
HIROSHIMA MATH. J.
8 (1978), 515-544

Combinatorial File Organization Schemes
and their Experimental Evaluation

Hideto IKEDA

(Received May 20, 1978)

1. Introduction

In an information storage and retrieval system, the secondary indexes are
organized in order to retrieve pertinent records quickly from the master file.
For such purpose, a set of accession numbers of pertinent records, called a bucket,
is sometimes organized to each of the indexes. An inverted file organization
scheme of order one (abbreviated by IFSX) is a method of organizing these sets.
For an index specified by a query of order one, the accession numbers of perti-
nent records in the master file can be found quickly, because the corresponding
set of accession numbers is much smaller in size than the master file and is
organized in consecutive locations.

In order to answer the retrieval request for a query of order two, which
specifies two indexes simultaneously, in IFS1? it is necessary to execute an AND-
operation on two sets of accession numbers. Such an operation may sometimes
require a considerable amount of the computer time. If a set of accession numbers
of all records pertinent to each query of order two is prepared in advance, the
answer can be obtained more quickly. An inverted file organization scheme of
order two (abbreviated by IFS2) is a scheme obtained by a collection of such sets.
Such scheme might be effective in the retrieval of a query of order two. The
accession number of a record must be stored quite redundantly in a number of
storage locations. The scheme IFS2, therefore, has serious disadvantages in
space and time.

Several attempts have been done to reduce the disadvantages of IFS2.
Among others, the balanced file organization scheme of order two (abbreviated
by BFS2) by Abraham, Ghosh, and Ray-Chaudhuri [1], the new balanced file
organization scheme of order two (abbreviated by NBFS2) by Chow [6], and
our Hiroshima University balanced file organization scheme of order two (ab-
breviated by HUBFS2) by Yamamoto, Ikeda (the present author), Shige-eda,
Ushio and Hamada [17], have been proposed.

A generalized Hiroshima University balanced file organization scheme of
order two (abbreviated by GHUBFS2) proposed in our above mentioned paper
[17] is so designed that the queries of order one as well as order two can be
retrieved quickly. Not only it has, though theoretically, the least redundancy

516 Hideto IKEDA

among generalized balanced file organization schemes of order two but also it can

have the same redundancy with IFSi by an appropriate selection of parameters.

It is assumed in these schemes that each record is characterized by binary-

valued attributes. File organization schemes for the records with multiple-valued

attributes can be seen in several literatures (e.g., [2], [3], [4], [7], [18], [19] and

[20]). Furthermore, different kinds of file organization schemes having a

consecutive retrieval property have been considered in some literatures (cf. [8],

[9], [10], [Π] and [21]).

In this paper, we shall confine ourselves to the file organization schemes

for records with binary-valued attributes and consider GHUBFS 2 in detail by

giving its addressing function explicitly. The implementations of GHUBFS 2

and IFS! to an on-line document retrieval system which has been announced in

Ikeda [12] are also presented. This system is developed in order to evaluate

experimentally GHUBFS 2 and IFSX by comparing the execution times for re-

trieval of queries of order one as well as of order two and for storing given

bibliographic data in the system.

In Section 2, a combinatorial file organization scheme of order k is defined

formally in relation to the addressing function which corresponds each query of

order k to the address of its bucket. IFSi and IFS 2 are also defined there. In

Section 3, a balanced file organization scheme of order k (abbreviated by BFSk)

is defined, and addressing functions of BFS2, NBFS 2 and HUBFS 2 are discussed.

In Section 4, we give an explicit expression of an addressing function of

HUBFS 2 by showing more explicitly a claw-decomposition of a complete graph

(cf. [16]). In Section 5, a generalized balanced file organization scheme of

order k is defined formally, and GHUBFS 2 is also considered. By using the

addressing function of HUBFS 2 given in Theorem 2, we give an addressing

function of GHUBFS 2 explicitly in Theorem 3. The redundancy of a file or-

ganization scheme and the theoretical evaluation of the redundancy are discussed

in Section 6.

Finally in Section 7, a result of the experimental evaluation of GHUBFS 2

and IFSX by the growth of data will be given. The result suggests that GHUBFS 2

can answer retrieval requests for queries of order two much faster than IFSi and

can reduce the number of buckets organized for queries of order two in IFS 2 .

Although the space requirement of GHUBFS 2 is slightly larger than that of

IFS 1 ? the time requirement of GHUBFS 2 for storing is nearly as large as that of

IFS l 5 since the number of access to the buckets for storing a record can be reduced

to the same by an appropriate selection of parameters.

Combinatorial File Organization Schemes and their Experimental Evaluation 517

2. Definition of a combinatorial file organization scheme

In this section, the basic consideration on some concepts and notations

related to combinatorial file organization schemes will be treated. A familiar

scheme called an inverted file organization scheme (IFS, inventor unknown)

will also be summarized.

Let Ω be a collection of records, called a master file. Suppose that every

record ω of the file Ω has an identification, or an accession number, which is

denoted by aω. Suppose, furthermore, that every record ω e ώ is characterized

by I attributes A l 5 A2,.. , Af or equivalently by an /-dimensional 0-1 vector

X(ω) = (M 2 - δ |) 6 { 0 , 1}'

where ĉ takes 1 when ω has the ΐth attribute Af and takes 0 otherwise.

A canonical query of order k with respect to Ω is a retrieval request which

is specified by a set Qi^...^ of k attributes Afl, Aί2,..., A/k, where l<iί<i2<-'

<ϊ f e </. The set pίQ^...^) of records relevant to a canonical query Q i l i2... ik

of order k is defined by

nirΰ = i<oeΩ\X(ω) = (δ& δd, δh = δh = - = δik = 1}.

It is easy to show that

KQi.ir i*) = Ap(Q i v)
v = l

holds by definition. In the following, a canonical query of order k will be referred

to a query of order k or a kth order query.

In general, a retrieval request is to search every record whose characteristic

vector belongs to a given subset Δ of the space of all Z-dimensional nonzero

0-1 vectors.

Because the set {ω eΩ\X(ω) e J} is constructed from the sets p(Qf), i

= 1, 2,..., /, by the set-operations n , U and —, we have the following

LEMMA 1. // we can answer any query Q f of order one, i.e., if we can

search every record relevant to any Qi9 then we can also answer any retrieval

request.

In order to answer a retrieval request, the set of accession numbers of all

records relevant to the request is often organized in the computer storage. Such

a set of accession numbers is often called a secondary index. A combinatorial

file organization scheme is a method of organizing a collection of secondary

indexes with respect to a set of queries. Thus an essential part of a file organ-

518 Hideto IKEDA

ization scheme is to define an addressing function of the set of queries, in so far

as the intrastructure of secondary indexes is disregarded.

