefore we see by Prop.
4 and Th. 1 f*-1(a,) (resp. f*(a;)®,) is the defining ideal of a group subscheme
of G, in 0, (resp. of G, in @,) whose formalization is A,/f*~1(a,) (resp. 4,/
f*(ay)A,). This means that f,(D,) and h—f;!(D,) are algebraic. q.e.d.

CoroLLARY. Let Gy, G,, 0, O0,, f and f* be as above. Then if a; is the
defining ideal of a group subscheme of G; in 0; for i=1, 2, f*(a,)0, (resp.
f* Y(a,)) is the defining ideal of a group subscheme of G, in 0, (resp. of G,
in 0,).

We shall terminate this section by giving the notions of direct images and
inverse images of group subschemes by a group homomorphism of a group scheme
to another, and we shall restate the above proposition and the corollary in terms
of them. For this purpose we need the next lemmas.

LemMMA 5. Let G, G, and f be as above. If x is a closed point of G,
we have fL,=L;f and fR,=R ) f.

LemMMA 6. Let G,, G, and f be as above. Then the image of the base
space of a group subscheme of G, in G, by f is a closed subset of G,.

These lemmas are well known and the proofs are not so difficult. . Therefore
we omit them.
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ProrosiTION 7. Let G, G,, 0y, O, f and f* be as above, and let H,
be a group subscheme of G, with the defining ideal a, in ©,. Then there exists
a unique group subscheme H, of G, such that the defining ideal of H, in 0,
is f* (a;) and that we have f(H,)=H, as sets. Moreover f|y, decomposes
through H,.

Proor. By Cor. to Prop. 6 and Th. 1 there is a unique connected group
subscheme N, of G, with the defining ideal f*~(a;) in @,. Let W=Spec(C)
be any affine open subset of G, containing e, and let b be the defining ideal of
the closed subscheme W n N, of W. Then we see easily L¥(bc0¢, .)=R¥(0:06,..)
=f*"Ya,) for any closed point a in WnN, and b.0;,,=0g,, for any closed
point bin W—N,. On the other hand f(H,) is a closed subset of G, which is equal
to N, UL, (N,)-+-L,(N,) as sets by Lemma 6. Then using W and b, we can see,
in the same way as the proof of Lemma 2 in [15], that there exists a coherent
sheaf ¢ of the ideals of @, such that the closed subset of G, defined by ¢ is f(H,)
and that we have f*~!(a,)=c¢,,=L}(c,) for any closed point y in f(H,). Since
we have fR, =R, f and fL,=L,, f for any closed point x of G, by Lemma 5,
we see RYf¥=f*R%,,) and L}f¥=f*L% ), where f¥ is the comorphism of
06,50 10 Og, » defined by f. Then we have R¥Af* Yay)=f¥'R¥ (a))
=f¥1L¥ Ya) =L} f* "(a))= ¢, for any closed point x in H,, because we
have R¥~(a;)=R¥-i(a;)=L¥ (a;)=L¥"'(a;) and f* !(a;)=L%)(¢f)). This
means f*~!(a,;)=c¢,,=R}¥(c,) for any closed point y in f(H,). The same argu-
ment as as the proof of Lemma 2 in [15] shows that H,=(f(H,), Og,/¢) is a
group subscheme of G, satisfying our condition. The uniqueness of H, is clear.
Since L¥~!(a,) is the stalk of the coherent sheaf of the ideals of ¢, defining
H, and we have f* !L¥ !(a;)=c(,), it is clear that f|, decomposes through
H,. g.e.d.

ProrosiTION 8. Let Gy, G,, 0y, 0,, f and f* be as above and let H,
be a group subscheme of G, with the defining ideal a, in 0,. Then there exists
a unique group subscheme H, of G, such that the defining ideal of H, in 0,
is f*(a,)0, and that f~'(H,)=H, as sets. Moreover f|y, decomposes through
H,. '

PrOOF. It is easy to see that f~!(H,) is a closed subset of G, and that the
set of closed points of f~1(H,) is a group. On the other hand there exists a
unique connected group subscheme N, of G; with the defining ideal f*(a,)0,
in 0, by Cor. to Prop. 6 and Th. 1. Then f~1(H,) is a finite disjoint union
v L,(N,) as seen easily, where x; is a closed point of f~!(H,) for each i. A
i=1

similar argument to. the proof of Prop. 7 shows that there exists a unique group
subscheme H, of G, with the underlying space f~!(H,) and the connected com-
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ponent N, containing the neutral point e;. It is easy to see that H, satisfies our
conditions. g.e.d.

Let G,, G, and f be as above.  If H, is a group subscheme of G,, we call the
group subscheme H, of G, obtained in Prop. 7 the direct image of H, by f. In
particular we call the direct image of G, by f the image of f. On the other hand if
H, is a group subscheme of G,, we call the group subscheme H, of G, obtained
in Prop. 8 the inverse image of H, by f. In particular we call the inverse image
of the trivial group subscheme (e,, Spec(k)) by f the kernel of f.

ProprosiTiON 9. Let G,, G,, f, H, and H, be as above. Then we have
the followings:

(i) The direct image of H, by f is the smallest group subscheme H’, of G, such
that fly, decomposes through H’. If Dy is the Hopf subalgebra of $(G,)
corresponding to H, f4(D,) is the Hopf subalgebra of $(G,) corresponding to
the direct image of H,.

(ii) The inverse image of H, by f is the largest group subscheme H', of G, such
that f|y, decomposes through H,. If D, is the Hopf subalgebra of $(G,)
corresponding to H,, h—f 31(D,) is the Hopf subalgebra of $(G,) correspond-
ing to the inverse image of H,.

Proor. This is a direct consequence of Prop. 7, 8 and 3. q.e.d.

§4. Joins and intersections of group subschemes

First we assume that k is an algebraically closed field of a positive character-
istic p. Let X be an algebraic scheme over k and let x be a point of X. {If 0,
is the stalk of X at x, we denote by F, the Frobenius endomorphism of 0,, i.e.,
F.(a)=ar for any a in 0,. If we put ker Fi=aq;, we have

0 =ayca,cca; <Gy

Since @, is noetherian, there is an integer N such that a,=ay for any n>N. Then
we say that X has the exponent not larger than N at x and we denote this by
exp, X <N. In other words we have exp, X <N if and only if we have n?" =0,
where 1 is the nilradical of ¢,. In particular if X is a grbup scheme G over k,
then: the stalk of G at any closed point x is isomorphic to that of G at the neutral
point e of G. Hence we say that G has the exponent not larger than N if exp, G
<N, and then we denote this by exp G N.

LeMMA 7. Let X and Y be algebraic schemes over k, and let f be a mor-
phism of X to Y such that the comorphism f¥ of the stalk O, of Y at f(x) to
the stalk 0, of X at x defined by f is an injection. Then if we have exp, X <N,
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the inequality exp,, Y <N holds.

Proor. If F and F’' are the Frobenius endomorphisms of 0, and 0O,
respectively, we see easily f¥F'i=Fi!f* for any i>0. Therefore if we put g
=ker F* and b;=ker F'! for any i>0, b, is equal to f¥~1(a;) by our assumption on
f¥. This means that we have by=b, if ay=a, for n>N. g.e.d.

LemMA 8. Let X, be an algebraic scheme over k for 1<i<n. If x; is a
closed point of X; such that exp,, X;< N for each i, we have exp,, x...x, X1 X+ X
X,<N.

Proor. It is sufficient to show the case of n=2. Let n, and n, be the nil-
radicals of the stalks ¢, and ¢, of X; and X, at X, and X, respectively. Then
the nilradical of 0,®,0, is n,®0,+0,®n,. In fact 0,/n, and @,/n, have no
nilpotent elements except zero. This means that 0,/n,®,0,/n,=0,®,0,/(n, ®
0,+0,®n,) is reduced, because k is algebraically closed (cf. Matsumura [6],
(27, E), Lemma 2). On the other hand the stalk @ of X, x X, at x, x x, is the
quotient ring of ¢, ®, 0, with respect to a maximal ideal of ¢, ®,®,. Therefore
the nilradical n of ¢ is generated by the image of n,®0,+0,®n, in ¢. Since
we have nf" =n5" =0, we see easily n?"=0. This means exp,, x,X; X X;<N.

q.e.d.

LEMMA 9. Let A be a noetherian ring and p a prime ideal of A. Then
if n is a positive integer, we have the minimal condition on the set of p-primary
ideals q of A such that p"cag.

Proor. If prcq, we see p"A,<=qA,. Further we know that qcq’. If and
only if g4, q’A, for any p-primary ideals q and q’. Therefore it is sufficient to
show that the minimal condition on the set of ideals of Ap/p"A holds. Since

A,/p"A, is an artinian local ring, our assertion is true. g.e.d.

In the following let k be an algebraically closed field of any characteristic
and let (G, p, &, y) be a group scheme over k. Denote by @, the stalk of Gx -+ x
G (n times) at the neutral point eX --- x e for any n>0. In particular put 0=0,.
Then we denote by 4, the comorphism of =0, to 0, defined by the multiplication
U, of GXx - x G (n times) to G for n>2.

LemMa 10. Let G, 0, 0, and 4, be as above, and let a; be an ideal of O for
1<i<n such that the ideal

b;=0,90®®0+0®01,Q0Q®0++0®®0Qa,

of O®---®0 (j times) is primary for each j=1,2,...,n. Then if we put ¢;
=47'(b;0;) for 2<j<n, we have ¢c;cc¢;_; for 3<j<n and c¢;jca;n---na;
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for 2< j<n. Moreover ¢; is a primary ideal of 0 for 2< j<n.

Proor. First we show the case of j=2. Let p; and p, be the comorphisms
of 0, to 0 defined by the morphisms:

G =G x Spec(k) 1s*e, G x G and G = Spec(k) x G216, G x G

respectively. Then we see p,4,=p,4,=1,, and we have a,=p,(b,0,) and
a,=p,(b,0,) as seen easily. By the definition of ¢, we see a;=p(b,0,)>
p14,431(b,0,)=c¢,. Similarly we see a,>c¢,. Therefore ¢, is contained in
a,; Na,. Now we assume j>3. Let g and h be the natural homomorphisms
0®0—0, and 0;_;®0—0; obtained from localizations respectively, and let ¢;
be the unique homomorphism of @, to 0; satisfying ¢,g=h(4;,_,®1,). Then
we see easily 4,=¢;4,. On the other hand we see also easily that g and h are
injective. Therefore ¢7!(b;0;) coincides with (4;_,®1,)"'(h=1(b;0;))0, =(¢;—; ®
0+0®a;)0,, because b(0;_,®0) is primary in ¢;_;®0 by our assumption and
the injectivity of g. This means ¢;=471(b;0,)=43'((¢c;- ,®0+0®a;)0,) by the
equality 4;=¢;4,. On the other hand 43!((¢;_;®0+0®a;)0,) is contained in
¢;j—; and q; as seen in the same way as above. This means ¢;=¢;_; and ¢;<a;.
By induction on j we see easily ¢;=a,n---Na;for j=2,..,n. Now since b;
is a primary ideal of O®---®0 (j times), so is b;0;, and hence we see ¢; is a
primary ideal of @. g.e.d.

LemMma 11. Let G, 0, 0, and 4, be as above, and let H, and H, be con- -
nected group subschemes of G defined by ideals a, and a, in O respectively.
Denoting by E the set {(iy,..., i,)li;=1 or 2; n>2}, put, for each (i,,..., i,) in E,

Cil...i" = A;l((ail ®0®"®0 + -+ 0®"'®0 ®0i")0").

Then there exists an element (j,..., j,) in E such that ¢ is contained in

¢, Jor any (iy,..., i,) in E.

J1rim

Proor. Since @/q; is the stalk of the group scheme H; at e, the completion
A; of 0]a; with respect to the maximal ideal of 0/a; is a formal group over k for
each i=1, 2. Therefore we see easily by Prop. 2 in [14] that the zero ideal of
A, ®; - ®,A4; is primary for any (iy,..., i,) in E, and hence the subring 0/a;,
®y @, 0/a;, has the same property. Applying Lemma 10 we see that ¢;,..,;,
is a primary ideal of ¢ satisfying ¢;,..;, <a; N---Naq; and ¢,.. <¢,. _, for any
(iys..., iy) in E. Now since the radical rad (c;,..; ) of ¢;,...;, is prime for any (iy,...,
i,) in E, there exists a minimal element p in the set {rad(c;,...; )|(i,..., i,) € E}.

First we assume that the characteristic of k is p>0, and suppose exp H, <N
and exp H,<N. Then by Lemma 8 we have exp H; x---x H; <N for any (iy,...,
i,) in E, and hence we see easily p?** = ¢,..; for (i,..., i,) in E such that rad (¢;,...;)

iy in
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=p in the same way as the proof of Lemma 7. This means that there exists a
minimal ideal ¢;..; in the set {¢; .. |rad(¢;..;)=p} by Lemma 9. For any
(i1y-..siy) in E we see ¢j..j D€ .., by Lemmal0 and hence p
=rad(c;,...;,)=rad ¢;,..; ;. by the minimality of p. This means c¢;..;_
= Cj jpisin irOM the definition of ¢;,...; . On the other hand we can see ¢;,...;,
D ¢ji,...j, for j=1, 2 in the same way as the proof of Lemma 10. Repeating this
WE SEE €;iy D Cpjpiyeoniyy = € Therefore «¢;,...;, is the smallest ideal in the
set {¢;...,|(iy,..., i) € E}.

In the case of characteristic zero, H; and H, are both reduced as well known,
i.e., a; and a, are prime. This means that c; .., is prime for any (iy,..., i,) in
E as seen easily. Therefore p=c;,..;, is the minimal ideal in the set {¢;..;|

(iyse-., iy)€ E}. q.e.d.

Jredm®

LEmMA 12, Let 0, 0,, a;(i=1,2,...,n) and b, be as in Lemma 10.
Then the continuous dual coalgebra C, of the residue ring 0,/0,0, is canonically
isomorphic to (0]a,)*®; - ®,(0/a,)°, where (0/a)°¢ is the continuous dual
coalgebra of 0la; for i=1, 2,..., n.

Proor. If m is the maximal ideal of 0, M,=(MROR- RO+ -+ +
0®--®0®m)0, is that of ¢,. Since the continuous dual coalgebra of ¢, is
lim (0,/m!)*, C, coincides with
t

lim (0,/((a; + M) PROR@ RO +++ 0 ®-® 0 ® (a, + m"))0,)*
t .

= lim (0/a, + M)*®@--@ (¢/a, + M)* = (O/a,)* @@ (O]a,)°.
q.e.d.

Let B be a Hopf algebra over k, and let D and E be Hopf subalgebras of B.
Then if C is the subalgebra of B generated by D and E, C is also a Hopf subalgebra
of B as seen easily. C is the smallest Hopf subalgebra of B containing D and E.
We denote C by J(D, E) and call it the join of D and E. Similarly if Dy,..., D,
are Hopf subalgebras of B, we can define the join J(Dy,..., D,) of Dy,..., D,. On
the other hand if we put I(D, E)=DnE, I(D, E) is a Hopf subalgebra of B by
Lemma 1 in [13]. We call I(D, E) the intersection of D and E. Similarly we
can define I(D,,..., D,).

THEOREM 2. Let (G, u, & y) be a group scheme over k, and let D, and D,
be algebraic Hopf subalgebras of the Hopf algebra $H(G) attached to G. Then
the join J(Dy, D,) of D, and D, is also algebraic.

Proor. Let H, and H, be the connected group subschemes of G such that
D,=9(H,) and D,=$9H(H,), and denote by a, and a, the defining ideals of H,
and H, in the stalk @ of G at e respectively. Let 0,, 4,, E and ¢;..; ‘be as in
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Lemma 11, and let ¢=c¢;,...; be the smallest ideal in the set {c;..;|(iy,..., in)
€ E} (cf. Lemma 11). Ify,, is the homomorphism of ¢, to 0,,, obtained naturally
from the homomorphism 4,,®4,, of 0®,0 to 0,,&,0,, by localizations, we see
easily 4,,,=y,4, by the associativity of u. Then a similar argument to the

proof of Lemma 10 gives

Yul((0;, ®0@®O++0@Q0®a;, RV®--Q0
+0®-®0Qa;, Q0@ @0 +-+ 0®®0®a; )05,
=(c®0+0® )0,

and hence we see ¢;..j ..;, =47 (c®0O+0®c)0,). By Lemma 10 we see
Ciroojmjiim € jm=1¢, and hence ¢;..; :..;. =¢ from the minimality of
¢. This means 4,(¢)=(¢c®0+0®c¢)0,. On the other hand let y* be the co-
morphism of @ to itself defined by y, and let o, be the automorphism of Gx -+ x G
(n times) such that o, maps the i-th factor to the (n—i+ 1)-th factor for each i
=1, 2,..., n. If we denote by ¢ the comorphism of ¢, to itself defined by g,
we see easily 4,y*=oF(yx---xy)*4,. In fact we have p,(yx---xyg,=7-u,
as seen easily if u, is the multiplication of G x -+ x G to G. This means y*~(¢;,..;)
=¢;.. for any (iy,..., i,) in E, because we have y*(a;)=aq; for i=1,2. In par-
ticular we see y* !(¢)=y*"!(¢;,..;,)=¢..;;2¢ and y*7 ()= y*T (¢, ..;)
=¢j,...j,=¢ This means y*(¢)=c. Therefore ¢ is the defining ideal of a con-
nected group subscheme H of G in @ by Th. 1.

