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1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary δΩ, and Q be the
cylinder (0, oo) x Ω. We consider the mixed initial and boundary value problem
(hereafter called (MP)) for the Hamilton-Jacobi equation in Q:
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Here Ω and R+ denote Ω = Ω\jdΩ and Λ+ = [0, oo) respectively, w(ί,x) is a
real-valued function, H: R+xΩxR1 x f i ^ R 1 , and ux denotes the gradient
(uXίi...9 uXj) in the space variables x.

The purpose of this paper is to establish the existence and uniqueness of
global generalized solutions of (MP). We employ the so-called vanishing vis-
cosity method in proving existence for (MP). The reason for the employment
of this method lies in its advantage in estimating the local semi-concavity constant
which will be described in the next section. As an intermediate step in the de-
velopment, we shall solve a mixed problem for a nonlinear second-order parabolic
equation by making use of the semigroup approximation theory. The semigroup
approach enables us not only to prove the existence of a (generalized) solution
of the mixed problem for regularized parabolic equations, but also to employ
the vanishing viscosity method.

This investigation is a sequel to our earlier work [20] and is motivated by
the works of Aizawa [1, 3] and Kruzkov [15]. Aizawa [1] treated the Cauchy
problem for the Hamilton-Jacobi equation in one space variable

(*) ut + f(ux) = 0, t > 0, - oo < x < + oo,

from the viewpoint of the nonlinear semigroup theory, and constructed a global
generalized solution, assuming only that / is continuous. He subsequently
studied the Cauchy problem for the multi-dimensional equation of this type from
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the same point of view (cf. [3]). For related works on similar treatments of

Cauchy problems, we mention the recent papers of Burch [7] and Tamburro

[19]. In these papers existence theorems have been proved under the assump-

tion t h a t / = / ( p ) is convex in p = (Pi,.. , pn). See also the more recent work of

Burch and Goldstein [8] in which results concerning the Cauchy problem are

refined to study some boundary value problems for (*) in the quadrant R+ x R+.

On the other hand, Kruzkov [15] has established the existence and uniqueness

of generalized solutions of the Cauchy-Dirichlet problem:

H(x, u, ux) = 0, x e Ω,

u\dΩ = φ.

However, his result cannot directly be applied to our problem (MP), since he

assumed that H(x, u, p) is nonincreasing in u and strictly convex in p.

We also note that some earlier results on mixed problems for Hamilton-

Jacobi equations were obtained by Con way and Hopf [9], Aizawa and Kikuchi

[4] and Benton [5, 6]. These authors proved the existence by using the varia-

tional method assuming that the Hamiltonian is strictly convex in p.

The outline of the present paper is as follows. In Section 2 we list the

assumptions on H9 u0 and φ, and define a generalized solution of (MP). Further,

in that section, we state two theorems concerning the existence and uniqueness of

solutions. In Section 3 we verify the uniqueness and continuous dependence

result under the assumption that H is convex in p. Sections 4, 5 and 6 are

devoted to the study of a mixed problem (denoted by (Pa.MP)) for a nonlinear

parabolic equation of the form

ut + H(t, x, w, ux) = μΔu (μ > 0),

where A is the Laplace operator. In Section 4 we state and prove the Generation

Theorem which is an appropriately modified form of the Crandall-Pazy theorem

[11; Theorem 2.1]. In Section 5, in order to apply this Generation Theorem

to (Pa.MP), we investigate boundary value problems for a nonlinear second-

order elliptic differential equation. In Section 6 we construct a generalized

solution of (Pa.MP). Section 7 contains the proof of our existence theorem for

(MP). Here, roughly speaking, our generalized solution of (MP) is obtained

as the limit of solutions of (Pa.MP) as μ I 0.

The author would like to express his hearty gratitude to Professor S. Aizawa

for his constant encouragement and many valuable advices during the preparation

of this paper.

