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It is known that some roles played by Lie algebras attached to algebraic
groups over a field of characteristic zero are played instead by Hopf algebras
attached to them in the case of positive characteristic. This is essentially due to
the fact that the enveloping algebra of the Lie algebra attached to an algebraic
group over a field of positive characteristic is a proper subalgebra of the Hopf
algebra attached to it in contrast to the case of characteristic zero, where the
Hopf algebra attached to an algebraic group coincides with the enveloping algebra
of the Lie algebra attached to it. Hence there arises a motivation to study Hopf
algebras attached to group schemes over a field of arbitrary characteristic. In
other words if we want to develop an infinitesimal theory of group schemes over a
field of arbitrary characteristic, it would be natural to treat rather Hopf algebras
than Lie algebras.

The purpose of this paper is to give a theory of Hopf algebras attached to
group schemes over an algebraically closed field of arbitrary characteristic, which
corresponds to the theory of Lie algebras attached to algebraic groups over a
field of characteristic zero developed by C. Chevalley and A. Borel in their books
[2] and [1] respectively. In particular we shall show some interesting results on
algebraic Hopf subalgebras in connection with adjoint representations of group
schemes. Although there are some results on this subject obtained already by
J. Dieudonne and M. Takeuchi in their papers [3] and [11] respectively, it seems
to the author that their results do not cover the whole which would correspond
to the results on Lie algebras in characteristic zero case. For example there is
no result on joins of connected group subschemes which are not necessarily

reduced.
In § 1 we recall the definition and some properties of group schemes, and then

we define Hopf algebras attached to group schemes and other notions necessary
in the later sections. The notion and basic properties of /i-inverses of Hopf
subalgebras by a Hopf algebra homomorphism will be given in § 2. We shall
show some basic results on algebraic Hopf subalgebras in § 3. In particular we

define the algebraic hull of a Hopf subalgebra of the Hopf algebra attached to

1) This work was completed during the period when the author stayed at Geneva by a

financial support of Consiglίo Nazionale delle Ricerche in Italy.
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a group scheme corresponding to the algebraic hull of a Lie subalgebra in the case

of characteristic zero. In § 4 we show the existence of the join and the intersec-
tion of connected group subschemes, and we show that the join and the intersec-
tion of algebraic Hopf subalgebras are also algebraic. A theory of rational

representations of group schemes in a vector space is developed in terms of Hopf

algebras in § 5. Next we shall show a useful result on adjoint representations of

group schemes in § 6 which plays very important roles in the following sections.

§ 7 is concerned in normalizers of Hopf subalgebras, formal subgroups and group
subschemes. In particular we shall show that the normalizer of any Hopf sub-

algebra of the Hopf algebra attached to a group scheme is algebraic. Similarly

we shall show results on centralizers of them in § 8. We study commutators of
Hopf subalgebras, formal subgroups and group subschemes in § 9. Furthermore

the existence of commutators of connected but not necessarily reduced group
subschemes is shown. In the last section we shall show how to get most results

on algebraic Lie subalgebras of Lie algebras attached to algebraic groups over a
field of characteristic zero from the results on algebraic Hopf subalgebras given
in the preceding sections, and some new results on algebraic Lie subalgebras will
be shown.

Mostly we follow the terminology and the notations from [5] and [7] on

scheme theory, from [6] on commutative algebras and from [10] on Hopf algebras.

§1. Preliminaries

Let k be an algebraically closed field of an arbitrary characteristic. In the
following we assume that an algebraic scheme X over k means always a scheme

of finite type over /c, and we denote by πx the structure rnorphism of X to Spec(/c).
Moreover morphisms and fiber products of algebraic schemes over k are always
assumed to be /c-morphisms and products over k respectively, and we denote
by \x the identity morphism of X. An algebraic scheme G over k is called a

group scheme over k if the following conditions are satisfied: (i) There exists

a morphism μ of G x G to G such that μ(lGxμ) = μ(μx 1G). (ii) There exist a
morphism y of G to itself and a morphism ε of Spec(/c) to G such that the com-

positions μ(!G

χy)^G and μ(γxlG)AG are equal to επG, where ΔG is the diagonal
morphism of G. (ii) Identifying Spec(fe) x G and G x Spec(/c) with G canonically,
the compositions μ(εxlG) and μ(lGxε) are both equal to 1G. The morphisms

μ, ε and y are called the multiplication, the identity morphism and the inverse
morphism of G respectively, and the image e of ε in G is called the neutral point
ofG.

If X and Y are algebraic schemes over /c, we denote by Mor (X, 7) the set of
morphisms of X to 7. Then if (G, μ, ε, y) is a group scheme over fe, it can be seen

easily that Moτ(X, G) is a group under the composition /*#=μ(/x0)4Λ: for/
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and g in Mor (X, G). In particular if we identify the set G(k) of the closed points

of G with Mor (Spec (/c), G), G(/c) has a group structure such that the neutral

element of G(/c) is e and that μ(x, y) = χ*y for x and y in G(/c). Let (G, μ, ε, 7)

and (G', μ', ε', y') be group schemes over k and let / be a morphism of G to G'.

If/satisfies/μ = μ'(/x/), we say that/is α homomorphism of G to G'. Then

/ satisfies necessarily fy = y'f and /ε = ε' as seen easily. If x is a closed point of

a group scheme (G, μ, ε, y) over /c, we denote by Lx the morphism (xπG)*lG

= μ(xπGx 1G)^G

 and call it the left translation of G by x. Similarly we define
the right translation Rx by !G*(xπG) = μ(lGxxπG)JG.

We say that a closed subscheme H of a group scheme (G, μ, ε, 7) over k is

a group subscheme of G if μ\H>ίH and γ\H decompose through H. It is easy to see

that the neutral point e of G is contained in H and (H, μ\HχH9 ε, y\H) is a group

scheme over k. Moreover the canonical injection iH of H into G is a homomor-

phism. Now denoting by p t the projections of G x G to its ί-th factor for / = 1, 2,

let S be the morphism of G x G to G x G such that Pι$=p2 and p2S=Pι We
say simply S is /Λe exchange of the factors ofGxG. We put

φG = μ(μ x 1G)(1G x 1G x y)(lG x S)(AG x 1G)

and a group subscheme H of G is called normal in G if φG\G x H decomposes through

H. Then we have the following

PROPOSITION 1. Let H be a closed subscheme of a group scheme (G, μ,

ε, γ) over k. Then H is a group (resp. a normal group) subscheme ofG if and only

ifMor(X, H) is a subgroup (resp. a normal subgroup) 0/Mor(X, G) for any

algebraic scheme X over k.

This is well known and hence we omit the proof. If (e, k) is the closed

subscheme of G with the base space e isomorphic to Spec (fe), (e, k) is a normal

group subscheme of G which we call the neutral group subscheme of G. It is

also known that any connected component of a group scheme G over k is irreduci-

ble. In particular the connected component G0 of G containing e is a normal

group subscheme of G.
Let (G, μ, ε, y) be a group scheme over /c, and let 0 and Θ' be the stalks of

G and G x G at e and e x e respectively. Then μ and y give naturally local homo-

morphisms μ* and y* of Θ to 0' and Θ respectively. Then the next theorem

plays an essential role in the following sections.

THEOREM 1. Let (G, μ, ε, y), 0, 0', μ* and y* fee as above. Then there is a

one to one correspondence between the set of connected group subschemes H of

G and that of ideals a of Θ satisfying μ*(a)c(a®0 + 0®a)0' and y*(a) = a. //

H corresponds to a in this way, the stalk of H at e is 0/a.
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This is Lemma 2 in [15]. We call the ideal α corresponding to H the de-

fining ideal of H in Θ. Now let m be the maximal ideal of 0, and let φ and Θ' be

the m-adic and (0®m + m(χ)0)0'-adic completions of Θ and Θ' respectively. If λ

and σ are the natural continuous extensions of μ* and y* from φ to Θ' and Φ

respectively, (0, A, ̂ , σ) is a formal group over k in the sense of §5 in [13],

where η is the canonical homomorphism of Φ to 0/m = fc. We call this formal

group theformalization of the group scheme G. Then the set §(G) of continuous

/c-linear maps of Θ with the m-adic topology to k with the discrete topology may

be identified with the set §(0) of continuous /c-linear maps of Φ with the mφ-

adic topology to k with the discrete topology. As seen in § 5 in [13] §(G) = §(0)

has a structure of a Hopf algebra over k whose algebra structure (§(G), m, ϊ)

comes from the homomorphisms λ and η. The coalgebra structure (§(G), J, ε)

is the dual of the algebra structure of Φ and the antipode c of §(G) is the dual

of σ. If H is a connected group subscheme of G with the defining ideal α in Φ,

the Hopf algebra ξ>(H) attached to H may be identified with the Hopf subalgebra

of §(G) consisting of the elements x in §(G) such that x annihilates α. Then we

see easily in a similar argument to the proof of Prop. 4 in [13] that the set of

connected group subschemes of G corresponds injectively to a subset of Hopf
subalgebras of §(G). We understand by an algebraic Hopf subalgebra of

§(G) a Hopf subalgebra corresponding to a connected group subscheme of G
in this way.2)

Let (A, m) be a noetherian local ring containing the residue field k = A/m,

and let (A'9 m') be the quotient ring of A®kA with respect to the maximal ideal

m®A + A®\n. We denote by a A and A! the m-adic and m'-adic completions of

A and A' respectively, and we assume that there are a local homomorphism λ

of A to A' and an automorphism σ of A such that (A, I, ή, σ) is a formal group

over fc, where I, σ and ή are the continuous extensions of λ, σ and the canonical

map η: A-+k = Ajm to the completions. Then we say that A has a quasi-bigebra

structure (λ, η, σ) over k. In particular if the image λ(A) of λ is contained in
A' ciy4', we say that A has Λ strict quasi-bigebra structure (λ, η, σ) over k.

§2. h-ίnverses by Hopf algebra homomoprhisms

In the following we understand by a Hopf algebra (£, m, i, J, ε, c) a Hopf

algebra 5 over k with an antipode c whose algebra and coalgebra structures are
given by (B, m, f) and (J5, Λ, ε) respectively. A Hopf algebra (£, m, ί, Λ, ε, c)
is called colocal3) if (£, J, ε) is cocommutative and has only one minimal sub-

2) In [14] and [15] we called such a Hopf subalgebra algebraic in wider sense.

3) In [10] a colocal coalgebra is called irreducible.
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coalgebra. Then the unique minimal subcoalgebra of B is i(k) and /(I) is the

unique grouplike element of B which we denote by 1. A colocal Hopf algebra
B is called of finite type if the space £(£) of primitive elements in B is finite di-
mensional. It is well known that the dual space B* of a colocal Hopf algebra B
of finite type over k is a formal group over k whose Hopf algebra §>(B*) is canoni-
cally isomorphic to B as Hopf algebras. Conversely if A is a formal group over
k9 the Hopf algebra ξ>(A) attached to A is a colocal Hopf algebra of finite type over
k and the dual space ξ>(A)* of ξ>(A) is isomorphic to A as formal groups over k.
Thus there is a one to one correspondence between the set of isomorphism classes
of colocal Hopf algebras of finite type over k and that of formal groups over k.

Let (B9 m, i, A, ε, c) be a colocal Hopf algebra of finite type over /c, and let
(A, λ, η9 σ) be its dual formal group over k. Then B has an A-module structure

as follows: if a and x are in A and B respectively such that A(x) = Σ *(i)®*(2)>
(x)

we put α x= Σ <x<2)» a>x(l}9 where we denote by <x9 a> the image of x
(*)

in fe by the linear map a. It is easy to see that this composition gives an A-
module structure of B and that a subspace C ofB is a subcoalgebra ofB if and only

if C is an A-submodule of B. (cf. C.3 in [12], pp. 177-178).

Now we want to give the definition of Λ-inverses by Hopf algebra homomor-
phisms which are generalizations of h-kernels. For this purpose we need the fol-

lowing

PROPOSITION 2. Let (B9 m, ί, A, ε, c) and (B'9 m', Γ, A', ε'9 c') be colocal
Hopf algebras over k. Let f be a Hopf algebra homomorphism of B to B' and
D' a Hopfsubalgebra ofB'. Then there exists a Hopfsubalgebra D ofB satisfy-
ing the following conditions:
(f) /(D) is contained in D'.
(iί) //D! is a subcoalgebra ofB such that f(Dί)c:Dt

9 then Dl is contained in
D.

PROOF. Put D = {xεB\(lB®f)A(x)-x®\ eB®kD'°}9 where D'° is the ker-

nel of the linear map &'\D.. Since/and A are fc-algebra homomorphisms, it is easy
to see that D is a subalgebra of B. To see that D is a subcoalgebra of B9 it is

sufficient to show that D is an A-submodule of B9 where A — B* is the dual algebra

of the coalgebra B. If A' is the dual algebra B'* of B'9 B®kB' is an A®kA'-
module defined by (a®a') (x®x') = a'X®a' x' for a in A9 a' in A'9 x in B and
x' in B'. Since ε' is the unit of the algebra A'9 we see

(a ® ε') (1B ® f)A(x) = (a ® ε') ( Σ xw ® M2)))
(x)

(x)

= (\B®f)Δ(a x)
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for a in A and x in B by the cocommutativity of B and the equality Δ(a-x) =

Σ *(i)®(« *(2)) (cf P. 177 in [12]), where Δ(x)= Σ *(n®*<2) Therefore if
(x) (χ)

x is in D, we have

(lB®/)J(α x) - α x ® 1 = (a®ε') {(lB®f)A(x) - x® 1}

e (α ® ε') (B ® k D'°) c £ ® k D'°.

This means that a - x is contained in D if x is in D, and hence D is a subcoalgebra

of B. Moreover we see

(*) (IB ®/)Λφc) = (IB ®/)(c ® c)J(x) = (c ® c')(lB ®f)A(x)

for any x in £. Since we have c'(D'°)c/)/0, we see c(D)cD by (*) and c(l) = l.
Therefore D is a Hopf subalgebra of B. Now let x be an element in D. Then we
see, by the definition of D, (f®f)A(x)-f(x)®l eB'®D'°, and hence, using the

equality ( f ® f ) A = Δ'f, Λ'(/(x))-/(x)®l eB' xD'°. Then we have l®/(x)
-ε'(/(x))®le/c®D/0. This means that /(x) is contained in D', and therefore

we see /(D)cZ)'. Finally let Dl be a subcoalgebra of B such that /(DJcD':,
and let x be an element of D°l9 where D\ is the intersection 5° n D^. Then we see
Λ(x)-x®l-l®xe£>ϊ®Dί (cf. p. 181-182 in [12]) and hence (
-x®lεDl®D'°c:B®D'0, because we have /(x)e/(D;)cD'° from

Therefore we have DJ cD by the definition of D and also Dl=^k@D\^D identify-

ing i(k) with fc. q.e.d.

Let B, B', D' and / be as above. Then the Hopf subalgebra D obtained in

Prop. 2 is called the h-inverse of D' by f and is denoted by h-f~1(Df). In par-

ticular if D' is the smallest coalgebra Γ(fe) = 5Ό which is also a Hopf subalgebra of
B', h-f~l(BΌ) is called the h-kernel of f ana is denoted by /ι-ker/.

Let (Al9 λί9 ηl9 σj and (A2, λ2, η2, σ2) be formal groups over k with the
maximal ideals n^ and m2 respectively. Then a local homomorphism φ of Al

to >42 is called a formal group homomorphism if the diagram

(**)

is commutative, where ^J is the (m^^ + ̂ ^m^-adic completion of

and φ®φ is the continuous extension of φ®φ: Aί®A1->A2®A2.

LEMMA!. Let (Aίy A l 5 . ηί9 σj and (A2» ^2* ^2» ^2) ^ ΛS above, and let
(BJ9 mj9 ij9 AJ9 εj9 Cj) be the Hopf algebra ξ>(Aj) for ; = 1, 2. Lei 0 be a /oca/
homomorphism ofAl to A2 and φ* the transpose ofφ. Then we have the follow-
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ings :
(0 φ is a formal group homomorphism if and only if <?* = φ*|β2 is a bigebra
homomorphism of B2 to B^.
(ii) If φ is a formal group homomorphism, we have η\—ιl2φ

 and φσ\=σ2φ.

PROOF. Since Ά'j is the dual algebra of the coalgebra BjφBj for 7=1, 2,

we see easily that $*®$* is the restriction of the transpose of φ®φ to B2®B2.
Therefore if φ is a formal group homomorphism, we have mx(^*®^*)= $*w2

from (**) and nij = λJ\Bj(^Bj for 7=1,2. On the other hand since we see η^=η2φ
by the definitions of ηί and η2, we have i1 — φ*i2. This means that φ* is an
algebra homomorphism of B2 to B^. Similarly we see that <?* is a coalgebra
homomorphism, because φ is a local homomorphism of Λί to Λ2. A similar argu-
ment shows the converse. Now assume that φ is a formal group homomorphism.
Then since $* is a bigebra homomorphism as seen in the above, we have $*σf
= σf φ* as seen easily. This means σ2φ = φσί. q.e.d.

PROPOSITION 3. Let A^ and A2 be formal groups over /c, and let φ be a
formal group homomorphism of Al to A2. Let Al/aί and A2/a2 be formal sub-
groups of Aί and A2 respectively. Then we have the following s:
(/) Aί/φ~l(a2) is a formal subgroup of Aλ. If D2 is the Hopf subalgebra of
ξ>(A2) corresponding to A2/a2, A1/φ~l(a2) corresponds to the Hopf subalgebra

(ii) A2/φ(aί)A2 is a formal subgroup of A2. If Dί is the Hopf subalgebra of
corresponding to Al/aί, A2/φ(al)A2 corresponds to the h-inverse h-

PROOF, (i) If a is any element in Al9 we have the following: " aeφ~l(a2)
oφ(a)ea2o<x9 φ(a)> = 0 for any x in D2o<φ*(x), a> = 0 for any x in

D2oa e (0*(/)2))
1» where Vλ means the null space in A l of Fin §04 j) with respect

to the inner product < , > ofξ>(Aι) and AΛ. This means that φ""1(α2) is the null
space (φ*(D2))λ of φ*(D2) in A^ Then φ*(D2) is a Hopf subalgebra of f^Q
and Ai/φ~1(a2) is the formal subgroup of Ά± corresponding to φ*(D2).
(ii) From the commutative diagram (**) we see easily that λ2(φ(a1)A2) is con-
tained in (φ(al)A2®A2 + A2®φ(aί)A2)Ά'2. Moreover since φσί = σ2φ by

Lemma 1, (ii), we see σ2(φ(cι1)A2) = φ(σί(aί))A2c:φ(a1)A2t Therefore we see
easily from the definition that A2/φ(al)A2 is a formal subgroup of A2. Denote
by D' the Hopf subalgebra of ξ>(A2) corresponding to the formal subgroup A2/
φ(aί)A2. If x is any element of £)', we see <φ*(x), α t > = <x, φ(al)> c <χ9

φ(a1)A2 > = {0}. This means φ*(D')cD1. Moreover let D" be any subcoalgebra
of §G42) such that φ^D'^cD^ Let x be any element of D" and put A2(x) =

Σ χ(i)®x(2)> where A2 is the comultiplication of §C42), and x(1) and x(2) are in
(x)
D". Let aΐ and a2 be any elements of A1 and A2 respectively. Then we see
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<x, φ(al)a2> = <Δ2(x\ φ(al) ®a2>= Σ <x (i), Φ
(x)

=0,

because φ*(D") is contained in Dλ. This means D"c:D/ = (φ(al)A2)
±. Therefore

D' is the ft-inverse of Dl by $* from Prop. 2. q.e.d.

COROLLARY. Let Aί9 A29 φ and φ* be as in Prop. 3. Then the image
φ*(ξ>(A2)) in S)(A^) corresponds to the formal subgroup A1/φ~l(0) of A1 and the

h-kernel of $* corresponds to the formal subgroup A2/φ(mί)A2 of A29 where mi

is the maximal ideal of A±.

Let Aί9 A29 o l 5 α2 and φ be as in Prop. 3. Then the formal subgroup
Aίlφ~l(a2) of Aί is called the image of the formal subgroup A2/a2 of A2 by φ,
and the formal subgroup A2/φ(a1)A2 ofA2 is called the inverse imageof the formal
subgroup Aί/aί of Aί by φ. In particular Aί/φ~1(G) and A2/φ(mί)A2 are called

the image and the kernel of the formal group homomorphism φ respectively,
where rrij is the maximal ideal of AΛ.

§3. Algebraic Hopf subalgebras

First we need the following elementary lemma.

LEMMA 2. Let Vbe a vector space over fe, and let U, W and T be subspaces
of V such that W^T. Then we have

(w® κ+ 7® Γ) n (u ® [/) = (I/ n w) ® u + u ® (u n T).