Now since ¢ is contained in a; N a, by Lemma 10, we sce H(H) contains both
D,=9(H,) and D,=9H(H,). On the other hand if b} .; is (a; ®O®---®0O
+:+0®---®0®a; )0,, We see that 4,, gives an injection of ¢/c¢ into 0,,/b},...;. .
Therefore the transpose 4, of 4,, maps the continuous dual coalgebra C;,...;  of
Op/b,...;,, onto the continuous dual coalgebra H(H) of ¢/c. Moreover since 4},
gives the multiplication of m elements in $H(G), we see, by Lemma 12, that H(H)
is contained in the algebra generated by D, and D,. This means $H(H)=J(D,,

D,). 1In other words J(D,, D,) is algebraic. q.e.d.

COROLLARY. In the above theorem we assume that the characteristic of
k is p>0. Then if H, H, and H, are connected group subscheme of G such that
SH)=J(H(H,), H(H,)), we have exp H<max(expH,, expH,). In any charac-
teristic the connected group subscheme H of G corresponding to J(H(H,), H(H,))
is reduced, if H, and H, are reduced and connected group subschemes of G.

Proor. The first assertion is shown already in the proof of Lemma 11 and
Th. 2. On the other hand a group scheme G over k is reduced if and only if
exp G=0 if the characteristic of k is p>0. Therefore in this case the last asser-
tion follows from the first one. If the characteristic of k is zero, any group scheme
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over k is reduced, and hence our assertion is true. g.e.d.

Let G be a group scheme over k, and let H,,..., H, be connected group sub-
schemes of G. Then there exists a unique connected group subscheme H of G
such that $(H)=J(H(H,),..., D(H,)) by Th. 2. 1t is easy to see that H is the
smallest connected group subscheme of G containing each H; as a group subscheme
of it for each i=1, 2,...,n. We call H the join of H,,..., H, and denote it by
J(H,,...,H). By Cor. to Th. 2 we have expJ(H,,..., H,)< N in a positive
characteristic case if exp H;< N for each i=1,..., n

ProrosiTiON 10. Let G and H,,..., H, be as above. Then the intersec-
tion I(H(H,),..., H(H,)) of H(H,),..., H(H,) is algebraic.

Proor. It is sufficient to show our assertion in the case of n=2. Let the
notations be as in Lemma 11. Then we see that 4,(a,;+a,)=4,(a;)+4,(a,)
is contained in the ideal of @, generated by ¢, ®0+0R®a,+0a,®0+0Ra,
=(a;+0,)®0+0®(a;+a;) by Th. 1. Similarly we see y*(a;+a,)=a,+a,.
This means by Th. 1 that a, +a, is the defining ideal of a connected group sub-
scheme H of G. Now if A4 is the formalization of G, we see (a;+a,)4=0a,4
+a,A. Therefore we have H(H,) N H(H,)=(H(H )+ H(H))t=(a;4+a,A4)*
as seen easily. Since we have (a,4+a,4)N0=a,+a,, we see H(H )N H(H,)
=$(H), and hence H(H,) N H(H,) is algebraic. q.e.d.

Let G and H,,..., H, be as above. Then there exists a unique connected
group subscheme H of G such that $(H)=I1(H(H,), ..,.5(H,,)) by the above
proposition and Th. 1. We call H the intersection of H,,..., H, and denote it
by I(H,,...,H,). We have $S(I(Hy,..., H))=I(H(H)),... S(H,,))— /\ H(H)).
More generally let {H,;|]Ae A} be a family of an arbitrary number of connected
group subschemes H, of G, and let a; be the defining ideal of H, in the stalk
0 of G at the neutral point e of G for each 1 in A. Then there exists the largest
ideal a; +-:-+a,, of @ in the family of the ideals a,; +---+a,; (4;€ 4), because
0 is noetherian. It is easy to see that the connected group subscheme H=I(H,,,

., H, ) is the largest connected group subscheme of G which is a group sub-
scheme of any H,; (Ae A). We call H the intersection of H, (A€ A) and denote it
by I (H,) Then we have S’v( I (Hl))— f\ $(H;). As for the join of an arbi-

trary number of connected group subschemes we have the following

ProrosITION 11. Let G be a group scheme over k, and let {H,|Ae A}
be a family of connected group subschemes H, of G. If the characteristic of k

4) If H; is reduced for any i, J(H,,..., H ,) coincides with the group closure of UH ; in the
sense of [1]. See (2.2) in [1]. '
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is p>0, we assume that expH,<N for any Le A. Then the subalgebra D of
9(G) generated by all H(H,) (A€ A) is an algebraic Hopf subalgebra of $H(G).
In particular D is generated by a finite number of $(H;,),..., H(H,,) as algebras.

ProOF. Let @, 0,and 4, be asin Lemma 10, and let a, be the defining ideal
of Hyin 0. If weput ¢;..; =4;((0;, 00 ®0O+--+0Q:-®0®a,,)0,), we
see, in the same way as the proof of Lemma 11, that there is the smallest ideal
€=¢;,..;, in the family of ideals c,;..;;, (4; € A4). Thus we need here the assump-
tion exp H; <N for any Ae A. Moreover we see that ¢ is the definingideal of
a connected group subscheme H of G in the same way as the proof of Th. 2. Since
a, contains ¢ for any A in A as seen easily from Lemma 10, $(H) contains
9(H,) for any 4 in A. On the other hand $H(H) is the image of H(H,;)® - ®
$9(H,,) by the multiplication 47 of $(G) as seen in the same way as the proof
of Th. 2. This means that $(H) coincides with D. q.e.d.

Let G, {H,|Ae A} and D be asin Prop. 11. Then the unique group subscheme
H of G satisfying D=$(H) is called the join of H, (A€ A) and is denoted by
J (H)).

CoROLLARY. Let G be a group scheme over k, and let D be a Hopf sub-
algebra of H(G). Then the followings are equivalent:
(i) Disalgebraic.
(ii) D is generated by a finite number of algebraic Hopf subalgebras of $(G)
as algebras over k.
(iii) In the case of characteristic zero, D is generated by any number of alge-
braic Hopf subalgebras of H(G) as algebras over k.

In a positive characteristic case, D is generated by any number of alge-
braic Hopf subalgebras $(H;) of H(G) as algebras over k such that exp H, <N
for any A

LemMmA 13. Assume that the characteristic of k is p>0, and let G be a
group scheme over k. Then we have the followings:
(i) Any finite dimensional Hopf subalgebra D of $(G) is algebraic.
(ii) Any finite dimensional subspace U of $H(G) is contained in a finite dimen-
sional Hopf subalgebra of H(G).

ProOF. Let @0 be the stalk of G at the neutral point e and let 4 be the
formalization of G. If a is the null space D* of D in A, A/a is the dual space of
D and hence is of a finite dimension. Therefore a is an m-primary ideal, where
m is the maximal ideal of 4. It is well known that any m-primary ideal of A
is the form qA for some m N ¢-primary ideal q in @, because A4 is the (mn 0)-
adic completion of @. This means a=(an ¢)A4, and hence D is algebraic from
the proof of Prop. 5. Next let {x,..., x,} be a basis for U over k. Then there is
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a positive integer N such that <x;, m?"> =0 for all i=1, 2,..., n. If we denote
by m™® the ideal of 4 generated by the elements a?™ with a in m, we see <U,
mM™M>=0. If Dy is the null space of m™ in $H(G). Dy is the algebraic Hopf
subalgebra of $H(G). In fact the ideal m™ satisfies the conditions in Th. 1 as
seen easily. Then Dy is of finite dimension and U is a subspace of Dy. q.e.d.

Now let us recall the definition of the shift V of $(G). If A is the formaliza-
tion of G, let F be the Frobenius endomorphism of A such that F(x)=x? for any
element x in 4. Then the map F* of the dual space A* of A into itself defined
by <F*(h), x>=<h, F(x)>1/? is 1/p-linear and moreover we see that F*(h)
is in H(A) if h is so. We denote by V the restriction of F* to H(A4)=9H(G) and we
call V the shift of 9(G). It is easy to see that Vis a 1/p-linear Hopf algebra homo-
morphism of $H(G) into itself, and we denote by V" the composite V- V---V (n
times).

THEOREM 3. Let k and G be as in Lemma 13, and let V be the shift of H(G).
Then a Hopf subalgebra D of H(G) is algebraic if and only if V(D)= ;% V(D)
n=1

is algebraic.

ProofF. First we assume that V(D) is algebraic. By Th. 2 and 3 in [9]
there exist n sequences of divided powers {/{’|1<i<n, 0<t<p® for i<s and
0<t for i>s+1} in D such that {{{/*)...I»} is a basis for D over k. Then
we see easily that {/fs+0...]»|f,>0} is a basis for V(D) over k. On
the other hand if we denote by U the vector subspace of $(G) generated by {I{*
- IUD|0< fi< pei}, U is of finite dimension. Then there exists a finite dimen-
sional Hopf subalgebra D, of $(G) containing U by Lemma 13, (ii). If we put
D,=D,nD, D, contains U and D is generated by D, and V*(D) as k-algebras.
Since V(D) and D, are algebraic from our assumption and Lemma 13, (i), so
is D by Cor. to Prop. 11. Conversely we assume that D is algebraic. Let q be
the null space of D in the formalization 4 of G. Then we see q=(q N ¢)A where
0 is the stalk of G at e. If we put p=radq, p is a prime ideal of 4 and the null
space of V(D) in A as seen easily. Then we can see easily that p n ¢ is the radical
of N0 and p=(p n O)A, because (pNnO)A is also a prime ideal of A. This
means that V*(D) is algebraic. q.e.d.

ReEMARK. Let k be an algebraically closed field of a positive characteristic
D, and let G be a group variety over k, i.e., a reduced and connected group scheme
over k. Then the above theorem 3 shows that the condition [k(G)%e: k(G)?']
=dim, H'/H’'HE of Theorem 2 in [14] can be dropped. In fact, using the nota-
tions in [14], the equality dim, L($,) +dim Vg =dim G means that $, is algebraic
by Theorem 1 in [14] and dim Vg =dim Vg, and hence §’ is algebraic by
Th. 3. In other words §' is algebraic in wider sense in terms of [14].



Some Results on Hopf Algebras Attached to Group Schemes 537

§5. Rational representations of group schemes

Let (G, p, ¢, y) be a reduced group scheme over k, and let ¢ be the stalk of
G at the neutral point e of G. Then the formalization 4 of G is isomorphic to a
formal power series ring over k. In particular ¢ is a regular local ring. If
{a,,..., a,} is a regular system of parameters of ¢, A can be identified with the
formal power series ring k«a,..., a,>. Then there is a unique element /, ...,
in $(G) such that </,..,, a$,...,ai»>=1 and <l,..,, afi,..., ag»> =0
if (ey,..., e,)#(€},..., e,) for any (ey,..., e,). Then we can see easily that {/,,...|
e;>0} is a basis for H(G) over k, which we call the canonical basis for $H(G) with
respect to {a,,..., a,}.

ProposITION 12. Let G, 0, A, {ay,..., a,} and {l,,..} be as above. Let
C and D be Hopf subalgebras of $(G). If C corresponds to the formal subgroup
Al(ay,..., a,)A of A, the followings are equivalent:
(i) D is a Hopf subalgebra of C.
(i) If X=X 004 0lor 0, (Ooye, € K) is an element of D, we have ao...ofo...o =0 for
(@
i>r.
(i) If x=X 0,0l e (O e, €K) is an element of D, we have a,,.., =0 for
(e)
e;x0 with i<r.

The proof of this proposition is exactly similar to that of Corollary to Propo-
sition 4 in [13] and hence we omit it.

COROLLARY. Let G, H(G) and 0 be as above. Then if H is a reduced group
subscheme of G, there exists a regular system of parameters {a,...,a,} of O
such that the defining ideal a of H in O is (ay,..., a,)0. Moreover if {I,,..,,|
e;>0} is the canonical basis for $(G) with respect to {a,,..., a,}, the following
conditions on a connected group subscheme K of G are equivalent:

(i) K isa group subscheme of H.

(i) If x=3 ¢ 0,lerwep, oy, €K) is an element of H(K) identified with a
Hopf subalé?bra of 9(G), we have ao...o%o...o=0for i<r.

(i) If x=2 04 0le; e, (Ueye, €K) is an element of H(K) identified with a
Hopf subaléee)bra of H(G), we have «a,,...,,.=0 for e;%x0 with i<r.

Proor. Since a is a prime ideal of ¢, the existence of a regular system of
parameters {a,,..., a,} of 0 satisfying the property in our corollary follows from
a well known result on regular system of parameters (cf. Serre [8], p. IV-41,
Cor. to Prop. 22). The last assertion can be seen easily from Prop. 12, because
K is a group subscheme of H if and only if $(K) is contained in H(H). g.e.d.
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Let us consider the polynomial ring k[t,,,..., t,,] of n? variables t,,,...,
Lins--os tats--os tyy OVEr k and denote by D the determinant of the matrix (¢;;). Then
the affine scheme Spec (k[t,,..., t.» D~ ']) is a group scheme over k. To see this
it is enough to show that k[t,,,..., t,,, D~'] has a structure of a Hopf algebra over
k whose antipode is an algebra homomorphism. Now we define k-linear maps
4, n and c as follows:

At) =Tt ® 4, nt)=0;  (Kronecker’s delta),
h

C(tij) = (_ 1)i+j det (trs)r#i,s*jD_ n

We can easily see that these maps give a structure of a Hopf algebra over k to
k[ti1s---s tays D~1] with the natural algebra structure over k. In other words if
U, € and y are the morphisms of affine schemes whose comorphisms are 4, n and
c respectively, (Spec(k[t;1s..., tus D™1]), 1, &, 7) is an affine group scheme over
k. We call this the general linear group of order n and denote it by GL,. The
neutral point e of GL, corresponds to the maximal ideal of k[t,,,..., t,,, D™']
generated by {t;;—0;;/1<i, j<n}. Therefore if we put s;;=t;;—6;; for i, j=
1, 2,..., m, {s;j|1<i, j<n} is a regular system of parameters of the stalk ¢ of GL,
at e.

Denote by M,(k) the ring of all the square matrices (a;;) of size n with a;;
in k and by p(x) the element (<x, t;;>) of M,(k) for any element x in $(GL,).
Then p is a k-linear map of H(GL,) to M,(k), which we call the canonical represen-
tation of H(GL,) to M, (k) with respect to {t;;}.

ProrosITION 13. The canonical representation p of $H(GL,) to M, (k)
with respect to {t;;} is a ring homomorphism.

ProoFr. If 4 is the comultiplication of k[t;y,..., t,, D7'], we have A(t;;)
= ;t:;,@t,, ; and hence

<xy, tU> = <x®y, A(t”)> = ;<x, tl'h> <y, th_[>

for any x and y in $(GL,). Therefore we see p(xy)=p(x)p(y), and hence p is a
ring homomorphism. q.e.d.

Now let V be a vector space of dimension n over k and let GL(V) be the
group of linear automorphisms of V. Let us fix a basis {v,,..., v,} for V over k
and a coordinate system {t;;} of GL,=Spec(k[t,y,..., tys, D™']). If /is an ele-
ment of GL(V) such that /(v),= Z”: A;v; for 1<i<n, we may identify / with the

= .
closed point of GL, correspondling to the maximal ideal of k[t,,,..., t,,, D™ 1]
generated by {t;;—4;;/1<i, j<n}. We denote this identification between GL(V)
and GL,(k)=Mor (Spec(k), GL,) by id(t;;, v)). If {w,,..., w,} is another basis for
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V over k, we denote by 4 the matrix («;;) in M, (k) such that w;= Z o;0; (1<i<n).