NOTATIONS. In this paper the letters x, y, Ax, p and q are points in Rn.
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For p = (P!,...,A) and q = {ql9...,qύ in R\ we set (p, q)= Σ M i a n d \P\2

= (ρ, p). For every T > 0 , let Q Γ be the cylinder (0, T)XΩ\ By 1/χy) we

denote the closed sphere in Rn of center y and radius δ. Similarly, for each

compact set K in Rn, Uδ(K) denotes the closed ^-neighborhood of K. For every

small <5>0, let Ωδ = {xeΩ; dist(x, dΩ)>δ} and let Bδ be the boundary strip,

i.e., Bδ = {xeΩ; dist(x, dΩ)<δ}. For given T > 0 , M o > 0 and M ^ O , we define

W(T, Mo) = {(*, x, u, p)eR2»+2; (t, x)eζΓτ, \u\ ̂  Mo, peR»},

W(T, Mo, Mx) = {(ί, x, ti, p)eW(T, Mo); | p | g M J .

We denote by «£?(Ω) the space of Lipschitz continuous functions on Ω. Similarly

we define Jδf(β^). Define by Cm+α(Ω) (resp. Cm+α(Ω)) the space of all functions

in Cm(Ω) (resp. Cm(Ω)) whose derivatives of order m are Holder continuous

(with exponent α) on compact sets in Ω (resp. Ω). g*h denotes the convolution

of g and h.

2. Assumptions and results

Throughout this paper we shall assume for simplicity that the Hamiltonian

H(t, x, M, p) is real-valued and of class C2+a with respect to all its arguments in

R+ x Ω x Ri x Rn

p (In fact, with respect to the ί-derivatives of H, it suffices to

assume the existence and continuity of Ht.) and satisfies the following four as-

sumptions :

(H.I) For every T>0, M o > 0 and Mί>0,H is strictly convex in p

uniformly on W(T9 Mo, M t). That is, there is a positive constant aί=aί(T, Mo,

Mt) such that

(Hpp(t9 x, ii, p)ξ9 ξ)= t^H^ft, x, u, p)ξiζj ^ at\ξ\2

for all ξ = «,) eK» and (t, x, u, p) e W{T, Mo, Mx)

(H.Π) lim H(t, x, u, jp)/|p| = + oo holds uniformly on Q ί x [ - M 0 , M o ]

for given T>0 and M 0 > 0 ;

(H.III) For every T>0 and M o > 0 , there are two constants a2 = a2(T9 Mo)
and a3 = a3(T, Mo) such that

\Hx(t, x, u, p)\ ^ a2\p\ + a3 for (ί, x, M, p)e W(T9 M o);

(H.IV) For every T>0, there is a constant ω^O such that

Hu(t, x,u,p)^-ω for (t, x, u, p)eQ~τ x KJ x Λj.
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Now we give the definition of a generalized solution of (MP). It is known

that the mixed problem for the Hamilton-Jacobi equation does not have, in

general, a global classical solution even if the data are smooth. On the other

hand, in the class of weak solutions (Lipschitz continuous functions that satisfy

the equation a.e.) uniqueness fails.

DEFINITION 2.1. A function u(t, x) defined in Q is called a generalized

solution of (MP) if

( i ) for every T>0, ue&(Qτ) and u satisfies (IA)'a.e. in Qτ,

(ii) u satisfies (1.2) and (1.3),

(iii) u satisfies a local semi-concavity condition in the following sense. For

each compact set K(aczΩ) and every <5>0 such that U2δ(K)czΩi there is a

nonnegative and continuous function aKδ(t) defined in (0, oo) such that

u(t, x + Ax)- 2u(t, x) + u(t9 x - Ax) ̂  aKfδ(t) \Ax\2

for t>0 and x, x + Ax, x-AxeUδ(K) with \Ax\<δ.

It should be noted that the condition (iii) of Definition 2.1 is a modified form

of the semi-concavity condition:

u(t, x + Ax) - 2w(ί, x) + u(t, x - Ax) ̂  a(t) \Ax\2

for x, AxeRn, which Douglis [12] and Kruzkov [14] imposed on the possible

solutions in order to have the uniqueness for the Cauchy problem for the Hamilton-

Jacobi equation. In mixed problems, it seems more natural to weaken the

semi-concavity condition to our condition (iii). We also note that if we define

a generalized solution of (MP) without requiring (iii) then uniqueness may fail.