PROOF. Let {x^σeS^ be a basis for T n U over k, and let {xτ |τeS2}

and {xλ\λεS3} be subsets of T and W n £/ such that {xσ} U {xτ} and {xσ} ϋ {XA}
are bases for Γand W (]U over /c respectively. Then {xσ} U {xj U {xλ} is a linearly
independent subset of MKover fc and hence there is a subset {xv|v e 54} of W^ such

that {xσ} U {xτ} U {xλ} U {xv} is a basis for FFover fc. Similarly there exists a sub-
set {xμ\μ E S5} of U such that {xσ} U {xλ} U {xμ} is a basis for U over fc. Then we
see as above that {xσ} u {xλ} U {xμ} U {xτ} U {xv} is a linearly independent subset
of V over k and hence there exists a subset {xπ|πeS6} of Fsuch that {xσ} U {xλ}
U {xμ} U {xj U {xv} U {xπ} is a basis for V over k. If y is an element of W® V
4- K® T, we can express y uniquely as follows:

y = Σ' *ςnXξ®yη> α^e/c and aξη = 0 for almost all (ξ, η),
(ί*1/)

where Σ' runs over all (ξ, η) which are contained in S fxSy for 1<Γ<4 and
1 < j < 6 or for 1 < i < 6 and 1 < j < 2. Similarly if y is in U® U, we can express



Some Results on Hopf Algebras Attached to Group Schemes 525

y uniquely as follows:

y= Σ"ta®J> βξnek and βξη = 0 for almost all ( ξ , η ) ,
( < ? » * / )

where Σ" runs over all (ξ, η) which are contained in S,xSy for /,; = !, 3, 5.
Therefore if y belongs to(W®V+V®T) Π -(£7® U\ we see

y = Σ'" ΎξηXξ ® yη> Ίtn 6 k and yξη = ° for almost all (ξ, 17) ,

where Σ'" Γuns over &U (£» */) which are contained in 5f x Sj for /= 1, 3 and j— 1,
3, 5 or for ί = 1, 3, 5 and 7 = 1. This means that the left hand side of our equality
is contained in the right hand side. The inverse inclusion is clear. q.e.d.

LEMMA 3. Let (A, m) be a local ring with a quasi-bigebra structure
over k. Then the canonical homomorphism φ of A®kA to the quotient ring

(A®kA)A®m+m®A is injective.

PROOF. If A is the m-adic completion of A, A is a formal group over k.
If the characteristic of k is zero, A is an integral domain as well known. In

particular A has no non-trivial zero-divisor and hence φ is injective. If the

characteristic of k is jp>0, A is isomorphic to the tensor product of a formal
power series ring and an artinian local ring of the form /c[T l5..., TΛ]/(TJ'Π,...,

TjJ*1) by Prop. 2 in [14]. Therefore we can see easily that the zero ideal of
Ά®kΆ is primary and the nilradical of A®kΆ is contained in A®mΆ + n\Ά®Ά.
Hence the zero ideal of A®kA is also primary and its nilradical n is contained in
(Ά®mΆ + mΆ®A)n(A®kA)9 which coincides with m®A+A®m by Lemma 2.
This means that A — (ιn®A + A®m) does not contain any zero-divisor of A®kA,

and hence φ is injective. q. e. d.

PROPOSITION 4. Let (A, m) be a local ring with a strict quasi-bigebra
structure (λ, η, σ) over k. Let A and Ά/a be the m-adic completion of A and a
formal subgroup of it respectively. Then if we put a=aΓ\A, we have λ(ά)a

ά)Af and σ(α) = α, where Af = (A®kA)m<S)A+A^m.

PROOF. Let (ί, ή, σ) be the quasi-bigebra structure of the formal group

A defined by (λ, η, σ) and let A! be the (m®A + A®m)A'-adic completion of A'.
By Lemma 3 we may consider A®kA, Ά®kΆ and A' as subrings of A'. By our

assumptions we have λ(A)c:A' and >[(α)c:(α®v4-h^®α)yϊ' and hence we see

λ(a)<^(a®Ά+Ά®a)Ά' [ \ A f . Therefore if x is an element of λ(a\ there is an
element s in A®kA — (m®A + A®m) such that sx is in A®kA. This means that

sx is in (a®Ά + Ά®a)Άf (}(A®kA) = (a®A + Ά®a)Ά' n(Ά®kA)n(A®kA)=(ά
®A + A®a)i}(A®kA), because ά®Ά + Ά®a is a primary ideal of Ά®kΆ con-

tained in mΆ® A + Ά®mΆ as seen easily in a similar way to the proof of Lemma
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3. But the right hand side of the above equality coincides with

by Lemma 2. Therefore sx is in α®4 + ̂ 4®α and hence x is in
On the other hand we see σ(α)c,4 n σ(a) = A n α = α and hence σ(α) = α. q.e.d.

PROPOSITION 5. Let (G, μ, ε, y) be α group scheme over k and §(G) the

Hopf algebra attached to G. I f D i s a Hopfsubalgebra 0/ §(G), there is the least

algebraic Hopf subalgebra C of §(G) such that

PROOF. Let ά be the ideal of the formalization A of G corresponding to
D, i. e., α is the null space D1 of D in A. If Θ is the stalk of G at e which we con-
sider as a subring of A, we put α = α Π 0 . Then by Prop. 4 α satisfies μ*(α)
c=(α(g)0 + 0®α)0' and y*(α) = α, because φ has the quasi-bigebra structure

(μ*, ε*, 7*). But this means by Th. 1 that there exists a unique connected group

subscheme H'of G having α as the defining ideal in Θ. We put C = £>(//). If
C is any algebraic Hopf subalgebra of §(G) containing D9 we denote by A] a'
the formal subgroup of A corresponding to C. Then we see αisδ'. Since C'
is algebraic, there exists an ideal α' of Θ such that a' = a'A. Then we see α'

= δ 'Π0, and hence α=α n 0=>α' n 0 = α'. If H' is the connected group sub-
scheme of G defined by α', we see H is a group subscheme of H', and hence C'

contains C. This means that C is the least algebraic Hopf subalgebra of £)(G)
containing D. q. e. d.

Let G, §(G) and D be as above, and let C be the unique least algebraic Hopf

subalgebra of §(G) containing D. Then C is called the algebraic hull of D in

§(G) and is denoted by jaf(D). D is algebraic if and only if D = jtf(D).

Let (Gj, μx, ε l5 y j and (G2, μ2, 62* ^2) ^e group schemes over k and let /
be a homomorphism of Gv to G2. Denoting by 0f the stalk of Gf at the neutral

point et of Gt for ί = l, 2, let/* be the comorphism of Θ2

 to #ι defined by/.
If ^4; is the formalization of Gt for i = 1, 2, we denote by /* the continuous exten-
sion of/* from A2to A^. It is easy to see that/* is a formal group homomor-
phism. Then there is a unique Hopf algebra homomorphism /* of §(y4j) =

§(Gi) to δ(^42)
:=δ(^2) suςh that/* is the transpose of /* by Lemma 1. We

say/* and/* to be the formal comorphism and f/ie tangential homomorphism
of /respectively.

LEMMA 4. Lei (R l9 mj and (R2, m2) fee noetherian local rings, and φ
a local homomorphism of R1 to R2. Denoting by Rt the mradic completion of
Rifor i=l, 2, let <β be the continuous extension of φ from R1 to R2. Then we
have the following s:

(i) J/α2 is an ideal of R2, φ~1(a2) is dense in $-l(a2R2).
(ii) I f a 1 is an ideal of R19 φ(a1)R2 is dense in ^α^JJR^.
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PROOF, (i) Since φ gives an injective local homomorphism φ' of Rί/
φ~1(α2) to R2/a2 naturally, we have a local homomorphism $' of the completion

Rί/φ~1(cί2) of Rl/φ~i(a2) to the completion R2/a2 °f #2/α2 Then it is easy to
see that $' is also injective. On the other hand we have Rι/φ~l(&2)
= Rί/φ-ί(a2)Rί and R2/a2 = R2/a2R2. This means Φ~1(a2R2) = φ~1(a2)Rί

and we see that φ"1^) *s dense in φ~1(a2R2).
(ii) This is a direct consequence of the fact that R2 is dense in R2. q. e. d.

PROPOSITION 6. Let Gl9 G2, $>(Gι), §(G2),/ and /* be as above. Let
D! and D2 be algebraic Hopf subalgebras of §(Gj) and §(G2) respectively.
Then the image f^D^ of D^ and the h-inverse h-f~^ί

l(D2) of D2 are algebraic.

PROOF. Let At be the formalization of Gf for i = 1, 2, and let/* be the for-
mal comorphism of/. If AJcii is the formal subgroup of -At corresponding to D;
for ι = l ,2, then f*(D±) (resp. h-f^l(D2)) corresponds to A2/f*~ί(a1) (resp.

v41//*(α2)/41) by Prop. 3. Now put α^αΊ Π 0^ and α2 = α 2 Π 0 2 denoting by
ΘI the stalk of G{ at the neutral point et for /=!, 2. Since D t and D2 are alge-
braic, we have alAi = άί and α2>!2 = α2. By Lemma 4 /*~1(α1) is dense in

/*-1(α1^1) and hence /""Hαi) is equal to f*-l(*ίAίyn&2=f*-ί(aί)n02

as easily seen. Moreover we have /*~1(ct1M2=/*~1(α1). Similarly we see

/*(α2)^1=/*(α2)/!1 n $! and (/*(δ2)^1)A1=/*(α2). Therefore we see by Prop.

4 and Th. 1 /*~1(αι) (resP /*(α2)^ι) ^s tne defining ideal of a group subscheme
of G2 in Φ2 (resp. of G t in ^j) whose formalization is A2//*~ i l(α1) (resp. Aί/
/*(α2)A1). This means that/^ίD^ and h-f^(D2) are algebraic. q.e.d.

COROLLARY. Let G1? G2, ^1? &2,f and f* be as above. Then if αf is the
defining ideal of a group subscheme of G£ in θt for ί = l, 2, f*(a2)ΰl (resp.

/*~1(αι)) ϊ's ίΊe defining ideal of a group subscheme of G^ in <9± (resp. of G2

in Θ2\

We shall terminate this section by giving the notions of direct images and

inverse images of group subschemes by a group homomorphism of a group scheme
to another, and we shall restate the above proposition and the corollary in terms

of them. For this purpose we need the next lemmas.

LEMMA 5. Let G15 G2 and f be as above. If x is a closed point of G,

we have fLx = L/(JC)/ and fRx = Rf(x)f.

LEMMA 6. Let Gί9 G2 and f be as above. Then the image of the base
space of a group subscheme of Gλ in G2 by f is a closed subset of G2.

These lemmas are well known and the proofs are not so difficult. Therefore

we omit them.
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PROPOSITION 7. Let Gl9 G2, Θ^ Θ2,f
 ana f* be as above, and let H±

be a group subscheme ofGί with the defining ideal al in Θγ. Then there exists

a unique group subscheme H2 of G2 such that the defining ideal of H2 in Θ2

is f*~ί(aί) and that we have f(H1) = H2 as sets. Moreover f\Hl decomposes

through H2.

PROOF. By Cor. to Prop. 6 and Th. 1 there is a unique connected group

subscheme ΛΓ2 of G2 with the defining ideal/*~1(α1) in Θ2. Let FP=Spec(C)
be any affine open subset of G2 containing e2 and let bc be the defining ideal of

the closed subscheme W n N2 of W. Then we see easily L*(bc&G2fa) = R%(bc&G2ίa)

=/*~l(αι) for any closed point a in W'Γ\N2 and bc^G2>f, = ̂ G2jb for any closed
point b in W— N2. On the other hand/(//j) is a closed subset of G2 which is equal
to N2 y Lβl(N2) Lαj(N2) as sets by Lemma 6. Then using Wand bc, we can see,

in the same way as the proof of Lemma 2 in [15], that there exists a coherent
sheaf c of the ideals of ΘG2 such that the closed subset of G2 defined by c is /(//j)
and that we have /*~1(α1)=ce2 = L*(cy) for any closed point y in/(//λ). Since

we have fRx = Rf(x)f and fLx = Lf(x)f for any closed point x of Gλ by Lemma 5,
we see R%f$=f*RJ(x) and L*/* =/*L^(JC), where /* is the comorphism of

0G2,/(»)"to 0Gl>, defined by /. Then we have ^^)/*"1(a1) = /rl^r1(a1)
=/ί~1L*~1(α1) = L^x

1

)/*~1(α1)=c/(JC) for any closed point x in Hi9 because we

have JRrl(α1) = Λί-ι(α1) = Lί-1(α1) = Lrl(α1) and /^(a^LJ^t^. This
means f*~ί(aί)=ce2 = R*(cy) for any closed point y in f(H J. The same argu-

ment as as the proof of Lemma 2 in [15] shows that H2 = (f(Hί), 0G2/
C) ^s a

group subscheme of G2 satisfying our condition. The uniqueness of H2 is clear.
Since L*~ί(aί) is the stalk of the coherent sheaf of the ideals of' 0Gl defining
Hi and we have f*~lL*~i(a1)=tf(x), it is clear that f \Hl decomposes through
H2. q.e.d.

PROPOSITION 8. Let G l 5 G2, 0l9 Θ2, f and /* be as above and let H2

be a group subscheme of G2 with the defining ideal α2 in Θ2. Then there exists
a unique group subscheme Hl of Gj such that the defining ideal of Hί in Θ±
isf*(a2)0ί and that f~1(H2) = Hi as sets. Moreover f\Hί decomposes through
H2.

PROOF. It is easy to see that/~1(//2) is a closed subset of G^ and that the
set of closed points of f~l(H2) is a group. On the other hand there exists a
unique connected group subscheme N1 of Gί with the defining ideal /*(α2)01

in Θγ by Cor. to Prop. 6 and Th. 1. Then f~l(H2) is a finite disjoint union
S ' ' .

WLjcXJVj) as seen easily, where xt is a closed point of f~l(H2) for each i. A
i=l

similar argument to the proof of Prop. 7 shows that there exists a unique group
subscheme H^ of Gx with the underlying space/~1(/ί2) and the connected com-
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ponent N t containing the neutral point e^. It is easy to see that H^ satisfies our
conditions. q.e.d.

Let G!, G2 and/be as above. If H^ is a group subscheme of G l 5 we call the
group subscheme H2 of G2 obtained in Prop. 7 the direct image of H^ by f. In
particular we call the direct image of Gί by f the image off. On the other hand if
H2 is a group subscheme of G2, we call the group subscheme Hί of.G t obtained
in Prop. 8 the inverse image of H2 by f. In particular we call the inverse image
of the trivial group subscheme (e2, Spec(/c)) by/ the kernel off.

PROPOSITION 9. Let Gl9 G2,/, Hl and H2 be as above. Then we have
the followings:

(/) The direct image of Ht by f is the smallest group subscheme H'2 of G2 such
that f\Hl decomposes through H'2. If D{ is the Hopf subalgebra of ^(G^
corresponding to H { , f % ( D ι ) is the Hopf subalgebra of $)(G2) corresponding to
the direct image of H^.
(ii) The inverse image of H2 by f is the largest group subscheme H\ of G{ such
that f\H\ decomposes through H2. If D2 is the Hopf subalgebra of §(G2)
corresponding to H2, h-f^.1(D2) is the Hopf subalgebra of §(Gj) correspond-
ing to the inverse image of H2.

PROOF. This is a direct consequence of Prop. 7, 8 and 3. q.e.d.

§ 4. Joins and intersections of group subschemes

First we assume that k is an algebraically closed field of a positive character-
istic p. Let X be an algebraic scheme over k and let x be a point of X. (If Ox

is the stalk of X at x, we denote by Fx the Frobenius endomorphism of Θx, i. e.,
Fx(a) = ap for any a in Θx. If we put kerFi = af, we have

(0) = i+1

Since Θx is noetherian, there is an integer N such that αrt = aN for any n > N. Then
we say that X has the exponent not larger than N at x and we denote this by
expxX<N. In other words we have expxX<N if and only if we have npN = 0,
where n is the nilradical of Θx. In particular if X is a group scheme G over k,
then the stalk of G at any closed point x is isomorphic to that of G at the neutral

point e of G. Hence we say that G has the exponent not larger than N if expβG

< AT, and then we denote this by exp G<N.

LEMMA 7. Let X and Y be algebraic schemes over k, and let f be a mor-
phism of X to Y such that the comorphism f* of the stalk Θf(x} of Y at f(x) to

the stalk Θx of X at x defined by f is an injection. Then if we have expxX<N,
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the inequality expy(JC) Y <N holds.

PROOF. If F and F' are the Frobenius endomorphisms of Θx and 0/(x)

respectively, we see easily f x F f l = Flf* for any />0. Therefore if we put αt

= kerFί and bf = kerF'' for any i>0, bf is equal tof*~1(aί) by our assumption on
/*. This means that we have bN = bn if aN = an for n>N. q.e.d.

LEMMA 8. Let Xt be an algebraic scheme over k for l<i<n. If xt is a

closed point ofXi such that expXiXi<N for each i, we have exp^x..^^^ x ••• x
Xn<N.

PROOF. It is sufficient to show the case of n — 2. Let nl and n2 be the nil-

radicals of the stalks Θ^ and Θ2 of %ι anc* ^2 at %ι and %2 respectively. Then

the nilradical of 0ι® fc02 is nί®&2 + $ι®n2. In fact 0Jnι and 02/n2

 nave no

nilpotent elements except zero. This means that &1/nl®k&2/n2 = &l®k&2/(\ιί®

02 + 0!®n2) is reduced, because k is algebraically closed (cf. Matsumura [6],
(27, E), Lemma 2). On the other hand the stalk 0 of Xί x X2 at x1 x x2 is the

quotient ring of #ι® fc02 with respect to a maximal ideal of ^1®k^2. Therefore
the nilradical n of φ is generated by the image of n1®^2-f 0!®n2 in Θ. Since

we have n^N = np

2

N = 0, we see easily npN = 0. This means expxι x X2X^ xX2<N.

q.e.d.

LEMMA 9. Let A be a noetherian ring and p α prime ideal of A. Then
if n is a positive integer, we have the minimal condition on the set of p-primary
ideals q of A such that p"<=:c|.

PROOF. If pn c= q, we see pMp c q^. Further we know that q c q'. If and

only if q A ^ c q Ά p for any p-primary ideals q and q'. Therefore it is sufficient to
show that the minimal condition on the set of ideals of ' Ap/pnAp holds. Since
Xp/pMj, is an artinian local ring, our assertion is true. q.e.d.

In the following let k be an algebraically closed field of any characteristic
and let (G, μ, ε, y) be a group scheme over k. Denote by Θn the stalk of G x x
G (n times) at the neutral point e x x e for any n > 0. In particular put @ = &l.
Then we denote by Δn the comorphism of Θ = Θ^ to Θn defined by the multiplication

μn of Gx ••• x G (n times) to G for n>2.

LEMMA 10. Let G, 0, Θn and Δn be as above, and let αf be an ideal of Φ for
l<i<n such that the ideal

of &® -®Θ (j times) is primary for each 7 = 1, 2,..., n. Then if we put Cy
= A^l(bjOj) for 2<j<n, we have c^ cic^.! for 3<j<n and cjc:aί n ••• Π α/
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for 2<j<n. Moreover c, is a primary ideal of 0 for 2<j<n.

PROOF. First we show the case of j = 2. Let p± and p2 be the comorphisms

of Θ2 to Θ defined by the morphisms :

G s G x Sρec(fe) l c x e > G x G and G £ Spec(/c) x G e x l c > G x G

respectively. Then we see PιA2 = p2A2 = lff,
 and we have α1=p1(b2^2)

02 = ̂ 2(^2^2) as seen easily. By the definition of c2 we see θι=Pι(ί>2^2)=)
pίA2A~ϊ1(b2&2)=c2. Similarly we see α 2=>c 2. Therefore c2 is contained in

Q! Π o2. Now we assume j>3. Let g and /z be the natural homomorphisms

Θ®&-+(92

 and 0J-IΦΘ-+0J obtained from localizations respectively, and let φj

be the unique homomorphism of 02 to Θ^ satisfying φjg = h(Aj_l(^lβ). Then

we see easily Aj = φjA2. On the other hand we see also easily that g and h are

injective. Therefore ψy *(& A) coincides with (J7_ t ® 1 ,)- J (h" 1(bj&j))&2 = (c/_ j ®

0-f 0®α/)02, because bj(Θj-ι®CΪ) is primary in Θj-ι®Θ by our assumption and

the injectivity of g. This means tj = A']1(bjΘj) = A2

1((Cj-.ί®Θ + &<S)aj)&2) by the

equality Aj = φjA2. On the other hand /d21((cy-ι®^ + ̂ ®αj)^2) is contained in
Cy..! and a,- as seen in the same way as above. This means C y C C j . j and Cjccty.