If we put (1;;)=A(t;)A~", we see {t;;} is another coordinate system of GL,,
i.e., we have k[t,,...,t,, D"']1=k[t,,..., t,,, D"']. Furthermore it is easy
to see id(t;;, v;)=1id(t;;, w;). We understand by the group scheme GL, of linear
automorphisms of V the group scheme GL, with an identification id(t;;, v;).

Let G be a group scheme over k. Then we say a homomorphism ¢ of G
to GLy=(GL,, id(t;;, v;))) as group schemes to be a rational representation of
G in V. We say also that G acts rationally on V by ¢. Thus for any closed
point x in G ¢(x) is a linear automorphism of V. Now we fix a basis {v,,..., v,}
for V over k and identify M,(k) with the End, (V) of linear endomorphisms of
Vusing {v},i.e., we identify 4=(a;;) of M,(k) with / of End, (V) such that /(v,)
= Z a;v; (1<i<n). If p is the canonical representation of $(GL,) to M,(k)

w1th respect to {t;;}, we put x4(v)=p(d«(x))(v) for any x in H(G) and any v in
V, where ¢, is the tangential homomorphism attached to ¢. Then we have the
following

LeMMA 14. The notations being as above, we have
(1) (ox + a'x)y(v) = axy(v) + a'xy(v),
(1) (ex)gl) = Xy (0)),
({i)  xg(aw + a'v) = axy(v) + a'x4(v") and

(iv) 14) =0,

where o, o’ €k, x, x' € H(G) and v, v'e V. Moreover x,(v) depends only on ¢
and is independent of the choice of a basis {v,,..., v,} for V over k.

The proof of this lemma is easy and we omit it.

PROPOSITION 14. Let V be a vector space of dimension n over k, and let
U and W be vector subspaces of V such that UoW. Fixing a basis {v,,..., v,}
for V over k, identify M, (k) with the ring End, (V) of all linear endomorphisms
of V using {v;}. Then there exists a unique connected and reduced group sub-
scheme H of GL,=Spec(k[t,1,..., tas D™1]) satisfying the following conditions:
(i) If p is the canonical representation of H(GL,) to M, (k) with respect to
{t;;}, we have p(H(H)°)={A e M, (K)|A(U)= W} where $(H)° is the kernel of the
coidentity of H(H).
(ii) Let D be any Hopf subalgebra of $H(GL,) such that p(D°y< p(H(H)°) where
D° is the kernel of the coidentity of D. Then D is contained in $(H). In par-
ticular if H' is any connected group subscheme of GL, such that p(H(H')°)<
{Ae M, (k)A(U)c W}, H' is group subscheme of H.
(iii) The subset of GL(V) corresponding to the subset H(k) of GL,(k) under the
identification id(t;;, v;) consists of the elements | of GL(V) such that (W)= W,
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IU)=U and the induced linear endomorphism I of U/W by [ is the identity
map of U[W.

PRrROOF. By.Lemma 14, we may assume that the subsets {v,,...,v,} and {v,,
..., Ug} are bases for Wand U over k respectively, replacing {v;} by another one if
necessary. Let / be an element of GL(V) and let 4, be the matrix in M,(k) cor-

responding to / with respect to {v;}. Denote by S the subset of GL(V) consisting
A00

of the elements / such that A, is the form <Ié f) ?:) where A e M (k), FeM,_(k)
and E=the unit matrix in M,_,(k). Then it is easy to see that S is the set of the
elements / in GL(V) such that /(U)=U, (W)=W and {the induced linear endo-
morphism 1 of U/W by I}=1y,,. Moreover S is a subgroup of GL(V) and the
corresponding subset T of GL,(k) to S under the identification id(t;;, v;) is a closed
subset of GL,(k). Therefore there is a reduced group subscheme H of GL, such
that H(k)=T. We shall show that H has also the properties (i) and (ii) of our
proposition. It is easy to see that H is connected. Let ¢ be the stalk of GL,
at the neutral point e of GL, and put s;;=t;;—d;; (1<i, j<n) as before. Let a
be the ideal of ¢ generated by {s;;|i<s and j<r+1}. Then it is easy to see that
a is the defining ideal of H in ¢. The image {5;;li>s+1 or j<r} of {s;li>s+1
or j<r} by the canonical homomorphism of ¢ to @/a is regular system of parame-
ters of 0fa. Let {/,,,..4,,a,,1a:;=0} be the canonical basis for $(GL,) over k
with respect to {s,,..., s,,}. Then we see easily that {/,,,., la;;=>0; a,=0
for u<s and v>r+1} is a basis for the subspace H(H) of H(GL,) over k from the
above and the definition of {/, ., }. Now an element 4 of M,(k) satisfies
A(U)c W if and only if A has the form (a;;), where a;;=0 for i<s and ]>r+1

Therefore we see p(H(H)°)={A e M, (k)|A(U)c W}, because p(lo..0¥ 0.-0) 1S
the matrix («,,) such that ;=1 and a,,=0 for (u, v)=(i, j). Lastly let D be
any Hopf subalgebra of SE)(GL,,) such that p(D°)c p(HH)). If x= Z o
layyan, 18 In D°, we have 0= <x, 5;;> =0,.. 01 00 for i<s and J>r+1
This means that D is a Hopf subalgebra of $(H) by Prop. 12. In particular if
H’ is a connected group subscheme of GL, such that p(H(H')°) = p(H(H)°), we see
that H’ is a group subscheme of H by Cor. to Prop. 12. In fact the defining ideal

of H in 0 is generated by {s;;|i<s and j>r+1}. q.e.d.

ai1°**@nn°

Let G be a group scheme over k and V a vector space of dimension n over k.
Fixing a basis {v;} for ¥ over k and a coordinate system {¢;;} of GL,, let ¢ be a ra-
tional representation of G to GL,=(GL,, id(t;;, v;)) and let p be the canonical
representation of $(GL,) to M, (k) with respect to {t;;}. If U and Ware subspaces
of V such that U> W, we denote by Tr, (U, W) the subspace of End, (V) con-
sisting of / such that J(U)cW. We call Tr, (U, W) the transporter of U to
W in End, (V). Then we have the following:
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THEOREM 4. The notations being as above, let us identify M, (k) with
End, (V) using {v;}. Then there exists a unique connected group subscheme H
of G satisfying the following:

(i) p(P(H(H)?) is contained in Try, (U, W), where ¢, is the tangential homo-
morphism attached to ¢.

(ii) If H' is any connected group subscheme of G such that p(¢,.(H(H')))
<Tr, (U, W), then H' is a group subscheme of H.

(iii)y If D is any Hopf subalgebra of $(G) such that p(¢*(D°))< Tr, (U, W),
then D is a Hopf subalgebra of H(H).

Proor. Denoting by Trg, (U, W) the group subscheme of GL, satisfying
the conditions of Prop. 14, we have p(H(Trg,, (U, W))°)=Tr, (U, W). Then let
H be the inverse image of Trg, (U, W) in G by ¢. By Prop. 9, (ii) we see
O(H(H)°) = H(Trg, (U, W))° and hence p(p4(H(H)°)=Try, (U, W). If H' is any
connected group subscheme of G such that p(¢,.(H(H')?))=Tr, (U, W), we see
O(H(H))=H(Trg,, (U, W)). In fact ¢p,(H(H")) is an algebraic Hopf subalgebra
of H(GL,) corresponding to the direct image H, of H' by ¢ as seen from Prop. 9,
(i). This means that ¢, (H(H"))=9H(H,) is contained in H(Trg,, (U, W)), because
H, is a group subscheme of Trg, (U, W) by Prop. 14, (ii). Therefore H' is a
group subscheme of H by Prop. 9, (ii). Similarly if D is any Hopf subalgebra of
$9(G) such that p(¢(D°))<=Try (U, W), ¢4(D) is a Hopf subalgebra of H(Trs,, (U,
W)) by Prop. 14, (ii). Since we have H(H)=h-¢*(H(Trg, (U, W)) by Prop. 9,
(ii), D is a Hopf subalgebra of $H(H) by Prop. 2. q.e.d.

We call the group subscheme H of G in Th. 4 the transporter of U to W
in G defined by ¢ and denote it by Trg 4(U, W). In particular if U= W, we call
Trg (U, U) the normalizer of U in G defined by ¢ and denote it by Ng 4(U).

Since the image of the group G(k) of the closed points of G by ¢ is contained
in GL,(k)=GL(V), V may be considered as a G(k)-module. On the other hand
we see p(Px(H(G))) =Try, (V, V)=M,(k) by Th. 4, (i) and hence V has the struc-
ture of an $(G)-module by Lemma 14 considering $(G) as a k-algebra. We
say that this structure of V as an $(G)-module is the H(G)-structure of V attached
to ¢. Itis clear that a subspace W of Vis an $H(G)-submodule of V if and only if
G coincides with N ,(W).

PROPOSITION 15. Let the notations be as above, and let W be a subspace
of V. Assume that G is connected. Then if W is an $(G)-submodule, W is a
G(k)-submodule. Conversely if W is a G(k)-submodule, W is an $(G,.q)-
submodule, where the (G, q)-module structure of V is attached to the com-
posite morphism of the natural immersion of G,.4 to G and ¢.

Proor. If Wis an $(G)-submodule, we have G=Ng 4W). Then ¢(G(k))
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consists of elements / of GL(V) satisfying /(W)= W by Prop. 14, (iii). This means
that Wis a G(k)-submodule of V. Conversely assume that Wis a G(k)-submodule
of V. Then ¢(G(k)) is contained in Ng,, .., (W)(k). Since Ng (W) is the in-
verse image of Ngi, 1., (W) in-G by ¢ as seen in the proof of Th. 4, we have
G(k)cNg (W) (k) by Prop. 8 and hence G(k)=Ng 4(W)(k). Therefore G, 4
is a group subscheme of N 4(W), because they have the same underlying space.
This means that Wis an $(G,.q)-submodule of V. q.e.d.

COROLLARY. In Prop. 15 we assume that G is reduced. Then W is a G(k)-
submodule of V if and only if it is an $(G)-submodule of V.

Later we need the following

LemMA 15. Let G be a group scheme over k and let V be a vector space of
dimension n over k. Let U and W be subspaces of V such that U>W. Let
{v1,..., v,} be a basis for V over k such that {v,,...,v,} and {v,,..., v;} are bases
for Wand U over k respectively. Let ¢ be a rational representation of G to GLy,
=(GL,, id(t;;, v;)) and denote by  the linear map of V to k[t,,..., Tums ‘1]
® V given by Y(v)=2t;;®v; and by ¢* the comorphism of k[t,y,..., ty,, D71]
to the stalk O of G at Jthe neutral point e defined by ¢. Let a be the defining
ideal of Trg 4(U, W) in 0 and let n be the natural homomorphism of @ to 0/a.
If g is the homomorphism of V to 0/a®; V given by (n¢p*®@1,)¥, we have g(U)
c0la®, U and g(W)cO/a®,W. Further the induced map g of U/W to
0/a®, U/W given by g satisfies g(0)=1®7 for any element v of U/W.

Proor. We use the same notations as Prop. 14, Th. 4 and their proofs.

Let a, be the ideal of k[t,,...,t,, D™'] generated by {s;;|i<s and j>r+1}.
Then we see Y(U)<k[t;q,.., tys D"1IQU+0a,®V and Y(W)ck[tyy,..., ty
‘1]® W+a,®V. Furthermore we have Y(v)=1Q®v; (mod a;®V+k[t,,,...,
tas D"VJ@W) for r+1<i<s, since t;=s;+1. On the other hand we see from
the proof of Th. 4 that a, is mapped into a by ¢*, because q, is the defining ideal
of Trgp (U, W) in k[tyy,..., t,,, D™']. Therefore we see easily that our assertions
are true. q.e.d.

§6. Adjoint representations of group schemes

In the following let (G, p, €, y) be a group scheme over k, and let ¢; be the
morphism given in § 1. If x is any point of G, we denote by ¢* the comorphism
of the stalk @ of G at the neutral point e of G to the stalk 0,,, of GXG at xxe
obtained from ¢g. - First we need some lemmas.

LEMMA 16. If m is the maximal ideal of 0, the image ¢X(m*) of m* by ¢*
is contained in (0,Qm*)0, . for any positive integer s.
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ProorF. Since (e, k) is a normal subscheme of G, we see ¢s(x x e)=e for any
point x in G, and we have ¢4(1;xe)=en’, where n’ is the structure morphism
of G x Spec(k) to Spec(k). Let ¢* (resp. n'* and (15 x €)*) be the comorphism
of 0 to k (resp. k to 0,®k and 0,,, to O,®k) defined by ¢ (resp. =’ and 14 x ¢).
Then we have n'*¢*=(1;x¢&)*¢p*. Since we see ¢¥(m)=0 and ker(l;xe)*=
0,Mm)0,. ., ¢¥(m) is contained in (0,QM)0,,,. Since ¢¥ is a ring homomo-
rphism, we see easily from this that ¢¥(m®) is contained in (0,®m®)0,,, for
any positive integer s. q.e.d.

LemMmA 17. Let G, 0, O,x, and m be as above. Then 0O, . /(0,Q@W)0, .
is canonically isomorphic to 0,®,(0/m®) for any positive integer s.

Proor. Since 0,®,(0/m*) is an integral extension of 0,®,k=~0,, any
maximal ideal n of 0,®,(0/m®) contains m,®, k=~m,, where nt, is the maximal
ideal of @,. On the other hand m/ms=k®,(m/m*) is the unique prime ideal of
O/t =k®, (0/m%). Therefore n contains k®,(m/m*). This means that 0®
(m/m®) + m®(@/nr*) is the unique maximal ideal of 0®,(0/m*) and hence O0®,
(0/m%) is a local ring. If we put T=0,®,0—(0,@m+m,®0), O, [(OxQ®M*)0, .
is isomorphic to (0,®,0/0.®@m%);. However since 0, ®0/0, QM= 0, ®(0/m°)
is local, we have (0,®0/0,@m%)r=0,R0/0,QM*=0®,(0/m"). g.e.d.

LEMMA 18. Let ¢g and p be as above and let L, (resp. R,) be the left
(resp. right) translation of G for any closed point x in G. Then we have
do(ux 16)=ds(l, x ¢g) and LR,_ ;= dg(xng x 15)4g.

PrOOF. Let p; be the projection of G x G x G to the i-th factor for i=1, 2, 3.
Then we can see easily '

lgxgxa = (P1 X P2 X P3)(dgxex6 X loxax6)dexGx6
= (py X P2 X p3)(lgxaxc X dex6x6)excxo and
$a(p % 16) = ¢glp x 16)(py X P2 X P3)(dgxexe X laxax6)dexax
= ¢((P1*P2) X P3)doxcxc = (P1*P2)*P3*(p*p2)~".
Similarly we have
da(l X ¢6) = Pl X $6)(P1 X P2 X P3)(lgxaxe X daxax6)dexxe
= @e(p1 X (P2*P3*P2" )6 x6x6
= pr¥(p2*p3*p2)*p1! = (P1*p2)*psx(pi*p2)~ 1.

Therefore we have the first equality. Next let x be any closed point of G which
we identify with an element in Mor(Spec(k), G). Then we see easily L,R,-:
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=(xmg)*1g*¥(xng)~1. On the other hand we have in the same way as above
(xmg)*lox(xmg)~! = pg(xme x 16)4g.
This means L R,-:1 =@g(xmg % 15)4¢- q.e.d.

LeMMA 19. Let G, u, ¢g, © and m be as above. Let pu¥, be the comor-
phism of the stalk 0, x,, of G to O, of GxG defined by p for any closed
points x and y in G. Then there exists a k-homomorphism f of 0O/ms to
0,8, (0/m®) for any positive integer s and any closed point z in G such that the
diagram

g
ojms x » 0,®,(0]ms)
f:ﬁ‘xy)l l(h@lg/m,)(laxébf;”

0u(xxy)®k(0/ms) Bey®1 g /ms )axxy®k(0/ms)

is commutative, where h is the natural homomorphism of 0,®,0, to 0.

PrROOF. By Lemma 16 ¢* gives a homomorphism g of ¢/ms to 0,/
(0,m%)0, ., which is isomorphic to 0,®,(0/m°) by Lemma 17. Therefore
we obtain a homomorphism f of @/m* to 0,®, (0/m*) from g. On the other
hand we have the following commutative diagram from Lemma 18:

0 o
":‘(""”l l(laxdla)‘

> Oxxe

0#(*")’))‘2 (ux1G)* 0x><y><e-
Since we see (1 X $6)*(Ox@M)0 <) (O, @O, @M)0, x yx o and (1 X 16)*-(Oy(x x5

OMNO,y(xx yyx ) (O x y @MF)0,. . » this commutative diagram gives the one in
our lemma. q.e.d.