DEFINITION 1. A combinatorial file organization scheme of order k is

defined to be a function β from the set of all canonical queries of order k onto

the set of integers {1, 2,..., b}.

The set {1, 2,..., b} is sometimes referred to the address set and the function

β is referred to the addressing function of the scheme. The secondary index

Bί = iaω\ω e P(Q) f° r some Q e β~1(t)}

is called the ίth bucket for any t= 1, 2,..., b. The number t is called the address

or the bucket identification number of B,.

An inverted file organization scheme of order one (abbreviated by IFSj) is

a primitive type of combinatorial file organization scheme of order one.

DEFINITION 2. A file organization scheme of order one with I attributes

is an IFS 1 ? if its addressing function β is a one-to-one function from the set of

all queries of order one onto the address set {1, 2,..., I}, e.g., by j5(Qf) = ί.

Consider, for example, a file Ω which is composed of ten records ωί9 ω2,...,

ω 1 0 characterized by three attributes A l 9 A2 and A3. Figure 2.1 is an incidence

matrix of records vs attributes, that is, the mth column vector of the matrix

indicates the characteristic vector of a record ωm.

ωy ω2 ω 3 ω 4 ω5 ω6 ωΊ ω 8 ω9 ω 1 0

1 0

0 0

0 1

Ί
A,

A \

The buckets are

r 1

1

* 0

0

1

1

Bi

B 2

1

0

0

= {*!,

= {<*ι>

1

0

0

0

0

1

Figure

α 3 , α 4 , <

a

1

1

1

2.1

a69 al9

27},

1

1

0

1

0

1

a9

where am = aωm is the accession number of a record ωm.

If an IFSi is organized, the access to the ith bucket Bf is sufficient to answer

a query Q, of order one. If it is necessary to display the contents of relevant

Combinatorial File Organization Schemes and their Experimental Evaluation 519

records, they are obtained by accession numbers in the bucket.

For a query Q^ of order two, however, an AND-operation has to be per-

formed on two sets Bt and Bj. This operation may sometimes require a consider-

able amount of the computer time.

If every set of accession numbers of all records relevant to each query of

order two is prepared in advance, then the answer can be obtained more quickly.

Such a file organization scheme of order two is called an inverted file organization

scheme of order two (abbreviated by IFS2).

DEFINITION 3. A file organization scheme of order two with I attributes is

an IFS 2, if its addressing function β is a one-to-one function from the set {Qi7 | 1 <;

i<j<ϊ] of all queries of order two onto the address set {1, 2,..., /(/—l)/2}, e.g.,

Although IFS 2 might be effective in the retrieval of a query of order two,

it has serious disadvantages in the retrieval of a query of order one. Namely

for a query Q f of order one with respect to / attributes, it is necessary to perform

an OR-operation

J^IW U j^βiQφ (2.1)

Furthermore, when there is a record ω in Ω having a characteristic vector

(O OΪO ••()), then ω is included in p(Qf), but its accession number aω is not in-

cluded in the set (2.1). This indicates that it is not sufficient to construct the set

(2.1) for the retrieval of Q f.

Not only IFS 2 but also every file organization scheme of order two has this

incompleteness for the retrieval of a query of order one.

3. Balanced file organization schemes

DEFINITION 4. A file organization scheme of order k with I attributes and

b addresses is said to be balanced if the addressing function β satisfies

\β-Kt)\ = c, for every t = 1, 2,..., ί>,

where c is a positive integer and \S\ denotes the number of elements in a finite

set S.

It is easy to show that the constant c has to satisfy

C O - * (3.1)

and c is called the number of queries corresponding to a bucket. A balanced

520 Hideto IKEDA

file organization scheme of order k is abbreviated by BFSfc.

For example, an IFS t and an IFS 2 are balanced file organization schemes

w i t h c = l .

Now we give an example of BFSX with cΦ\. Assume that / is an integral

multiple of b, and consider a function β given by

β(Qd = CO' + c - l)/c]e{l, 2,..., b} for i = 1, 2,..., /,

where c—\\b and [p] denotes the largest integer not exceeding p. Then this

function β defines a BFS1 ? and

β'Kή = {Q(ί-i)c+i, Q (i -i)c+2-. . Qtc) for t = 1, 2,..., 6.

In the rest of this section, we shall define various file organization schemes

of order two by giving their addressing functions.

Abraham, Ghosh and Ray-Chaudhuri [1] have constructed a BFS2 by using

a finite projective geometry. Consider a finite projective geometry PG(N, s) of

JV-dimension based on the Galois field GF(s), where s = pn, p is a prime integer

and n is a positive integer. Associate each point P £(i = l, 2,..., /; l = sN + sN~1

H hs + 1) of PG(N, s) with an attribute At. Assign each line Lt in PG(iV, s)

to a number t in {1, 2,..., b) where b = (s N + 1 - l) (5 N - l) / (s 2 - l) (s - l) . Then

for a given query Q y of order two, there corresponds a unique line L, passing

through two points Pf and Pj, and we can define a function β by

« Q «) = t.

Since each line of PG(N, s) contains s + 1 points, we have

for all t in {1, 2,..., fo}, and hence β defines a BFS2.

They [1] have also constructed a BFS2 by using a finite Euclidean geometry.

Consider a finite Euclidean geometry EG(iV, s) of iV-dimension based on the

Galois field GF(s), where s = pn, p is a prime integer and n is a positive integer.

Associate each point with an attribute, and a query of order two can correspond

uniquely to a line. This correspondence defines an addressing function of a

BFS2 based on EG(iV, s).

More generally, such schemes can be also constructed by giving a balanced

incomplete block design (BIBD) (cf. Ray-chaudhuri [13] or Bose and Koch [4]).

Chow [6] proposed some BFS2 based on an ordering of the queries of order

two (abbreviated by NBFS 2 after Chow). He gave various addressing functions.

Some of them are given as follows:

β(Qu) = [{(i - 1)/ + J " ϊ(i - l)/2 + c - l}/c],

Combinatorial File Organization Schemes and their Experimental Evaluation 521

βXQij) = [{(j - 1)0 - 2)/2 + i + c - l}/c].

Furthermore, Yamamoto, Ikeda, Shige-eda, Ushio and Hamada [17] have

designed a different type of BFS2, called an HUBFS2. If we identify each attrib-

ute Aj with a vertex vb then each query Q υ of order two is identified with an edge

Eij connecting between vertices υt and Vj. A set B of queries of order two can,

therefore, be considered as a graph, which is called a graphical structure of B.