By induction on j we see easily cjaal n ••• fl α^ for 7 = 2,..., n. Now since by

is a primary ideal of 0® ®0 (j times}, so is b^ , and hence we see c, is a

primary ideal of 0. q. e. d.

LEMMA 11. Let G, 0, 0n αrcd An be as above, and let H^ and H2 be con-

nected group subschemes of G defined by ideals a1 and α2 in 0 respectively.

Denoting by E the set {(ίlv.., ίn) 1/^=1 or 2; n>2}9 put, for each (ίlv.., in) in E,

Then there exists an element OΊ,. »7ιn) in E such that cjί...jm is contained in

15..., /„) in E.

PROOF. Since 0/α£ is the stalk of the group scheme H i at e, the completion

AI of 0/αf with respect to the maximal ideal of (P/at is a formal group over k for

each ί = l, 2. Therefore we see easily by Prop. 2 in [14] that the zero ideal of

Aiί®k'"®kAin is primary for any (ίlv.., zn) in E, and hence the subring 0/αίt

®fe ® fcd?/α ίn has the same property. Applying Lemma 10 we see that cίr..ίn

is a primary ideal of θ satisfying cjl...ίncαίl n ••• Π αίn and cίl...ίnc:cίl...in_I for any

(/i,..., in) in E. Now since the radical rad(cίr..ίn) of cfl.../n is prime for any (ΐ l 9...,

zπ) in £, there exists a minimal element p in the set {rad(cίl...ίn)|(ι1,..., in)eE}.

First we assume that the characteristic of k is p>0, and suppose εxpH^^N

andexpH 2<N. Then by Lemma 8 we have exp Htl x ••• xHin<N for any (ίl9...,

iπ) in E, and hence we see easily ppN c cίr..ίn for (/ l v.., ίw) in £ such that rad(cίr..ίn)
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= p in the same way as the proof of Lemma 7. This means that there exists a

minimal ideal cjί...jm in the set {cίl...ίn|rad(cίl...ίn) = p} by Lemma 9. For any

(/!,...,/„) in E we see c,v..ymi3 ch...jmiί...in by Lemma 10 and hence p

= rad(c j 1...7 w) = radcy1...yw/1...ίn by the minimality of p. This means th...jm

= c f 1.... , . . . / from the definition of c / , . . . / . On the other hand we can see clV..fJl Jm' l « π Jl Jm *1 *n

=) tjir..jn for j= I, 2 in the same way as the proof of Lemma 10. Repeating this

we see c. ... =>c f ..... ,...: = c,v../ . Therefore c f V . ./ is the smallest ideal in the*l ln Jl Jm'Ί *n J l Jm Jl Jm

set{c lV.,.J(/ l5..., /„)££}.

In the case of characteristic zero, Hί and H2 are both reduced as well known,

i.e., al and α2 are prime. This means that cίr..ίn is prime for any (/ l v.., /„) in

E as seen easily. Therefore p = Cjl...jm is the minimal ideal in the set {c/Γ..J

(/!,...,/„)€£}. q.e.d.

LEMMA 12. Let θ, Θn, at (/ = !, 2,..., n) and bn be as in Lemma 10.

Then the continuous dual coalgebra Cn of the residue ring (9nj^nθn is canonically

isomorphic to (^/αj)c(χ)fc •• ®fc(^/απ)c, where (^/αf)
c is the continuous dual

coalgebra of 0/α /or i = l , 2,..., n.

PROOF. If m is the maximal ideal of Θ9mn = (m®Θ<8) <80~\ ----- h

~®θ®n\)Θn is that of Θn. Since the continuous dual coalgebra of Θn is

j,)*, Cπ coincides with

= liigί^/α! + m f)*® ® (&/cιn + tn')* = W<iι)c ® ® (^/α«)c

ί
q.e.d.

Let £ be a Hopf algebra over /c, and let D and £ be Hopf subalgebras of B.

Then if C is the subalgebra of B generated by D and £, C is also a Hopf subalgebra

of B as seen easily. C is the smallest Hopf subalgebra of B containing D and E.

We denote C by J(D, £) and call it the join of D and E. Similarly if D1 ?..., Dn

are Hopf subalgebras of B, we can define the join J(D^..., Dπ) of D l 5..., Dπ. On

the other hand if we put /(D, E) = D n £, /(D, E) is a Hopf subalgebra of B by

Lemma 1 in [13]. We call /(D, E) ί/te intersection of D and E. Similarly we

can define /(Dl5..., Dn).

THEOREM 2. Lei (G, μ, ε, 7) be a group scheme over /c, and let D± and D2

be algebraic Hopf subalgebras of the Hopf algebra §(G) attached to G. Then

the join J(Dί9 D2) of Dv and D2 is also algebraic.

PROOF. Let H^ and H2 be the connected group subschemes of G such that

Dί =§(//1) and D2 = ξ>(H2), and denote by c^ and α2 the defining ideals of H±

and H2 in the stalk Θ of G at e respectively. Let $„, Δn, E and cir../n be as in
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Lemma 11, and let c=c 7 r..7 m be the smallest ideal in the set {c/Γ..ίn|(ί1,..., ίπ)

eE} (cf. Lemma 11). If ψm is the homomorphism of Θ2

 to ®2m obtained naturally
from the homomorphism Δm®Δm of θ®kθ to Om®kθm by localizations, we see
easily A2m = ψmA2 by the associativity of μ. Then a similar argument to the

proof of Lemma 10 gives

= (c ® Θ + 0 ® c)02,

and hence we see Cy1...</ my1..v m = J21((c®^ + ̂ ®c)^2) % Lemma 10 we see
cji" jmjι ' j,n ζ=:cjι jm== C' anc* hence t j l » ' j m j ί ~jm=t from the minimality of
c. This means J2(c)cι(c(g)04 0(χ)c)02. On the other hand let 7* be the co-
morphism of 0 to itself defined by y, and let σn be the automorphism of G x x G
(n times) such that σn maps the i-th factor to the (n — /+l)-th factor for each i

= 1, 2,...., n. If we denote by σj the comorphism of 0Π to itself defined by σπ,
we see easily J/Iy* = σ*(yx ••• xy)*^. In fact we have μπ(y x ••• xy)σn = y μn

as seen easily if μn is the multiplication of G x ••• x G to G. This means .^"HCii O
= cίn...ίl for any (/ l v.., /„) in E, because we have y*(αί) = αί for i = l , 2. In par-

ticular we see 7*~1(c) = 7*~1(cj1 vm)= = c /m jι :D c anc* y*"^0) c Ύ*~l(cjm-jι)
= cjr v m = c ^^s means y*(c)=c. Therefore c is the defining ideal of a con-
nected group subscheme H of G in Θ by Th. 1.

Now since c is contained in α x n α2 by Lemma 10, we see ξ>(H) contains both
£!=§(#!) and D2 = $)(//2). On the other hand if bf

jr..jm is (α^®^®--®^

-\ ----- \-0®'-®Θ®ajtr)θm, we see that Δm gives an injection of 0/c into &m/bjr..j,n

Therefore the transpose J* of /dm maps the continuous dual coalgebra Cjί...jm of
^m/b}1...ym onto the continuous dual coalgebra §(//) of Ojc. Moreover since J*
gives the multiplication of m elements in §(G), we see, by Lemma 12, that §(//)
is contained in the algebra generated by Di and D2. This means §(//) = /(/>!,
Z)2). In other words J(D^ D2) is algebraic. q.e.d.

COROLLARY. In the above theorem we assume that the characteristic of
k is p>0. Then if H, H^ and H2 are connected group subscheme of G such that
§(H) = J(§(//1), §(//2)), we have exp/ίXmaxίexpHi, exp/f2). In any charac-

teristic the connected group subscheme H of G corresponding to J(ξ)(Hi\ ξ>(H2))

is reduced, if Hί and H2 are reduced and connected group subschemes of G.

PROOF. The first assertion is shown already in the proof of Lemma 11 and
Th. 2. On the other hand a group scheme G over k is reduced if and only if

expG = 0 if the characteristic of k is p>0. Therefore in this case the last asser-

tion follows from the first one. If the characteristic of k is zero, any group scheme
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over fe is reduced, and hence our assertion is true. q. e. d.

Let G be a group scheme over fc, and let Hl9...9 Hn be connected group sub-

schemes of G. Then there exists a unique connected group subscheme H of G

such that §(#) = ./(§(#!),..., §(#„)) by Th. 2. It is easy to see that H is the

smallest connected group subscheme of G containing each Hi as a group subscheme

of it for each i = l, 2,..., n. We call H the join of Hί9..., Hn and denote it by

J(H19...,HH).4> By Cor. to Th. 2 we have expJ(Hί,...9Hn)<N in a positive

characteristic case if QxpHt<N for each /=!,..., n.

PROPOSITION 10. Let G and Hί,...,Hn be as above. Then the intersec-

tion /($(#!),-.., §(#„)) ofξ>(H,\..., §(//„) is algebraic.

PROOF. It is sufficient to show our assertion in the case of n = 2. Let the
notations be as in Lemma 11. Then we see that
is contained in the ideal of Θ2 generated by α1

= (α1 + α2)®^ + ̂ ®(α1 + α2) by Th. 1. Similarly we see

This means by Th. 1 that c^-f α2 is the defining ideal of a connected group sub-

scheme H of G. Now if A is the formalization of G, we see (aί + a2)A = alA

+ a2A. Therefore we have $(#0 n §(//2) = (§(//1)
1 + θ(# a)1)1 = (M + α^)1

as seen easily. Since we have (alA-\-a2A) n 0 = al + a2, we see §(//x) n δ(//2)

= £>(#), and hence §(//!> n S(#2) is algebraic. q. e. d.

Let G and //1 ?...,//n be as above. Then there exists a unique connected

group subscheme H of G such that §(//) = /(§(//!),.,§(//„)) by the above
proposition and Th. 1. We call H the intersection of // l v.., Hn and denote it

by I(H19...,HJ. We have §(/(/f1?..., #„)) = /(§(#1),...,§(//„)) = A S(tf£).
i=l

More generally let {//A |λe/l} be a family of an arbitrary number of connected
group subschemes Hλ of G, and let αΛ be the defining ideal of Hλ in the stalk
Θ of G at the neutral point e of G for each λ in ΛL Then there exists the largest
ideal αλ l H hoλ n of Θ in the family of the ideals aλ\ H hαΛ;, (A} e /I), because
Θ is noetherian. It is easy to see that the connected group subscheme H = I(Hλl,

...,HΛn) is the largest connected group subscheme of G which is a group sub-

scheme of any Hλ (λ e A). We call H the intersection of Hλ (λ e A) and denote it

by / (//;.). Then we have §( / (//Λ))= /Λ £)(#A) AS f°r the join of an arbi-
λeΛ ' λeΛ λeΛ

trary number of connected group subschemes we have the following

PROPOSITION 11. Let G be a group scheme over fc, and let {Hλ\λeA}
be a family of connected group subschemes Hλ of G. If the characteristic of k

4) If Hi is reduced for any i, /(//;,..., Hn) coincides with the group closure of \jHt in the

sense of [1]. See (2.2) in [1].
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is p>0, we assume that expHλ<N for any λεA. Then the subalgebra D of
§(G) generated by all ξ>(Hλ) (λeλ) is an algebraic Hopf subalgebra of §(G).
In particular D is generated by a finite number of ξ>(Hλl),...9 ξ>(Hλm)as algebras.

PROOF. Let 0, Θn and An be as in Lemma 10, and let αΛ be the defining ideal

of H λ in φ. If we put cλί...λn = A-1((aλί®&® '®&-\ ----- h^® ®^®αλn)^π), we
see, in the same way as the proof of Lemma 1 1 , that there is the smallest ideal

c= cλί...λm in the family of ideals tλ\...λ

r

n (AJ e A). Thus we need here the assump-
tion Q\pHλ<N for any λeΛ. Moreover we see that c is the defining ideal of
a connected group subscheme H of G in the same way as the proof of Th. 2. Since

αλ contains c for any λ in A as seen easily from Lemma 10, ξ>(H) contains
ξ>(Hλ) for any λ in A. On the other hand £>(//) is the image of §(//Al)(g) ®
ξ>(Hλm) by the multiplication J* of §(G) as seen in the same way as the proof
of Th. 2. This means that §(#) coincides with D. q. e. d.

Let G, {Hλ\ λ eA} and D be as in Prop. 1 1 . Then the unique group subscheme
H of G satisfying D = §(H) is called the join of Hλ (λeΛ) and is denoted by

J (Hλ).
λeΛ

COROLLARY. Let G be a group scheme over k, and let D be a Hopf sub-

algebra o/§(G). Then the fallowings are equivalent:
( i ) D is algebraic.

( i i ) D is generated by a finite number of algebraic Hopf subalgebras of §(G)
as algebras over k.

(Hi) In the case of characteristic zero, D is generated by any number of alge-
braic Hopf subalgebras of ξ>(G) as algebras over k.

In a positive characteristic case, D is generated by any number of alge-
braic Hopf subalgebras ξ>(Hλ) of ξ>(G) as algebras over k such that e\pHλ<N

for any λ.

LEMMA 13. Assume that the characteristic of k is p>0, and let G be a
group scheme over k. Then we have the fallowings:
(i) Any finite dimensional Hopf subalgebra D of §(G) is algebraic.
(ii) Any finite dimensional subspace U of ξ>(G) is contained in a finite dimen-

sional Hopf subalgebra of

PROOF. Let Θ be the stalk of G at the neutral point e and let A be the

formalization of G. If α is the null space D1 of D in A, A/a is the dual space of

D and hence is of a finite dimension. Therefore α is an m-primary ideal, where

m is the maximal ideal of A. It is well known that any m-primary ideal of A

is the form qA for some m n ^-primary ideal q in Θ, because A is the (m n 0)-

adic completion of 0. This means α = (α n 0)A, and hence D is algebraic from
the proof of Prop. 5. Next let {xl9...9 xn} be a basis for U over k. Then there is
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a positive integer N such that <xi9 m
pN> = 0 for all f = 1, 2,..., n. If we denote

by m(JV) the ideal of A generated by the elements apN with a in m, we see <17,

mw> -0. If DN is the null space of m ( J V> in §(G). DN is the algebraic Hopf
subalgebra of §(G). In fact the ideal m(N) satisfies the conditions in Th. 1 as

seen easily. Then DN is of finite dimension and U is a subspace of DN. q. e. d.

Now let us recall the definition of the shift Fof §(G). If A is the formaliza-

tion of G, let F be the Frobenius endomorphism of A such that F(x) = xp for any
element x in A. Then the map F* of the dual space A* of A into itself defined
by <F*(/ι), x> = <Λ, F(x)> 1/p is 1/p-linear and moreover we see that F*(/ι)

is in ξ>(A) if /i is so. We denote by Fthe restriction of F* to ξ>(A) = ξ>(G) and we
call Vthe shift 0/§(G). It is easy to see that Vis a 1/p-linear Hopf algebra homo-

morphism of §(G) into itself, and we denote by Vn the composite V V V (n
times).

THEOREM 3. Let k and G be as in Lemma 13, and let Vbe the shift 0/§(G).

Then a Hopf subalgebra D of §(G) is algebraic if and only if F°°(D)= r\ Vn(D)
«=ι

is algebraic.

PROOF. First we assume that V™(D) is algebraic. By Th. 2 and 3 in [9]

there exist n sequences of divided powers {l\t}\l<i<n, 0<t<pei for i<s and

Q<t for />s + l} in D such that {/(/l) /ίJ

/n)} is a basis for D over k. Then
we see easily that {/ί+ι+l) /ί,/n)|/j>0} is a basis for V*(D) over k. On
the other hand if we denote by U the vector subspace of §(G) generated by { l [ f ί )

~Ί(/s)\Q<fi<pei}, U is of finite dimension. Then there exists a finite dimen-
sional Hopf subalgebra D{ of §(G) containing U by Lemma 13, (ii). If we put
D2 = D1 n/>, D2 contains U and D is generated by D2 and F°°(D) as /c-algebras.
Since F°°(D) and D2 are algebraic from our assumption and Lemma 13, (i), so
is D by Cor. to Prop. 11. Conversely we assume that D is algebraic. Let q be
the null space of D in the formalization A of G. Then we see q = (q Π Θ)A where
Θ is the stalk of G at e. If we put p = rad q, p is a prime ideal of A and the null
space of F°°(D) in A as seen easily. Then we can see easily that p n Θ is the radical

of q Π 0 and p = ( p Γ \ 0 ) A , because (p n ®)A is also a prime ideal of A. This
means that F°°(D) is algebraic. q. e. d.

REMARK. Let k be an algebraically closed field of a positive characteristic
p, and let G be a group variety over fc, i. e., a reduced and connected group scheme
over k. Then the above theorem 3 shows that the condition [fc(G)$°: fc(G)§/]

= dimfc§7S;So °f Theorem 2 in [14] can be dropped. In fact, using the nota-
tions in [14], the equality dim* L(§0) + dim V^ = dimG means that §0 is algebraic
by Theorem 1 in [14] and dimFφo=dim Fr, and hence §' is algebraic by
Th. 3. In other words §' is algebraic in wider sense in terms of [14].
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§ 5. Rational representations of group schemes

Let (G, μ, £, y) be a reduced group scheme over /c, and let 0 be the stalk of
G at the neutral point e of G. Then the formalization A of G is isomorphic to a
formal power series ring over k. In particular Θ is a regular local ring. If
{α !,..., an} is a regular system of parameters of 0, A can be identified with the
formal power series ring k«aλ,..., an». Then there is a unique element leι...en

in §(G) such that </βl...βn, flf1,..., Λ j n > =1 and </βl...«,n, flf'1,..., Λ£"> =0
if (>!,..., eM)/(^Ί,..., en) f°r any (^ι» » O Then we can see easily that {/βl...ej
£f>0} is a basis for §(G) over /c, which we call the canonical basis for §(G) w//A
respect to [al9...9 an}.

PROPOSITION 12. Let G, 0, v4, {aί9..., an} and {/eι...βn} fee as above. Let
C and D be Hopf sub algebras o/§(G). If C corresponds to the formal subgroup
A/(aί9...9 ar)A of A, the fallowings are equivalent:

(/) D is a Hopf sub algebra of C.

(iι) Ifx^Σ.Bei 'eJei en (°W -e» E Ό is an element of D, we have a0... of o-o=0 for

(Hi) If x=Σ°W e 4, *n (
aer en

e^) zs ^^ element of D, we have <xeι...e =0/or
(β) " "

^.^0 with i<r.

The proof of this proposition is exactly similar to that of Corollary to Propo-
sition 4 in [13] and hence we omit it.

COROLLARY. Let G, §(G) and Θ be as above. Then ifH is a reduced group
subscheme of G, there exists a regular system of parameters {tf1?..., an} of Θ
such that the defining ideal α of H in Θ is (al9..., ar)&. Moreover if {leι...en\
£/>0} is the canonical basis for §(G) with respect to {α,,..., αrt}, the following
conditions on a connected group subscheme K of G are equivalent:

( i ) K is a group subscheme of H.

( i i ) , If x=Σ<Xeι>' eJeι~ en (
αeι» en

 6 ̂ ) ί5 an element of §(X) identified with a

Hopf sub algebra of §(G), we have α0...0γ0...0=0/<9r i<r.

(Hi) If ^:=Σαβι-βΛr en (
αβr en

e^) IS αn element of ξ>(K) identified with a
(e)

Hopf subalgebra of ξ>(G), we have aeι...en = Q for e^Q with i<r.

PROOF. Since α is a prime ideal of 0, the existence of a regular system of
parameters {0lv.., an} of Θ satisfying the property in our corollary follows from

a well known result on regular system of parameters (cf. Serre [8], p. IV-41,
Cor. to Prop. 22). The last assertion can be seen easily from Prop. 12, because
K is a group subscheme of H if and only if ξ>(K) is contained in §(//). q. e. d.
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Let us consider the polynomial ring fe[ίu,..., tnn] of n2 variables ί l lv..,

*!»»•••» *«!»•••> *«» over fc and denote by D the determinant of the matrix (ttj). Then
the affine scheme Spec(k[ίn,..., tnn, D"1]) is a group scheme over k. To see this

it is enough to show that k[tίί9...9 tnnί D"1] has a structure of a Hopf algebra over

k whose antipode is an algebra homomorphism. Now we define fc-linear maps

A, η and c as follows:

Δ(ttj) = Σ tih ® thj, η(tij) = δtj (Kronecker's delta) ,
h

We can easily see that these maps give a structure of a Hopf algebra over k to

k [ t ί i 9 > , tntt, D"1] with the natural algebra structure over k. In other words if
μ, £ and γ are the morphisms of affine schemes whose comorphisms are A, η and

c respectively, (Spec(/c[ίn,..., tM9 β"1]), μ, ε, 7) is an affine group scheme over

k. We call this the general linear group of order n and denote it by GLn. The

neutral point e of GLn corresponds to the maximal ideal of fc[ίn,..., tnn, D"1]

generated by {r^ — (5^1 l<ί, j<n}. Therefore if we put sij = tίj — δij for 1,7 =

1, 2,..., n, {s i V | l<f, j<n} is a regular system of parameters of the stalk Θ of GLn

at e.