LEMMA 20. Let G, ¢ and f® be as above. Let {e,,..., e,} be a basis for
O/ms over k. Then there exist n? global sections a;; (1<i, j<n) of the struc-
ture sheaf Oy satisfying the followings:

() If a;j is the image of a;; in the stalk 0, of G at x, we have & (e})= i @i
j=1

®e; for each i=1, 2,..., n. , !

(ii) Let I'(G) and I'(G x G) be the rings of the global sections of 0 and Og ¢

respectively, and let y be the canonical homomorphism of I'(G)®,I'(G) to

I'(GxG). Then if u* is the comorphism of I'(G) to I'(G x G) defined by u, we have

ﬂ*(aij) = '//(hgl aih®ahj) Sfor 1<i, j<n.

Proor.. Let x be any closed point of G and let U=_Spec(4) be an affine
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open neighborhood of x x e in Gx G. Let V= Spec(B) be an affine open neighbor-
hood of e in G such that ¢4(U)<V, and denote by ¢* the comorphism of B to 4
defined by ¢;. If a and b are the defining ideals of closed subschemes (G x
Spec(0/m#))n U of U and Spec(@/m*) of V in A and B respectively, we see
¢*(b)<a in the same way as the proof of Lemma 16. On the other hand we see
easily that B/b is isomorphic to @/m* and that A/a is isomorphic to 4’'®,(0/m*),
where U’=Spec(4’) is an affine open neighborhood of x in G. Let g{f be the
homomorphism of B/b to 4/a obtained from ¢* and let f{) be the one of @/m* to
A'®,(0/ms) given by g{ identifying B/b and A/a with ¢/m* and A’'®,(¢/m®)
respectively. Then if we denote by h, the natural homomorphism of 4’ to @,
for any closed point y in U’, it is easy to see f{=(h,®1,,,.)f{’ from the defini-
tions of fi and f{?). Therefore if we put f{y)(e)= X a;;,, ®e;, we see fi9(e;)
=2 hy(a;;y)®e; for any closed point y in U'. Sincé hy(a;jy) is independent
of the choice of ¥ and U, there exists a global section a;; of @g such that the
restriction of a;; to U’ coincides with a;; ;. This means that the assertion (i)
holds true. To see (ii), it is sufficient to show u¥(a;; ,xxy)= Zh:a,-,,’x®a,,j,y,
where pf, is the comorphism of 0y, to O, defined by u. By Lemma 19,
we have for 1<i<n

W2, @ 1y f s (@) = (h® 1, (1, @) ()
and hence
;#fy(aij,u(x xy) @ e; = 'Eam,x ®ay,,®e,
Comparing the coefficients of e; in both sides, we have

HEy(@ij,uix x ) = ;aih,x ® ay;,y- q.e.d.

LEmMMA 21. Let X be an algebraic scheme over k and let Y be an affine
algebraic scheme Spec(A) over k. If I' is the ring of global sections of the
structure sheaf 0y of X, there is a natural bijection between Mor(X, Y) and
Homy_,,(4, I').

For the proof of this see Mumford [7], Chap. 11, §2, Th. 1.
THEOREM 5. Let G, 0, m and f® be as above. Then G acts on O/ms

rationally by a representation p, such that p(x)=f® for any closed point x

in G considering them as linear transformations of @/ms, where f® is the linear
transformation of 0/ms obtained from ' naturally.

ProOOF. Let {e,..., ¢,} be a basis for ¢/m* over k, and let a;;(1<i, j<n)
be global sections of ¢ satisfying the conditions of Lemma 20. First we show
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that det (a;;) is an invertible element in the ring I'(G) of the global sections of 0.
To see this it is sufficient to show that the image det(a;;,) of det(a;;) in 0, is
invertible for any closed point x in G. As seen in the proof of Lemma 20 we
have p¥.-:(a;; )= Zhai,,,x®a,, jx-1. This means a;; (€)= Zha,-,,,x(x)a,, jx-1(x~1) and
hence det (a;; (€))=det (a;;,(x)) x det(a;; .-:(x~1)), where a;; (x) is the residue
class of a;; , in 0, modulo the maximal ideal m, of ¢,. Therefore it is sufficient
to show that det(a;; (e)) is the unit element of k. Thus let g be the canonical
homomorphism of @,,, to @ which is isomorphic to k®,0=0,. . /(MRO)0, ..
By Lemma 18 we see 15=¢g(eng x 15)4g. It is easy to see that g is the comor-
phism of @,,, to 0 defined by (engx 15)4g. Therefore the comorphism g¢¥ of
0 to itself defined by ¢s(emg x 15)4; is identity 1,.  This means that (a;; (e)) is the
unit matrix E, of M,(k) as seen easily from the definitions of ¢ and a;;e.

Now we identify GL(¢/m®) with GL,(k) by a coordinate system {t;;} of GL,
and a basis {e,,..., e,} for @/ms over k asin §5. Let p¥ be the k-algebra homo-
morphism of k[t,,..., t,,, D™'] to I'(G) such that p¥(t;;) =a;; and p¥(D)=det (a;;),
where D=det(t;;). Then, by Lemma 21, there exists a unique morphism p
of G to GL,=Spec(k[t;;, D~']) such that p¥ is the comorphism of k[t;;, D~!]
to I'(G) defined by p,. Let u*, ¥ and I'(G % G) be as in Lemma 20 and let u¥
be the comorphism of k[t;;, D~'] to k[t;;, D™'1®k[t,;, D~'] defined by the
multiplication yu, of GL,. Since u,’:‘(tij)=zhjti,,®t,,j for 1<i, j<n, we see u*p¥*
=y(p¥*@p¥)u¥ by Lemma 20. On the other hand we see Y(p*®p¥) is the co-
morphism of k[t;;, D"']®k[t;;, D~'] to I'(G x G) defined by p;x p,. Therefore
we have pu=p,(p,x p;) again by Lemma 21, and hence p, is a homomorphism
of G to GL, as group schemes. This means that (p,, id(t;;, €;)) is a rational

representation of G to GL,,,... The equality p(x)=f{ follows easily from the
definition of p,. g.e.d.

Let (G, u, &, 7), 0, m and ¢; be as above. Then it is easy to see that the
representation p; of G to GL,,,s given in the above theorem is determined in-
dependently of the choice of the basis {e,,..., e,} for ¢/ms. We call p, the
adjoint representation of G of degree s and denote it by Ad,. If we denote by
n,s the canonical homomorphism of ¢/ms to @/m*’, we see easily

Ads‘(x)nss'(v) = nss’Adx(x) (U)

for any closed point x in G and any element v in @/ms.

ProrosiTION 16. Let G, O, m and Ad; be as above. Let {e,,...,e,} be
a basis for O0/ms over k and identify GL,=Spec(k[t,,,..., ty, D™1]) with GL,,.
by id(t;;, e). Then if &) and a;; . (1<i, j<n) are as in Lemma 20, the $(G)-
structure of O/m® attached to Ad, is given by the matrix (<x, a;;,>) for any
element x in $(G), identifying M, (k) with End, (0/m®) with respect to {e;}.
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ProOF. By the definition in §5 the $(G)-structure of @/ms attached to Ad,
is given by the matrix (<Ad(x), t;;>) for any element x in $(G), where Ad,,
is the tangential homomorphism of $H(G) to H(GL,) defined by Ad,. Since Ad,,
is the transpose of the comorphism Ad¥ of ¢, . to O . defined by Ad,, we see

<Ad(x), t;;> = <x, Ad¥(t;)> = <X, a;;,,> .

ij,e
This means that our assertion is true. q.e.d.

ProrosITION 17. Let the notations be as above. Let x be an element of
9(G) and put A(x)= 3} x(;,®x(z), where A is the comultiplication of H(G).
(x)

Then if x' is an element of the dual space (0/m*)* of 0/ms, we have the follow-
ings:
(i) If cis the antipode of H(G), 2_x(;)X'c(x(3)) is contained in (O)m®)*,

(x)

(ii) <(Z)x(1)x’c(x(2)), €> =3 <X, ;> <x', e;>.
x J

Proor. By the definition of ¢, we see that the tangential homomorphism
DG is given by py(tx® 146y (156)® 156)®¢) (16 @ S%)(A®14(Gy). This means
that @g+(x x y)= Y x(;,ve(x(z) for any x and y in $(G). On the other hand since

e)

the homomorphism f{) of ¢/ms to O®,(¢/m°) is obtained naturally from the
comorphism ¢% of @ to 0, the transpose ¢, of ) is the restriction of @gy to
(O (O/m®))=0°®, (0/m%)°=H(G)®(0/m%)*, whose image is contained in
(0/m5)e=(0/m%)*. Therefore we see the first assertion. As to the second we see

< ?’_)x(”x’c(x(z)), 6> = <Pgx(x ®X'), e,>
X
= <¢p(x® x'), ¢,>
= <x@x', f$e)>

=2 <X, a;;,> <x', e;>. q.e.d.
J

THEOREM 6. Let G be a group scheme over k, and let U and W be subspaces
of H(G) such that UoW. Then there exists a connected group subscheme H
of G satisfying the following conditions:
(i) If c and A are the antipode and the comultiplication of H(G) respectively,
Y x1,Uc(x(z)) is contained in W for any element x in the kernel H(H)° of the
c:)‘;dentity of 9(H), where A(x)= Y X(1,®X2).
(i) If D is any Hopf subalgebr(;x:)f 9(G) such that ¥ x,Uc(x)) =W for any
element x in the kernel D° of the coidentity of D w(;t)h AX)= ¥ x1,®X2), D
is contained in H(H). «

Proor. Put U,=U n(0/m*)* and W,=W n (0/m*)* for any positive integer
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s, where (0/m%)* is the dual space of (¢/m*) and is identified naturally with a
subspace of $H(G). Let T, and V, be the null spaces UL and Wi of U and
W, in 0/ms respectively. Then we see U;=T¢+ and W,=V{. Now fix an s and
let {e,,..., e,} be a basis for ¢/m*s over k such that the subsets {e;,..., ¢;} and
{es,..., e} are bases for T, and V respectively. If x is an element of H(G) with
A(x)= Z X(1)®X(2), Z X(1)X'¢(X2,) is contained in (0/m*)* for any element x’ in

(O]ms)* by Prop. 17. Therefore Z X1)X'¢(X(2)) is in W if and only if we have
< 2 xqx'c(xz), >=0 for 0<1<m From Prop. 17, (ii) and the equality
(x)

Ui =T,=ke, + -+ ke, we see that 3" x(;,Uc(x;)) = W, if and only if li 1 <X,
(x) Jj=l+

a;;.> <x', e;>=0for any x" in U and 1 <i<m, using the notations in Prop. 17.
Since the set of the vectors {(<x’, e;4,;>,..., <Xx', ¢,>)|x" € Uy} coincides with
the full space k"~ as seen easily, the last condition is equivalent to <x, a;; ,> =0
for 1<i<m and /+1<j<n, ie., (<X, a;,>)eTr,,,(V, T), identifying
M, (k) with End, (0/m*) with respect to {e;}. This means by Prop. 16 that x
maps V; into T, considering ¢/m* as an $(G)-module by Ad, if and only if we have
2 X(yUse(x(z)) = Wy with A(x)= ¥ x(;,®x(z). Therefore if H is the transporter
(x) (x)

Trg(V,, T;) of V; to T, in G given by Ad,, we see by Th. 4 that H(H,) is the largest
Hopf subalgebra D of $(G) such that x maps U, to W, for any element x in D°.
In other words $(H,) is the largest Hopf subalgebra D of H(G) satisfying
Zx(l,U c(x2y) <= W, for any element x in D°. Now if we put H= I (Hs) we
have H(H)= f\ﬁ(H) as seen in §4. Since we have U= UU and W_UWS,
we see easily from the above that $H(H) is the largest Hopf subalgebra D of SS(G)
satisfying 3° x(;)Uc(x(z)) = W for any x in D°. q.e.d.

(%)

We call the connected group subscheme H of G given in Th. 6 the trans-
porter of U to Win G by the adjoint representations and denote it by Tr, (U, W).
In particular if U=W, we put N,(U)=Tr,4(U, U) and call it the normalizer of
U in G by the adjoint representations.

§7. Normalizers of Hopf subalgebras and group subschemes

Let (B, m, i, 4, &, c) be a cocommutative Hopf algebra over k, and put
pp=m(m®P@1p) (1@ 1@ ¢c)(1® S)(4 ® 1p),

where S is the exchange of the factors of B®,B. Moreover if (4, 4, n, 0) is a for-
mal group over k, we denote by ¢, the transpose of ¢, If m is the maximal
ideal of A, let A’ be the (A®m+m®A)-adic completion of A®,A4. Then ¢,
is a local homomorphism of A=%9H(4)* to 4'=(H(A)R,H(A))* as seen easily.
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Denoting by Hom,,,(C,, C,) the set of coalgebra homomorphisms of a cocom-
mutative coalgebra C, to another C,, Hom,,(C;, B) has a structure of a group
with the composition fxg=m(f®g)4c, for f and g in Hom,,,(C,, B) where 4.,
is the comultiplication of C,;. Similarly if we denote by Hom,,.(R,, R,) the set
of local k-homomorphisms of a local ring R; containing k to another R,,
Hom,, (A4, R,) has a group structure using A instead of m as seen easily.

ProrosITION 18. Let D and E be Hopf subalgebras of a cocommutative
Hopf algebra B over k. Then the followings are equivalent:
(i) ¢y(DxE) is contained in E.
(ii) Let C be any cocommutative coalgebra over k. Then fxgx*f~! is contained
in the subgroup Hom,,,(C, E) of the group Hom_,,(C, B) for any elements f in
Hom_,(C, D) and g in Hom_,(C, E).

Proor. (i)=>(ii). If A is the comultiplication of C, we see fxg*f~!
=¢5(f®g)4c and hence (fxg*f~1)(x)=dp(f ®g)4c(x)= (xZ) Pp(f(x(1) @Y (x(2)))
for any x in C with 4¢(x)= X x1,®X(2). Since f(x(;)) € D and g(x;)) € E, we see
(f*g*f~1)(x)e E by the as(sxlimption. This means that fxg*f~! is an element
of Hom,_,,(C, E).

(ii)=>(i). Put C=D®,E, and let p, and p, be the projection of C to D and E
as coalgebras respectively. Then p, and p, are in Hom,,,(C, D) and Hom,,,(C,
E) respectively, and hence p,*p,*p7! is in Hom_,,(C, E) by our assumption. On
the other hand we have (p,®p,)4c=1c. Therefore if x and y are elements in
D and E respectively, we see ¢p(x®y)=dp(p; ®p2)A(x®y)=(py*p,*p1') (x@ ).
This means ¢pz(x®y) € E. g.e.d.

ProrosiTION 19. Let A/a and A[b be formal subgroups of a formal group
A over k. Then the followings are equivalent:
(i) If p is the canonical homomorphism of A’ to A'[(a® A+ ARDb)A’, the kernel
of pp 4 contains b.
(ii) Let R be any complete local ring containing k. Then fxgxf~! is in
Hom,,(A/b, R) for any elements f in Hom,,.(A/a, R) and g in Hom,,(A/b, R).

This is the dual of Prop. 18 and the proof is the same as above. Therefore
we omit the proof.

ProrosiTION 20. Let H and K be group subschemes of a group scheme
G over k. Let iy and iy be the canonical immersions of H and K into G re-
spectively. Then the followings are equivalent:
(i) ¢gliyxix) decomposes through K.
(ii) Let X be any algebraic scheme over k. Then fxg+f~! is contained in
Mor (X, K) for any elements f in Mor (X, H) and g in Mor (X, K).
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Proor. (i)=(ii). Since we have fxgxf~1=¢ds(iyxix)(f xg)dx as seen
easily, we see fxgxf~1 e Mor (X, K) from the assumption (i).
(i=>(i). Put X=H x K and let p, and p, be the projections of X to H and K
respectively. Then, using (p; X py)dx=1x, Wwe see ¢gliyXxix)=p;*p,*p7l.
This means that ¢4(iy X ix) decomposes through K by our assertion (ii). q.e.d.