DEFINITION 5. A file organization scheme of order two with I attributes

and b addresses is called an HUBFS 2, if its addressing function β satisfies that

the graphical structure of every set β~\t) (t = l , 2,..., b) is a claw with c edges

connecting between one root-point and c vertices (or a complete bipartite graph

K l i C), where bc = ^y

Then, the following theorem has been proved.

THEOREM 1 ([17, Th. 4.1]). An HUBFS 2 with I attributes and b addresses

can be constructed if and only if the following conditions (i) and (ii) are satisfied:

(i) ί Λ is an integral multiple b, and

(ii) / > 2c, where c = C^l

An addressing function β of HUBFS 2 will be given explicitly in the following

section. Table 3.1 illustrates an example of HUBFS 2 with parameters 1 = 9,

b =12, c = 3.

Table 3.1

HUBFS2 with 1=9, 6=12, c=3

J A

9

8

7

6

5

4

3

2

1

12

10

3

2

1

4

4

4

1

Address of bucket

12

5

3

2

1

5

5

2

6

6

3

2

1

6

3

12

10

7

7

7

4.

11

8

8

8

5

9 11 11

9 10

9

6 7 8 /

Buckets and corresponding queries
Bucket

Bx

B2

B3

B4

B5

B6

B7

B8

B9

B l o

Bu

B12

QlS

Qie

Q l 7

Qi*

Q 3 4

Q 1 5

Q 5 8

Q67

Q l β

Q 5 3

Q.9

Queries

Q 2 5

Qae

Q27

Q l 3

Q a 8

Q 4 6

Q57

Q β 8

Q i 8

Q79

Q29

Q35

QS6

Q37

Q l 4

Q 89

Q47

Q 5 8

Q β 8

Q 7 8

Q89

Q49

522 Hideto IKEDA

4. An explicit definition of an addressing function of HUBFS 2

Let T be the triangular set of lattice points {(i, j)\l<i<j< 1} in the Euclidean

plane. The set of c edges of a claw Klc can be identified with a subset of c

lattice points standing together on the same ith row and/or ith column. Such

a subset may be called a claw-type subset ofΎ.

Then we see immediately the following by Definition 5.

LEMMA 2. Let β be an addressing function of a file organization scheme.

If every set {(i, j)\β(Qij) = t} (f = l, 2,..., b) is a claw-type subset of T with c

points, then β defines an HUBFS2.

We have proved the sufficiency of Theorem 1 by using this lemma and by

giving only an algorithm of the decomposition of T into mutually disjoint b

claw-type subsets with c points.

In the rest of this section, we shall define explicitly an addressing function β

of an HUBFS 2 by giving such a decomposition. For this purpose, we prepare

the following lemma.

LEMMA 3 (cf. [16, Th. 1.1]). Suppose that given nonnegative integers

ru r2..., rm and sl9 s2,..., sn satisfy the conditions

r . = r if 1 < i < a, rt = r + 1 if a + 1 <> i <> m,

for some a in {0, 1,..., m) and r; 0<Sj<mfor j = l, 2,..., n; and

Σ Sj = Σ rι = r m + m — a-

If(tij) is the mxn 0-1 matrix defined by

{ 1 if i = a + Σ h + s (modm) for some s in {1, 2,..., Sj},

0 otherwise,

then its row and column sum vectors are (rί9 r2,..., rm) and (su s 2,...,s n), re-
n m

spectively, i.e., Σtu — riand Σ ίί/ = s/

PROOF. For j = l, 2,..., n, consider the set U. = {α+ Σsfc + Φ = l> 2,..., s.).

Since Sj<m by assumption, we see immediately that u = u' (mod m) for M, W7 e U,-
m

implies M = M'. Thus we see Σ ί ί j = 5y by definition.
n n

By assumption ^Sj = (r+l)m — a, we have y U J = {α + l, a + 2,..., (r +

Combinatorial File Organization Schemes and their Experimental Evaluation 523

l)m}. For ί = l, 2,..., m, this set contains integers pm + i for

p = 1, 2,..., r if i < α, and p = 0, 1, 2,..., r if i > α + 1.

Thus we see immediately Σtii = ri by definition. This completes the proof.

For integers p and m, let [j?]m be the integer q satisfying \<q<m and p = q

(modm), i.e., _p"]m = {p — 1)(mod m)4-1. Also, for integers α l 9 α2, σ and m, we

shall use the notation _a{]m-*b^_a2~\m in the following sense:

(i) If [αiL<[>2L, then [α 1] m <6<[έi 2] m .

(ϋ) If [>iL>l>2L, then [α j w < ί 7 < m or I<σ<[α 2]m

Then, the condition ttj = 1 in Lemma 3 is restated by the condition

\β + ' Ϊ X L > i — > [α + 1 4- Σ> k] m .
k = l fc=l

Thus, we see easily that Lemma 3 for sj = n—j(j = l,2i...9ή) is restated

by the set I = {(i, j)\hj=l} as follows:

LEMMA 4. Suppose that given integers a, n and m satisfy

m > n > 1, m > a > 0, and

a + n(n — l)/2 = (f?! + l)m /or some integer bx > 0.

Lei I(α, m, «) fee ί/ie subset of the product set Q(m, n) = {l, 2,..., m} x {1, 2,..., M}

consisting of all (ί,j)eQ(m, ή) such that

[a + JΣ(n - fe)]M > i , [fl + 1 + Σ (n - *)]«;

ί/ decompose Q(m, /i) /«ro //iree mutually disjoint subsets

K(α, m, n) = I(α, m, n) Π Q(α, n), L(a, m, ή) = I(α, m, n) — K(α, m, n),

M(α, m, n) = Q(m, n)->I(α, m, n). 77ien the following hold:

\{j\(iJ)eK(a, m, ή)}\ = &! /or i = 1, 2,..., α,

|{j |(ί,;)eL(α, m, n)}| = fcj + 1 /or i = α + l , α + 2,..., m;

|{i|(i, 7) 6 M(α, m, n)}| = m - n + j for j = 1, 2,..., n.