We now state the assumptions on u0 and φ. Following Kruzkov [15],

we introduce a concept of local semi-concavity. El0C(Ω) denotes the set of func-

tions υ defined in Ω such that v satisfies the following condition: For each

compact set K (aczΩ) and every δ>0 such that U2δ(K)czΩ9 there is a constant

Cκδ such that

v(x + Ax) - 2v(x) + v{x - Ax) ̂  CκJAx\2

for x, x + Ax, x — Axe Uό(K) with \Ax\<δ.

We make the following assumptions on the data {w0, φ}:

(B.I) uoeJ?(Ω) Π El0C(Ω)l
(B.II) There exists a function Φeif(Ω) such that Φ(x)<^uo(x) for xeΠ,

φ(x) = φ(χ) for x e dΩ, and

H(t, x, Φ, Φx) ^ 0, a.e. in Ω

for each ίg O.
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The theorems described below are the main results of the present paper.

For the general existence and uniqueness, we have:

THEOREM 1. Under the assumptions (H.I)-(H.IV) and (B.I)-(B.II), there

exists a unique generalized solution of (MP).

Note that the uniqueness for (MP) we shall prove in the next section holds

under the assumption that H is merely convex in p.

The assumption (B.Π) is rather implicit when applied to (MP). In the rest

of this section we shall give more explicit sufficient conditions. First we consider

the following assumptions.

(H-B) //M^0, i.e., ω = 0 in (H.IV). Also, φ satisfies

H(t9 x9 sup φ(x)9 0 ) ^ 0 for (t9 x) e Q.
xedΩ

Under the assumption (H-B), we can find a constant L such that

(2.1) H(t9 x, sup φ,p)^0 for (t9 x) e Q and \p\ ̂  L.
δΩ

THEOREM 2. Let the assumptions (H.I)-(H.IΠ), (H-B) and (B.I) be ful-

filled. Assume that {u0, φ} satisfies

(2.2) \<Kx) - <Ky)\ £ L\x - y\ for x,yedΩ,

(2.3) uo(x) ^ Φ(x) = max {φ(y) - L\x - y\} for xeΩ,
yeδΩ

where L is the constant satisfying (2.1). Then there exists a unique generalized

solution of (MP).

PROOF. It is sufficient to verify that the {u0, φ} satisfies the assumption

(B.Π). By the definition of Φ, we have

Φ(Xί) - Φ(x2) ^ Lmax{|x2 - y\ - \χx - y\} ^ L\xt - x2\
yedΩ

for xί9 x2eΩ. Similarly, Φ(x2) — Φ(x1)^L\x1 — x2\. Hence,

|Φ(xx) - Φ(x2)\ ^ L\xx - x2\ for χί9 x2 e Ω.

This shows that Φe<£(Ω) and HΦJI^^L. Therefore, from the definition of L

and the fact that Φ(x)<;supφ(x) for xeΩ, it follows that H(t, x, Φ(x),
xedΩ

a.e. in Ω for each ^O
On the other hand, by (2.2) and (2.3), we see that

Φ(x) ^ L\x - JCQI + Φ(χo) for ^eΩ, xoedΩ:
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Then, since Φ(x)^.φ(xo) — L\x — xo|, we have \Φ(x) — φ(xo)\^L\x — xo\ for every
xeΩ and x0 e dΩ. This implies that Φ(x) = φ(x) for x e dΩ. The proof is com-
plete.

Next we assume, in particular, that
(H.IV)* H is independent of u, i.e., H = H(t, x, p); and satisfies H(t9 x, 0)

(t, x)eQ.

Note that under the assumption (H.IV)* there is an L* such that

(2.4) H(t, x,p)^0 for (f, x) e Q and \p\ ̂  L*.

COROLLARY 1. In addition to (H.IHH.IΠ), let (H.IV)* be satisfied.
Assume that φ satisfies

\φ(x) - φ(y)\ ύ L*\x - y\ for x,yedΩ9

and that u0 satisfies (B.I) and

uo(x) ^ Φ*(x) = max{φ(y) - L*|x - y\} for xeΩ,
yedΩ

where L* is the constant satisfying (2.4). Then there exists a unique generalized
solution of (MP).

PROOF. This follows immediately from Theorems 1 and 2.