If H and K are group subschemes of a group scheme G over k satisfying the
equivalent conditions in Prop. 20, we say that H normalizes K. Similarly we
say that a Hopf subalgebra D of a cocommutative Hopf algebra B over k (resp.
a formal subgroup Ala of a formal group A over k) normalizes another E (resp.
A/b) if they satisfy the equivalent conditions in Prop. 18 (resp. Prop. 19). If
there exists the largest group subscheme H of G such that H normalizes a group
subscheme K of G, we call H the normalizer of K in G and denote it by Ng(K).
Similarly we define the normalizers Ng(E) and N (A/b) of a Hopf subalgebra
E in B and a formal subgroup A4/b in A4 respectively. We see easily that a group
subscheme H of G is normal in G if and only if the normalizer of H in G is G
itself. Similarly we call a Hopf subalgebra D of B and a formal subgroup A/a
of A normal if Ng(D)=B and N ,(4/a)= A respectively.

ProrosiTioN 21. If E is any Hopf subalgebra of a cocommutative Hopf
algebra B over k, there exists the normalizer Ng(E) of E in B.

PrROOF. Let # be the family of Hopf subalgebras D, of B which normalize
E. Since &# contains E, & is not empty. Now let D, and D, be elements in F
and put D=J(D,, D,). Then D is also an element of F. In fact if m is the mul-
tiplication of B, we see easily ¢g(m®15)=dz(1;®@p) in the same way as the proof
of Lemma 18. Therefore we have ¢g(xx'®y)=dp(x®@Pg(x'®y)) € E for x and
x"in D;+ D, and for y in E and hence we see easily that J(D,, D,) normalizes E
repeating similar calculations. Moreover if & is a totally ordered subset of &
with respect to inclusion, J(D‘)—DU, D, belongs to &# as seen easily. There-

V]
fore, by Zorn’s lemma, there exists a maximal element D in & which is the largest
one in & from the above. q.e.d.

ProrosITION 22. If A/b is a formal subgroup of a formal group A over k,
there exists the normalizer N (A/b) of A/b in A.

Proor. Let E be the null space of b in B=$(A), and put D=NgE). If
a is the null space of D in A=B*=9(A)*, A/a is a formal subgroup of A as seen
easily. Then it is easy to see A/a=N 4(A4/b). q.e.d.

Now let G be a group scheme over k, and let @ and ¢’ be the stalks of G
and G x G at the neutral points e and e x e respectively. Denote by ¢¥ the co-
morphism of ¢ to ¢’ defined by ¢;. Then the following proposition gives a
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similar criterion to Th. 1 that a connected group subscheme H of G normalizes
another connected one K.

ProrosITION 23. Let G, 0, 0', H and K be as above. Denote by a and
b the defining ideals of H and K in ¢. Then H normalizes K if and only if
¢¥(d) is contained in (a®0+0ORb)O'.

Proor. If H normalizes K, ¢4(iy % i) decomposes through K. Therefore
it is easy to see @¥(b)c(a®0+0®b)0’. Conversely if we have @¥%(b)c
(a®0+0®Db)0’, there exist an open subset U of K and an open subset V of
H x K such that ¢ i, is a morphism of V' to U. Since H x K is irreducible, V
is dense in H x K. This means that ¢;(H x K) is contained in the closure of ¢4(V),
and hence we see ¢g(H x K)c K as sets. In particular the subgroup H(k) of
G(k) normalizes the subgroup K(k). On the other hand let x be the generic point
of Hx K and put y=¢gs(x). Denote by ¢} the comorphism of the stalk 0,
of G at y to the stalk 0, of Gx G at x defined by ¢;. Then we see ¢¥(b0o,)
c(a®0+0®b)0,, because 0, and 0, are localizations of ¢' and ¢ respectively.
Let a and b be closed points of H and K respectively, and let Spec(R) and Spec(S)
be affine neighborhoods of aba~!'=¢s(axb) and ax b in G and G x G respec-
tively such that ¢4(Spec(S))=Spec(R). If q and q’ are the defining ideals of K
and Hx K in R and S respectively, they are primary. If p and p’ are the prime
ideals of R and S corresponding to y and x respectively, we see 0,=S,.,0,=R,,
bo,=qR, and (a®0+0®b)0,=q’'S,. If we denote by ¢§ the comorphism
of R to S defined by ¢, we have ¢F(q)=Sn q'S, =q" because of ¢¥(qR,)=q’S,..
This means that ¢, induces a morphism of (H x K) n Spec(S) to K n Spec(R),
and hence we see that ¢4(iy X ix) decomposes through K. q.e.d.

CorOLLARY. Let G, H, a, 0, 0' and ¢; be as above. Then H is a normal
group subscheme of G if and only if we have ¢p¥(a)=(0®a)0’.

ProposITION 24. If K is a connected group subscheme of a group scheme
G over k, Ng(H(K)) is an algebraic Hopf subalgebra of $(G).

Proor. Put B=$(G), and let 4 and ¢ be the comultiplication and the anti-
pode of B respectively. Then we have ¢p(x®y)= 3 x(;)ye(x(2)) for x and y
(x)
in B with A(x)= ¥ x;)®x(z). Therefore if we put H=N,4(H(K)), we see
)

d5(HH)’R®H(K)) = H(K) by Th. 6 and the definition of N,4(H(K)). If x is con-
tained in the image of the identity of B, we see ¢z(x®y)=xy for any y in B.
Therefore we see H(H) is contained in Np(H(K)). Conversely Ny(H(K)) is con-
tained in H(H) by Th. 6, (ii). This means that Ny($H(K)) coincides with $H(H).
q.e.d.

ProrosITION 25. Let K be a connected group subscheme of a group
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scheme G over k. Then there exists the largest connected group subscheme H
of G which normalizes K. Moreover we have H(H)=Ng(H(K)).

ProoF. Let 0, 0', B, 4, ¢ and ¢} be as above. If we put H=N,(H(K)),
we have N ) (H(K))= H(H) as seen in the proof of Prop. 24. Therefore we must
show that H is the largest connected group subscheme of G which normalizes
K. Now put U,=$H(K)n(¢0/m*)* and let V, be the null space U+ of U, in
O/ms, where m is the maximal ideal of @. Then if b is the defining ideal of K
in @, we have V,=(b+m%)/ms. In fact if A is the m-adic completion of @, 4
is the dual space of B=$(G). Since b4 and m*A4 are the null spaces of $H(K)
and (0/m®)* in A, we have bA+msA=(H(K)n (0/m*)*)L, and hence the null
space of H(K) N (@/m*)* in ¢ coincides with b+ms. This means that the null
space V, of U,=H(K)Nn(@/ms)* in ¢/ms is (b+m*)/ms. Thus we see that
H=N,4(9(K)) is the intersection I (Ng o4,(V;)) of the normalizers H;=Ng oq.(V5)
for s>1 as seen from the proof ofz"llh. 6. The proof shows also that H(H,) is the
largest Hopf subalgebra D of $(G) such that (2) x1)Vse(x2y) = V; for any element

x in D°. Now we show that H normalizes K. If a;and a are the defining ideals
of H, and H in O respectively, we have a=\Uq, as seen in §4. Let 7, and 7 be

the natural homomorphisms of @ to 0/a; ar;d OJa respectively. If f®O=f® is
the homomorphism of ¢/m* to O®,(0/m*) defined by ¢¥ as given in Lemma 19,
we see that the homomorphism g given in Lemma 15 coincides with (m,®1,,,s)
f® for V=0/ms, U=W =V, and ¢ =Ad, by Lemma 20, (i) and the definition of
Ad,. Therefore we have (n,®1,,,s)f*(V;)=(0/a)®; V; by Lemma 15, and hence
(@1 gms) fO(V)<=(0/a)®, V. Since we have ¢p§(m*)=(0Q@m*)¢’ by Lemma 16,
this means ¢¥(b)c(a®0+0®(b+m*))0’ for any s>0 from the definition of
f©).  Therefore we see ¢(b)c(a®0+0®Db)0’, and hence H normalizes K by
Prop. 23. Next we show that H is the largest connected group subscheme of G
which normalizes K. If N is a connected group subscheme of G normalizing
K, we see that ¢g(iy x ix) decomposes through K. Therefore we have ¢y
O(N)®H(K)) = H(K), because the transpose of ¢y gy coincides with the con-
tinuous extension of ¢& to the m-adic completion 4 of ¢. This means by Th. 6,
(ii) that H(N) is contained in H(N,4(H(K))=9H(H), and hence we see that N is a
group subscheme of H. q.e.d.

CoRrOLLARY 1. Let G and K be as above. If H, and H, are connected
group subschemes of G normalizing K, then the join J(H,, H,) of H, and H,
normalizes K. '

Proor. If H is the largest connected group subscheme of G which nor-
malizes K, H, and H, are group subschemes of H. Therefore J(H,, H,) is also
a group subscheme of H. But any connected group subscheme of H normalizes
K as seen easily from Prop. 23. q.e.d.



Some Results on Hopf Algebras Attached to Group Schemes 553

CoROLLARY 2. Let H and K be connected group subschemes of a group
scheme G over k. Then H normalizes K if and only if $(H) normalizes H(K).

Proor. If H normalizes K, $(H) normalizes $H(K) as seen in the last part
of the proof of Prop. 25. Conversely if $(H) normalizes $H(K), H(H) is a Hopf
subalgebra of N,4(H(K)). But we know by Prop. 25 that N, 4($(K)) corresponds
to the largest connected group subscheme H, which normalizes K. Therefore
H is a group subscheme of H, and hence H normalizes K by Prop. 23. q.e.d.

PROPOSITION 26. Let G be a group scheme over k, and let D and E be
Hopf subalgebras of 9(G) such that D normalizes E. Then the algebraic hull
(D) of D normalizes E. In particular Ng)\(E) is algebraic.®)

ProOF. We see Ny /(E)=H(Naq4(E)) in the exactly same way as the proof
of Prop. 24 by replacing $(K) with E. Therefore D is a Hopf subalgebra of
H(N,4(E)). Since /(D) is the smallest algebraic Hopf subalgebra of $(G)
containing D, &#(D) is a Hopf subalgebra of Ng ) (E)=H(N,4(E)). This means
that /(D) normalizes E. q.e.d.

ProrosITION 27. Let G, D and E be as above. Then if D normalizes
E, the algebraic hull o#/(D) of D normalizes that of E.®

ProoF. Let A be the formalization of G, and let A4/a and A/b be the formal
subgroups of A4 corresponding to D and E respectively. Let 0, 0', ¢ and ¢¥
be as above, and put a=@naand b=0nb. Then (D) and «(E) correspond
to A/aA and A/bA respectively as seen from the proof of Prop. 5. Since D
normalizes E, A/a@ normalizes A/b by duality. This means ¢ (b)c(@®A+A
®b)A4’, where ¢, is the formal comorphism defined by ¢ from A to the com-
pletion A’ of ¢’ with respect to the maximal ideal. As in the proof of Prop. 4,
we may consider 0®,0, AQ,A and ¢’ as subrings of A’. Then since ¢¥ is
the restriction of ¢, to 0, ¢%(b) is contained in (A®A+AR®D)A'n0’. Now we
assume that D contains E, i.e., b contains @. In this case a similar argument
to the proof of Prop. 4 shows ¢&(b)c(a®0+0ORb)Y’ as seen easily. There-
fore we see ¢, (bA)c(aA®A+ARDBA)A’, and hence /(D) normalizes &/(E).
In general case we put D, =J(D, E). Since D and E normalize E, it is easy to see
that D; normalizes E. From the above case, «/(D,) normalizes &/(E). Since
&(D,) contains D, «/(D) is contained in 2/(D;). This means that /(D) nor-
malizes &7(E). q.e.d.

CoROLLARY. Let G and D be as above. Then if D is a normal Hopf sub-

5) The fact that N 4, (E) is algebraic was shown in (3.6.2) of [11].
6) If D and E are reduced Hopf subalgebras of $(G) attached to an affine algebraic group
G, this result is given in Prop. 6, Chap. IV in [4].
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algebra of H(G), so is (D).

§8. Centralizers of Hopf subalgebras and group subschemes

In this section we shall show similar results on centralizers of Hopf sub-
algebras and group subschemes to those on normalizers of them treated in the
previous section. We use the same notations as before.

ProrosiTION 28. Let D and E be Hopf subalgebras of a cocommutative
Hopf algebra (B, m, i, 4, ¢, ¢) over k. Then the followings are equivalent:
(i) xy=yxfor any elements x in D and y in E.

(ii) e(x)y = ¢p(x ® y) for any elements x in D and y in E.

(ii) ¢g(x ® y) =0 for any elements x in D° =kere N D and y in E.

(iii)  &(y)x = ¢pg(y ® x) for any elements x in D and y in E.

(iii)  ¢g(y ® x) =0 for any elements x in D and y in E° =kere n E.

(iv) Let C be any cocommutative coalgebra over k. Then we have fxg=gxf
for any elements f in Hom,,,(C, D) and g in Hom,,, (C, E).

PrOOF. (iv)=(i). Put C=D®,E and let A be the comultiplication of the
coalgebra C. If p, and p, are the projections of D®, E to D and E respectively
as coalgebras over k, we have (p, ® p,)4c=1¢ and (p,®p,)4¢ coincides with the
exchange of the factors of C=D®,E. Since we have p,*p,=p,*p, by our as-
sumption, we see for x in D and y in E

xy =mx®y) = m(p; ® pp)Ac(x ® y) = (p,*p,) (x ® y)
= (p2*P1)(x® y) = m(p, ® p)Ac(x ® y) = m(y ® x) = yx.

())=(ii). If x is an element of D, we may put A(x)= ¥ x(;,®x(z with x(;, and
Xy in D, Since we have o(x)= 3 xqye(xcp), We see da(x®y)= % xayyelx)
= 3 X1yc(X(2))y =#&(x)y for any element y in E.

(ii);(iv). Let z be an element of C with A(z)= " z(;,®z;). Then we have
z= (ZZ) ec(z(1))z(2y and &(f(z(;))) =&c(z(y)) for fin Hc()zlilc,,a, (C, D), where ¢ is the

coidentity of C. Since we have fxgxf~1=¢x(f®g)4c for f in Hom,,, (C, D)
and g in Hom,,,,;(C, E) as seen in the proof of Prop. 18, we see by (ii)

f*gxf~1(2) = ¢pp(f®9)A(2) = (}:_) d5(f(z(1)) ® 9(2(2))
= (%: e(f(z(l)))g(z(z)) = (g)g(ec(z(l))z(z)) =g(z2).

This means that the assertion (iv) is true.
Similarly we see that (i) is equivalent to (iii). Since we have D=i(k)®D°
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(resp. E=i(k)®E®), we see easily that (ii) (resp. (iii)) is equivalent to (ii)’ (resp.
(iii)"). q.e.d.

PROPOSITION 29. Let (A, 2, n, 6), A', ¢4, Ala, A/b and B=$9H(A) be the
same as in Prop. 19. Let p, and p, be the natural homomorphisms of A’ to
A'l(a®A+ARD)A’ and A'|(b®A+ A®a)A’ respectively. Then the followings
are equivalent: '
(i) If S is the isomorphism of A'|(b@A+ARa)A’ to A’/(a® A+ ARDB)A’ given
naturally from the exchange of the factors of A®, A, we have p,A=Sp,.

(ii) The kernel of p,¢, contains b, and the induced homomorphism of A/b
to A')(a®A+ARDb)A’ by p,¢, coincides with the one given naturally from the
homomorphism of A/b to Ala®A/b mapping any o in A/b to 1®ua.

(iiiy The kernel of p,¢, contains a, and the induced homomorphism of Ala
to A'|(b®A+AR®a)A’ by p,¢p, coincides with the one given naturally from the
homomorphism of Ala to AJb®@A/a mapping any o in Ala to. 1®a.

(iv) Let R be any complete noetherian local ring containing k. -Then we have
fxg=gxf for any elements f in Hom,,.(A/a, R) and g in Hom,,.(A/b, R).

~ This is the dual of Prop. 28 and the prodf is exactly similar to that of it.
Therefore we omit the proof.

ProrosiTioN 30. - Let (G, u, &, 7), H, K, iy and ig be the same as in Prop.
20. Then the followings are equivalent:
(i) If o'is the isomorphism of Hx K to K x H given by the exchange of the
factors, we have pu(iy % iy)=u(ix X ig)o.
(ii) ¢gligxix) decomposes through K and it coincides with the projection py
of Hx K to K. '
(iii) @glixx iy) decomposes through H and it coincides with the projection
prof KxH toH.
(iv) If X is any algebraic scheme over k, we have fxg=gxf for any elements f
in Mor (X, H) and g in Mor (X, K).