Also, for the case that m +1 < n < 2m +1 and

524 Hideto IKEDA

SJ = m + I -j(j = 1, 2,..., m + 1), Sj = n - j (j = m + 2, m + 3,..., n),

Lemma 3 is the following form:

LEMMA 5. Suppose that given integers α, n and m satisfy

m > n' = n — m — 1 > 1, m > α > 0, and

a' + n'(n! - l)/2 = (b2 + l)m for some integer b2>0,

where a' = a + m(m +1)/2. Let Γ(α, m, ή) be the subset of Q(ra, ή) consisting

of all (i, j) such that

[β + /f(m + 1 - *)]„ • i >ίa + l+Σ(m + l - fc)]m

if I <j ζm + 1,

[α' + J±\n - fc)]M — » — * [α' + 1 + £ (n - *XL
k=m+2 k-m+2

if m + 2 < j < n\

and decompose Q(m, n) info ί/iree mutually disjoint subsets

K'(α, m, n) = Γ(α, m, n) Π Q(α, n),

L'(α, m, n) = Γ(α, m, n) — K'(α, m, n),

M'(α, m, n) = Q(m, n) —Γ(α, m, n). Γften the following hold'.

|{;Ί(Λ./)eK'(α, m, n)}| = b2 for i = 1, 2,..., a,

IOΊ(ί, Jf)eL'(α, m, n)}| = b2 + 1 for i = a + 1, a + 2,..., m;

j - 1 /or 7 = 1, 2,...,m + 1,

m — n + j for j = m + 2, m + 3,..., n.

Now, let /, b and c be integers satisfying (i) and (ii) in Theorem 1, and con-

sider the three cases 2c<l<3c, 3c<l<4c and Ac</. Then we can define a

decomposition of the triangular set T into b claw-type subsets with c points and

an addressing function β("> from the set {Q y | l < ! < . / < / } of all queries of order

two onto the address set {1, 2,..., b) as follows, where bc = (Λ.

Case I: 2c<l<3c. Put

/ = 2c + r, b = (ί)/c = 2c - 1 + 2r + V

Combinatorial File Organization Schemes and their Experimental Evaluation 525

Then 0<r<c, fe1=r(r-l)/2c, and bt is zero for r = 0 or 1, and bx is an integer

satisfying 0<bί<(r-l)/2. The triangular set T can be decomposed into thir-

teen disjoint subsets shown in Table 4.1, where K, L and M are obtained by the

transposition of two coordinates and a parallel transformation from the sets in

Lemma 4 for a — c— 1 — bί, n = r, m = c — 1 which satisfy

c - 1 - bx + r(r - l)/2 = (b± + l)(c - 1)

and then the function β (1) is defined there. By Figure 4.1 and by using the above

equality and the ones in Lemma 4, we see easily that {(Ufilβ^KQij) — *} 1S a

claw-type subset of T with c points for any ί = l, 2,..., b. Thus β (1) is an ad-

dressing function of an HUBFS2 by Lemma 2.

Table 4.1

Definition of an addressing function of an HUBFS2 (2c<U<3c)

Definition of the area

A

B

C

D

E
F

G

H

I
1
J

L

M

1</<;<C+1

c-\-l<i<i<c-\-r-\- 1

c+r+1 </</</
l<i<c, c+2<j<c+r+l
1<U c+r+2<j9 i+j<2c+r—bι-\-l

i<c-bi-lj<2c+r—bu i+j>2c+r—bi+2
l<i<c—bι—l, 2c+r—bι + l<j<l
c—bi<i<c, c+rJr2<j<2c-\-r—61
c—b\ < i, 2c -f- r—όi +1 < 7, i +7 < /+ c—b\ +1

(j—c—r—1, i—c) ε K(c— 1—bu c— 1, r)
(j—c—r—1, i—c) ε L(c—1—b\, c—1, r)

• (j—c—r—1, i—c) ε M(c— 1 -bu c - 1 , r)

β(1)(Qi/)

/

i

7 - 1

y-fc+r-2

7 - 1

i

j+r+bι-1
i

7 - 1

1

7 - 1
j+r+fa-l
i

526 Hideto IKEDA

J

2c+r-bί

c+r+l•

c+l '

2 .

G

NS. F

E N\
H

D

A y

v
/

/

KULUM

/

C /

/

B /

— l c c + r

Figure 4.1 (2c < / < 3c)

Case!: 3c<l<4c. Put

I = 3c + r, b = = 4c + 3r - 1 + b2

Then 0<r<c, fc2 = {c(c-l) + r(r-l)}/2c, and b2 is a positive integer satisfying
(c-l)/2^fc 2< c""l I n ^is case, T will be divided into the fifteen disjoint
subsets shown in Table 4.2, where K', L' and M' are obtained by the transposi-
tion of two coordinates and a parallel transformation from the sets in Lemma 5
for a = c — 1 — b2i n=c + r, m = c —1 which satisfy

c _ i - C(c - r(r -

and then the function /?(2) is defined there. By Figure 4.2 and by using the
above equality and the ones in Lemma 5, we see easily that {(U jΛβ^KQij)-^}
is a claw-type subset of T with c points for any t. Thus β(2) is an addressing
function of an HUBFS2 by Lemma 2.

Combinatorial File Organization Schemes and their Experimental Evaluation 527

Table 4.2

Definition of an addressing function of an HUBFS2 (3c^/<4c)

Definition of the area

A3

B
C
D i

D 2

E
F
G
H
I
J
K'
L'
M'

i^/<y<c+i
c+l</<./<2c+l
2c-i-l</<y<2c-j-r+l
2c+r+l^/<y</
1^/^c, c+2<y<2c+r+l
c+l</<2c, 2c-f-2<y<2c+r+l
\<>i, 2c+r+2<y, /+y</—/>2 + l
i <[c—62 —1, j<l—b2i z+y^/—62+2
l<.i<c—b2 — 1, l~b2

Jr\<j<l
c-b2<ti<c, 2c+r+2<tj<l-b2

i<C,j<h iJri^.lJrC~b2

Jr2
(j—2c—r— 1,1— c) ε K'(c—1 —b2, c + r , c—1)
(7 — 2c—r— 1, /—c) ε L'(c—1 —b2, c + r , c— 1)
(j—2c—r— 1, /—c) e M'(c—1 —62, c + r , c—1)

i3<«(Qs,)

i
ί

y - i
y+2c+r-2
y+2c+2r-2
y - i
/
/_(_c_μ2r+62-l
/
y - i

y - i
i-\-c-\-2r-\-b2— 1
1

c+1 -

2 .

0 1 c~62~l c

Figure 4.2 (3c < / < 4c)

528 Hideto IKEDA

Case 3: Ac < I. There exist positive integers n and l0 satisfying

/ = 2nc + l0 and 2c < l0 < Ac.

In this case, T can be divided into 2n + l subsets shown in Table 4.3, and we can

apply the considerations for Case 1 or Case 2 on T o since 2c<lo<Ac9 and that

for Case 1 with l = 2c+1 on Vp; and then the function /?(3) is defined there.

By Figure 4.3 and by the results for Case 1 or Case 2, we see easily that

satisfies the condition in Lemma 2 and hence β (3) is an addressing function of

an HUBFS 2.