3. Uniqueness

In this section we prove the uniqueness part of Theorem 1 assuming only
that H is convex in p. Let T>0 be arbitrarily fixed. For each solution u, let
Mo, Mί be constants such that \u(t9 x)\^M0 on Qj and |wx(ί, x)\^Mt a.e. in
Qτ, and let

ώ = - min {Hu(t, x, w, p)\ (ί, x, w, /?) e W(T, Mo, M,)}.

Without loss of generality we can assume ώ^O. We now define

No = sup {[ Σ (HPi(t, x, w, .p))2]1/2; (ί, x, w, p) e W(T, Mo, M^}.

For iV^iV0, let JΓ denote the cone:

JT = {(*, x)ejR1χJR
w; 0 ^ t ^ Z |x| ^ N ( Γ - ί)}»

and let S(i) be the horizontal plane of JΓ with altitude t.

THEOREM 3 {Continuous dependence). Suppose that H is convex in p,
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i.e., the matrix (HPiPj) is nonnegative. Let u, v be generalized solutions o/(MP)

with data {u0, φ(t, x)} and {υ0, φ(t, x)}, respectively. For u and υ, let Mo

be a common absolute bound, Mx be a common Lίpschitz constant with respect

to x, and let ώ be the constant mentioned above. Then for O ^ ί ^ T ,

sup{|w(ί, x) - v(t, x)|; xeS(t) n Ω}

(3.1) ^ eώ ί[sup {|ιιo(χ) - vo(x)\ x e S(0) n Ω}

+ sup{\φ(τ, y) - φ(τ, y)\; (τ, y)e W {τ} x (S(τ) ίl 30)}].

PROOF. Let ζ(t, x) be a function in C$(Rn+ί) such that ζ^O, ζ(ί, x)^=0

for ί 2 + | . x | 2 ^ l and {{ ζdtdx = l, and let ζε(t, x) = ε^n+ίK(t/s, x/ε) for ε>0.

Let 0 < p < τ < Γ b e fixed, and let Ωδ be a subdomain of Ω such that Ω2<5<=Ωδc:Ωδ

and the Stokes theorem is valid for Ωδ. By a well-known extension theorem,

there is a continuous function u: JR"+1->R1 such that u = u for (ί, x) eQT and

| t ϊ | ^ M 0 for (t, x)eRn+1. Again denoting ίϊ by u, we set wε(ί, x) = (ζε*u)(t, x).

In a similar fashion we define vε(t, χ) = (ζε*v)(t, x).

First we note that

\u*{t, x)\ ^ Mo and \v*(t, x)\ ^ Mo

(3.2)
\uε

x(t, x)\ S M x a n d \υε

x(t, x ) \ £ M ,

hold for (t, x)e[0, T] xΩδ, provided ε<δβ. Secondly, we note that by virtue

of (iii) of Definition 2.1 and the result of [15; Lemma 2.4], there is a constant

C, depending only on δ, p and T such that

(3.3) uε

u ^ C and vε

n ^ C

for every (ί, x) e [p/2, T] x Ωδ and every leR", where ufj and υε

n are the second

directional derivatives of uε and vε with respect to /, respectively.

We put

(3.4) (u* - vε\ + H(t, x, uε, u%) - H(t, x, vε, vε

x) = βε(t, x).

Now let δ(η) be a function of QftjR1) such that <5^0, <5(f/) = 0 for | ι / |^ l and

( δ(η)dη = l, and let δh(η) = h~1δ(ηlh) for any /i>0. We define Φε(t, x) by
Jit*

Φ\t, x) = (αΛ(ί - p) - αh(ί - τ))χΛ(ί, x)(με - vεY*~\

where 5 is a positive integer, 0 < / ί < — min{p, Γ— τ},

- Γ) + Λ)
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and

It is easy to see that χ(t, x) = 0 outside of JΓ, X = Xh(t, x)->l as h I 0 for (t, x)
eint(jf) and

(3.5) χt + iV0|χJ ^ χt + N\χx\ = 0 for (ί,x)ejf.