Proor. (i)=>(iv). | If oy is the exchange of the factors of X x X, we see by
@
frg = plinf % igg)Ax = p(iy x i) (f x g)dx
= Wix X ig)o(f x g)x = K(ix X in)(g X foxdy
=u(ix ¥ ig) (g X Ndx = g*f

for any fin Mor (X, H) and g in Mbr(X, K).
(iv)=(i). A similar way to the verification of (iv)=>(i) in the proof of Prop. 28
can be applicable, but we omit the detail.
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(ii)=>(iv). If p, is the projection of X x X to the second factor, we have

frgef~1 = ¢pgliyg x i) (f X g)Ax = px(f X g)4x = gp24x =g

for any f in Mor (X, H) and any g in Mor(X, K) by (ii). This means that the
assertion (iv) is true.

(iv)=(ii). Put X=H x K and let py be the projection of X=H x K to H. Then
we see (py X px)4x =1 and hence by (iv)

d6(ig % i) = dglig ¥ ix) (Py X p)4x = (igpp)*(ixP)*(igpy) ™"
= ixPx = Px-

This means that (ii) is true.
Similarly we can see that (iii) is equivalent to (iv). q.e.d.

If H and K are group subschemes of a group scheme G over k satisfying the
equivalent conditions in Prop. 30, we say that H and K centralize each other or
commute with each other. Similarly we say that Hopf subalgebras D and E
of a cocommutative Hopf algebra B over k (resp. formal subgroups Ala and
A/b of a formal group A over k) centralize each other or commute with each
other, if they satisfy the equivalent conditions in Prop. 28 (resp. Prop. 29). If
there exists the largest group subscheme H of G commuting with K, we call H
the centralizer of K in G and denote it by C4(K). Similarly we define the cen-
tralizers Cg(E) and C,(A/b) of E in B and A/b in A4 respectively. In particular we
call C4(G) (resp. Cyx(B) and C ,(A)) the center of G (resp. B and A).

ProrosiTION 31. If B and E are as above, there exists the centralizer
Cx(E) of E in B.

ProPosITION 32. If A and A/b are as above, there exists the centralizer
C,(A/b) of A/b in A.

These propositions are proved in similar ways to the proofs of Prop. 21 and
22, but we omit the detail.

Now we give a corresponding result to Prop. 23. Let G, H, K and ¢, be
as above and assume that H and K are connected. Let @, 0’ and ¢ be the same
asin §12. If a and b are the defining ideals of H and K in @ respectively, we
denote by p the canonical homomorphism of ¢’ to ¢’'/(a®0+0®b)0’. More-
over let h be the comorphism of ¢ to ¢’ defined by the projection of GXxG to
the second factor. Then we have the following

PRrROPOSITION 33. Let the notations be as above. Then the followings are
equivalent:
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(i) H commutes with K.

(ii) The kernel of pg¥ contains b, and the induced homomorphism of 0[b
to 0'[(a®0+0@D)O' given by pd¥ coincides with the one obtained naturally
from h.

Proor. (i)=>(ii). If iy and ig are the canonical immersions of H and K
into G respectively, p is the comorphism of iy X ix. This means that the kernel
of p¢¢ contains b, and that the induced homomorphism of ¢/b to ¢'/(a®O+
0®Db)0¢’ is given by h from Prop. 30, (ii).

(ii)=>(i). If the assertion (ii) is true, there exists an open neighborhood U of ex e
in G x G such that the restriction of ¢4(iy X ix) to U n (H x K) coincides with the
projection px of Hx K to K. Then the induced morphism (¢dg(ig X ix));ea Of
H, g X K, .4 to K .4 defined by ¢g(igxix) is equal to (pg).qa defined by pyg,
because H x K is separated. In particular we have ¢g(iy X ix)(x X y)=dg(x x y)
=y for any closed point x x y in H x K. Let Spec(R) and Spec(S) be affine open
neighborhoods of x x y and y in G x G and G respectively such that ¢;(Spec(R))
< Spec(S) and p,(Spec(R)) =Spec(S), where p, is the projection of G x G to the
second factor. Let ¢ and bg be the defining ideals of Hx K and K in R and S
respectively. Since H normalizes K by Prop. 23, we see ¢*(bg) = ¢z denoting by
¢* the comorphism of B to A defined by ¢;. We see easily that ¢z and bg are
primary and hence that rad (¢cg)=p and rad (bg)=q are prime ideals. If we put
P1=p/cg and q,=q/bs, (R/cg),, and (S/bs),, are the stalks of HxK and K
at the generic points respectively. Then the homomorphisms ¢ and pg of
(S/bs),, to (R/cg),, given naturally from ¢* and the comorphism of py respec-
tively are equal to each other by our assumption. Therefore we see easily that the
comorphisms of S/bg to R/c¢g defined by ¢g(iy x i) and py are equal to each
other, because the set of the zero-divisors in R/cg is p,. This means that ¢g(iy
x ix) and py are the same morphism on (H x K) n Spec(R), and hence on H x K.
By Prop. 30, (ii), H centralizes K. q.e.d.

ProprosITION 34. If K is a connected group subscheme of a group scheme
G over k, Cy(H(K)) is an algebraic Hopf subalgebra of $(G).

Proor. If we put H=Tr,q(H(K), 0), we see ¢g6)(H(H)'@H(K))=0 by
Th. 6 and the definition of Tr,4 (H(K), 0) in the same way as the proof of Prop. 24.
Therefore we see easily ¢g6y(x®y)=2(x)y for any x in H(H) and y in H(K), and
hence $H(H) is contained in Cgg,(H(K)) by Prop. 28, (ii). Conversely Cg6)(H(K))
is contained in $(H) by Th. 6, (ii) and Prop. 28. This means that Cgg,(H(K))
coincides with H(H). g.e.d.

ProposITION 35. If K is a connected group subscheme of a group scheme
G over k, there exists the largest connected group subscheme H of G which
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centralizes K. Moreover we have H(H)=Cg;)(H(K)).

The proof of this proposition can be given in a exactly similar way to the
proof of Prop. 25 using Prop. 34 and 33 instead of Prop. 24 and 23. We can see
that H="Tr,4(H(K), 0) satisfies our conditions, but we omit the detail.

k CoroLLARY 1. Let G and K be as above. If H, and H, are connected
group subschemes of G centralizing K, then the join J(H,, H,) also centralizes
K.

CoROLLARY 2. Let H and K be connected group subschemes of a group
scheme G-over k. Then H commutes with K if and only if $(H) commutes with
S(K). In particular a connected group scheme G is commutative if and only
if 9(G) is commutative.

The proofs of these corollaries are similar to those of Cor. 1 and 2 to Prop. 25
and hence we ‘omit them.

PrOPOSITION 36. Let G be a group scheme over k, and let D and E be Hopf
subalgebras - of H(G). Then if-D commutes with E, the: algebraic hull /(D)
of D-commutes with that of E. In particular Cg(E) is algebraic.”)

- Proor. Let the notations be the same as those in the proof of Prop. 27.
Then since D commutes with E, A/a commutes with 4/b. In particular A/a
normahzes Alb. Therefore we have PEO)<(a®O+0R®Db)p’ as seen in. the
proof of Prop. 27. Moreover we see easily (IQA+A®D)NO'=0®0+
0®b)0’, and hence we see from Prop. 29, (ii) that the condition (ii) of Prop. 33
is satisfied. Therefore we see that 4/a4 commutes with 4/bA. In other words
/(D) commutes with «/(E). The last assertion follows from the above easily by
the definition of Cgg,(E). g.e.d.

§9. Commutators of Hopf subalgebras and group subschemes

Let (G, U, & 7) be-a group scheme over k. If we denote by u, the morphism
puxlg)(uxlgx1lg) of GxGx GxG to G, we put

Ve = pa(lg x S x 16)(1g X ¥ X 15 x y)(dg %X 4g),

where S is the exchange of the factors of Gx G. Similarly if (B, m, i, 4, &, ¢)
is a cocommutative Hopf algebra over k, we put

Yp=my(1;R0@1p)(1;®c®13®c)(4® 4),

where m, and ¢ are the multiplication of B B B®B to B and the exchange of

7) The fact that Cg g, (E) is algebraic was shown in (3.6.2) of [11].
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the factors of B®, B respectively. - If (4, 4, n, o) is a formal group over k, we
define ¥, as the transpose of Y54, which is a k-linear continuous homomorphism
of A to the (M@ A+ A@m)-adic completion A’ of A®, A where m is the maximal
ideal of A. Moreover let ¢g, ¢p and ¢, be the same as in previous sections.

ProrosiTiON 37. If D, E and F are Hopf subalgebras of a cocommuta-
tive Hopf algebra (B, m, i, 4, ¢, c) over k, the followings are equivalent:
(i) Ye(D®E)cF.
(ii). If C is any cocommutative coalgebra over k, [f, gl=f*gxf~1xg~! is in
Hom,,;(C, F) for any f in Hom,,,(C, D) and any g in Hom,,, (C, E).
(iii) Let ip, ig and ip be the natural injections of D, E and F into B respectively
and let pg be the projection-of D®,E to E as coalgebras. Then there exists an
element h in Hom,,,;(D®E, F) satisfying ¢g(ip®ig)=(igh)*(igpg).

ProoF. (i)=(ii). If 4 is the comultiplication of C, we have Ag#(g@g)Ac
for any g in Hom_,,, (C, B). Therefore we see by the coassociativity of A

Ve(f@9)Ac =my(13® 0@ 1p)(1,Qc @ 13Q¢)(4 Q@A) (f®g)dc
= (¢ ® ) (f® 9 ®9)(Ic ® 4.
= m(¢x(f® 9) ® cg)(4c ® 1c)4c
=m(f*gxf~' ®g™)4c = [/, 9],
since we have ¢g(f®g)dc=f*g*f~! and cg=g~!. 1In particular “we’ have
L g1 (x)=¥s(f @) A(x)= ): Va(f (x1)®9(X(2))) for any x.in C with 4d(x)=

me®x(2) - This means that Lf, g7 is in Homm,(C F) if f and g ‘are in

Homm,(C D) and ‘Homy,, (C, E) respectively.

(if)=>(i). Put C=D®E, and let p; and p;-be the projections of C to D and E
respectively. Then we see easily (pp,® pg)dc=1c; and hence Yg(i,®ip) =Y x(ippp
®igpp)Ac=L[ipPp; igPe]- This means yx(P@®E)<F by the assertion (ii).
(iD)=(iii). We see easily ¢pp(ip®ig)="[ippp, icPr]*(igpr) using the same notations
as above, because we have ¢p(ip®ig)=@p(ippp®@irpr)dc=ippp)*(igpe)*(ippp)™".
Therefore the assertion (iii) follows from (ii).

(iii)=>(ii). If f and g are in Hom,,, (C, D) and Homm,(C E) respectively, we
see by (iii)

Frgxf~1 = ¢p(ip @ ig) (f® g)Ac = (irh)*(iepp)) (f @ 9)4c
= (iph(f ® 9)4c)*((iepe) (f ® 9)Ac) = (iph(f ® 9)4c)*g.
Therefore [f, gl=iph(f®g)4c is in Homm,(C, F). gq.e.d.

ProposiTION 38. Let (B, m,.i, 4,¢, c), D, E and Yy be as above. -Then
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there exists the smallest Hopf subalgebra F of B containing Y g(D®, E).

ProoF. Since B is cocommutative, 4 and ¢ are coalgebra homomorphisms
as seen easily. Therefore Yy is also a coalgebra homomorphism and hence
Vs(DQ®E) is a subcoalgebra of B. Moreover we see cyfg(D®E) =y 5(c(D)Rc(E))
=Y (D®E). Then it is easy to see that the subalgebra F of B generated by
Vs(D®E) is a Hopf subalgebra, and so F is the smallest Hopf subalgebra of B
containing Y s(DRE). g.e.d.

Dualizing the above propositions, we have the following results on formal
groups.

ProposITION 39. If A/a, A/b and A/c are formal subgroups of a formal
group A over k, the followings are equivalent:
(i) Yu(0)c(a® A+ AQDb)A".
(ii) Let R be any noetherian complete local ring containing k, and let f and g
be elements of Hom,,.(A/a, R) and Hom,,.(A/b, R) respectively, where we de-
note by Hom,, (S, R) the set of all local k-homomorphisms of a local ring S
to R. Then [f, g]l=f*g*f~1xg~1 is in Hom,,.(A/¢c, R).
(iii) Let p be the natural homomorphism of A' to A'|(a@ A+ ARb)A’' and let
py and p, be those of A to A/b and Alc respectively. Let iy be the natural
homomorphism of A/b to A'/(a®@A+A®Db)A’ given by the injection of A to
A®,A mapping a to 1®a. Then we have pp,=(hp)*(iyp;) for some h in
Homloc (A/C, R)

ProPOSITION 40. Let A, Ala, A/b, A’ and Yy, be as above. Then there
exists the smallest formal subgroup A/c of A satisfying Y ,(¢)c(a®A+ARDb)A'.

Let D and E be Hopf subalgebras of a cocommutative Hopf algebra B over
k. Then we denote by [D, E] the Hopf subalgebra F obtained in Prop. 38 and
call it the commutator of D and E. We see easily [D, E]=[E, D]. If A/a and
A[b are formal subgroups of a formal group A over k, we can define similarly
the commutator [Ala, A/b] of Ala and A/b from Prop. 40. As for commutators
of group subschemes we have the following

ProPOSITION 41. Let H, K and L be group subschemes of a group scheme
G over k, and let iy, iy and i, be the natural immersions of H, K and L into G
respectively. Then the followings are equivalent:
(i) Yg(iy x ix) decomposes through L.
(ii) Let X be any algebraic scheme over k, and let f and g be elements of
Mor (X, H) and Mor(X, K) respectively. Then [f, gl=f*g*f~1xg~1 is in
Mor (X, L).
(iii) There exists an element h in Mor(H x K, L) satisfying ¢g(iyXix)=
(i h)*(ixpx), where pg is the projection of Hx K to K.
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This is a group scheme version of Prop. 37 and the proof is exactly similar
to that of Prop. 37. Therefore we omit the detail.

THeoreM 7. Let (G, u, &, y) be a group scheme over k and let D and E
be algebraic Hopf subalgebras of $(G). Then the commutator [D, E] is also
algebraic.

ProOF. Let 0 and 0, be the stalks of G at e and Gx:--xG (n times)
at ex --- x e respectively as in §4, and let 4, the comorphism of ¢#=0, to 0,
defined by the multiplication u, of Gx---x G to G for n>2. Moreover let H
and K be connected group subschemes of G with the defining ideals a and b in
0 respectively such that D=$H(H) and E=$H(K). If y* is the comorphism of
0 to 0, defined by y;, we put ¢, =y* 1((a®0+0®b)0,) and ¢,=y* (b0
+0®a)0,). Putting E={(i,,..., i,)|i;=10r 2, n>2}, we denote byD; .., the
ideal 4;'((¢;, ®0Q - @O +--+0Q---Q®0®¢; )0,) of ¢ for any (i,...,i,) in E.
Since the zero ideal of 0/a; ®---®0/a,, with a, =a or b is a primary ideal as
seen in the proof of Lemma 11, we see easily the zero ideal of @,/¢;, ®--- ®0,/¢,,
is also primary, where ¢ =(a®0+0®b)0, or (b®0O+0®a)0, according to
ij=1or2. Since 0/c;,® - ®0/c;, is isomorphic to a subring of 0,/¢; @ R0,/
¢;,» the zero ideal of 0/¢; ®---®0/¢; is primary, i.e., ¢, QORI+ +0Q -
®0Q®c¢;, is a primary ideal of 0®--®0 (n times). Therefore we can apply
Lemma 10 and the same argument as the proof of Lemma 11 shows the existence
of .an element (j,,..., j,) in E such that d;..; is contained in d; . for any
(iys.-s i) in E. Putd=D;..; . Replacing q; and ¢ with ¢; and D respectively in
the proof of Th. 2, we see 4,(D)<c(dRO+0O@Dd)0,. On the other hand we see
easily yWs=1S, where S is the exchange of the factors of G x G, and hence we
have y*(¢;)=c¢, and y*(c;)=c¢;. This means y*~'(d;..;)="0;..;; with ij=1 for
i;=2and i;=2 for i;=1. Then a similar argument to the proof of Th. 2 gives
y*(®)=Dd. Therefore by Th. 1 d is the defining ideal of a connected group sub-
scheme L of G in 0.

Now if we put ¢j,..; =(¢;,Q00--- @0+ +0QR--Q0OQ¢;, )0, 4, gives
an injection of ¢/d into 0,/c;,...;, as seen easily. Therefore the transpose 4y of
4,, maps the continuous dual coalgebra C;,...; of @/c]...; onto the dual coalgebra
H(L) of 0/d. Since we see the homomorphism Yz of B®,B to B=$(G) is the
restriction to B®, B of the transpose of the comorphism y*, we see easily, from
Lemma 12 and the definition of d, that (L) is contained in [H(H), H(K)]
=[D, E]. On the other hand we see D=¢,; N ¢, by Lemma 10, and hence $(L)
contains [H(H), H(K)]=[D, E] as seen easily from Lemma 12 and the definitions
of ¢, and ¢,. This means $(L)=[D, E] and hence [D, E] is algebraic. q.e.d.