Table 4.3

Definition of an addressing function of an HUBFS2 (4c</)

Definition of the area

To: \<i<j<lo

Vp: lp<i<j<lP+i

I V 1 < / < / P - 1 , lp<j<lp+i

for/?=0, 1,..., n-1

β(3KQij)

β^KQij) if /o<3c
j5(2)(Qίy)if/o>3c

i+[j-l

c

p~l~](lp-l)+p(p-l)(2c-l)+2p

+(2c+l)«+/o(/o-Ό/2c

where lp = l0+2pc, ί'=i-lp + \ and./' =y-/

Combinatorial File Organization Schemes and their Experimental Evaluation 529

j .

/ 0 +(2Λ-1)C :

u 2

0 + 2c- l /0 + 4 c - l /0 + 6 c - l / - 2 c - 1 / - I

Figure 4.3 (/ > 4c)

By the above arguments, we have proved the following

THFOREM 2. Let I, b and c be the integers satisfying the conditions (i) and

(ii) in Theorem 1, and consider the following three cases:

Case 1: 2c < / < 3c, Case 2: 3c < / < 4c, Case 3: 4c < /.

Then, the function β = β(n) given in Table 4.n for Case n (n = l, 2, 3) is an

addressing function of an HUBFS 2 with I attributes and b addresses.

5. Generalized balanced file organization schemes

As it is stated in Section 2, a file organization scheme of order two has

serious disadvantages in the retrieval of a query of order one. In order to over-

come such disadvantages, we shall define a generalized balanced file organization

scheme of order k (abbreviated by GBFSfc) as follows.

D E F I N I T I O N 6. A GBFS f e is defined to be a k-tuple (βί, /?2,.-.> βu) of func-

530 Hideto IKEDA

tions satisfying the following conditions:

(i) βv is an addressing function from the set of all queries of order v

onto the set Iv(c={l, 2,..., b})9

(ii) |IV | 15 an divisor of Q , and }β-\t)\=^/\Jv\ for every ί e l v , and
for v = l, 2,..., k,

and

(iii) WI V = {1, 2,...,b}.
v = l

The integer b is called the total number of addresses and the integer |I V | is

called the number of addresses corresponding to queries of order v. In GBFSfc,

the tth bucket B, is defined to be the set Ό{aJp(Q)3ω for some QejJ HO}
veJ

where J = {v|ίel v}.

For instance, the pair (βu β2), defined by

βί(Qi) = i for 1 <i <U and

fe(Qιy)= (2 / " " ^ 1) / - / + ; for \<i<j<U

is a pair of addressing functions of a GBFS2.

Let β2 be an addressing function of a BFS2 with / attributes and b2 addresses.

Define a function βγ from the set of all queries of order one into the set {1, 2,...,

b} as βi(Qί) = fr2 + ϊ for i = l, 2,..., / where b = b2 + l. Then the pair (βl9 β2)

defines a GBFS 2.

Another example of GBFS2 can be seen in Yamamoto, Teramoto and

Futagami [20].

Now, we consider a generalized Hiroshima University balanced file organ-

ization scheme of order two (abbreviated by GHUBFS 2).

DEFINITION 7 ([17]). A GBFS2 with I attributes and b addresses is a

GHUBFS 2, // its pair (β 1 ? β2) of addressing functions satisfies the following

conditions (i), (ii.) and (iii):

(i) The image I 2 of β2 is {1, 2,..., b} and β2 is an addressing function

o/αnHUBFS2,
(ii) βγ is a one-to-one function onto I x = {1, 2,..., /}, and

(iii) βjι(i) is the root-point of a claw corresponding to β2

ι(t) for all

te{l, 2,...,/}.

We have shown in [17, Th. 6.2] that a GHUBFS 2 can be constructed if and

only if / and b satisfy the conditions (i) and (ii) in Theorem 1 and l>2c in

addition, i.e.,

Combinatorial File Organization Schemes and their Experimental Evaluation 531

be = (2) a n d I > 2c for some integer c. (5.1)

By Definitions 5 and 7 and Theorem 2, we see immediately that an explicit

expression of a pair of addressing functions of a GHBFS2 is given in the

following

THEOREM 3. Let 7, b and c be given positive integers satisfying (5.1).

Then, in addition to the addressing function β2 — β of an HUBFS 2 given in

Theorem 2, we can define a function βt from the set {Qi\i<i<l} of all queries

of order one onto {1, 2,..., 1} so that (βt, β2) is a pair of addressing functions

of a GHUBFS 2, as follows:

Case 1. 2c < I < 3c.

βi(Qd = βϊKQd =

where l — 2cΛ-r.

Case 2. 3c < / < Ac.

i) = β[2\Qd =

2c + 2r - 1

Ϊ - 1

4c + 2r - 1

i - 1

if 1 < i < c + r,

if i = c + r + 1,

if c + r + 2 < i < I,

if 1 < i < 2c + r,

if ί = 2c + r + 1,

1/ 2c + r + 2 < Ϊ < /,

where / = :

Case 3. 4c < /.

β(ΛQι)

— (

if /„ < 3c, 1 < i < /0 - 1,

if l0 < 3c, 1 < i ^ Io - 1,

, i' = i-/,+ l/orp=l,2, . . . ,n- l .

jS'î CQi) + (2c + 1);

/ = 2nc+/0, 2c</0<4c, / =/0

6. Theoretical evaluation of balanced file organization schemes

Consider a GBFS f e with a fc-tuple (βί9 jβ2> » A) of addressing functions.

In order to store a record ω with h attributes A f l, A ί 2,..., A ί h (1 < Ϊ 1 < Ϊ 2 < < Z Λ

< /) in the scheme, it is necessary to perform the following procedures.

532 Hideto IKEDA

(i) Construct sets ofv-tuples,

S v

 = { (α i > α 2 » » α v) l α i < α 2 < *•• < α v

{«„ α2,..., αv} c {ί,,..., ih}}, /or α// v = 1, 2,..., fc.

(ii) Construct sets of addresses

D v = {Bv(Qβiβ2...βv)|(α l f α2,..., α v)eS v } , /or a// v = 1, 2,..., fc.

(iii) Set Bf = Bf U {αω} /or all te\jΌv.
v = l

An accession number of a record, therefore, will be stored | WDJ times.
v = l

DEFINITION 8. The redundancy R(βl9 β2,>-, βk) °f a GBFSfc is defined as

R(βl9β2,-,βJ= Σ|B f |/ |Λ|
t=i

where \Bt\/\Ω\ is the relative frequency of an accession number of a record

being stored in Bt and b is the total number of addresses.

In order to discuss theoretically the redundancy of file organization schemes,

a probability distribution of records plays an important role. A class of prob-

ability distributions of records has been presented in our previous paper [17].