Multiplying (3.4) by Φε(t, x) and integrating over QδT = [0, T] x Ωd, we have

(3.6)

+ ( J : j ^ p l ( )Λ(i<«-ι; ), l)φβ]ΛΛ = JJ βεΦεdtdx,

where (—) = (ί, x, Atιβ+.(l-λ)ι?β, ΛwS+(l-.A)ϋ5), We first let ε | 0 . By (3.2)
and the fact that uε

x-+ux and t^-*^ a.e. in β ί Γ , we see that the right side of (3.6)
converges to zero as ε 10. We now estimate the terms on the left side of (3.6)
from below. Clearly,

limίί (uε - vε)tΦ
εdtdx

δiO JJQδ,τ

= - (ί {hit - p) - δk(t - τ))(ιι - vY*χ(t, x)dtdx
JJQδ.T

- ft («*(ί - P) - «*(ί - τ))(« - r)2sχf(

- (2s - l)ft (II - v\Φ(t, x)dtdx
JJQδ,τ

and

limft ({1Hu(-~)dλ)(uε - vε)Φεdtdx

^ - ώ\ \ (u - v)Φ(t, x)dtdx,

where Φ(t, x) = (αΛ(ί-p)-αΛ(ί~τ))χΛ(ί, x)(u-υ)2s~K
Before estimating the third term on the left side of (3.6), we consider Γε(t, x)

defined by

Γε(t, x) = t ±HPiPJi )(λuε + (1 - λ)v%XJ
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for (t, x)e[p/2, T]xΩδ. It is known that there exist / l 5..., ln in Rn such that

(/.5 lj) = δij (<5ι7 = Kronecker's delta) and

Γ (ί, x) = ±ιφ, x){λu* + (1 - X)v%u,

where μf(f, x), i = 1,..., n, are the eigenvalues of the matrix (HPiPj) at (ί, x). Since

H is convex in /?, we have, by (3.2) and (3.3),

Γ*(t, x) g nC0C = d ,

where C o is a positive constant such that O^μ^ί, x ) ^ C 0 on [p/2, Γ ] x Ω 5 , i

= 1,..., n. Hence,

(u - tO2*(αΛ(< - />) - αΛ(ί -

We now estimate the third term. Integration by parts yields

[ (II - t;)2s(αΛ(ί - p) - αΛ(ί - τ))χ(ί, σ)dσdt
OJdΩδ

(M - y)25(αΛ(ί - />) - αA(ί - τ))χdtdx
Qi.T

- (( («»(< " P) - <Φ - τ))N0\χx\ (u - υpdtdx
JJQi.T

- (2s - 1) Σ (( (Γίί Λ (-)dA)(« - v)XiΦ{t, x)dtdx

where dσ is the surface element, (—) = (t, x9 λu + (l—λ)υ9 λux + (l—λ)υx) and

+ 2C 3 M 1 . Here C2, C 3 are the constants defined by

C2 = sup{ΣlHwJLt, x, ii, p)| (ί, x, u, p)e W(T9 M o , M x ) } ,

C 3 = sup { Σ |HPiM(ί, x, ii, p)| (ί, x, M, p) e ^ ( T , M o , M x)} .

It follows from (3.5) that I2h + J3th^0. In view of (i) of Definition 2.1,

we have
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I3§k + J 4, f t ^ - (2s - l ) ώ ( ( (II - v)Φ{U x)dtdx.
JJQδ.T

Thus letting ε | 0 and then h i 0 in (3.6), we have

(u(τ, x) - t<τ, x))2*dx - [ (μ(p, x) - v(p, x))2sdx

(3.7) - (C + 2sώ)[τ[ (μ(t, x) - v(t, x))2sdxdt
JpJS(t)f)Ωδ

{ (u(t, σ) - v(t, σ))2sdσdt ^ 0.
pJS(t)ΠdΩδ

We now put

F(t;s,δ)=[ (u(t9 x) - v(t, x))2sdx
Js(t)nΩδ

and

G(t; s,δ)={ (u(t9 σ) - v(t, σ))2*dσ.
JS(t)neΩ*

Using the GronwalΓs inequality and raising both sides to the power l/2s, we have

F(τ; s9 δyi2* ^ e(-^i^(*-f>^F(p; s,

(3.8)

+ WN)^2s([τG(; s,

for every positive integer 5. We next let s-»oo in (3.8). Using the well-known

fact that if Ω is bounded then lim | |w||p= M L f o r w eL°°(Ω), we have
p-+oo

sup{|tι(τ, x) - v(τ, x)\; xeS(τ) Π Ωδ}

(3.9) ^ eώ^τ-^lsup {\u(p9 x) - υ(p, x)|; xeS(p) 0 Ωδ}

+ sup{|tι(ί, x) - v(t, x)\; (ί, x)e W {t} x (5(0 n 30')}]

for every 0 < p < τ < T. Letting p | 0 in (3.9) and then δ 1 0, we obtain the desired

inequality (3.1). The proof is complete.