Let H and K be connected group subschemes of a group scheme G over k.
Then we denote by [H, K] the connected group subscheme L of G satisfying
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H(L)=[H(H), H(K)], and we call [H, K] the commutator of H and K. In
particular if H=K, we call [H, H] the commutator of H. 1t is easy to see from
the proof of Th. 7 that [H, K] is reduced if H and K are so. More generally we
can see also that exp [H, K] <Max (exp H, exp K) in the case of a positive char-
acteristic.

ProrosITION 42. Let G, H and K be as above. Then [H, K] is the small-
est'group subscheme L of G such that H, K and L satisfy the equivalent condi-
tions'in Proposition 41. -

Proor. Put L=[H, K] and let the notations be as those in the proof of
Th. 7. Then ¢, contains D=D;,.; by Lemma 10. Since ¢, is a primary ideal
of 0, there exists a unique irreducible closed subscheme X of G whose stalk at e
is @/c;. On the other hand H x K is the unique irreducible closed subscheme of
G x G whose stalk at exe is 0,/(a®0+0®Db)0, and ¢, is the inverse image of
(a@(ﬂ-}—@@b)@z by ¥*. Then we can see easily that the morphism Y g(iy % ig)
decomposes through X. Since L is the unique irreducible closed subscheme of
G having the stalk @/ at e, we see X is a subscheme of L. Therefore yq(iy X ig)
decomposes through L. Now let L' be a group subscheme of G satisfying the
equivalent conditions in Prop. 41.  Then we see easily H(L') 2/ 6)(H(H) R H(K)),
and hence we have H(L)>[H(H), H(K)]=9H(L). This means that Lis a group
subscheme of L'. ‘ g.e.d.

Now we need some results on relations between normal Hopf subalgebras
and Hopf quotient algebras of a cocommutative Hopf algebra (B, m, i, 4, ¢, c)
over k. - First we have the following

Lemma 22. If D is a normal Hopf subalgebrav of B, we have BD°=D°B
with D°=D n(kere). .In particular BD° is a Hopf ideal of B.

Proor. Let p, and p, be the projections of B®, D to B and D as coalgebras
respectively. Then there exist ¢ and 7 in Hom,,, (B®,D, D) satisfying p;*p,
=o#p; and p,*p, =p,*t by the normality of D. In other words if 4’ is the co-
multiplication of B®,D, we have M(p1®p2)A’=m(a®p1)A’ and m(p,®p,)4’
=m(p,®1)4’. Let x and y be elements of B and D° respectively satisfying
4(x)= (g)xm@x(z) and A(y)= (S‘_y)y(l)@y(z). Since we have (pl®p2)A’=1,,®D
and (Z,,) e(V2)V(1y=Y, We see

xy=m(x®y)=m(p; @ p)A'(x®y)=mc® p,)4'(x® y)
m(e ® Pl)((x)\:zy) X1 ® Y1) ® X(2) ® ¥(2)
= U(-"u) ® .V(l))s(.V(z))x(z)
(x),(y)
= (% O'(X(l) ® y)xu) .
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Since y is in D°, we see easily that a(x;,®y) is also in D°, and hence the right hand
side of the above equality is in D°B. Similarly we see yx= (met(x(z)(@ y)€ BD°.
x) 3
Therefore we have BD°=D°B. In particular BD° is a two sided ideal of B. Now
since D° is a coideal of D, we may assume that one of y;, and y,, in 4(y)= Z Ya)

®y(z) belongs to D°. Then we have A(xy)=A4(x)4(y)= (Z x(1,®x(2))(2y(1)
®yiz)= Z X 1)V (1)®X2)Y(2)» and hence A(xy) is contamed in BD°®B+B
)

(x5 (
®BD". Therefore BD° is a coideal of B. Moreover we see c¢(BD°)=c(D°)c(B)
=D°B=BD°. This means that BD° is a Hopf ideal of B. q.e.d.

If D is a normal Hopf subalgebra of a cocommutative Hopf algebra B over
k, B/BD° is a Hopf quotient algebra of B. We call it the Hopf quotient algebra
of B by D. We denote it by B/D. If p, is the natural homomorphism of B to
B/D=B|BD", pj, is a surjective Hopf algebra homomorphism.

LEMMA 23. Let C and C' be cocommutative coalgebras over k, and let f
be a surjective coalgebra homomorphism of C to C'. Then if C is colocal, so
is C'.

Proor. First assume that C is of finite dimension. Then the dual algebra
C* of C is an artinian local ring containing k. Then transpose f* of f is an injec-
tive k-algebra homomorphism and C* may be considered as a finite C'*-module.
Therefore C’* is also an artinian local ring and hence C’ is colocal. In general
case if C’ is not colocal, there exists two minimal subcoalgebras D, and D, of C'.
Let x, and x, be non-zero elements of D, and D, respectively, and let y, and y,
be elements of C such that f(y,)=x, and f(y,)=x,. Then there is a finite di-
mensional subcoalgebra D of C containing y, and y, as well known. Then f(D)
is a subcoalgebra of C’ containing x, and x,, and hence f(D) contains D, and D,.
However f(D) is colocal as seen in the above, because D is of finite dimension.
This is a contradiction. q.e.d.

LEMMA 24. Let B be a cocommutative Hopf algebra of finite dimension
over k, and let D be a normal Hopf subalgebra of B. Then D is the h-kernel of
the canonical homomorphism pp of B to B/D.

This is Lemma 16.0.3 in [10], and we omit the proof.

PrOPOSITION 43. Let B be the Hopf algebra $H(A) attached to a formal
group A over k. If D is a normal Hopf subalgebra of B, the h-kernel of the
canonical homomorphism py, of B to B/D is D.

PrOOF. First assume that the characteristic of kis p>0. Let m be the maxi-
mal ideal of A and denote by m the ideal of 4 generated by the elements a?"
with a in m. Then we see easily A/m™ is a formal subgroup of A. Put B,
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=9H(A/m™) and consider it as a Hopf subalgebra of B. Since R m™ =0,

n=1
we see B= \j B,. Moreover B, has a finite dimension over k for any n, because
n=1
m™ is an m-primary ideal. Let D, be the intersection of D and B; for each i.
Then D; is a Hopf subalgebra of B; and it is easy to see that D; is normal in B,
If p; is the canonical homomorphism of B; to B;/D;, we see h-ker p;,=D; by Lemma

24. Now let E be the h-kernel of p,. Then since p,(D)=k<B/D, E contains

D. Put E;=EnB; Since D=®D,~, we see D°=®D;! and hence BD°
i=1 1

i=

= GB,-D;?. On the other hand we see Eck@®BD° from pp,(E)=k, where we
i=1

identify k with the image of k by the identity of B. Since dim, E; < oo, it is easily

seen that each E, is contained in k@B;D; for some j depending on i. Therefore

E; is contained in D;, because D;=h-ker p; is the largest Hopf subalgebra of B;

contained in k®B;Ds. This means D> D;>E;, and hence D contains E= Q E,.
In other words D=E is the h-kernel of py, l
Next assume that the characteristic of k is zero. If E is the h-kernel of pp,
we see EoD as above. Now B, D and E are reduced Hopf algebras. Let
{14,..., I,} be a basis of the space 2(B) of primitive elements of B over k such that
{l,..., 1} and {/,..., I} are bases for 2(E) and 2(D) over k respectively. If we put
IO=1t, we see {I{”|t>0} is a sequence of divided powers of /; for each i.
Then {l{e0)---1 (en)|e;>0} and {I{es)---I{¢n)|e;>0} are bases for B and D over
k respectively by Th. 3 in [9]. Then it is easy to see that {/{es).../{¢n)|¢;>0,
e;+es, +---+e,>0} is a basis for D° over k. Since D° is a two sided ideal of
D, we see easily that S={l{cV)...[{es)...[(en)|e;>0, e, +e,, + - +e,>0} is a
basis for BD° over k. If ER D, we have r<s. On the other hand E° is contained
in BD°, because Eck@®BD°. In particular /,=/{!) is in BD°. But this is im-
possible, because {/{1)} U S is linearly independent over k. Therefore we have
E=D. q.e.d.

CoOROLLARY. Let A, B=$%(A) and D be as above, and let F by any cocom-
mutative coalgebra over k. Then the following sequence of groups is exact:

{1} — Hom,,, (F, D) % Hom oy (F, B) £2° Hom,,(F, B/D),

where ipy and ppy are the group homomorphisms naturally obtained from iy
and py, respectively.

Proor. Let f be an element of Hom,,, (F, D). Since f(F)cD<k®BD",
we see pp(f(F))=k. This means that pp.ips«(f) is the neutral element of
Hom,,, (F, B/D). Conversely let g be an element of Hom,,, (F, B) such that
ppx(g) is the neutral element of Hom,,, (F, B/D). Therefore p,(g(F)) is equal
to k, i.e., g(F) is contained in k@BD°. Since D is the maximal subcoalgebra of
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B contained in k®BD° by Prop. 43 and 2, g(F) is a subcoalgebra of D. This
means that g is in the image of ip,. The injectivity of iy, is trivial. q.e.d.

PROPOSITION 44. Let B be the Hopf algebra $(A) attached to a formal
group A over k, and let D and E be Hopf subalgebras of B. Let iy, and ig be the
canonical injections of D and E into B respectively, and denote by pg the projec-
tion of D®,E to E as coalgebras. Then if F is a normal Hopf subalgebra of
B, the followings are equivalent:

(i) [D,E]cPF.
(i) pr(¢ds(ip ® i) = pr(icPE) -
Proor. (i)=(ii). From Prop. 37 there is an element h in Hom,,, (D®E,

F) such that ¢g(ip®ig)=(irh)*(izpg). Therefore we see by Cor. to Prop. 43
Pr(®s(ip®ig))=pr((igh)*(igpE)) = pr(icPp)-

(ii)=(i). From the equality (ii) pp(¢g(ip®ig)*(igpg)~!) is the neutral element of
Hom,,,,(D®E, B/D). By Cor. to Prop. 43 there exists an element h in Hom,,,,
(D®E, F) satisfying ¢g(ip,®ig)*(igpg) ' =igh. This means [D, E]<F by Prop.
37. q.e.d.

ProposITION 45. Let (B, m, i, 4, &, c) be the Hopf algebra H(G) attached
to a group scheme G over k. Let E and F be Hopf subalgebras of B, and assume
that F is normal in B. Then there exists the largest Hopf subalgebra D of B
such that [D, EJcF and D<NgE). Moreover this Hopf subalgebra D is
algebraic.

ProoF. Let notations be the same as in Prop. 44. If we put H=Tr,q4(E,
BF° N E) and D=$H(H), we see, by Th. 6, 3 x;,Ec(x;))=BF°nE for any x in
x)

D° with A(x)= Y x(1)®x(3). Therefore we see easily for any x in D and y in E
(x)
) ;2), X1)ye(xz)) — e(x)y€e BF° n E with A(x) = (XZ) X1y ® X2y

This means (¢pg—igpr) (DR E)=BF° n E and hence we see pp(¢p(ip®ig))=pPricPe.
Then we have [D, E]cF by Prop. 44. The formula () shows also ¢z(x®y)e E
for any x in D and y in E, i.e., D is contained in Ny(E). Now let D’ be a Hopf
subalgebra of B satisfying [D’, EJc F and D' = Ng(E). From Prop. 44 and [D’, E]
cF, we see 3. x(;)ye(X2))—&(x)y € BF° for any x in D" and y in E with 4(x)=
(%xm®x(2).m0n the other hand we see (Zx:) X(1yyc(x2y) € E for the above x and y
by Prop. 18 and D' =Ng(E), and hence we have Y x,,yc(x(;)) € BF° n E for any
x in D'° and y in E with A(x)= 3 x;,®x(3). Tﬁl)s means by Th. 6 that D’ is a
Hopf subalgebra of D=$H(H). * g.e.d.

COROLLARY. Let G, B, E and F be as above. Then if a Hopf subalgebra
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D of B satisfies [D, E]J=F and DcNgE), the algebraic hull oZ(D) of D satisfies
also [Z(D), E]<F and o/(D)=Ng(E).

LemMMA 25. Let (B, m, i, 4, &, ¢) be a cocommutative Hopf algebra over
k, and let- D and E be normal Hopf subalgebras of B. Then the commutator
[D, E} of D and E is also normal in B.

PrOOF. Let ¢z and 5 be as before. Then we can see easily
(*) (1@ m) = m(ps® dp) (1,0 @ 15) (A ® 15® 1p) and
(%*) Ps(1p @ Vp) = Yp(Pp®@ Pp) (1@ 0@ 15)(A® 1@ 1)

in a similar way to the proof of Lemma 18, where ¢ is the exchange of the factors
of B®,B. From (xx) we see

dp(BOY (D ® E)) < Y5(¢pp(B® D) ® ¢pp(BR® E)).

Since D and E are normal in B, we have ¢3(B®D)<=D and ¢g(BQE)<E. There-
fore we see

(k) s(B®Y (D ® E)) = Y5(D® E) = [D, E].

Now [D, E] is the subalgebra of B generated by Yz D®E) as seen in the proof
of Prop. 38, we see by () and (xxx)

¢s(B® [D, E]) = [D, E].
This means that [D, E] is normal in B. q.e.d.

THEOREM 8. Let B be the Hopf algebra $(G) attached to a group scheme
G over k, and let D and E be Hopf subalgebras of B. Then we have »Z([D, E])
c[(D), #(E)]. Moreover if Dc=NgE) and EcNgD), we have [D, E]=
«([D, E])=[«(D), «(E)].

Proor. Since Dc=./(D) and Ec.«/(E), we see that [D, E] is contained in
[«/(D), «(E)] which is algebraic by Th. 7. Therefore we see <Z([D, E))c[(D),
&(E)]. Let H and K be connected group subschemes of G such that /(D)
=$(H) and «(E)=9H(K), and put G, =J(H, K) and B, =9(G,). If D=NgE),
we see Z(D)c=Ng(E) by Prop. 26. Similarly we have o/(E)=Ng(E) from E
=NgZE). On the other hand we see B,=$9H(G,)=J(H(H), H(K))=J(Z(D),
&/ (E)) by the definition of G, and Th. 2. Therefore we have B, @ Ng(E). Simi-
larly if EcNg(D), we have B, =Ng(D). This means that we may assume B
=Npg(D)=Npg(E) replacing G and B with G, and B, respectively to prove the last
assertion. Then F=[D, E] is also normal in B by Lemma 25, and hence we see
[«#(D), E]cF=[D, E] by Cor. to Prop. 45. - By Cor. to Prop. 27 /(D) is also
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normal in B. Therefore we see [&(E), «/(D)]<[E, &(D)] replacing D and E
by E and A(D) in the above. This means [«/(D), #(E)]=[«(E), «/(D)]<[E,
A (D)]=[«(D), El<[D, E], and hence we have [&(D), o(E)]=«([D, E])
=[D, E]. g.e.d.

COROLLARY. Let G and B be as above. Then we have followings:
(i) If D is any Hopf subalgebra of B, [D, D] is equal to [«/(D), «(D)]=«([D,
D)). In particular [D, D] is algebraic.®
(ii) IfE and F are normal Hopf subalgebras of B, [E, F] is equal to «([E, F])
=[(E), o (F)] and [E, F] is algebraic.

§10. Lie algebras attached to group schemes

The aim of this section is to show some results®) on Lie algebras attached
to group schemes over an algebraically closed field of characteristic zero using our
results on Hopf algebras attached to group schemes. Therefore we assume that
k is always an algebraically closed field of characteristic zero in the following.

Let G be a group scheme over k and let $(G) be the Hopf algebra attached to
.G.:..Then we denote by 2(G) the space of primitive elements of $(G) and call it
the Lie algebra attached to G. As seen in §4 £(G) is.a finite dimensional Lie
algebra over k whose Lie product [x, y] is defined by xy — yx=m(x® y) — m(y ®x)
for any x and y in £(G) where m is the multiplication of $(G). "Moreover if m
is the maximal ideal of the stalk @ of G at the neutral point, 2(G) may be idéntified
with the dual space of m/in? as seen easily. If H is a group subscheme of G, we
may identify £(H) naturally with a Lie subalgebra of 2(G). Now we have the
following

PROPOSITION 46. Let G be a group scheme over k. Then there is one to
'one correspondence between the set of Hopf subalgebras D of $(G) and the set
of Lie subalgebras M of &(G) such that M is the space &(D) of primitive elements
of D.