Denote by Mπ(fc) the ring of all the square matrices (α^ ) of size n with α0

in k and by p(x) the element (<x, ίίV>) of MB(fe) for any element x in §(GLW).

Then p is a /c-linear map of §(GLΠ) to Mn(k)9 which we call the canonical represen-

tation ofξ>(GLn) to Mn(k) with respect to {tu}.

PROPOSITION 13. The canonical representation p of §(GLW) to Mn(k)

with respect to {ίlV} is a ring homomorphism.

PROOF. If A is the comultiplication of k[tίl9...9 tnn, Z)"1], we have J(f0 )

= Σtih®thj and hence

<xy, ttj> = <x®y, A(tu)> = Σ<*> ί|*> <J5 tkj>

for any x and y in §(GLΠ). Therefore we see p(xy) = p(x)p(y), and hence p is a
ring homomorphism. q. e. d.

Now let V be a vector space of dimension n over k and let GL(F) be the

group of linear automorphisms of V. Let us fix a basis [vί9...9 vn] for Fover k

and a coordinate system {ίίy} of GLπ = Spec(/c[ί11,...J ίwn, D"1]). If / is an ele-

ment of GL(V) such that l(v)t= Σ ^tΛ* ^OΓ l^ϊ^w, we may identify / with the

closed point of GLn corresponding to the maximal ideal of k[tίl9...9 tnn9 D""1]

generated by {tij — λίj\lζi9j^n}. We denote this identification between GL(F)
and GLn(k) = Mor (Spec (/c), GLJ by id(tίj9 vt). If {wj,..., wπ} is another basis for
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Fover fc, we denote by A the matrix (αί;) in Mn(k) such that wγ= Σ α0 yy (1 < i<n).

If we put (t'ij) = A(tίj)A~ί, we see {ίjy} is another coordinate system of GLΠ,
i.e., we have /c[ίn,..., tm, I>~1] = /c[ί/

11,..., ί^π, D"1]. Furthermore it is easy

to see /ί/(f0 , vt) = id(tr

ij9 wf). We understand by the group scheme GLV of linear
automorphisms of Kthe group scheme GLn with an identification id(tij9 ty).

Let G be a group scheme over k. Then we say a homomorphism φ of G
to GLv — (GLn, id(tίj9 v^) as group schemes to be a rational representation of
G in V. We say also that G acts rationally on V by φ. Thus for any closed

point x in G φ(x) is a linear automorphism of V. Now we fix a basis {t^,..., vn}
for F over /c and identify Mn(k) with the Endfe(F) of linear endomorphisms of
Vusing {υt}9 i.e., we identify A = (aij) of MM(k) with / of EndΛ(F) such that /(i^)

n
— Σ &ijVj (l<i<n). If p is the canonical representation of §(GLn) to Mw(/c)

with respect to {ίfj }, we put xφ(v) = p(φ*(x))(v) for any x in §(G) and any y in

7, where (/>* is the tangential homomorphism attached to φ. Then we have the

following

LEMMA 14. The notations being as above, we have

( ί ) (<xx+ αV)^(ι;) = αx^(ι;)+ αVφ(ι;),

( / / ) (xx%W = xf(x;W),
(iii) xφ(av + α'u') = αxφ(t;) + α'x^i/) and

(it?) lφ(rj = t?,

where α, α'e/c, x, x'6§(G) and v, v' e K Moreover xφ(v) depends only on φ
and is independent of the choice of a basis {i^,..., vn] for V over k.

The proof of this lemma is easy and we omit it.

PROPOSITION 14. Let V be a vector space of dimension n over /c, and let
U and W be vector subspaces of V such that U=>W. Fixing a basis {vl9...9 vn}

for V over /c, identify Mn(k) with the ring Endfc(F) of all linear endomorphisms
of V using {vt}. Then there exists a unique connected and reduced group sub-

scheme H of GLπ = Spec(fc[ίllv.., tnn, D"1]) satisfying the following conditions:
(0 // p is the canonical representation of §)(GLW) to Mn(k) with respect to
{tu}9 we have p(ξ>(H)°) = {AeMn(k)\A(U)<=W} where §(tf)° is the kernel of the

coidentity of ξ>(H).

(ii) Let D be any Hopf subalgebra of £(GLΠ) such that p(D°)c:p(§(#)0) where
D° is the kernel of the coidentity of D. Then D is contained in ξ)(H}. In par-

ticular if H' is any connected group subscheme of GLn such that p($(H')°)cι

{A-e Mn(k)\A(U)a W}, H' is group subscheme of H.

(in) The subset of GL(V) corresponding to the subset H(k) of GLn(k) under the

identification id(t{j,v^ consists of the elements I of GL(V) such that J(W)= W9
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l(U)—U and the induced linear endomorphisrn 7 of U/W by I is the identity
map of UI W.

PROOF. By Lemma 14, we may assume that the subsets {υί9..., vr} and {vl9

..., vs} are bases for Wand U over k respectively, replacing {yj by another one if
necessary. Let / be an element of GL(V) and let At be the matrix in Mn(k) cor-
responding to / with respect to {uj. Denote by S the subset of GL(V) consisting

(A 0 0\
of the elements / such that Al is the form \B E 0 , where A e Mr(k\ FeMn_s(k)

\CDFJ
and E = the unit matrix in Ms_r(k). Then it is easy to see that S is the set of the
elements/ in GL(V) such that l(U)=U9 l(W)=W and {the induced linear endo-
morphism Ί of U/W by l} = lu/w. Moreover S is a subgroup of GL(V) and the
corresponding subset Tof GLn(k) to S under the identification id(tij9 ι?f) is a closed
subset of GLn(k). Therefore there is a reduced group subscheme H of GLn such
that H(k)=T. We shall show that H has also the properties (i) and (ii) of our
proposition. It is easy to see that H is connected. Let Θ be the stalk of GLn

at the neutral point e of GLn and put sij = tij — dij (I<i9j<n) as before. Let α
be the ideal of Θ generated by {s0 |ί<s andj<r+1}. Then it is easy to see that
α is the defining ideal of H in Θ. The image {s0-|i>s +1 or j<r} of {st y | f > s + l
orj< r} by the canonical homomorphism of Θ to 0/α is regular system of parame-
ters of 0/α. Let {/Λll..βu...βmjflij>0} be the canonical basis for §(GLΠ) over k
with respect to {sn,..., snn}. Then we see easily that {/βll α,Jαu^O/ auv=®
for u<s and υ>r+1} is a basis for the subspace ξ>(H) of §(GLn) over k from the
above and the definition of {/βll...βnn}. Now an element A of Mn(k) satisfies
A(U)<=:Wif and only if A has the form (αί7 ), where α0 = 0 for i<s and j>r+1.

Therefore we see p(ξ>(H)°) = {AeMn(k)\A(U)cιW}9 because p(/0...oYo.. o) is
the matrix (αuι;) such that α f j = l and αMy = 0 for (M, υ)*?(i,j). Lastly let D be
any Hopf subalgebra of ξ>(GLn) such that p(D°)cp(§(H)). If x= Σ αβll...βnn.»j («)
/βπ β™ is in ^°> we have 0= <x, sίy> =α0...0γ0 o f°Γ i^ s and j>r+l.
This means that D is a Hopf subalgebra of §(H) by Prop. 12. In particular if
H' is a connected group subscheme of GLn such that p(§(/f')°)c:p(§(H)0), we see
that H' is a group subscheme of H by Cor. to Prop. 12. In fact the defining ideal
of H in Θ is generated by {slV| i < s and j > r 4-1}. q. e. d.

Let G be a group scheme over k and V a vector space of dimension n over fc.
Fixing a basis {i J for Fover fc and a coordinate system {fί7} of GLΛ, let 0 be a ra-
tional representation of G to GLv = (GLn9 id(tίj9 î )) and let p be the canonical
representation of §(GLΛ) to Mn(k) with respect to {t^}. If 17 and Ware subspaces
of Fsuch that U=>W9 we denote by Trκ(l/, W) the subspace of EndΛ(F) con-
sisting of / such that l(U)cιW. We call Trκ(l7, W) the transporter of U to
WinEnάk(V). Then we have the following
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THEOREM 4. The notations being as above, let us identify Mn(k) with

Endfe(F) using {ι>t }. Then there exists a unique connected group subscheme H

of G satisfying the following :

(0 p(Φ*($>(H)°) is contained in Try (17, W)9 where φ* is the tangential homo-

morphism attached to φ.

(ii) If H' is any connected group subscheme of G such that ρ(φ*(ξ>(H')0))

cιΎτv(U9 W), then H' is a group subscheme of H.

(Hi) If D is any Hopf subalgebra of §(G) such that p(φ*(D°))c: Ίτv(U9 W)9

then D is a Hopf subalgebra of

PROOF. Denoting by TrGLn((7, W) the group subscheme of GLn satisfying

the conditions of Prop. 14, we have ρ(ξ>(ΊτGLn(U9 W))°) = Ύτv(U9 W). Then let

H be the inverse image of TrGLn(t7, W) in G by φ. By Prop. 9, (ii) we see

φ*($>(H)°)^ξ>(ΊrGLn(U9 W))Q and hence p(^($(fl)0)cTιy (17, W). If H' is any

connected group subscheme of G such that p(φ*(ξ>(H')°))<=Ύrv(U9 W)9 we see

φt(ξ>(H'))<=:ξ>(ΊrGLn(U9 W)). In fact φ*(ξ>(H')) is an algebraic Hopf subalgebra

of §(GLW) corresponding to the direct image H{ of H' by φ as seen from Prop. 9,

(i). This means that φ*(ξ>(H')) = ξ>(H1) is contained in §(TrGLn(ί7, W))9 because

H1 is a group subscheme of TrGLn(l7, W) by Prop. 14, (ii). Therefore H' is a

group subscheme of H by Prop. 9, (ii). Similarly if D is any Hopf subalgebra of

£(G) such that p(φ*(D0))c:Ίτv(U9 W)9 φ*(D) is a Hopf subalgebra of §(TrGLn(C7,

W)) by Prop. 14, (ii). Since we have ^(H) = h-φ^(ξ^(ΊτGLn(U9 W)) by Prop. 9,

(ii), D is a Hopf subalgebra of ξ>(H) by Prop. 2. q,e.d.

We call the group subscheme H of G in Th. 4 the transporter of U to W

in G defined by φ and denote it by ΊrGίφ(U9 W). In particular if 17= W9 we call

TrG tφ(U9 U) the normalizer of U in G defined by φ and denote it by NGφ(U).

Since the image of the group G(k) of the closed points of G by φ is contained

in GLn(k)=GL(V)9 Fmay be considered as a G(fc)-module. On the other hand

we see p(φ*(§(G)))c:Trκ(F, V)=Mn(k) by Th. 4, (i) and hence V has the struc-

ture of an §(G)-module by Lemma 14 considering £>(G) as a fc-algebra. We

say that this structure of Fas an £>(G)-module is the ξ>(G)-structure of V attached

to φ. It is clear that a subspace Wof Fis an §(G)-submodule of Fif and only if

G coincides with NGtφ(W).

PROPOSITION 15. Let the notations be as above, and let W be a subspace

of V. Assume that G is connected. Then if W is an ξ>(G)-submodule9 W is a

G(k)-submodule. Conversely if W is a G(k)-submodule9 W is an §(Gred)-

submodule, where the ξ>(Gτed)-module structure of V is attached to the com-

posite morphism of the natural immersion o/Gred to G and φ.

PROOF. If W is an §(G)-submodule, we have G = NG>φ(W). Then φ(G(k))
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consists of elements / of GL(V) satisfying l(W) = Wby Prop. 14, (iii). This means
that W is a G(/c)-submodule of V. Conversely assume that W is a G(/c)-submodule
of V. Then φ(G(k)) is contained in NGLnΛGLn(W)(k). Since NGtφ(W) is the in-
verse image of NGLnlcLn(W) in G by φ as seen in the proof of Th. 4, we have
G(k)c:NGfφ(W)(k) by Prop. 8 and hence G(k) = NG>φ(W)(k). Therefore Gred

is a group subscheme of NGtφ(W)9 because they have the same underlying space.
This means that Wis an §(Gred)-submodule of V. q.e.d.

COROLLARY. In Prop. 15 we assume that G is reduced. Then Wis a G(k)-
submodule of V if and only if it is an ξ>(G)-submodule of V.

Later we need the following

LEMMA 15. Let G be a group scheme over k and let V be a vector space of
dimension n over k. Let U and W be subspaces of V such that U=>W. Let
{#!,..., vn} be a basis for V over k such that {vl9...9vr} and {vl9...9vs} are bases
for Wand U over k respectively. Let φ be a rational representation of G to GLV

= (GLΠ, id(tίj9 Vi)) and denote by ψ the linear map of V to k[tίί9...9 tnn9 D"1]

®kV given by ψ(vi)='Σtij®vj an^ by Φ* the comorphism o/fc[ίn,..., tnn, D~l~\

to the stalk Θ of G at the neutral point e defined by φ. Let α be the defining
ideal όfΎτGtφ(U, W) in Θ and let π be the natural homomorphism of Θ to 0/α.
If g is the homomorphism of V to &/a®kV given by (πφ*®lv)\l/9 we have g(U)

/ and g(W)c:@/a®kW. Further the induced map g of U/W to
U/W given by g satisfies g(v)=l®v for any element v of U/W.

PROOF. We use the same notations as Prop. 14, Th. 4 and their proofs.
Let α0 be the ideal of k[ίn,..., tnn9 D"1] generated by {sy|i<;s and ;>rH-l}.
Then we see ψ(U)c:k[tll9...9 tnn, D-^QU + a^V and ψ(W)dk[tll9...9tM9

D'^φW+aQφV. Furthermore we have ^(I ̂ Ξ!®^ (mod α0®KH-/c[ίn,...,
ίππ, D"1]®^) for r+l<ί<s, since ^ = 5^+1. On the other hand we see from
the proof of Th. 4 that α0 is mapped into α by φ*, because α0 is the defining ideal
of TrGLn(l7, W) in k[tίl9...9 tnn, D"1]. Therefore we see easily that our assertions
are true. q. e. d.

§ 6. Adjoint representations of group schemes

In the following let (G, μ, e, y) be a group scheme over /c, and let φG be the
morphism given in § 1. If x is any point of G, we denote by φ* the comorphism
of the stalk φ of G at the neutral point e of G to the stalk Θχxe of G x G at x x e
obtained from φG. First we need some lemmas.

LEMMA 16. //m is the maximal ideal of Θ, the image φ*(ms) ofms by φ*
is contained in (Ox®v(\s)(9x^efor any positive integer s.
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PROOF. Since (e, k) is a normal subschema of G, we see φG(x xe) = e for any

point Λ: in G, and we have φG(lGxέ) = επ'9 where π' is the structure morphism

of GxSpec(/c) to Spec(/c). Let e* (resp. π'* and (lcxε)*) be the comorphism

of Θ to k (resp. k to &x®k and @XXe to Ox®k) defined by ε (resp. π' and lGxε).

Then we have π'*ε* = (lGxε)*</>*. Since we see ε*(m) = 0 and ker(lGxε)* =

(®x®\n)Θx*e, φ*(m) is contained in (0x®m)0χxe. Since φ* is a ring homomo-
rphism, we see easily from this that </>ί(ms) is contained in (Θx®ms)Ox^e for

any positive integer s. q. e. d.

LEMMA 17. Let G, 0, OχXe and m be as above. TTien OχKel(Θx®\^f)Θx^e

is canonically isomorphic to Θx®k(Θl\ns) for any positive integer s.

PROOF. Since ^x®k(Θ/ms) is an integral extension of Ox®kk^Θx, any

maximal ideal n of 0jc®k(0/mβ) contains mΛ® kfesm J C, where m, is the maximal

ideal of Θx. On the other hand m/ms = fc®k(m/ms) is the unique prime ideal of

0/ms = fc®k(0/m5). Therefore n contains fc®k(m/ms). This means that V®

(m/ιns)+ m®((P/.ms) is the unique maximal ideal of Θ®k(Θl\ns) and hence 0®k

(^/ms)is a local ring. If we put T=&x®kΘ-(Θx®m + mx®&)9 Θx* el(Ox®\ns)Φx^e

is isomorphic to (Ox®kΘlΘx®ms')τ. However since ^JC®^/(^JC®ms^^JC®k(^/ms)
is local, we have (^JC®^/^®ms)Γ = ̂ JC®^/^JC®ms^^®k(^/ms). q.e.d.

LEMMA 18. Let φG and μ be as above and let Lx (resp. Rx) be the left

(resp. right} translation of G for any closed point x in G. Then we have

ΦG(^X^G) = ΦG(^GXΦG) and LxRx_ί = φG(xπGx iG)ΔG.

PROOF. Let pt be the projection of G x G x G to the ί'-th factor for i— 1, 2, 3.

Then we can see easily

I G X G X G = (Pi * Pi x P S / V ^ G X G X G x I G X G X G / ^ G X G X G

= (Pi x Pi x P a ) ( l G x G x G x ^ G X G X G ) ^ G X G X G »

ΦG(M x IG) = Φo(μ x lG)(Pι x P2 x P 3 ) (^GχGχG x I G X G X G ) ^ G X

= ΦG((Pι*Pι) x P S ^ G X G X G = (Pι*P2)*P3*(Pι*P2)"1-

Similarly we have

ΦG(!G x ΦG) = ΦG^G x ΨG)(PI.X Pz x P a X ^ G x c x G x ^ G X G X G ) ^ G X

= Pι*(P2*P3*P21)*PT1 = (Pι*P2)*P3*(Pι*P2)~1

Therefore we have the first equality. Next let x be any closed point of G which

we identify with an element in Mor(Spec(/c), G). Then we see easily LxRx-ι
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= (xπG)*lG*(xπG)~1. On the other hand we have in the same way as above

(xπc)*lG*(xπG)-1 = φG(xnG x 1G)JG.

This means LxRx-ι = φG(xnG x 1G)JG< q. e. d.

LEMMA 19. Let G, μ, φG, Φ and m be as above. Let μ*y be the comor-

phism of the stalk Oμ(χxy} of G to Θχxy of GxG defined by μ for any closed

points x and y in G. Then there exists a k-homomorphism f^ of Θ/ms to

Θz®k(Θl\κs)for any positive integer s and any closed point z in G such that the

diagram

is commutative, where h is the natural homomorphism of Ox®kΘy to Θ
xxy.

PROOF. By Lemma 16 φ* gives a homomorphism g(

x

s) of ^/ms to Θx*e\

(&x®ms)&xxe, which is isomorphic to Ox®k(0l\ns) by Lemma 17. Therefore

we obtain a homomorphism /^s) of Θ/ms to Θx®k(0lms) from g(

x

s\ On the other

hand we have the following commutative diagram from Lemma 18:

Φ

Since we see (1G x φG)*((&x®™s)&xxe)^(0x®&y®ms)&xxyxe and (μ x lG)* ((^μ(χχj;)
®ms)0μ(XXy)Xe)c((0xχy®ms)βχxyXe, this commutative diagram gives the one in
our lemma. q.e.d.

LEMMA 20. Let G, φG andf(

x

s) be as above. Let {elv.., en} be a basis for

0/ms over k. Then there exist n2 global sections au (!</, ;<n) of the struc-

ture sheaf ΘG satisfying the fallowings:

(i) IfaiJtX is the image of atj in the stalk Θx of G at x, we have f(

x

s)(eί)= Σ <*ιjtx

®βj for each i = l, 2,..., n.

(ii) Let Γ(G) and Γ(G x G) be the rings of the global sections of ΘG and ΘG*G

respectively, and let ψ be the canonical homomorphism of Γ(G)®fcΓ(G) to

Γ(G x G). Then if μ* is the comorphism ofΓ(G) to Γ(G x G) defined by μ, we have

μ*0i;) = M Σ <*tk®<*hj) for 1 < /, j < n.