This class includes the uniform distribution which has been used so far in the

theoretical evaluation of the redundancies of file organization schemes.

Let P() be a probability distribution over {0, I}1 induced by the probability

distribution of records over Ω through X.

A probability distribution P() is said to be permutation invariant if it

satisfies

for any d e {0, 1}' and any permutation σ of {1, 2,..., /}.

Then it has been shown in [17, Lemma 2.1] that P(d) depends only on the

weight w(d)= Σ<5f of d = (δ1δ2--δι\ that is, the formula
i l

holds where pw is a function of w.

The theoretical redundancies of the above-mentioned file organization

schemes under the record distribution are as follows (cf. [17, (3.2), (3.5), (4.2),

(6.2)]):

Combinatorial File Organization Schemes and their Experimental Evaluation 533

R(BFS2 based on PG(JV, 5))

- {S2 _ ι) (s _ 1 } ΣQ . Σ ^ w _ γ

R(BFS2 based on EG(N, s))

— 1 w = o j = ί

where / is the number of attributes, c is the number of queries corresponding to

a bucket and pw is a probability function on we{l, 2,..., /}. In NBFS 2, it is

difficult to compute the redundancy of the scheme, since the graphical structure

of the buckets is not homogeneous all over the scheme.

Under such probability distribution of records, we have shown the following

THEOREM 4 (cf. [17, Th. 3.1, 6. 1]). HUBFS 2 has the least redundancy

among the balanced file organization schemes of order two. Moreover,

GHUBFS 2 has the least redundancy among all the generalized balanced file

organization schemes of order two provided that the addressing function βt of

order one is one-to-one.

7. Experimental evaluation of GHUBFS2

In the rest of this paper we shall describe results of the experimental evalu-

ation of GHUBFS 2 by using actual bibliographic data. The contents of this

section are the detailed descriptions of the author's results announced in [12].

Though not only GHUBFS 2 and IFS l 9 but also a file organization scheme having

the consecutive retrieval property with redundancy defined by Ghosh [11] is

treated in [12], the latter has been excluded here, because GHUBFS 2 has to be

evaluated in comparison with a standard scheme, namely, IFSj.

An on-line retrieval and batch storing system for the bibliographic data

has been implemented in order to compare the scheme GHUBFS 2 with I F S ^

Especially, the execution time for retrieval of queries of order two as well as of

order one and for storing the bibliographic data into the system have been

compared.

The bibliographic data of the graph theory by Turner [14] are used. Each

534 Hideto IKEDA

record of the data has the same format which is illustrated in Figure 7.1.

$000153$02005CHO75$04037PERMUTATIONS WITH RESTRICTE
D POS1TON$06008MATRICES$06011 ENUMERATIONS 11014MATH
. COMP. 16$ 17007222-226$ 190041962S37009F. HARARY$99

RECORD LAYOUT
01 ARTICLE

02 BEGIN 3 bytes, alphanumeirc, value '$00'
02 LENART 4 bytes, zoned decimal, format 9999
02 SEGMENT occurs a variable number of times

03 TAG 3 bytes, alphnumeric
03 LENSEG 3 bytes, zoned decimal, format 999
03 RECSEG alphanmeric, variable length given by LENSEG

02 END 3 bytes, alphanumeric, value '$99'

TAG-LIST (Extracts)
$00 THE BEGINNING OF ARTICLE
$02 ARTICLE NUMBER
$04 TITLE
$06 ADDED KEYWORD
$11 REFERENCE RECORD FOR ARTICLE
$17 PAGES
$19 YEAR
$37 AUTHOR
$99 THE END OF ARTICLE

Figure 7.1 Bibliographic data structure

In the system, eighty-one keywords are treated as attributes which charac-
terize the records. These 81 keywords consist of 80 keywords given by Turner
[14] and an additional keyword, since / = 81 is convenient to construct a particular
GHUBFS2 of interest. The term 'LINEAR, is selected for an additional key-
word by its frequency in use. These 81 keywords will serve well in the document
retrieval on such a specific field as the theory of graphs.

A query of order one corresponds to a retrieval request such as "Find every
document including the word, say, 'ALGORITHMS', in the segments having
the tags $ 04 and $ 06. "f If a retrieval request is given in the form "Find every
document related to the decomposition problem of a graph into complete sub-
graphs^, then we can interpret, but not precisely, the request as a query Q^ of
order two, where A, and A; are associated with the word 'DECOMPOSITION'
and the phrase 'COMPLETE SUBGRAPHS' respectively.

For a given word or phrase K with respect to a query, it is necessary to

Combinatorial File Organization Schemes and their Experimental Evaluation 535

transform K to its identification number i, called the (keyword) number of K.
In this system, we have organized a hashing table in the main memory for the
key-to-number transformation. The determination procedure of the number
of a keyword K by searching the hashing table is called Algorithm I.

In a universal document retrieval system, however, much more keywords
must be handled and the sequential search by the alphabetical order of keywords
as well as the direct search has to be supported. Thus the keywords would have
to be organized by the balanced tree structure on a random access storage. In
order to evaluate the organization schemes of secondary indexes precisely, the
use of in-core hashing table might be desirable in an experimental system, since
it reduces the effects of the key-to-number transformation.

To answer a query Qt of order one (first order search) is to create a set F
which consists of accession numbers of all records relevant to Qi9 i.e.,

To answer a query Q l7 of order two (second order search) is to create

F = {aω\X(ω) = (^ " Λ i) , δt = 1 and δj = 1}.

In order to store the actual record shown in Figure 7.1, the text file is organ-
ized. The file is implemented as a DAM (Direct Access Method) file on a
random access storage. Each fixed-length (440 bytes) block of the file is used,
and a record ω of actual bibliographic data is stored in it. A relative block
number m is used as an accession number (4 bytes) of a record being stored in
it, that is aω = m. If the length of a record is greater than the size of a block, the
overflowing part of the record will be stored in an empty block and will be con-
nected by a pointer as shown in Figure 7.2.

[ACCESSION NO.

I ACCESSION NO.

POINTER

IACCESSION NO
IACCESSION NO

NOj
-+1 POINTER

HPOINTER
POINTER

AN
ACTURL
RECORD

POINTER

HPOINTER
POINTER

OVERFLOW-
ING PART

Figure 7.2 Structure of the text file

The handling overflow when storing records on the text file is managed
automatically by the system.