Proor. Identifying k with its image in $(G) by the identity i of $H(G), we
may assume that $(G) contains k. If M is a Lie subalgebra of 2(G), we see
easily that k@M is a subcoalgebra of $H(G). Then the subalgebra D of H(G)
generated by k®M is a Hopf subalgebra of $(G) as seen easily. Since the space
‘(D) of primitive elements of D is equal to D n £(G), we see (D)>M, Let
{X15...5 »} be a basis for M over k. Therefore we have

8) J. Dieudonné gave a proof of this result in the special case where G is an affine algebraic
group and D is reduced, and M. Takeuchi announced in the foot notes of [11] that he
obtained this result.

9) See § 7 in [1], and Th. 13, 14 and 15 in [2] should be referred.
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r
x;xj - x_,-x,- = [x,-, xj] = 21 O(,-j;,xh WIth O(ij,, € k
n=

and hence any monomial x; ---x;, (1<i;<r) can be written as a linear combina-
tion of the monomials x;,---x;, with j; <j, <---<j,as seen easily by induction on
s. This means by Th. 3 in [9] that M coincides with £(D), because {xj/s!|s=>0}
is a sequence of divided powers of x; for each i. Conversely if D is any Hopf
subalgebra of $(G), D is generated by k@®L(D) as a k-algebra by Th. 3 in [9].
Therefore our assertion is true. g.e.d.

COROLLARY. Let H, and H, be connected group subschemes of a group
scheme G over k. Then if &(H,)=2(H,), we have H,=H,.

ProOOF. As seen in §1, H, is equal to H, if and only if $(H,) is equal to
$(H,). But by Prop. 46 the last assertion is equivalent to L{(H,)=2(H,).
q.e.d.

Let M, and M, be Lie subalgebras of a Lie algebra L over k. Then there
exists the smallest Lie subalgebra M of L containing M, and M,. We denote
M by J(M,, M,) and call it the join of M, and M,. On the other hand if we put
IMy, M) =M, nNM,, I(M,, M,) is the largest Lie subalgebra of L contained
in M; and M,. Wecall I(M,, M,) the intersection of M, and M,.

PROPOSITION 47. Let D, and D, be Hopf subalgebras of the Hopf algebra
$(G) attached to a group scheme G over k. Then we have J(£(D,), &(D,))
=2(J(Dy, D)) and I(&(D,), &(D,))=2(U(D,, D,)).

Proor. Since J(D,, D,) contains D, and D,, &(J(D,, D,)) contains &(D,)
and £(D,). Therefore we see 2(J(D,, D,))>J(&(D,), &D,)). Let D’ be the
Hopf subalgebra of $(G) such that £(D")=J({(D,), &D,)). Since £(D’) con-
tains £(D,) and £(D,), we see D'>D, and D'>D, from the proof of Prop. 46.
Therefore D’ contains J(D,, D,), and hence £(D’)=J(&(D,), &(D,)) contains
£J(D,, D,)). This means L(J(D,, D,))=J(L(D,), &(D,)). Similarly we see
LUI(D,, D,))=1(%(D,), &(D,)) but we omit the detail. q.e.d.

Let G be a group scheme over k and let M be a Lie subalgebra of £(G).
Then we say that M is algebraic if M is equal to 2(H) for a group subscheme H
of G. For an arbitrary M there exists the smallest algebraic Lie subalgebra /(M)
of £(G) containing M by Prop. 46 and 5. We call &(M) the algebraic hull of
M. The following proposition is a direct consequence of Th. 2, Prop. 10 and
Prop. 47.

ProrosITION 48. If M, and M, are algebraic Lie subalgebras of the
Lie algebra £(G) attached to a group scheme G over k, so are J(M,, M,) and
I(Mls MZ)‘
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Now let V be a vector space of dimension n over k and let ¢ be a rational
representation of G to GLy=(GL,, id(t;;, v;))) where {v;} is a basis for V over k.
Then we have the following

LemmA 26. If p and ¢, are the canonical representation of H(GL,) to
M, (k) with respect to {t;;} and the tangential homomorphism attached to ¢
respectively, then poylg) is a Lie algebra homomorphism of £(G) to M,(k).
In particular plgL,) gives an isomorphism between &(GL,) and M,(k) as Lie
algebras over k.

ProOF. Since it is easy to see that ¢,|q ) is a Lie algebra homomorphism
of £(G) to £(GL,), it suffices to show that p|gy,) is an isomorphism between
L2(GL,) and M,(k). If we put s;;=t;;—9;; for 1<i, j<n, {s;;} is a regular system
of parameters of the stalk of GL, at the neutral point. Then if {/, .., la;;=0}
is the canonical basis for $(GL,) over k with respect to {s,;,..., S,,}, We see easily
that {/,, .48+ +a,,=1} is a basis for £(GL,) over k. Since we have
<lo.-05 000> Suw> =040, p maps £(GL,) onto M,(k). From dim, £(GL,)
=dimy M,(k)=n2, plgL, gives an isomorphism between £(GL,) and M,(k).

q.e.d.

PropoSITION 49. Let V, G, GLy=(GL,, id(t;;, v;)), ¢ and p be as above,
and consider V as an &(G)-module by pd,. Then the following conditions on
a vector subspace W of V are equivalent:

(i) Wis a G(k)-submodule of V.
(ii) Wis an &(G)-submodule of V.
(iii) W is an H(G)-submodule of V.

Proor. (i)«>(iii). Since G is reduced, we saw already this in Cor. to Prop.

15.
(iii)<>(ii). Since $H(G) is generated by k@ L(G) as an algebra over k, W is an
$(G)-submodule of Vif and only if it is an L(G)-submodule of V. q.e.d.

Next we want to show some corresponding results on Lie subalgebras of (G)
to those on Hopf subalgebras of $H(G) obtained in §§7,8 and 9. For this purpose
we need the following lemmas.

LemMmA 27. Let H(G)=(B, m, i, 4, ¢, ¢) be the Hopf algebra attached to
a group scheme G over k. Let U and W be subspaces of B satisfying UoW.
Then if D is a Hopf subalgebra of B, the followings are equivalent:
0) (Zx‘,)x(l,yc(x(z)) with A(x)= (Zx:)x(,)®x(2) is in W for any x in D°=D n(Kereg)
and y in U.
(i) xy—yx isin W for any x in (D) and y in U.
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ProoOF. (i)=(ii). Since we have 4(x)=x®1+1®x and ¢(x)=—x for x
in (D), we see that xy —yx= Y x(1,yc(x(2)) is in Wfor x in (D) and y in U.
(ii))=>(i). If x is in £(D), we hg\)'e xy—yx= Y X(1,ye(x(2)) for any y in B as seen
in the above. Therefore we have Y x(l)yc&)m)e W for any x in £(D) and y
in U. Let x and x’ be in D°(x;md assume that Z xyUe(xz) =W and
Z)x(l)Uc(xm)cW Then we see (Z ) (xx")1y Ue ((x(x )2y =W with 4(xx")

Z (xx")(1)®(xx")(2). In fact let ¢, be the k-linear map of B®, B to B given
in (tﬁ‘e)beginning of §7. In the same way as the proof of Lemma 18 we see
¢p(m®15)=5(13@¢p), and hence we have dp(xx'Qy)=Pp(x@P5(x'®y)) for y
in B. In particular if y is in U, we see ¢g(xx'®y)= (Z )(xx Yayye((xx")z) e W

by our assumption. Since £(D) generates D° as a k-algebra by Th. 3 in [9], we
see that the assertion (i) is true if (ii) is so. g.e.d.

LemMMA 28. Let G, B, D, U and W be as above and assume that U is a
Hopf subalgebra of B. Moreover putting W°=W n (kere), assume that W°U
and UW?® are contained in W. Then the followings are equivalent:

() X xayye(xa)) with A(xX)= ¥ x1,®X 3y is in W for any x in D°=D n (kere)
(x) (x)

and y in'U.

(i) xy—yxisin W for any x in &(D) and y in (U).

ProOF. (i)=>(ii). This is a direct consequence of Lemma 27.
(i))=(i). Let x be in £(D), and let y and z be in U. Then we see xyz—yzx
=(xy—yx)z+ y(xz—zx). If xy—yx and xz—zx are in W, then they are in W°
as seen easily. Therefore we see that x(yz)—(yz)x is in W by our assumption.
Since U° is generated by Q(U) as a k-algebra, xy — yx is in W for any x in £(D)
and any y in U° from the assertion (ii). On the other hand if y is in i(k), we have
xy—yx=0. Therefore we see xy—yx— W for any x in (D) and any y in U
=i(k)®U°®, and hence the assertion follows from Lemma 27. q.e.d.

LEMMA 29. Let G, B, U and W be as in Lemma 27. Then there exists
a connected group subscheme H of G satisfying the followings:
(i) xy—yxisin W for any x in &(H) and any y in U.
(ii) If M is any Lie subalgebra of 2(G)=S(B) such that xy—yx is in W for
any x in M and any y in U, then M-is a Lie subalgebra of 2(H).

PrOOF. Put H=Tr,q(U, W). Then this is a direct consequence of Th. 6,
Prop. 46 and Lemma 27. q.e.d.

Let L be a Lie algebra over k, and let M, and M, be Lie subalgebras of L.
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Then we say that M, normalizes (resp. centralizes) M,, if we have [x, yle M,
(resp. [x, y]=0) for any x in M, and y in M,. If we put N, (M,)={xeL|
[x, yJe M, for'any y in M,}, we see easily from the Jocobi identity for the Lie
product of L that N, (M,) is the largest Lie subalgebra of L normalizing M,.
We call N;(M,) the normalizer of M, in L. If we have L=N,(M,), we say that
M, is normal in L.'® Similarly if we put C,(M,)={xeL|[x, y]=0 for any
y in M,}, we see that C,;(M,) is the largest Lie subalgebra of L centralizing M.
We call C,(M,) the centralizer of M, in L.

ProposiTION 50. Let G be a group scheme over k, and let D and E be
Hopf subalgebras of the Hopf algebra $(G) attached to G. Then D normalizes
(resp. centralizes) E if and only if &(D) normalizes (resp. centralizes) L(E).
In particular we have £(NgGy(E))=Ng(£(E)) and L(Cgygy(E))=Cgg)(L(E)).

Proor. If we put U=W=E in Lemma 28, we see easily that &(D)c
Ny y(2(E)) if and only if D= Nggy(E). Similarly if we put U=E and W=0,
we see that £(D) <= Cqy)(L(E)) if and only if D<= Cyg)(E) by Prop. 28, (ii)’. The
last assertion follows easily from the above. q.e.d.

COROLLARY. Let K be a connected group subscheme of a group scheme G
over k. Then Ng(L(K)) and Cy)(£(K)) are algebraic.

This is a direct consequence of Prop. 25, Prop. 35 and Prop. 50.

Similarly we can give the results on Lie subalgebras of the Lie algebra £(G)
attached to a group scheme G over k corresponding to Cor. 2 to Prop. 25, Prop.
26, Prop. 27, Cor. to Prop. 27, Cor2 to Prop. 35, and Prop. 36 by replacing
Hopf subalgebras with Lie subalgebras, but we omit the detail.

Next we shall give some results on commutators of Lie subalgebras of 2(G)
corresponding to §9.

LemMA 30. Let M, and M, be Lie subalgebras of a Lie algebra L over k
such that M, =N (M,) and M, =N (M,). Then the subspace M of L generated
by [x, y] for x in M, and y in M, is a Lie subalgebra of L.

Proor. Since we have M, =N, (M,)and M,<=N,(M,),wesee Mc M, N M,.
Therefore [x, y] is contained in M for any x and y in M, and hence M is a
Lie subalgebra of L. q.e.d.

In the following we denote by [V}, V,] the subspace of a Lie algebra L over
k generated by [x, y] for x in a subspace V; and y in another one V,. "We call

10) In the theoty of Lie algebras a normal Lie subalgebra of a Lie algebra L'is called an
ideal of L.
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[Vi, V,] the commutator of V, and V,.

PROPOSITION 51. Let D be a normal Hopf subalgebra of the Hopf algebra
B=$%(G) attached to a group scheme G over k. Then the sequence

0 — £(D) iz, §(B) 22", 9(B/D) —> 0

of Lie algebras is exact. In particular we have £(D)=L(B) n BD°, where D°
is the kernel of the coidentity of D.

Proor. Since the characteristic of k is zero, the proof of Prop. 14.11 shows
2(B)n BD°=2(D). Since k@L(B) generates B as a k-algebra, pp.(k@®L(B))
=k@® pp(L(B)) generates B/D and pp4(Q(B))is a Lie subalgebra of 2(D/B). This
means, by Th. 3 in [9], pp«(2(B))=2L(B/D), and our assertion is true as easily
seen. q.e.d.

PROPOSITION 52. Let M, and M, be Lie subalgebras of the Lie algebra
2(G) attached to a group scheme G over k. Then if M, is normal in 2(G),
there exists the largest Lie subalgebra M of £(G) such that M cNg(M,) and
[M, M ,]J=M,. Moreover M is algebraic.

Proor. If D, and D, are the Hopf subalgebras of $(G)=B such that £(D,)
=M, and £(D,)=M,, we put H=Tr,y(D,, BD; nD;). Then by Lemma 28
and Th. 6 we see [2(H), &(D,)]1=[L2(H), M,]=BD3nD,. Since £(G) contains
[L(H), £(D,)], we see [&(H), M,]=M, by Prop. 51, and also [Q(H), M,]cM,
from &(G)nD,=L(D,)=M,. Conversely if M is any Lie subalgebra of £(G)
satisfying M =Ny (M,) and [M, M,]=M,, let D be the Hopf subalgebra of
B=$%(G) such that &D)=M. Then since we have [M, M,]JeM,cD, and
[M, M,]JeM,c=BD3, we see from Lemma 28 and Th. 6 D= $(H). Therefore
we see M =2(D)< (H(H))=L(H). q.e.d.

COROLLARY. Let G, M, and M, be as above. Then if a Lie subalgebra
M of L(G) satisfies [M, M\]=M, and M <Ngy(M,), so does the algebraic
hull /(M) of M.

THEOREM 9. Let H and K be connected group subschemes of a group
scheme G over k such that H normalizes K and that K normalizes H. Then we
have £([H, K])=[2(H), &(K)].

Proor. By Cor. 2 to Prop. 25 and Prop. 50 we see £(H)<Ng)(2(K))
and £(K)<Ngy)(L(H)), and hence [&(H), £(K)] is a Lie subalgebra of £(G)
by Lemma 30. On the other hand we have $(J(H, K))=J(H(H), H(K)) by
Th. 2. Replacing G with J(H, K), we may assume that H and K are normal in
G. Then we see easily from the Jacobi identity for the Lie product of £(G) that
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[£(H), £(K)] is normal in £(G). Let F be the Hopf subalgebra of B=$H(G)
satisfying Q(F)=[£2(H), £(K)] and put E=$(K). Then if we put H, =Tr,,(E,
BF°NE), we see L(H,)>L(H) from the proof of Prop. 52, and hence $H(H,)
D $H(H). This means [H(H), E]=[9H(H), H(K)]=F from the proof of Prop. 45.
Therefore we see L([H(H), H(K)]) = L(F)=[L(H), K)]. Now if Vg, is the
k-linear map of H(G)®, H(G) to H(G) given in the beginning of §9, we see easily
Vo (X®y)=xy—yx=[x, y] for x and y in £(G). Therefore we see L[H(H),
H(K)])=>[L(H), &(K)] from the definition of the commutator of H(H) and H(K).
Since we have H([H, K])=[H(H), H(K)] by Th. 7, we see [&(H), &(K)]=L([H,
K. q.e.d.

THEOREM 10. Let M, and M, be Lie subalgebras of the Lie algebra £(G)
attached to a group scheme G over k satisfying M, cNg(M,) and M,c
NS!(G)(MI)- Then we have [M, M,]=o/([M, M,])=[(M,), o/ (M,)].

The proof of this theorem can be given in an exactly similar way to that of
Th. 8 using Cor. to Prop. 52, Th. 9 and Prop. 48 instead of Cor. to Prop. 45,
Th. 7 and Th. 2, but we omit the detail.

COROLLARY. Let G and &(G) be as above. Then we have the followings:
(i) If M is any Lie subalgebra of 2(G), [M, M] is equal to [&/(M), «(M)]
= ([M, M]).
(i) If M, and M, are normal Lie subalgebras of &(G), [M,, M,] is equal to
(M, M;])=[~(M,), #(M;)].
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