PROOF. Let x be any closed point of G and let U = Spec (A) be an affine
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open neighborhood of x x e in G x G. Let V— Spec (B) be an affine open neighbor-

hood of e in G such that φG(U)aV9 and denote by φ* the comorphism of B to A

defined by φG. If α and b are the defining ideals of closed subschemes (G x

Spec(0/ms))n U of U and Spec(0/m5) of V in A and B respectively, we see
</>*(b)cα in the same way as the proof of Lemma 16. On the other hand we see

easily that B/b is isomorphic to 0/ms and that A/ a is isomorphic to A'®k(Φ/ms)9

where 17' = Spec (4') is an affine open neighborhood of x in G. Let g$f) be the

homomorphism of B/b to A/ a obtained from φ* and let/Jf? be the one of 0/ms to

A'®k(0lms) given by g\f) identifying B/b and A/a with &/ms and A'®k(φlms)

respectively. Then if we denote by hy the natural homomorphism of A' to Θy

for any closed point y in ί7',it is easy to see/^) = (/ιy®lί?/mS)/[f,) from the defini-

tions of f(

y

s) and /[fλ Therefore if we put /^)(eί) = Σ«oM/'®^' we see fys)(et)

= Σhy(aίjίU)®ej for any closed point y in 17'. Since hy(aiJtU>) is independent

of the choice of V and U, there exists a global section αy of 0G such that the

restriction of αί7 to 17' coincides with α ί</ftr. This means that the assertion (i)

holds true. To see (ii), it is sufficient to show μ*y(aijιμ(xχy^=Σaih,x®ahj,y>

where μ*y is the comorphism of @μ(X*y) to 0χxy defined by μ. By Lemma 19,

we have for 1 < / < n

and hence

Σμϊy(<*ij,μ(Xxy)) ® */ = • Σβί«,* ® α««,f, ® ̂
J M , ϋ

Comparing the coefficients of ej in both sides, we have

μ?y(«θ ,μ(χ x y)) = Σ0iM ® flfcj,r q e. d.

LEMMA 21. Let X be an algebraic scheme over k and let Y be an affine

algebraic scheme Spec (A) over /c. // Γ is the ring of global sections of the

structure sheaf Θx of X, there is a natural bijection between Morpf, Y) and

Homk_alg(A, Γ).

For the proof of this see Mumford [7], Chap. II, §2, Th. 1.

THEOREM 5. Let G, 0, m and f(

x

s) be as above. Then G acts on &/ms

rationally by a representation ps such that ps(x)=f(

x

s} for any closed point x

in G considering them as linear transformations of Θ/ms, where f^ is the linear

transformation of &/ms obtained from f(

x

s) naturally.

PROOF. Let {eί,...9 en} be a basis for &/ms over /c, and let α f j (l<ί, j<n)

be global sections of ΘG satisfying the conditions of Lemma 20. First we show
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that det(α0) is an invertible element in the ring Γ(G) of the global sections of ΘG.

To see this it is sufficient to show that the image det(α0 >x) of det(α0 ) in Gx is

invertible for any closed point x in G. As seen in the proof of Lemma 20 we

have μϊx-ι(aijte)= ΣβiM®**./,*-'- τhis means aijte(e)=^aihιX(x)ahjtX-,(χ-1) and
h h

hence det(α0>(β)) = det(αίy>JC(x))xdet(αίΛjc-ι(χ-1)), where aij>x(x) is the residue

class of aijtX in (9X modulo the maximal ideal m,, of Θx. Therefore it is sufficient

to show that det (α0>(e)) is the unit element of fc. Thus let g be the canonical

homomorphism of Oe*e to Θ which is isomorphic to /c® fc0£0exe/(m®0)0exe.

By Lemma 18 we see lG = φG(επGx IG)^G It *s easv to see that g is the comor-
phism of &exe to Θ defined by (επGxlG)AG. Therefore the comorphism gφ* of
0 to itself defined by φG(επG x 1G)ΛG is identity \0. This means that (aijte(e)) is the

unit matrix En of Mn(k) as seen easily from the definitions of f(

e

s} and a^e.

Now we identify GL(0/m*) with GLn(k) by a coordinate system {ί0 } of GLn

and a basis {elv.., ej for 0/m5 over /c as in § 5. Let p* be the fc-algebra homo-

morphism of k[ti !,..., ίnn, Z)-1] to Γ(G) such that p*(tij) = aίj and p*(D) = det(αlV),
where D = det(flV). Then, by Lemma 21, there exists a unique morphism ps

of G to GLΠ = Spec(/c[ί0 , D"1]) such that p* is the comorphism of k[tip D'1]
to Γ(G) defined by ps. Let μ*9 ψ and Γ(G x G) be as in Lemma 20 and let μ*
be the comorphism of k[tip D"1] to k[tip D~l~\®kk[tφ D'1] defined by the

multiplication μn of GLM. Since μ?(^)=ΣίiΛ®ίΛ7 f°Γ l<i>j<n, we see μ*p*
A

= ̂ (p*®p*)μ* by Lemma 20. On the other hand we see ψ(pf®pf) is the co-

morphism of k[t{j, D~l~\®k\tij, D"1] to Γ(GxG) defined by p sxp s. Therefore

we have psμ = μn(psxps) again by Lemma 21, and hence ps is a homomorphism
of G to GLΠ as group schemes. This means that (ps, id(tij9 βf)) is a rational

representation of G to GLβ/mS. The equality ps(X)=/is) follows easily from the
definition of ps. q. e. d.

Let (G, μ, ε, -y), 0, m and 0G be as above. Then it is easy to see that the
representation ps of G to GLβ/mS given in the above theorem is determined in-
dependently of the choice of the basis {ei9...>en} for 0/ms. We call ps the
adjoint representation of G of degree s and denote it by Ads. If we denote by
πss, the canonical homomorphism of &/ms to 0/ms/, we see easily

for any closed point x in G and any element v in Θjms.

PROPOSITION 16. Let G, 09m.and Ads fee as afcoi β. Lei {el9...9en} be
a basis for 0/ms over k and identify GLn = Spec (k[ti 19...9 tnn, D"1]) with GLojmS

by id(tίj9 et). Then iff(

e

s} and atjte (l<ij<n) are as in Lemma 20, the §(G)-
structure of Φ/ms attached to Ads is given by the matrix (<x, aijte>) for any
element x in §(G), identifying Mn(k) with Endfe(0/m5) with respect to {et}.
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PROOF. By the definition in §5 the §(G)-structure of &/ms attached to Ads

is given by the matrix (<Ads*(X), f/;>) for any element x in §(G), where Adss|e

is the tangential homomorphism of §(G) to §(GLΠ) defined by Ads. Since Adsslί

is the transpose of the comorphism Ad* of (9GLnte to 0Gte defined by Ads, we see

(x), ttj> = <x, Ad*(tu)> = <x, aijte> .

This means that our assertion is true. q. e. d.

PROPOSITION 17. Let the notations be as above. Let x be an element of
§(G) and put Δ(x) = Σ Xm®X(2)> where Δ is the comultiplication of §(G).

(JC)

Then if x' is an element of the dual space (0/ms)* of 0/ms, we have the fallow-
ings:

(0 If c is the antipode o/§(G), Zx(i)*'c(*(2)) ί5 contained in (0/ms)*.
(*)

(U) <Σ*(l)*'Φr<2))» £i> = Σ<*> «ij,e> <*'> ^>
(x) J

PROOF. By the definition of φG, we see that the tangential homomorphism

φG* is given by μ*(μ*®lβ(C))(U(G)®U(G)®c)(lφ(G)®S1|l)(J® 1Φ(C)). This means

that φG*(x x j/)= Σ x(i)yc(x(2)) f°r any x and J in §(G). On the other hand since
(x}

the homomorphism f(

e

s' of Θl\ns to ^®fc(^/ms) is obtained naturally from the
comorphism φ% of Θ to 0eXe, the transpose φs of /^s) is the restriction of φGs|e to
(^®fc(^/ms))c = ̂ c®fc(^/ms)c = §(G)®(^/m5)*, whose image is contained in
(0/ms)c = (0/ms)*. Therefore we see the first assertion. As to the second we see

(x)

= <x®x'J(

e*\ei)>

= Σ<*> aijte> <x;, ej>. q.e.d.

THEOREM 6. Lei G be a group scheme over k, and let U and Wbe subspaces
of §(G) such that U^W. Then there exists a connected group subscheme H
of G satisfying the following conditions:
(0 If c and Δ are the antipode and the comultiplication of §(G) respectively,
Σ *(i)tMx(2)) is contained in W for any element x in the kernel ξ>(H)° of the
(*)

coidentίty of §(//), w/iere Λ(x)= Σ *(n®*(2)
(x)

(iί) If D is any Hopf sub algebra of ξ>(G) such that Σ ^n)^c(x(2))(^Wfor any
(x)

element x in the kernel D° of the coidentity of D with A(x)= Σ x(i)®x(2)» ^
(x)

is contained in §(//).

PROOF. Put Us = U n (^/ms)* and Ws= W n (^/ms)* for any positive integer
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s, where (0/rns)* is the dual space of (&/ms) and is identified naturally with a
subspace of £(G). Let Ts and Vs be the null spaces U£ and W± of Us and
Ws in &l\ns respectively. Then we see US=T$ and Ws= Kf. Now fix an s and
let {eί9...9 eΛ} be a basis for 0/ms over k such that the subsets {elv.., βj and
{eι,. , em} are bases for Ts and Vs respectively. If x is an element of §(G) with

) = Σ x(i)®*(2)» Σ *(i)*'c(*(2>) is contained in (0/ms)* for any element x' in

(0/ms)* by Prop. 17. Therefore Σ *(i)*'c(*(2)) is in Jf if and only if we have
(x)

< Σ*(iXc(*<2))> «ί>=0 /or 0<ι<m. From Prop. 17, (ii) and the equality
(x)

£?„ we see that Σ XdAΦ^))^ W; if and only if Σ <*»
(jc) 7 = / + l

tf;7>> <x', £,->=() for any x' in L/s and 1 </<m, using the notations in Prop. 17.
Since the set of the vectors {(<*', ei + ί>9...9 <x', en>)\x' e £/s} coincides with
the full space kn~l as seen easily, the last condition is equivalent to <x, aijte> = 0
for !</<m and / + l < y < n , i.e., (<x, α0>>)eTr(?/mS(Fs, Ts), identifying
Mn(k) with Endk(d?/ιn5) with respect to {et }. This means by Prop. 16 that x
maps Vs into Γs considering (^/ms as an §(G)-module by Ads if and only if we have
Σ X(i)Usc(x(2))<=Ws with A(x)= Σ XmΦxm Therefore if Hs is the transporter
(x) (X)

TrG(Fs, Γs) of Vs to Ts in G given by Ads, we see by Th. 4 that §(#5) is the largest
Hopf subalgebra D of §(G) such that x maps Us to F ŝ for any element x in D°.
In other words §(//s) is the largest Hopf subalgebra D of H(G) satisfying

Σ ^(1)^(^(2)) ̂ ^s for any element x in D°. Now if we put H— I (Hs), we
(x) s^O
have §(//)= Π §(//s) as seen in §4. Since we have l/ = Wt/ s and W=\JWS9

s^O s s

we see easily from the above that §(//) is the largest Hopf subalgebra D of §(G)

satisfying Σ ^m^φtm)01 Wfor any x in D°. q.e.d.

We call the connected group subscheme H of G given in Th. 6 the trans-
porter of U to Win G by the adjoint representations and denote it by TrAd(£7, W).
In particular if U= W9 we put NAd(t/) = TrAd(t/, 17) and call it the normalizer of
U in G by the adjoint representations.

§ 7. Normalizes of Hopf subalgebras and group subschemes

Let (B9 m, ί, A, ε, c) be a cocommutative Hopf algebra over fc, and put

where 5 is the exchange of the factors of B®kB. Moreover if (A, λ, η, σ) is a for-
mal group over fc, we denote by φA the transpose of φ^A). If m is the maximal
ideal of A9 let A' be the G4®rn + m®y4)-adic completion of A®kA. Then φA

is a local homomorphism of Λ = $(^)* to Ά' = (ξ>(A)®kξ>(A))* as seen easily.
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Denoting by Hom^C^ C2) the set of coalgebra homomorphisms of a cocom-

mutative coalgebra CΊ to another C2, HomcoeI(Cl5 B) has a structure of a group
with the composition f*g = m(f®g)ACl for /and g in Homcββ^Cl5 B) where ACί

is the comultiplication of C\. Similarly if we denote by Homίoc(JR1, jR2) the set
of local fc-homomorphisms of a local ring Rί containing k to another R29

Homloc(A9 Rί) has a group structure using λ instead of m as seen easily.

PROPOSITION 18. Let D and E be Hopf subalgebras of a cocommutative
Hopf algebra B over k. Then the following s are equivalent:

( ί ) φβ(D x E) is contained in E.
(ii) Let C be any cocommutative coalgebra over k. Thenf*g*f~l is contained

in the subgroup Homcoαί(C, E) of the group Homcoαί(C, B) for any elements f in

HomCOfl/(C, D) and g in Homcoα/(C, £).

PROOF. (i)=>(ii). If Δc is the comultiplication of C, we see f*g*f~l

= φB(f®9^c and hence (f*g*f-ί)(x) = φB(f®9Wc(x)= Σ 0jβ(/(*<i))®0(*(2)))
(x)

for any x in C with Δc(x)= Σ x (i)®x (2)- Since /(x(1)) e D and 0(x(2)) e E, we see
(*)

(f*9*f~1)(x)sE by the assumption. This means that /*#*/" 1 is an element
ofHomCOflί(C,E).

(ίO=>(0 Put C = D®kE, and let pl and p2 be the projection of C to D and E
as coalgebras respectively. Then pl and p2

 are m Homcoα/(C, D) and Homcoαί(C,

£) respectively, and hence Pι*p2*p~ϊ1 ig in Homcoαί(C, £) by our assumption. On
the other hand we have (Pι®/?2)^c=lc Therefore if x and y are elements in

D and £ respectively, we see φB(x®y} = ΦB(Pι®P2)Δc(x®y) = (pι*p2*P~^)(x®y)
This means φB(x®y) e £. q. e. d.

PROPOSITION 19. Let A/ a and A/b be formal subgroups of a formal group

A over k. Then the followings are equivalent:

(ί) If p is the canonical homomorphism of Ά' to Ά'l(&®A + A®fyΆ', the kernel

°f PΦA contains b.
(ii) Let R be any complete local ring containing k. Then f*g*f~l is in
Hom/oc(A/b, K) for any elements f in Homίoc(^/α, R) and g in Homloc(A/b9 R).

This is the dual of Prop. 18 and the proof is the same as above. Therefore
we omit the proof.

PROPOSITION 20. Let H and K be group subschemes of a group scheme

G over k. Let iH and iκ be the canonical immersions of H and K into G re-
spectively. Then the followings are equivalent:

( 0 ΦG(ΪH x lκ) decomposes through K.
(ii) Let X be any algebraic scheme over k. Then /*#*/" A is contained in

Mor(JT, K)for any elements f in Mor(*, H) and g in Mor(X, K).



550 Hiroshi YANAGIHARA

PROOF. (i)=>(/0 Since we have f*g*f~l=φG(iHχiκ)(fx9)dx as seen
easily, we see /*#*/" * e Moτ(X, K) from the assumption (i).
(//)=>(/). Put X = HxK and let p{ and p2 be the projections of X to H and K

respectively. Then, using (pl xp2)Δx=lx, we see φG(iHχiκ)=:Pι*P2*PΊί

This means that φG(iH x iκ) decomposes through K by our assertion (ii). q. e. d.

If H and K are group subschemes of a group scheme G over k satisfying the

equivalent conditions in Prop. 20, we say that H normalizes K. Similarly we
say that a Hopf sub algebra D of a cocommutatίve Hopf algebra B over k (resp.
a formal subgroup A/a of a formal group A over k) normalizes another E (resp.

A/b) if they satisfy the equivalent conditions in Prop. 18 (resp. Prop. 19). If
there exists the largest group subscheme H of G such that H normalizes a group
subscheme K of G, we call H the normalizer of K in G and denote it by NG(K).
Similarly we define the normalizers Nβ(£) and Nx(y4/fa) of a Hopf subalgebra
E in B and a formal subgroup A/b in A respectively. We see easily that a group

subscheme H of G is normal in G if and only if the normalizer of H in G is G
itself. Similarly we call a Hopf subalgebra D of B and a formal subgroup A/a

of A normal if NB(D) = B and Nx(4/α) = A respectively.

PROPOSITION 21. If E is any Hopf subalgebra of a cocommutative Hopf

algebra B over k, there exists the normalizer Nβ(£) of E in B.

PROOF. Let •& be the family of Hopf subalgebras Dλ of B which normalize

E. Since & contains £, ίF is not empty. Now let D± and D2 be elements in F
and put D = J(Dl9 D2) Then D is also an element of F. In fact if m is the mul-
tiplication of B, we see easily φfi(m®lβ) = 0B(lβ®(/>jB) in the same way as the proof

of Lemma 18. Therefore we have ψβ(xx'®>0 = Φβ(*®ΦB(*'®y))e£ for x and
x' in Di+D2 and for y in E and hence we see easily that J(Dίy D2) normalizes E
repeating similar calculations. Moreover if ̂ 0 is a totally ordered subset of &
with respect to inclusion, J(Dλ)= \j Dλ belongs to & as seen easily. There-

Dλt&o
fore, by Zorn's lemma, there exists a maximal element D in & which is the largest
one in & from the above. q. e. d.

PROPOSITION 22. If A/b is a formal subgroup of a formal group A over fc,
there exists the normalizer NA(A/b) of A/b in A.

PROOF. Let E be the null space of b in B = £(A), and put Z) = Nβ(£). If
α is the null space of D in A = B* = ξ>(A)*9 A/ a is a formal subgroup of A as seen

easily. Then it is easy to see A/a = NA(A/b). q.e.d.

Now let G be a group scheme over fe, and let Θ and Θ' be the stalks of G
and G x G at the neutral points e and e x e respectively. Denote by φ% the co-

morphism of Θ to Θ' defined by φG. Then the following proposition gives a
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similar criterion to Th. 1 that a connected group subscheme H of G normalizes
another connected one K.

PROPOSITION 23. Let G9 Θ, Θ', H and K be as above. Denote by α and
b the defining ideals of H and K in Θ. Then H normalizes K if and only if
φ£(b) is contained in

PROOF. If H normalizes K9 φG(iH x iκ) decomposes through K. Therefore
it is easy to see φg(b)c:(α(χ)0 + 0(χ)b)0'. Conversely if we have (/>*(b)c
(a®Θ + Θ®fyθ', there exist an open subset U of K and an open subset V of
HxK such that φG iv is a morphism of V to U. Since H x K is irreducible, V
is dense in H x K. This means that φG(H x K) is contained in the closure of φG(V\
and hence we see φG(HxK)c:K as sets. In particular the subgroup H(k) of

G(k) normalizes the subgroup K(k). On the other hand let x be the generic point

of HxK and put y = φG(x). Denote by φ* the comorphism of the stalk Oy

of G at y to the stalk Θx of G x G at x defined by φG. Then we see φ%(b&y)
<^(a®0 + Θ®fy(9x, because Θx and Θy are localizations of Θ' and Θ respectively.

Let a and b be closed points of H and K respectively, and let Spec(fl) and Spec(S)

be aflfine neighborhoods of aba~l =φG(a x b) and axb in G and GxG respec-

tively such that φG(Spec(S))cιSpec(Λ). If q and q' are the defining ideals of K
and HxK in R and S respectively, they are primary. If p and p' are the prime
ideals of R and S corresponding to y and x respectively, we see Θx — S^,Θy = R^

bΘy=c\Rp and (cL®Φ + 0®b)0x=cι'Sp>. If we denote by φξ the comorphism
of R to S defined by φG, we have φj(q) c S n q'Sy = q' because of φJ(qΛ p) c q'Sp,.
This means that φG induces a morphism of (H x K) n Spec (S) to XnSρec(Λ),

and hence we see that φG(i'H x iκ) decomposes through K. q. e. d.

COROLLARY. Let G, H9 α, 0, Θ' ana φG be as above. Then H is a normal
group subscheme of G if and only if we have φ*(α)

PROPOSITION 24. If K is a connected group subscheme of a group scheme

G over k, Nφ(G)(§(X)) is an algebraic Hopf sub algebra of ξ>(G).

PROOF. Put £ = §(G), and let A and c be the comultiplication and the anti-

pode of B respectively. Then we have φB(x®y)= Σ*(i)J>φC(2)) f°r x anc* y
(x)

in B with A(x)= Σ *(i)®*(2) Therefore if we put H = NAd(ξ>(K)), we see

φB($(Hγ®ξ>(K))c:(ξ>(K) by Th. 6 and the definition of NAd(S(X)). If x is con-

tained in the image of the identity of B, we see φB(*®y) = xy for any y in B.
Therefore we see £(#) is contained in NB(§(X)). Conversely NB(§(K)) is con-

tained in S(H) by Th. 6, (ii). This means that NB(§(X)) coincides with §(#).

q.e.d.