Implementation of IFS1 # The scheme IFSX presented in Section 2 has

536 Hideto IKEDA

been implemented as follows. The 81 buckets of the scheme are organized

as a DAM file on a random access storage. The ίth bucket Bf corresponds to

the fixed-length (440 bytes) block with its relative block number t. More than 81

blocks are prepared and every block with its relative block number exceeding 81

is used for the overflow area. A block can contain 108 accession numbers. If

the size of a block is not large enough for storing the number of accession numbers

of the corresponding bucket, handling overflow is also managed automatically

by the system.

KEYWORD NO. - POINTER

IKEYWORD N

[KEYWORD NO.
I KEYWORD NO. -f

A POINTER
-̂ POINTER

POINTER
NO.OF REC
ACCESSION NO.
ACCESSION NO.

POINTER

jPOINTER

POINTER
ACCESSION NO.
ACCESSION NO.
ACCESSION NO.

IS-3.
IS-4.

IS-5.

Figure 7.3 Structure of the secondary indexes

In order to store the records, the system performs the following procedures.

IS-1. Setm = 0.

IS-2. If Ω is not empty, get a record ω in Ω or else halt.

Set m = m + l and store ω into mth block of the text file.

Construct a set

S[ω) = {i\the ith keyword Af relevant to ω for i = 1, 2,..., 81}.

//S (

1

ω) = 0, then go to IS-2.

Set Bf = B fU{m} for all ieS[ω) and set Ω=Ω-{ω}.

Go to IS-2.

In order to perform the procedure IS-4, the system executes the extraction

of words from the segments having tags $ 04 and $ 06, and the matching of each

extracted word to the registered keywords. For IS-5, the system uses the ith

block to store the accession number m unless the ith block is full of accession

numbers. The system further uses an overflow area if and only if the block is

full of accession numbers.

The algorithm for first-order searches is as follows.

IR1-1. Get a keyword Kfrom the terminal.

IR1-2. Determine the keyword number iofK by Algorithm I.

IR1-3. Create a set F by the transmission of all accession numbers in Bf.

The algorithm for second-order searches is as follows.

IR2-1. Get two keywords K and K' from the terminal.

IR2-2. Determine the keyword numbers i and V of K and K', respectively,
by Algorithm I.

Combinatorial File Organization Schemes and their Experimental Evaluation 537

IR2-3. Create a set F by the operation

F = B; n BΓ.

Implementation of GHUBFS2. A GHUBFS 2 presented in Section 5 with

parameters / = 81, c=40, b = 1(1 - l)/(2c) = 81 has been implemented as follows. In

such a special case, addressing functions βx and β2 which are simpler than those

given in Section 4 can be obtained. The functions used here are as follows:

ί i if i < 40 and j < 40 or i < 40 and > 81 - i,

[j otherwise.

Note that the function β2 partitions the set of all queries of order two into

81 subsets and that the graphical structure of each subset is a claw with 40 edges.

The address of each subset is illustrated in Figure 7.4.

J

81

41
40

2
1

1
80

2

79

3 4
•

•
•

44

•

43

39

42

40

41

1 2 3 4

—

—

—

|39j

81 1
80 |

79 |

|

• 1

44 |

43

42

1 2 3 4 394041 80 /

Figure 7.4 Partition of all second order queries into claw-type subsets

538 Hideto IKEDA

In our system, a bucket consists of two types of subbuckets illustrated in

Figure 7.5. One is a claw-type subbucket B[C) which includes not only acces-

sion numbers but also keyword numbers explained in the storing algorithm.

Another is an inverted-type subbucket B(/) in which only accession numbers

are stored. The size of each subbucket is 220 bytes. The size of a bucket

B f

(C) U B<7) is therefore equal to that of IFSj.

POINTER
NO. OF REC
ACCESSION NO.

KEYWORD NO.
KEYWORD NO.

ACCESSION NO.
KEYWORD NO.

added information
of a record

POINTER
NO. OF REC
ACCESSION NO.
ACCESSION NO.

CLAW-TYPE INVERTFD-TYPE
SUBBUCKET SUBBUCKET

(220 bytes) (220 bytes)

Figure 7.5 Structure of buckets of GHUBFS2

In order to store the records, the system performs the following procedures.

HS-1. Setm = 0.

HS-2. If Ω is not empty, get a record ω in Ω, or else halt.

HS-3. Set m = m + l and store ω into mth block of the text file.

HS-4. Construct two sets

Siω) = {(i, M < j and UeS< ω >}.

HS-5. Construct two sets

HS-6. Construct

Jίω) = {/, MU J) e S£«\ β2(QiJ) = ί} - {t}

and then set

B(c) = B (c) u {(m> L(Jίω)))} for all te O<?\

where (m, L(J{ω))) denotes a list consisting m and a list L(J$ω)) of all

Combinatorial File Organization Schemes and their Experimental Evaluation 539

elements in J j ω) . Further set

B(

t

n = B(

f

/} U {m} for all teD[ω) - D(

2

ω\

The algorithm for first-order searches is as follows.

HRl-1. Get a keyword Kfrom the terminal.

HR1-2. Determine the keyword number i o/K by Algorithm I.

HR1-3. Create a set F by the operation

F = {m|(m,L(J))eB#£ f)} U

The algorithm for second-order searches is as follows.

HR2-1. Get two keywords K and K' from the terminal.

HR2-2. Determine the keyword number i and V of K and K', respectively,

by Algorithm I.

HR2-3. Create a set F by the operation

F = {m\(m, L (J)) 6 B ^ i l Ί , ({/, i'} - {j82(Q,,0}) Π J * </>}.

Results of the experimentation and discussions. Table 7.1 shows the

frequency distribution of the number of keywords in a record of our biblio-

graphic data Ω.

No. of keywords

Frequency

Table 7.1

0

165

Frequency distribution

1 2 3

711 560 213

of records

4

70

5

13

6

6

7

0

The redundancy, or the average number of times the accession number aω of a

record ω having been stored in the buckets, of GHUBFS 2 as well as IFSi is

.1.64.

The system operates within the framework of OS7 operating system for

HITAC 8700 computer at Hiroshima University Computing Center. OS7

supports an on-line processor which permits the conversational interaction with

a user's program. Our experimental on-line system works within this framework.

We have performed the evaluation of IFSx and GHUBFS 2 by using not only

the original 1,738 records but also two, three, four, five and twenty-five times as

many records. The number of records, the size of the text file, the size of the

secondary indexes and the time needed to store and shown in Table 7.2. Some

differences among two schemes in CPU time and elapse time used for storing

in the buckets can be seen there. These results may be explained by the dif-

ference of addressing algorithms and the structure of buckets. There are,

540 Hideto IKEDA

however, relatively small differences in CPU time and elapse time during the
storing phase.