PROPOSITION 25. Lei K be a connected group subscheme of a group
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scheme G over k. Then there exists the largest connected group subscheme H

of G which normalizes K. Moreover we have §(//) =

PROOF. Let 0, &', B9 A, c and φg be as above. If we put H = NAd(§CK)),
we have Nφ(G)(§(K)) == §(H) as seen in the proof of Prop. 24. Therefore we must

show that H is the largest connected group subscheme of G which normalizes

K. Now put l/s=§(X)n(^/ms)* and let Vs be the null space U± of Us in
0/ms, where m is the maximal ideal of φ. Then if b is the defining ideal of K

in 0, we have Ks = (b + ms)/m5. In fact if A is the m-adic completion of 0, A

is the dual space of £ = §(G). Since bA and mM are the null spaces of ξ>(K)
and (0/m5)* in A, we have b^ + mM = (§(£) n (0/m5)*)1, and hence the null
space of §(K) n (0/ms)* in θ coincides with b-fm s. This means that the null
space Vs of Us=ξ>(K) n(0/m5)* in 0/ms is (b + ms)/τns. Thus we see that

# = NAd(5(K)) is the intersection /(NG A d (Fs)) of the normalizers #S = NG Ad (Fs)
s^l ' s

for s> 1 as seen from the proof of Th. 6. The proof shows also that ξ>(Hs) is the

largest Hopf subalgebra D of §(G) such that Σ X(i)KsΦc(2))c: Vs f°r any element
(*)

x in D°. Now we show that H normalizes K. If αs and α are the defining ideals
of Hs and H in Θ respectively, we have α = VJαs as seen in §4. Let πs and π be

the natural homomorphisms of Θ to 0/αs and 0/α respectively. If /(s)=/^s) is

the homomorphism of 0/ms to 0®fc(0/ms) defined by φ% as given in Lemma 19,

we see that the homomorphism g given in Lemma 15 coincides with (πβ®10/TO )
/<•) for F=0/ms, ί/= FF= Vs and φ = Ads by Lemma 20, (i) and the definition of
Ads. Therefore we have (πs®lί,/ms)/s(Fs)c:(0/αιS)®k Vs by Lemma 15, and hence
(π®10/ms)/(s)(Fs)c=(0/α)®k Vs. Since we have φg(ms)c=(0®ms)0/ by Lemma 16,

this means φg(b)c(α®0 + 0®(b + ms))0' for any s>0 from the definition of

/(s>. Therefore we see </>£(>) c:(α®0 + 0®b)0', and hence H normalizes K by
Prop. 23. Next we show that H is the largest connected group subscheme of G
which normalizes K. If N is a connected group subscheme of G normalizing

K, we see that φG(iN x iκ) decomposes through K. Therefore we have φ^G)
(&(N)®$(K))c:ξ)(K), because the transpose of φφ(G) coincides with the con-
tinuous extension of φ% to the m-adic completion A of G. This means by Th. 6,
(ii) that £)C/V) is contained in §(NAd(§(K)) = §(#), and hence we see that N is a
group subscheme of H. q. e. d.

COROLLARY 1. Let G and K be as above. If Hl and H2 are connected

group subschemes of G normalizing K, then the join J(Hl9 //2) °f #ι and H2

normalizes K.

PROOF. If H is the largest connected group subscheme of G which nor-

malizes K9 Hi and H2 are group subschemes of H. Therefore J(H19 H2) is also
a group subscheme of H. But any connected group subscheme of H normalizes
K as seen easily from Prop. 23. q. e. d.
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COROLLARY 2. Let H and K be connected group subschemes of a group

scheme G over k. Then H normalizes K if and only if ξ>(H) normalizes

PROOF. If H normalizes X, §(H) normalizes §(X) as seen in the last part

of the proof of Prop. 25. Conversely if £(//) normalizes §(X), £(//) is a Hopf

subalgebra of NAd(§(X)). But we know by Prop. 25 that NAd(§(X)) corresponds

to the largest connected group subscheme H0 which normalizes X. Therefore

H is a group subscheme of H 0 and hence H normalizes K by Prop. 23. q. e. d.

PROPOSITION 26. Let G be a group scheme over k, and let D and E be

Hopf subalgebras 0/§(G) such that D normalizes E. Then the algebraic hull

of D normalizes E. In particular NΦ(G)(E) is algebraic.5^

PROOF. We see Nφ(G)(£) = §(NAd(£)) in the exactly same way as the proof

of Prop. 24 by replacing §(X) with E. Therefore D is a Hopf subalgebra of

§(NAd(£)). Since jtf(D) is the smallest algebraic Hopf subalgebra of §(G)

containing D, st(D) is a Hopf subalgebra of N§(G)(E) = §(NAd(£)). This means

that j/(D) normalizes E. q. e. d.

PROPOSITION 27. Let G, D and E be as above. Then if D normalizes

E, the algebraic hull jtf(U) of D normalizes that o/E.6>

PROOF. Let A be the formalization of G, and let A/ a and Λ/B be the formal

subgroups of A corresponding to D and E respectively. Let 0, &Ί φG and φ$

be as above, and put α = 0 n ά and b = 0 n E. Then j/(D) and j/(£) correspond

to A I a A and A/bA respectively as seen from the proof of Prop. 5. Since D

normalizes E, A/a normalizes ^4/B by duality. This means φA(fyc:(a<S)A + A

®B);4', where φA is the formal comorphism defined by φG from A to the com-

pletion A' of Θ' with respect to the maximal ideal. As in the proof of Prop. 4,

we may consider &®kθ, A®kA and Θ' as subrings of A'. Then since φξ is

the restriction of φA to Θ, </>*(&) is contained in (α®^ + A®$)Ά' n 0'. Now we

assume that D contains E, i.e., B contains α. In this case a similar argument

to the proof of Prop. 4 shows 0g(b)cι(α® & + Φ®fyΘ' as seen easily. There-

fore we see φA(bA)c:(aA®A + A®bA)Άf, and hence jtf(D) normalizes j/(£).

In general case we put D1=J(D9 E). Since D and E normalize E, it is easy to see

that Dl normalizes E. From the above case, ^(DJ normalizes ja/(E). Since

^(DJ contains D, s#(D) is contained in ^(Dj). This means that ja^(D) nor-

malizes J3/(E). q.e.d.

COROLLARY. Let G and D be as above. Then if D is a normal Hopf sub-

5) The fact that N^(G)(E) is algebraic was shown in (3.6.2) of [11].
6) If D and E are reduced Hopf subalgebras of $((?) attached to an affine algebraic group

G, this result is given in Prop. 6, Chap. IV in [4].
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algebra of ξ>(G\ so is jtf(D).

§8. Centralizers of Hopf subalgebras and group subschemas

In this section we shall show similar results on centralizers of Hopf sub-

algebras and group subschemes to those on normalizers of them treated in the

previous section. We use the same notations as before.

PROPOSITION 28. Let D and E be Hopf subalgebras of a cocommutative

Hopf algebra (B, m, i, A, ε, c) over k. Then the following s are equivalent:

( i ) xy = yx for any elements x in D and y in E.

( i i ) ε(x)y = φB(x ® y)for any elements x in D and y in E.

(ii)' φB(x ® y) = 0/or any elements x in D° = kerε n D and y in E.

(in) ε(y)x = φB(y ® x) for any elements x in D and y in E.
(in)' φB(y ® x) = 0 for any elements x in D and y in E° = kerε n E.
(iv) Let C be any cocommutative coalgebra over k. Then we have f*g = g*f

for any elements f in Homcoal(C, D) and g in HomCOfl/(C, E).

PROOF. (ίu)=>(0 Put C = D®k£ and let Δc be the comultiplication of the
coalgebra C. If pl and p2 are the projections of D®kE to D and E respectively

as coalgebras over /c, we have (pι®p2)Ac=lc

 anc* (p2®Pι)Ac coincides with the

exchange of the factors of C = D®kE. Since we have Pι*p2 = P2*Pι by our as-
sumption, we see for x in D and y in E

xy = m(x ®y) = m(pl ® p2)Ac(x ® y) = (Pi *P2) (

y) = m(y ®χ) = yx.

(i)=>(ii). If x is an element of D, we may put A(x)= X X(i)®X(2) with x(1) and
(x)

x(2) in D. Since we have ε(x)= Σ -Kmφcm)* we see Φβ(x®y)= Σ ^(D.yφtm)
(x) (x)

= Σ χ(i)c(X(2))y = ε(x)y for any element y in E.
(x)

(ii)=>(iv). Let z be an element of C with Ac(z)— Σ Z(i)®Z(2> Then we have
(2)

z= Σεc(z(i))z(2) and ε(/(^(i))) = εc(z(i)) for /in Homcoβ/(C, D), where εc is the
(z)

coidentity of C. Since we have f*g*f~1=φB(f®g)Δc for / in Homcoβ/(C, D)
and g in Homcoα/(C, E) as seen in the proof of Prop. 18, we see by (if)

= φB(f®g)Ac(z) =
(z)

2)) = Σ
(z) (z)

This means that the assertion (iv) is true.

Similarly we see that (i) is equivalent to (ίΐί). Since we have D = i(k)ξ&D°
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(resp. £=/(/c)©£°), we see easily that (//) (resp. (/if)) is equivalent to (π)' (resp.

(I/O'). q.e.d.

PROPOSITION 29. Let (A, λ, η, σ), A', φA9 A/ a, A/b and B = ξ>(A) be the

same as in Prop. 19. Let pl and ρ2 be the natural homomorphisms of Άf to

Ά'/(a®A + A®b)Ά' and A'/(b®A + A®a)Ά' respectively. Then the fallowings

are equivalent:

( i ) // S is the isomorphism of A'l(b®A + A®a)A' to A'l(a®A + A®b)Af given

naturally from the exchange of the factors of A®kA, we have p1λ = Sp2λ.

( i f ) The kernel of p±φA contains b, and the induced homomorphism of A/b

to Ά'/(a®A + A®b)Af by pιφA coincides with the one given naturally from the

homomorphism of A/b to A/a® A/b mapping any α in Ajb to l®α.

(Hi) The kernel of p2φA contains a, and the induced homomorphism of A/a

to A'/(b®A + A®a)A' by p2φA coincides with the one given naturally from the

homomorphism of A/a to A/b® A/a mapping any a in A/a to l®α.

(iv) Let R be any complete noetherian local ring containing k. Then we have

= g*ffor any elements f in Homloc(A/a, R) and g in Homloc(A/b9 R).

This is the dual of Prop. 28 and the proof is exactly similar to that of it.

Therefore we omit the proof.

PROPOSITION 30. Let (G, μ, ε, y), H, K, iH and iκ be the same as in Prop.

20. Then the- fallowing's are equivalent:

( i ) // σ is the isomorphism of H x K to K x H given by the exchange of the

factors, we have μ(iH x iκ)=μ(iκ x zH)σ

( i i ) Φ G ( Z H X Z K ) decomposes through K and it coincides with the projection pκ

ofHxKtoK.

(Hi) ΦG(ΪK x '//) decomposes through H and it coincides with the projection
p'HofKxH to H.

(iv) If X is any algebraic scheme over fc, we have f*g=g*f for any elements f

in Mor(X, H) and g in Mor(X, K).

PROOF. (ϊ)=>(iv). If σx is the exchange of the factors of X xX, we see l?y

(i)

f*9 =^OΉ/X

= μ(*κ x 7/ίW/x g)Λx = μ(iκ x iH

= μ(iκ x !iH)(ύ 'xf)Aχ = g*f

for any /in Mor(X, H) and g in Mor(X, K).

(iv)=>(i). A similar way to the verification of (ϊV)=>(f) in the proof of Prop. 28

can be applicable, but we omit the detail.
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(iϊ)=>(iv). If p2 is the projection of X x X to the second factor, we have

/*0*/-ι = φG(iH x iκ)(f x g)Ax = /?*(/ x 0)JX = gp2Δx = 0

for any /in Mor(X, H) and any g in Mor(X, X) by (π). This means that the

assertion (iv) is true.
(iv)=>(ii). PutX = HxK and let pH be the projection o f X = HxKtoH. Then

we see (pH x pκ)Ax= \x and hence by (iv)

This means that (if) is true.
Similarly we can see that (Hi) is equivalent to (iv). q. e. d.

If H and K are group subschemes of a group scheme G over k satisfying the
equivalent conditions in Prop. 30, we say that H and K centralize each other or
commute with each other. Similarly we say that Hopf subalgebras D and E
of a cocommutatiυe Hopf algebra B over k (resp. formal subgroups A/a and
A/b of a formal group A over k) centralize each other or commute with each
other, if they satisfy the equivalent conditions in Prop. 28 (resp. Prop. 29). If
there exists the largest group subscheme H of G commuting with K, we call H
the centralizer of K in G and denote it by CG(K). Similarly we define the cen-
tralizers CB(£) and CA(A/b) of £ in B and A/b in A respectively. In particular we
call CG(G) (resp. CB(B) and CA(A)) the center of G (resp. B and A).

PROPOSITION 31. // B and E are as above, there exists the centralizer
CB(E)ofE inB.

PROPOSITION 32. // A and A/b are as above, there exists the centralizer
CA(A/b)ofA/b in A.

These propositions are proved in similar ways to the proofs of Prop. 21 and
22, but we omit the detail.

Now we give a corresponding result to Prop. 23. Let G, H, K and φG be
as above and assume that H and K are connected. Let 0, Θ' and φ% be the same
as in § 12. If α and b are the defining ideals of H and K in Θ respectively, we
denote by p the canonical homomorphism of Θ' to &'/(a®& + 0®b)&f. More-
over let h be the comorphism of Θ to Θ' defined by the projection of G x G to
the second factor. Then we have the following

PROPOSITION 33. Let the notations be as above. Then the fallowings are
equivalent:
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(0 H commutes with K.

(ii) The kernel of pφ% contains b, and the induced homomorphism of @/b

to Θf/(a®0 + &®b)Θf given by pφ% coincides with the one obtained naturally
from h.

PROOF. (i)=>(ii). If iH and iκ are the canonical immersions of H and K
into G respectively, p is the comorphism of iH x iκ. This means that the kernel
of pφ% contains b, and that the induced homomorphism of 0/b to Θ'l(cL®Θ +
0®b)0' is given by h from Prop. 30, (ii).

(ίO=KO If the assertion (ii) is true, there exists an open neighborhood U of e x e
in G x G such that the restriction of φG(iH x iκ) to U Π (H x K) coincides with the

projection pκ of H x K to K. Then the induced morphism (φG(iH

 χ *κ))red °f
#redx ^red to Xred defined by φG(iH x iκ) is equal to O*)red defined by pκ,

because H x K is separated. In particular we have φG(iH x iκ)(x χ y) = Φo(x x )0
= y for any closed point x x y in H x K. Let Spec(JR) and Spec(S) be affine open
neighborhoods of xxy and y in G x G and G respectively such that φG(Spec(R))
c= Spec(5) and /?2(Spec(Λ))czSpec(S), where p2 is the projection of G x G to the
second factor. Let cκ and bs be the defining ideals of H x K and K in R and S

respectively. Since H normalizes K by Prop. 23, we see φ*(bs)^cR denoting by
φ* the comorphism of B to A defined by φG. We see easily that CR and bs are
primary and hence that rad(cΛ) = p and rad(bs) = q are prime ideals. If we put

Pι = P/cΛ and cfι:=(ί/ί)s» Wcκ)pι and (S/βs)qι are the stalks of HxK and X
at the generic points respectively. Then the homomorphisms $ and pκ of
(S/bs)qι to (RlcR\ί given naturally from φ* and the comorphism of pκ respec-
tively are equal to each other by our assumption. Therefore we see easily that the

comorphisms of S/bs to R/cR defined by φG(iHxiκ) and pκ are equal to each
other, because the set of the zero-divisors in R/cR is px. This means that φG(iH

x iκ) and pκ are the same morphism on (H x K) n Spec(Λ), and hence on H x K.

By Prop. 30, (ii), H centralizes K. q. e. d.

PROPOSITION 34. If K is a connected group subscheme of a group scheme

G over fe, C§(G)(§(X)) is an algebraic Hopf subalgebra o/§(G).

PROOF. If we put #=TrAd(£(K), 0), we see 0φ(G)(δ(/f)0(g)S(X))czO by
Th. 6 and the definition of TrAd (§(£), 0) in the same way as the proof of Prop. 24.

Therefore we see easily φ$(G)(x®y)=ε(x)y for any x in $(//) and y in ξ>(K), and
hence ξ>(H) is contained in Cφ(G)(§(X)) by Prop. 28, (ii). Conversely
is contained in ξ>(H) by Th. 6, (ii) and Prop. 28. This means that

coincides with §(#). q. e. d.

PROPOSITION 35. If K is a connected group subscheme of a group scheme
G over k, there exists the largest connected group subscheme H of G which
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centralizes K. Moreover we have §(#) = C$(G)(ξ)(K)).

The proof of this proposition can be given in a exactly similar way to the

proof of Prop. 25 using Prop. 34 and 33 instead of Prop. 24 and 23. We can see

that # = TrAd(SX^O, 0) satisfies our conditions, but we omit the detail.

COROLLARY 1. Let G and K be as above. If H} and H2 are connected

group subschemes of G centralizing K, then the join J(HΪ9 H2) also centralizes

K.

COROLLARY 2. Let H and K be connected group subschemes of a group

scheme G over k. Then H commutes with K if and only if ξ>(H) commutes with

§(£)• In particular a connected group scheme G is commutative if and only

if ξ>(G) is commutative.

The proofs of these corollaries are similar to those of Cor. 1 and 2 to Prop. 25

and hence we omit th^em.

PROPOSITION 36. Let G be a group scheme over k, and let D and E be Hopf

subalgebras of §(G). Then if D commutes with E, the algebraic hull jtf(D)

of D commutes with that of E. In particular C§(ά)(E) is algebraic.lr

PROOF. Let the notations be the same as those in the proof of Prop, 27.

Then since D commutes with E, A/a commutes with A/B. In particular A/a

normalizes A /E. Therefore we have 0£(b)c:(a®0 + 0®b)<0' as seen in the

proof of Prop. 27. Moreover we see easily (α® A+>4®E) n 0' = (α®0 +

0®b)0', and hence we see from Prop. 29, (ii) that the condition (ii) of Prop. 33

is satisfied. Therefore we see that A/aA commutes with A/bA. In other words

sέ(D) commutes with j/(£). The last assertion follows from the above easily by

the definition of C£(G)(£). q.e.d.

§ 9. Commutators of Hopf subalgebras and group subschemes

Let (G, μ, ε, y) be a group scheme over k. If we denote by μ4 the morphisni

μ(μ x lc)(μ x 1G x 1G) of G x G x G x G to G, we put

ΨG = μΛlc x S x IG)(!G x J x IG x 7)(^GX ^G)»

where S is the exchange of the factors of Gx G. Similarly if (B, m, "i, A\ ε, c)

is a cocommutative Hopf algebra over fc, we put

® c)(A ® A),..

where m4 and σ are the multiplication of£®β®β®βto B and the exchange of

7) The fact that Cfc^ίE) is algebraic was shown in (3.6.2) of [11].
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the factors of B®kB respectively. If (A, λ, η, σ) is a formal group over 7c, we
define ψA as the transpose of ψ$(A) which is a /c-linear continuous homomorphism
of A to the (m®y4 f^(χ)m)-adic completion Άr of A®kA where m is the maximal
ideal of A. Moreover let φG, φB and φA be the same as in previous sections.

PROPOSITION 37. // D, E and F are Hopf subalgebras of a cocommuta-
tive Hopf algebra (B, m, i, A 9 ε, c) over k, the fallowings are equivalent:
(i) φB(D®E)c:F.
( i i ) If C is any cocommutative coalgebra over k, [/, g~]— /*<7*/~1*#~1 is in
Homcoαί(C, F)/<?r any f in Homcoα/(C, D) and any g in Homcoal(C9 E).
(Hi) Let ι'D, ί£ and iD be the natural injections of D, E and F into B respectively
and let pE be the projection of D®kE to E as coalgebras. Then there exists an

element h in Homcoal(D®E, F) satisfying φB(^D®^ = (h

PROOF. (0=>(π') .If Δcis the comultiplication of C, we have Δg = (g®g)Δc

for any g in Homcσαί(C, B). Therefore we see by the ooassociativity of Ac

c = m4(lB ® σ ® 1B) (lβ ® c ® \B ® c) (Δ

= m(φB®c)(f®g®g)(\c®Δc}Δc

eg) (Δc ® \C)ΔC

since we have φB(f®9)^c=:f*d*f~ί an^ c9 — 9~{ In particular we have

[Λ^](^) = <Aβ(/(8>^cW= Σ Ψ#f(X(.ι ))®0(x(2)ΐ) for any x in C with ^c(x) =
(x)

Σ x(1)®x(2). This means that [/, g~\ is in Homcoαί(C, F) if f and g are in
(x)

HomdoαΓ(C, D) and Homct?flί(C, £) respectively.
(ιi}=>(f). Put C = D®E, and let pD and p£ be the projections of C to D and £

respectively. Then we see easily (pD(χ)jp£)2Jc=lc, and hence ^β(iί,®ί£)=ψβ(ί/>pD

®'iEJp£)4c*=-[ίD'/7/), Ϊ^PE]. This means ψB(D®E)dF by the assertion (ii).

(r/)=>(ίίΐ). We see easily ΦB^D®^^ {.^DPΰ^ ^ΈPE\^EPE) using the same notations

as above, because we have φB^D^iE^-Φ^DPD^iEPE^c^^DPD^^PE^DPD)'^
Therefore the assertion (Hi) follows from (π)
(iii)=>(ii). If /and g are in Homcαβί(C, D) and Homcoαί(C, E) respectively, we

see by (Hi)

f*g*f-ι = φB(iD ® ί£)(/® g)Ac = ((iFh)*(iEpE))(f® Q)*C

= (ίFh(f® 9}Ac}*((iEpE)(f® g)Δc) = (iFh(f®g)Ac)*g.

Therefore [/, g-] = iFh(f®g)Ac is in Homroαί(C, F). q. e. d.

PROPOSITION 38. Let (B, m, /, - A9 ε, c), D, E and ψB be as above. Then
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there exists the smallest Hopf subalgebra F of B containing \j/B(D®kE).

PROOF. Since B is cocommutative, A and c are coalgebra homomorphisms
as seen easily. Therefore ψB is also a coalgebra homomorphism and hence

ψB(D®E) is a subcoalgebra of B. Moreover we see cψB(D®E) = ψB(c(D)®c(E))

= \I/B(D®E). Then it is easy to see that the subalgebra F of B generated by

\I/B(D®E) is a Hopf subalgebra, and so F is the smallest Hopf subalgebra of B

containing \I/B(D®E). q. e. d.

Dualizing the above propositions, we have the following results on formal

groups.

PROPOSITION 39. // A/a, A/b and A/c are formal subgroups of a formal
group A over k, the followings are equivalent:

( i ) ^x(0 <= (α ® A + A ® V)A'.
(ii) Let R be any noetherian complete local ring containing k, and let f and g
be elements of Homloc(A/a, R) and Homloc(A/b, R) respectively, where we de-
note by HomZoc(5, R) the set of all local k-homomorphisms of a local ring S

to R. Then [/, 0Q = /*0*/-1*<r1 is in Homloc(A/c, R).
(Hi) Let p be the natural homomorphism of A' to A'/(a®A + A<S)V)A' and let
pB and pc be those of A to A/b and A/c respectively. Let iB be the natural

homomorphism of A/b to Ά'/(a®A+A®b)Ά' given by the injection of A to

A®kA mapping a to I®a. Then we have p0χ = (ftpc)*(ίbPb) for some h in
Homloc(A/c,R).

PROPOSITION 40. Let A, A/a, A/b, A' and ψA be as above. Then there
exists the smallest formal subgroup A/c of A satisfying ι^(c)c=(α®,4 + ,4®b).4'.

Let D and E be Hopf subalgebras of a cocommutative Hopf algebra B over
k. Then we denote by [D, E} the Hopf subalgebra F obtained in Prop. 38 and
call it the commutator of D and E. We see easily [D, £] = [£, D]. If A/a and
A/b are formal subgroups of a formal group A over fc, we can define similarly
the commutator [A/α, A\M\ of A/a and A/b from Prop. 40. As for commutators
of group subschemes we have the following

PROPOSITION 41. Let H, K and L be group subschemes of a group scheme
G over k, and let iH, iκ and iL be the natural immersions of H, K and L into G

respectively. Then the following s are equivalent:

( i ) ΨG(ΪH x **) decomposes through L.
(ii) Let X be any algebraic scheme over k, and let f and g be elements of

Mor(X,H) and Moτ(X, K) respectively. Then [/, 0]=/*0*/-1*0Γ1 is in
Moτ(X, L).

(iiί) There exists an element h in Mor(H x K, L) satisfying ΦQ^H'^^K) —
(iLh)*(iκpκ), where pκ is the projection of H x K to K.
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This is a group scheme version of Prop. 37 and the proof is exactly similar
to that of Prop. 37. Therefore we omit the detail.

THEOREM 7. Let (G, μ, ε, y) be a group scheme over k and let D and E
be algebraic Hopf subalgebras of §(G). Then the commutator [D, E~\ is also
algebraic.

PROOF. Let φ and Θn be the stalks of G at e and Gx x G (n times)
a.tex xe respectively as in §4, and let An the comorphism of Φ — Φ^ to Θn

defined by the multiplication μn of Gx ••• x G to G for n>2. Moreover let H
and K be connected group subschemes of G with the defining ideals α and b in
Φ respectively such that D = ξ>(H) and E = ξ>(K). If ψ* is the comorphism of
Φ to Θ2 defined by ψG9 we put cί=\l/*-ί((a®@ + &®b)&2) and c2 = \l/*~1((b®Θ
+ 0®α)02) Putting jB = {(ίlv.., iB)|//=1 or 2, n>2}, we denote by bίr..ίn the
ideal J^H^Θ^Θ Θ^ + + ̂ O Θ^ΘCiJ^) of Φ for any (i1?...,in) in E.
Since the zero ideal of ^/αAl® ®^/αAs with aλj — a or b is a primary ideal as
seen in the proof of Lemma 11, we see easily the zero ideal of 02/

c'iι® " ®^2/c«n

is also primary, where t'is = (Gi®Φ + Φ®V)Φ2 or (b®0 + 0®α)02 according to
ij = l or 2. Since 0/c^®---®^/^ is isomorphic to a subring of 02/

cίι®" ®02/
c5n, the zero ideal of 0/c^®---®0/c ίn is primary, i.e., c f l®0® ®tfH h0®
®0®cίn is a primary ideal of 0® ®0 (n times). Therefore we can apply
Lemma 10 and the same argument as the proof of Lemma 11 shows the existence
of an element OΊ,. »7TO) *n £ such that b/Γ..;m is contained in bίr.ίn for any
(ϊ lv.., in) in E. Put b = b,v..jm. Replacing atj and c with ctv and b respectively in
the proof of Th. 2, we see J2(^)c:(ϊ)®^ + ̂ ®^)^2 OΏ the other hand we see
easily yψG = ψGS, where S is the exchange of the factors of G x G, and hence we

have y*(c1) = c2 and y*(c2) = c1. This means y*~1(^iι-in)
 = ̂ ίή iί w^ 0 = ^ ^OΓ

ij = 2 and i} = 2 for ij = ί. Then a similar argument to the proof of Th. 2 gives
y*(b) = b. Therefore by Th. 1 b is the defining ideal of a connected group sub-
scheme L of G in Θ.

Now if we put c}1...</m = (cj1®d?® ®^H h^® ®^®cjm)^m, Δm gives

an injection of 0/b into ^m/cjr vm as seen easϋy Therefore the transpose J* of
Λm maps the continuous dual coalgebra Ch...jm of @lt'j...jm onto the dual coalgebra
§(L)of0/b. Since we see the homomorphism \I/B of B®kB to 5 = §(G) is the
restriction to B®kB of the transpose of the comorphism ^*, we see easily, from
Lemma 12 and the definition of b, that $(L) is contained in [§(#),
= [£>, £]. On the other hand we see bcq n c2 by Lemma 10, and hence
contains [§(//), §(X)] = [D, E] as seen easily from Lemma 12 and the definitions
of q and c2. This means §(L) = [D, E] and hence [D, £] is algebraic. q.e.d.

Let H and X be connected group subschemes of a group scheme G over /c.
Then we denote by [H, K] the connected group subscheme L of G satisfying
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= [§(#), $(£)], and we call [#,.-£]• f Λ e commutator of H and K. In

particular if H = K, we call [//,#] the commutator of H. It is easy to see from

the proof of Th. 7 that [//, X] is reduced if #and K are so. More generally we

can see also that exp[H, K] < Max (exp //, explC) in the case of a positive char-

acteristic.

PROPOSITION 42. Lei G, // and K fee as above. Then [//, K] is the small-

est group subscheme L of G such that H, K and L satisfy the equivalent condi-

tions in Proposition 41.

PROOF. Put L=[#, K] and let the notations be as those in the proof of

Th. 7. Then q contains b = bjl...jm by Lemma 10. Since q is a primary ideal

of 0., there exists a unique irreducible closed subscheme X of G whose stalk at e

is 0/q. On the other hand HxK is the unique irreducible closed subscheme of

G x G whose stalk a t . e x e is 02/(α®0 + 0®b)02

 and C j _ is the inverse image of

(α®0 + 0®b)02 by ι/f*. Then we can see easily that the morphism ψG(ίH

χiκ)

decomposes through X. Since L is the unique irreducible closed subscheme of

G having the stalk 0/b at e, we see X is a subscheme of L. Therefore ψG(iH x iχ)

decomposes through L. Now let L 'be a group subscheme of G satisfying the

equivalent conditions in Prop. 41 . Then we see easily §(Lr) =3 ̂ H(G)(£(//)® §(K)),

and hence we have §(L') =>[§(//), §(X)] = §(L). This means that Lis a group

subscheme of I/ . q.e.d.

Now we need some results on relations between normal Hopf subalgebras

and Hopf quotient algebras of a cocommutative Hopf algebra (B, m, i, A, ε, c)

over fc. First we have the following

LEMMA 22. If D is a normal Hopf subalgebra of B, we have BD° = D°B

with D° = D n (kerε). In particular BD° is a Hopf ideal of B.

PROOF. Let px and p2 be the projections of B®kD to B and D as coalgebras

respectively. Then there exist σ and τ in Homcoαί(β®fcD, D) satisfying Pι*p2

= σ*pl and Jp2*Pι—Pι*τ by the normality of D. In other words if A' is the co-

multiplication of 5®fcD, we have m^!®^)^' — ̂ ^®^!) '̂ and w(p2®Pι)^'
= m(p1®τ)-d/. Let x and y be elements of B and D° respectively satisfying

^W= Σ*(i)®*(2) and A(y)= Σ J(i)® Jm- since we

(*) (y)
and Σ ε(> ;2)j ;i = };, wesee

.= • m(x ® j;) = m(p\ ® pJ)A'(x ® j) = m(σ

= m(σ®p1)(

= Σ σ(x(1)

.
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Since y is in D°, we see easily that σ(x(1)®j) is also in D°, and hence the right hand

side of the above equality is in D°B. Similarly we see yx= Σ*(i)τCx(2)®.);)e BD°.
(x)

Therefore we have BD° = D°B. In particular BD° is a two sided ideal of B. Now

since D° is a coideal of D, we may assume that one of y(1) and y(2} in A(y)= Σ y(1)
(y)

®y(2) belongs to D°. Then we have Δ(xy) = Δ(x)Δ(y) = ( Σ *(i)®x(2))( Σ >Yi)
(*) (y)

:®Λ2)) = Σ ^(i));(i)®Λ:(2)>;(2)» and hence /d(xy) is contained in BD°®B + B
(χ),(y)

®BD°. Therefore BD° is a coideal of B. Moreover we see c(BD°) = c(D°)c(£)

= £>°£ = £D°. This means that BD° is a Hopf ideal of B. q. e. d.

If D is a normal Hopf subalgebra of a cocommutative Hopf algebra B over
fc, B/BD° is a Hopf quotient algebra of B. We call it ί/ie Hopf quotient algebra
of B by D. We denote it by B/D. If pD is the natural homomorphism of B to

B/D = B/BD°, pD is a surjective Hopf algebra homomorphism.

LEMMA 23. Let C and C be cocommutative coalgebras over k, and let f

be a surjective coalgebra homomorphism of C to C'. Then if C is colocal, so

isC.

PROOF. First assume that C is of finite dimension. Then the dual algebra

C* of C is an artinian local ring containing k. Then transpose/* of/ is an injec-

tive /c-algebra homomorphism and C* may be considered as a finite C"*-module.
Therefore C'* is also an artinian local ring and hence C' is colocal. In general

case if C is not colocal, there exists two minimal subcoalgebras D± and D2 of C".
Let X i and x2 be non-zero elements of D± and D2 respectively, and let y^ and y2

be elements of C such that f ( y ί ) = xl and/(y2) = ̂ 2 Then there is a finite di-
mensional subcoalgebra D of C containing y± and y2 as well known. Then/(D)
is a subcoalgebra of C containing X j and x2, and hence/(D) contains Di and D2.

However/(D) is colocal as seen in the above, because D is of finite dimension.
This is a contradiction. q. e. d.

LEMMA 24. Let B be a cocommutative Hopf algebra of finite dimension

over k, and let D be a normal Hopf subalgebra of B. Then D is the h-kernel of
the canonical homomorphism pD of B to B/D.

This is Lemma 16.0.3 in [10], and we omit the proof.

PROPOSITION 43. Let B be the Hopf algebra ξ>(A) attached to a formal

group A over k. If D is a normal Hopf subalgebra of B, the h-kernel of the
canonical homomorphism pD of B to B/D is D.

PROOF. First assume that the characteristic of k is p > 0. Let m be the maxi-
mal ideal of A and denote by m(rt) the ideal of A generated by the elements apn

with a in m. Then we see easily A/m ( M ) is a formal subgroup of A. Put Bn
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00

= §(y4/m(π)) and consider it as a Hopf subalgebra of B. Since r\ m(π) = 0,
«=ι

00

we see 5= \j Bn. Moreover Bn has a finite dimension over k for any n, because
n=l

m ( w ) is an m-primary ideal. Let Dt be the intersection of D and Bt for each i.

Then DI is a Hopf subalgebra of Bi and it is easy to see that Df is normal in Bt.

If Pi is the canonical homomorphism of Bt to BJDi9 we see ft-kerp^Dj by Lemma

24. Now let £ be the /i-kernel of ρD. Then since pD(D) = kaB/D9 E contains

D. Put E^EnBi. Since D=\jDi9 we see D°=w£? and hence BD°
i=l i=l

= \J BiD*. On the other hand we see Eak®BDc from pD(E) = /c, where we
i=l

identify fc with the image of /c by the identity of B. Since dim fc£ f< oo, it is easily

seen that each Et is contained in k®BjD°j for some j depending on ί. Therefore

EI is contained in DJ9 because Dj = Λ-kerpy is the largest Hopf subalgebra of Bj

contained in k®BjD° . This means D^Dj z>Ef, and hence D contains £= V £f.

In other words D = E is the /i-kernel of pD.

Next assume that the characteristic of k is zero. If E is the /i-kernel of p ,̂

we see £=>/) as above. Now J3, D and £ are reduced Hopf algebras. Let

{/!,..., /„} be a basis of the space £(B) of primitive elements of B over k such that

{/Γ,..., /„} and {/s,..., /„} are bases for £(£) and £(D) over fe respectively. If we put

'ίί) = fi/ί!» w^ see Ui ί ) l ί>0} is a sequence of divided powers of / f for each i.

Then {/(

1

Cl) /ίt

e")k ί>0} and {/ίes) /^")ki>0} are bases for β and D over
fe respectively by Th. 3 in [9]. Then it is easy to see that {l(

s

es}~'l(

n

en)\ei>Q,

es+es+1-\ ----- \-en>0} is a basis for D° over k. Since D° is a two sided ideal of

D, we see easily that S = {/(

1

eι) /ίes) /ie»)|^>0, e,+eβ+1 + + ̂ M>0} is a
basis for £D° over k. If £ ̂  D, we have r < s. On the other hand E° is contained

in BD°, because E^k®BD°. In particular /r = /i1} is in J5D°. But this is im-

possible, because {l(

r

ί}} (1 S is linearly independent over k. Therefore we have

E = D. q.e.d.

COROLLARY. Let A, B = ξ>(A) and D be as above, and let F by any cocom-

mutative coalgebra over k. Then the following sequence of groups ίs exact:

{1} _> HomCOfl,(F, D) -12+ HomCOfl/(F, B) ̂ > Homcoβ,(F, β/D),

where iD* and pD* are the group homomorphisms naturally obtained from iD

and pD respectively.

PROOF. Let / be an element of Homcota(F, D). Since /(F)cDc:/cφBD0,

we see PD(/(F)) = /C. This means that PJ>*ΪD*(/) is the neutral element of

HomCOflί(F, B/D). Conversely let g be an element of Homcofl/(F, B) such that

Po*(θ) is the neutral element of Homcoal(F9 B/D). Therefore ρD(g(F)) is equal
to /c, i.e., g(F) is contained in k@BD°. Since D is the maximal subcoalgebra of
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B contained in k®BD° by Prop. 43 and 2, g(F) is a subcoalgebra of D. This
means that g is in the image of ίD#. The injectivity of iD# is trivial. q. e. d.

PROPOSITION 44. Let B be the Hopf algebra ξ>(A) attached to a formal
group A over fe, and let D and E be Hopf subalgebras of B. Let 1D and iE be the
canonical injections of D and E into B respectively, and denote by pE the projec-
tion of D®kE to E as coalgebras. Then if F is a normal Hopf subalgebra of
B, the following s are equivalent:
(ί) [D,£]cF.

00

PROOF. (i)=>(H). From Prop. 37 there is an element h in Homcoal

F) such that ΦB(^D®^E) = (^F^)*(^EPE) Therefore we see by Cor. to Prop. 43

(iϊ)=>(i). From the equality (ii) PF(ΦB(^D®^E)*(^EPE)~I) *s the neutral element of
Homcoal(D®E, BjD). By Cor. to Prop. 43 there exists an element h in Homcoαί

(D®E, F) satisfying φB(iD®i^(iEPE)~^ = h^' This means [D, E]cF by Prop.
37. q.e.d.

PROPOSITION 45. Let (B, m, i, A, ε, c) be the Hopf algebra §(G) attached
to a group scheme G over fc. Let E and F be Hopf subalgebras of B, and assume
that F is normal in B. Then there exists the largest Hopf subalgebra D of B
such that [D, £]c=F and DcNB(£). Moreover this Hopf subalgebra D is
algebraic.

PROOF. Let notations be the same as in Prop. 44. If we put H = TrAd(E,
BF° Π E) and D = ξ>(H\ we see, by Th. 6, Σ x(1}Ec(x(2))c:BF0 (Ί E for any x in

(*>
D° with A(x)= Σ *m®X(2) Therefore we see easily for any x in D and y in E

(x)

(*) Σ *(i)Kθ(2)) - ε(x)y e BF° n E with 4(x) = Σ *(
(x) (x)

This means (φB—iEpE)(D®E)c:BF0 n £ and hence we see
Then we have [D, jEΓJcF by Prop. 44. The formula (*) shows also φB(x®y)eE
for any x in D and y in E, i. e., D is contained in NB(£). Now let D' be a Hopf
subalgebra of J5 satisfying [ZX, £] c F and D' e= Nβ(£). From Prop. 44 and [£>', E]

c=F, we see Σ ^(i>3;c(X(2))-εW3;e5^0 for any x in D' and y in £ with A(x) =
(x)

Σ*m®*(2) On the other hand we see Σ ^nyΦ^)) e £ f°Γ the above x and >>
(*) (x)

by Prop. 18 and D'c:NB(£), and hence we have Σ χ(i)yc(χ<2)) e ̂ °̂ Π E for any
(*)

x in D'° and y in E with Λ(x)= Σ *<i)®*<2) This means by Th. 6 that D' is a

Hopf subalgebra of D = §(#). * q. e. d.

COROLLARY. Let G, β, £ and F be as above. Then if a Hopf subalgebra
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D of B satisfies [D, E]cιF and D-cN^E), the algebraic hull jtf(D) of D satisfies

also |X(D), E] c F -and. j*(D) c Nβ(E).

LEMMA 25. Lef (#, m, i, J, ε, c) be a cocommutative Hopf algebra over

k, and let D and E be normal Hopf sub algebras of B. Then the commutator

[£>, E] of D and E is also normal in B.

PROOF. Let φB and φB be as before. Then we can see easily

(*) 0β(lβ®m) = m(ψβ®φβ)(lβ(χ)σ® 1B)(Λ ® 1B® 1B) and

(**) ΦB(!B ® ΦB) =

in a similar way to the proof of Lemma 18, where σ is the exchange of the factors
of B®kB. From (**) we see

φB(B®\lfB(D ® E)) c ψB(φB(B ® D) ® ψ^JB ® £)) .