Table 7.2

Performance statistics for storing*

No. of records

Size of text file

Size of
secondary
indexes

CTIME1

ETIME1

CTIME2

EΉME2

IFSi

GHUBFS2

IFSi

GHUBFS2

IFSi

GHUBFS2

IFSi

GHUBFS2

IFSi

GHUBFS2

1738 3476 5214 6952 8690 43450

319 638 957 1276 1595 7975

11 23 34 45 57 272

25 49 74 99 123 624

1.5 2.9 4.4 5.9 7.5 38.5

3.7 7.9 10.5 14.0 17.4 87.2

5.6 7.3 8.8 10.5 12.2 47.0

11.8 16.3 20.8 25.2 29.9 122.2

145.0 285.4 426.0 566.6 707.2 3519.4

147.1 289.6 432.2 574.8 717.4 3570.1

234.6 391.4 548.6 705.7 863.2 4007.4

242.3 403.5 565.3 727.2 888.8 4123.8

*) All times are expressed in second and file sizes in KB.
CTIME1 =CPU time for storing in the buckets.
ETIME1 =Time elapsed for storing in the buckets.
CTIME2=CPU time during the storing phase.
ETIME2=Time elapsed during the storing phase.

Figure 7.6 illustrates the performance characteristics of the first-order
searches by the growth of data. IFSX is, of course, faster than GHUBFS2 and
the difference may be explained mainly by the effect of the set operation HR1-3.
If each bucket of GHUBFS2 were not partitioned into two types of subbuckets
and were organized on a block as a merged bucket B{c) (J B[7), then it might be
expected that the first-order search in GHUBFS2 would become more faster.

Combinatorial File Organization Schemes and their Experimental Evaluation 541

900

500 -

400 -

300 -

200 -

100 -

0

CPU time
(msec)

GHUBFS2

1738 8690

No. of records

Figure 7.6 Average CPU time for search of order 1

43450

The performance characteristics of the second-order searches illustrated in
Figure 7.7 show that GHUBFS2 is much faster than IFS^ This indicates that
the selection procedure HR2-3 needed for search in the claw-type subbucket of
GHUBFS2 is not so serious when compared with the set-operation IR2-3 needed
in

542 Hideto IKEDA

900

CPU time
{msec)

GHUBFS2

1738 8690 43450
No. of records

Figure 7.7 Average CPU time for search of order 2

Our experimental study shows that the performance of an information
storage and retrieval system depends greatly on the selection of a file organiza-
tion scheme. The results, however, depend deeply on the structure of data, the
number of data, the number of attributes, parameters of the scheme, the size of
a bucket of the secondary index, the access method to the file, etc..

The performance of GHUBFS2 may depend on its parameter c, the number
of second-order queries corresponding to a bucket. In our implemented system,
c=(Z —1)/2 is selected in order to reduce the redundancy to the least.

Acknowlegments: I would like to express my hearty thanks to Professor
S. Yamamoto for his valuable guidance all over this work. I also wish to thank
to Miss K. Futagami for her contribution on the detailed programming of the
experimental system.

I am grateful to Professor M. Sugawara for his encouragement during the
preparation of this paper.

This study is supported in part by the Grant of Ministry of Education,
Science and Culture of Japan.

Combinatorial File Organization Schemes and their Experimental Evaluation 543

References

[1] C. T. Abraham, S. P. Ghosh and D. K. Ray-Chaudhuri, File organization schemes
based on finite geometries, Information and Control 12 (1968), 143-163.

[2] G. Berman, The application of difference sets to the design of a balanced multiple-
valued filing scheme, Information and Control 32 (1976), 128-138.

[3] R. C. Bose, C. T. Abraham and S. P. Ghosh, File organization of records with multiple-
valued attributes for multi-attributes queries, Combinatorial Mathematics and Its Applica-
tions, UNC Press, 1969, 277-297.

[4] R. C. Bose and G. G. Koch, The design of combinatorial information retrieval systems
for files with multiple-valued attributes, SIAM J. Appl. Math. 17(1969), 1203-1214.

[5] A. F. Cardenas, Evaluation and selection of file organization — A model and system,
Comm. ACM 16 (1973), 540-548.

[6] D. K. Chow, New balanced-file organization schemes, Information and Control 15
(1969), 377-396.

[7] S. P. Ghosh, Organization of records with unequal multiple-valued attributes and
combinatorial queries of order 2, Information Sci. 1 (1969), 363-380.

[8] S.P.Ghosh, File organization: The consecutive retrieval property, Comm. ACM
15 (1972), 802-808.

[9] S. P. Ghosh, On the theory of consecutive storage of relevant records, Information
Sci. 6 (1973), 1-9.

[10] S. P. Ghosh, File organization: Consecutive storage of relevant records on drum-type
storage, Information and Control 25 (1974), 145-165.

[11] S.P.Ghosh, The consecutive storage of relevant records with redundancy, Comm.
ACM 18 (1975), 464-471.

[12] H. Ikeda, Evaluation of combinatorial file organization schemes, Proc. of 3rd VLDB
Conference (1977), 231-235.

[13] D. K. Ray-Chaudhuri, Combinatorial information retrieval systems for files, SIAM
J. Appl Math. 16 (1968), 973-992.

[14] J. Turner, Key-word indexed bibliography of graph theory, Proof Techniques in
Graph Theory (ed. F. Harary), Academic Press, 1969, 189-330.

[15] A. Waksman and M. W. Green, On the consecutive retrieval property in file organ-
ization, IEEE Trans. Computers C-23 (1974), 173-174.

[16] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, On claw-decomposi-
tion of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975), 33-42.

[17] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, Design of a new
balanced file organization scheme with the least redundancy, Information and Control
28 (1975), 156-175.

[18] S. Yamamoto, S. Tazawa, K. Ushio and H. Ikeda, Design of a balanced multiple-
valued file organization scheme with the least redundancy, presented at the Third
International Conference on Very Large Data Bases, Oct. 1977, and to be published in
ACM Transactions on Database Systems.

[19] S. Yamamoto, S. Tazawa, K. Ushio and H. Ikeda, Design of a generalized balanced
multiple-valued file organization scheme of order two, to appear in Proc. ACM-SIGMOD
1978.

[20] S. Yamamoto, T. Teramoto and K. Futagami, Design of a balanced multiple-valued
filing scheme of order two based on cyclically generated spread in finite projective geometry,

544 Hideto IKEDA

Information and Control 21 (1972), 72-91.
[21] S. Yamamoto, K. Ushio, H. Ikeda, S. Tazawa, F. Tamari and N. Hamada, Partition of

a query set into minimal number of subests having consecutive retrieval property, / .
Statist. Planning Inf. 1 (1977), 41-51.

Computing Center,
Hiroshima University