Since D and E are normal in B, we have φB(B®D)<=D and φB(B®E)<=.E. There-
fore we see

(***) φB(B®ψB(D®EΪ)cιιl,B(D®E)^[_D,E~].

Now [D, £] is the subalgebra of B generated by ψB(D®E) as seen in the proof
of Prop. 38, we see by (*) and (***)

This means that [D, E] is normal in B. q. e. d.

THEOREM 8. Let B be the Hopf algebra $>(G) attached to a group scheme

G over k, and let D and E be Hopf subalgebras of B. Then we have £/([_D, £])
), j*(E)].. Moreover if Dc=NB(E) and EcNB(D), we have [D, E] =

PROOF. Since Dc=jaf(D) and Eajtf(E\ we see that [D, £] is contained in

O f(D), cί/(£)] which is algebraic by Th. 7. Therefore we see ι̂ ([D, E])c
. Let // and K be connected group subschemes of G such that

and j*(E) = §(K), and put Gl = J(H, K) and B! =§(Gj). If
we see j^(D)c=NB(£) by Prop. 26. Similarly we have ^(E) c Nβ(£) from E
cNB(E). On the other hand we see B1 = §(G1) = ̂ (δ(H), §(K)) = J(ĵ (D),
J3/(E)) by the definition of G! and Th. 2. Therefore we have B± c_Nβ(E). Simi-
larly if Ec=Nβ(D), we have ^^czN^D). This means that we may assume B

= NB(Z)) = Nβ(E) replacing G and β with G^ and J?i respectively to prove the last
assertion. Then F=[Z), E] is also normal in B by Lemma 25, and hence we see

), E]c=F = [D, E] by Cor. to Prop. 45. By Cor. to Prop. 27. j/(/>) is also
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normal in B. Therefore we see \_stf (E), s/(D)~\ c [E, j/(D)] replacing D and E

by E and A(D) in the above. This means [j*(D), J^(E)] = [X(E), (̂£>)] c [E,

(̂D)] = |X(D), E] c [D, E], and hence we have |X(D), J/(E)] = J*([P, E])
= [/),£]. q.e.d.

COROLLARY. Let G and B be as above. Then we have fallowings:

(ί) 7/D is flny Hopf subalgebra of B9 [D, D] is ^Mfl/ to [X(D), j/(D)] = j*([D,
D]). /n particular [D, D] is algebraic.8^
(iΐ) If E and F are normal Hopf sub algebras of B, [E, F~\ is equal to ĵ ([E, F])

= IX(E), J*(F)] and [£» Ή ύ algebraic.

§ 10. Lie algebras attached to group schemes

The aim of this section is to show some results 9) on Lie algebras attached
to group schemes over an algebraically closed field of characteristic zero using our
results on Hopf algebras attached to group schemes. Therefore we assume that

k is always an algebraically closed field of characteristic zero in the following.
Let G be a group scheme over k and let §(G) be the Hopf algebra attached to

G. Then we denote by fi(G) the space of primitive elements of §(G) and call it
the Lie algebra attached to G. As seen in §4 £(G) is a finite dimensional Lie
algebra over k whose Lie product [x, y] is defined by xy — yx = m(x®y) — m(y®x)
for any x and y in fi(G) where m is the multiplication of §(G). Moreover if m
is the maximal ideal of the stalk Θ of G at the neutral point, £(G) may be identified
with the dual space of m/m2 as seen easily. If H is a group subscheme of G, we
may identify 2(H) naturally with a Lie subalgebra of £(G). Now we have the
following

PROPOSITION 46. Let G be a group scheme over k. Then there is one to
one correspondence between the set of Hopf subalgebras D of §(G) and the set
of Lie subalgebras M o/£(G) such that M is the space Q(D) of primitive elements
ofD.

PROOF. Identifying k with its image in £)(G) by the identity i of §(G), we
may assume that §(G) contains k. If M is a Lie subalgebra of fi(G), we see
easily that k®M is a subcoalgebra of δ(G). Then the subalgebra D of §(G)
generated by k®M is a Hopf subalgebra of §(G) as seen easily. Since the space

£(D) of primitive elements of D is equal to D Π £(G), we see £(/))=> M, Let

{xlv , r] be a basis for M over k. Therefore we have

8) J. Dieudonne gave a proof of this result in the special case where G is an affine algebraic
group and D is reduced, and M. Takeuchi announced in the foot notes of [11] that he
obtained this result.

9) See § 7 in [1], and Th. 13, 14 and 15 in [2] should be referred.
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xfx; - XjXt = [>,., X;] = Σ ay*** with α/7Λ 6 k

and hence any monomial x^ Xi. (l</;<r) can be written as a linear combina-
tion of the monomials x / j x/,, withj^^^ ^^as seen easily by induction on
s. This means by Th. 3 in [9] that M coincides with £(£>), because {xf/s!|s>0}
is a sequence of divided powers of xf for each ί. Conversely if D is any Hopf
subalgebra of §(G), D is generated by fc0£(D) as a /c-algebra by Th. 3 in [9].
Therefore our assertion is true. q. e. d.

COROLLARY. Let Hί and H2 be connected group subschemes of a group
scheme G over k. Then if £(//!> = £(#2), we have Hί=H2.

PROOF. As seen in § 1, Hί is equal to H2 if and only if ^(H^ is equal to
ξ>(H2). But by Prop. 46 the last assertion is equivalent to £(#0 = £(#2).

q.e.d.

Let M! and M2 be Lie subalgebras of a Lie algebra L over k. Then there
exists the smallest Lie subalgebra M of L containing M1 and M2. We denote
M by J(Ml9 M2) and call it the join of Mt and M2. On the other hand if we put
I(Ml9 M2) = Mί ΠM2, /(M!, M2) is the largest Lie subalgebra of L contained
in M! and M2. We call /(Ml5 M2) the intersection of M! and M 2.

PROPOSITION 47. Lei Dx and D2 be Hopf subalgebras of the Hopf algebra
§(G) attached to a group scheme G over k. Then we have ./(£(£>!), £(D2))

15 D2))

PROOF. Since J(D1? D2) contains D! and Z)2, Q(J(DΪ9 D2)) contains
and fi(D2). Therefore we see 2(J(D19 D^JWDJ, £(/)2)). Let D; be the
Hopf subalgebra of §(G) such that fl(D') = /(£(I>ι), ^(^2))- Since fi(D') con-
tains £(!>!) and fi(/)2), we see D'^Di and D'=>D2 from the proof of Prop. 46.
Therefore D' contains J(Dί9 D2\ and hence £(D') = J(£(I>ι), £(£2)) contains
£(J(D15 D2)). This means £(J(D15 D2)) = J^D!), £Φ2)). Similarly we see
£(/(£>!, D2)) = /(£(D1), £(D2)) but we omit the detail. q. e. d.

Let G be a group scheme over k and let M be a Lie subalgebra of £(G).
Then we say that M is algebraic if M is equal to £(#) for a group subscheme H
of G. For an arbitrary M there exists the smallest algebraic Lie subalgebra jtf(M)
of £(G) containing M by Prop. 46 and 5. We call ĵ (M) ί/ie algebraic hull of
M. The following proposition is a direct consequence of Th. 2, Prop. 10 and
Prop. 47.

PROPOSITION 48. // Mr and M2 are algebraic Lie subalgebras of the
Lie algebra £(G) attached to a group scheme G over k, so are J(Mί9 M2) and
/(Λf lf M2).
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Now let V be a vector space of dimension n over k and let φ be a rational

representation of G to GLv = (GLn9 id(tij91?/)) where {i?,} is a basis for Kover k.

Then we have the following

LEMMA 26. // p and φ* are the canonical representation of §(GLn) to

Mn(k) with respect to {ttj} and the tangential homomorphism attached to φ

respectively, then ρφ*\%(G) is a Lie algebra homomorphism of fi(G) to Mn(k).

In particular p\^(GLn) gives an isomorphism between fl(GLn) and Mn(k) as Lie

algebras over k.

PROOF. Since it is easy to see that <£*|8(G) is a Lie algebra homomorphism

of £(G) to fi(GLn), it suffices to show that p|S(GLn) *s an isomorphism between

fl(GLπ) and Mn(k). If we put s/j = ί;; —<5;7 for 1 < i, j< n, {sfj } is a regular system

of parameters of the stalk of GLΠ at the neutral point. Then if {/αu...βnJ0j./^0}
is the canonical basis for §(GLW) over k with respect to {s^,..., snn}, we see easily

that {laιΓ"ann\
a\ι^ l~αrtn=l} is a basis for fl(GLπ) over k. Since we have

u
</o oYoo» o» suv>=δiuδjv> P maPs £(GLΠ) onto Mπ(/c). From dimfc £(GLΠ)
= dimfcMn(/c) = n2, p|8(GLn) gives an isomorphism between £(GLΠ) and Mπ(fe).

q.e.d.

PROPOSITION 49. Lei F, G, GLF = (GLn, id(tίj9 ί;f)), φ and p be as above,

and consider V as an 2(G)-module by pφ*. Then the following conditions on

a vector subspace Wof Vare equivalent:

( i) W is a G(k)-submodule of V.

(ii) W is an Z(G)-submodule of V.

(in) W is an ξ>(G)-submodule of V.

PROOF, (ΐ)o(ϊίί). Since G is reduced, we saw already this in Cor. to Prop.

15.

(iii)o(ii). Since §(G) is generated by fe0fi(G) as an algebra over k, W is an

§(G)-submodule of 7if and only if it is an L(G)-submodule of V. q.e.d.

Next we want to show some corresponding results on Lie subalgebras of fi(G)

to those on Hopf subalgebras of §(G) obtained in § § 7,8 and 9. For this purpose

we need the following lemmas.

LEMMA 27. Let §(G) = (β, m, i, A, ε, c) be the Hopf algebra attached to

a group scheme G over k. Let U and W be subspaces of B satisfying U=>W.

Then if D is a Hopf subalgebra of B9 the followings are equivalent:

(i) Σ ^(1)^(^(2)) w/ίΛ Δ(x)= Σ *(i)®*(2) is in Wfor any x in D° = D n (Kerε)
(*) (x)

and y in U.
(ii) xy — yx is in Wfor any x in £(D) and y in U.
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PROOF. (f)=>(π). Since we have 2d(x) = x®l + l®x and φc)=-x for x

in £(D), we see that xy-yx = Σ *<i)J^(*(2)) is in Pf for x in fi(D) and y in 17.
(x)

(//)=>(/). If x is in £(D), we have xy-yx= Σ ^o^Om) f°Γ any y in # as seen

in the above. Therefore we have Σ *(i).MX(2))e W for any x in £(£>) and y
(*)

in 17. Let x and x' be in D° and assume that Σχ(i)Uc(x(2))cW and

Σ x'(i)Uc(x'(2))cιW. Then we see Σ (**')(i)
 Uc ((xx'\2))cW with Λ(xx')

' '
= Σ (x*')(i)®(**')(2) I*1 fact 'et ΦB be the /c-linear map of £®fcβ to B given

(**')
in the beginning of §7. In the same way as the proof of Lemma 18 we see

φB(m®lB) = φB(lB®φB), and hence we have φB(xx'®y) = φB(x®φB(x'®y)) for y

in B. In particular if y is in 17, we see φB(xx'®y) = Σ (xx')(i)>;c((xx/)(2))e ̂
(**')

by our assumption. Since £(/)) generates D° as a /c-algebra by Th. 3 in [9], we
see that the assertion (i) is true if (ii) is so. q. e. d.

LEMMA 28. Let G, B9 D, U and W be as above and assume that U is a
Hopf subalgebra of B. Moreover putting W ° = W n (ker ε), assume that W°U
and UW° are contained in W. Then the fallowings are equivalent:

(0 Σ χ(i)yc(χ(2)) w / f Λ Δ(x)= Σ X(i)®*(2) is in W for any x in D° = D n (kerε)
(x) (x)

and y in U.

(ii) xy — yx is in W for any x in £(D) and y in fi(ί7).

PROOF. (i)=>(π). This is a direct consequence of Lemma 27.
(iί)=>(ί). Let x be in fi(D), and let y and z be in 17. Then we see xyz — yzx
= (χy — yx)z + y(xz — zx). If x^ — yx and xz — zx are in W, then they are in W°
as seen easily. Therefore we see that x(j z) — (yz)x is in W by our assumption.
Since 17° is generated by £(t7) as a /c-algebra, xy — yx is in P^for any x in £(D)
and any y in 17° from the assertion (ii). On the other hand if y is in /(/c), we have
xy — jx = 0. Therefore we see xy — yx— W for any x in £(D) and any y in U
= i(k)@U°, and hence the assertion follows from Lemma 27. q.e.d.

LEMMA 29. Let G, B, U and W be as in Lemma 27. Then there exists
a connected group subscheme H of G satisfying the fallowings:
(i) xy — yx is in Wfor any x in £(H) and any y in U.
(ii) If M is any Lie subalgebra of £(G) = fi(β) such that xy-yx is in Wfor
any x in M and any y in U9 then M is a Lie subalgebra of£(H),

PROOF. Put #=TrAd(l7, W). Then this is a direct consequence of Th. 6,
Prop. 46 and Lemma 27. q. e. d.

Let L be a Lie algebra over fc, and let Mv and M2 be Lie subalgebras of L.
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Then we say that Mv normalizes (resp. centralizes) M2, if we have [x, y~]eM2

(resp. [x, .y] = 0) for any x in Mγ and y in M2. If we put NL(M2) = {xeL|

[x, y]eM2 for any y in M2}, we see easily from the Jocobi identity for the Lie

product of L that NL(M2) is the largest Lie subalgebra of L normalizing M2.

We call NL(M2) the normalizer of M2 in L. If we have L = NL(M1), we say that

Ml is normal in L.10) Similarly if we put CL(M2) = {xeL|[x, y]=0 for any

y in M2}, we see that CL(M2) is the largest Lie subalgebra of L centralizing M2.

We call CL(M2) the centralizer of M2 in L.

PROPOSITION 50. Let G be a group scheme over fc, and let D and E be

Hopf subalgebras of the Hopf algebra §(G) attached to G. Then D normalizes

(resp. centralizes) E if and only if £(D) normalizes (resp. centralizes) £(£).

In particular we have £(N§(G)(E)) = NS(G)(£(£)) and

PROOF. If we put U=W=E in Lemma 28, we see easily that &(D)<=:

NS(G)(£(E)) if and only if Dc:Nφ(G)(£). Similarly if we put U = E and JF=0,

we see that £(D)cC8(G)(£(£)) if and only if D c Cφ(G)(E) by Prop. 28, (ii)'. The

last assertion follows easily from the above. q.e.d.

COROLLARY. Let K be a connected group subscheme of a group scheme G

over k. Then NS(G)(£(X)) and CS(G)(fl(£)) are algebraic.

This is a direct consequence of Prop. 25, Prop. 35 and Prop. 50.

Similarly we can give the results on Lie subalgebras of the Lie algebra £(G)

attached to a group scheme G over k corresponding to Cor. 2 to Prop. 25, Prop.

26, Prop. 27, Cor. to Prop. 27, Cor 2 to Prop. 35, and Prop. 36 by replacing

Hopf subalgebras with Lie subalgebras, but we omit the detail.

Next we shall give some results on commutators of Lie subalgebras of £(G)

corresponding to § 9.

LEMMA 30. Let M± and M2 be Lie subalgebras of a Lie algebra L over k

such that M! c=NL(M2) and M2c=NL(M1). Then the subspace M of L generated

by [x, j] for x in Mi and y in M2 is a Lie subalgebra of L.

PROOF. Since we have Ml c NL(M2) and M2 c NL(M1), we see M c Ml Π M2.

Therefore [x, y\ is contained in M for any x and y in M, and hence M is a

Lie subalgebra of L. q. e. d.

In the following we denote by [F1? V2~\ the subspace of a Lie algebra L over

k generated by [x, y"] for x in a subspace Vί and y in another one V2. We call

10) In the theory of Lie algebras a normal Lie subalgebra of a Lie algebra L is called an

ideal of L.



572 Hiroshi YANAGIHARA

[Vί9 F2] the commutator of Vl and V2.

PROPOSITION 51. Let D be a normal Hopf subalgebra of the Hopf algebra
B = ξ>(G) attached to a group scheme G over k. Then the sequence

0 — ̂  £(D) -î > £(£) -̂  £(£/£) — > 0

of Lie algebras is exact. In particular we have £(£>) = £(#) Π BD°9 where D°

is the kernel of the coidentity of D.

PROOF. Since the characteristic of k is zero, the proof of Prop. 14.11 shows
£(£)nB£° = £(/>). Since k®£(B) generates B as a fc-algebra, pD*(k®2(B))
= k®ρD*(£(B)) generates B/D and pD*(£CB)) is a Lie subalgebra of &(D/B). This
means, by Th. 3 in [9], pD*(£(J3)) = £(£//)), and our assertion is true as easily
seen. q. e. d.

PROPOSITION 52. Let M{ and M2 be Lie subalgebras of the Lie algebra
£(G) attached to a group scheme G over k. Then if M2 is normal in £(G),
there exists the largest Lie subalgebra M of £(G) such that MdNS(G)(M1) and
[M, Mj]cM2. Moreover M is algebraic.

PROOF. If D1 and D2 are the Hopf subalgebras of §(G) = B such that
= M! and £(D2) = M2, we put H = TrAd(D l5 BD°2 Γ) D^. Then by Lemma 28
and Th. 6 we see [£(#), £(D1)] = [S(H), M^dBD°2 Π Dt. Since £(G) contains
[£(#), fi(Di)], we see [£(//), MJcΛ^ by Prop. 51, and also [£(#), MJcA/!
from £(G)n/)1 = £(D1) = M1. Conversely if M is any Lie subalgebra of £(G)
satisfying McN^G^M^ and [M, MJcΛ^, let D be the Hopf subalgebra of
B = ξ>(G) such that £(D) = M. Then since we have [M, Mί']cιM1cιDί and
[M, MJcA^cBDS, we see from Lemma 28 and Th. 6 Dcξ>(H). Therefore
we see M = £(/)) c £(§(#)) = £(H). q. e. d.

COROLLARY. Let G, Mx and M2 be as above. Then if a Lie subalgebra
M of fi(G) satisfies [M, MJcM^ and MczNS(G)(M1), so does ί/ie algebraic
hull ^(M) of M.

THEOREM 9. Let H and K be connected group subschemes of a group
scheme G over k such that H normalizes K and that K normalizes H. Then we
have 2(ίH, Kl) = [£(#),

PROOF. By Cor. 2 to Prop. 25 and Prop. 50 we see £(#)c=NS(G)(£(X))
and £(K)cNS(G)(fi(#)), and hence [£(#), £(£)] is a Lie subalgebra of fi(G)
by Lemma 30. On the other hand we have S(J(#, X)) = ./(§(#), §(X)) by
Th. 2. Replacing G with J(H, K), we may assume that H and X are normal in
G. Then we see easily from the Jacobi identity for the Lie product of £(G) that
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[£(#), £(£)] is normal in fl(G). Let F be the Hopf subalgebra of B =
satisfying fi(F) = [£(#), £(£)] and put £ = £(£). Then if we put H^Ί
BF°Γ[E), we see tyHJ^^H) from the proof of Prop. 52, and hence
ID §(#). This means [£(H), £] = [£(#), £(£)] cF from the proof of Prop. 45.
Therefore we see £([§(#), £(£)]) c fl(F) = [£(# ), £(£)]. Now if < (̂0) is the
fc-linear map of §(G)®Λ§(G) to §(G) given in the beginning of §9, we see easily

*Aφ(G)(*®J;) = x);-.yx = [X y] for * and y in £(<?). Therefore we see £([§(#),
§(£)])=>[£(//), £(Φ] from the definition of the commutator of §(//) and
Since we have §([//, £]) = [§(#), §(£)] by Th. 7, we see [£(#), £(£)] =

q.e.d.

THEOREM 10. Let M1 and M2 be Lie subalgebras of the Lie algebra £(G)
attached to a group scheme G over k satisfying M1cNS(G)(M2) and M2c=

. Then we have [M^ M2]

The proof of this theorem can be given in an exactly similar way to that of
Th. 8 using Cor. to Prop. 52, Th. 9 and Prop. 48 instead of Cor. to Prop. 45,
Th. 7 and Th. 2, but we omit the detail.

COROLLARY. Let G and £(G) be as above. Then we have the following s:
(0 // M is any Lie subalgebra of £(G), [M, M] is equal to |X(M), sf(M)~\
= ̂ ([M, M]).
(ii) If Mί and M2 are normal Lie subalgebras o/£(G), [M1? M2] is equal to

l f M2]) = I
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