As a consequence of Theorem 3, we have:

COROLLARY (Uniqueness). Let H be convex in p. Then there is at most

one generalized solution o/(MP).
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4. Generation Theorem

We now turn our consideration to the existence part for (MP). Our first

task is to construct a (generalized) solution of (Pa.MP). As indicated in the

introduction, we shall treat (Pa.MP) from a semigroup point of view in Sections 5

and 6. The main tool we use is the following Generation Theorem which is an

extension of the Crandall-Pazy theorem (cf. [11; Theorem 2.1]). We note that

the proof given below is essentially due to Crandall and Pazy.

Let X be a Banach space with the norm || ||. A subset A of X x X is in the

class of j^(ω) if for each Λ>0 such that λω< 1 and each pair [Xj, y[\ e A, i= 1, 2,

we have

(1 _ λώ) \\Xγ _ X 2 | | ^ | | ( X l + λ y i ) _ (X2 + λy2)\\ .

For λ>0 and ί^O, let Jλ(t) = (I + λA(t))-ί and

GENERATION THEOREM. Let A(i) satisfy

( I ) A(t)es*(ω) for 0 ^ t S T;

(II) D(A(t)) = & is independent of t;

(III) For each xe @, there is a λx > 0 satisfying the following (a) and (b):

(a) xeR(I + λA(ή) for every 0 < λ < λx and t e [0, T ] ,
k

(b) YlJχ(ti)x is uniquely determined for every λe(0, λx) and every finite

family of real numbers {ίjf=1 such that Ogf^T, i = l, 2,..., k;

(IV) There exists an operator b ( - ) : @-*R+ such that

( a ) for x 6 &, 0 < λ < λ x and k^l with s + k λ <; T,

WWxi + iλ)x) g (1 + λC0)
kCu

where Co and Cx are constants independent of λ; and

(b) for xe@,

\\Jλ(t)x - Jλ(s)x\\ ^ λL(\\Jλ(t)x\U b(Jλ(t)x)) \t-s\,

where L(ru r 2 ): ίt+xR+->JR+ is nondecreasing in (r1 ? r2), that is9 L{ru r2)

ύUrf

ur
f

2)ifr^r\andr2^r'2.

Then {A(t)} determines an evolution operator U(t, s) on <£> such that

(4.1) \\U(t, s)x - U(t, s)y\\ ^ e^-^\\x - ^||

for x.yeQ) and OSsύt^T, that is, (i) U(s, s) = I (the identity operator),

U(t9 s)U(s, r)=U(t, r) for O^r^s^t^T; and (ii) for xeSi, U(t, s)x is con-
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tinuous in (t, s) on the triangle O gs^ίrgT.

Moreover, for xe @ we have

(i) U(t, s)x is given by

(4.2) U(t, s)x = \im flJt^is+i^

(ii) U(t9 0)x is Lipschitz continuous in t on [0, T].

PROOF. The reader is referred to [11; the proof of Theorem 2.1]. Let

and 0 < μ < λ < λx < λ0, where λ0 is a constant such that λoω < 1. Set

Pχ,k = Pχ,k* = ΠJλ(s + iλ)x,

Proceeding in the same way as in [11] yields

ak,ι ^ αflfc-u-i +• ^ α M - i

where α = Aiλ"1(ί-μω)-1'and )ί = (λ-μ)λ- 1 ( l-^ω)- 1 . By the condition (IV)-

(b), we have !!>M^μL(||PμJ, b(Pβtl))\lμ-kλ\.' By [11; Lemma 2.2] and the

condition (IV)-(a), we have' | |Pμ t / | |gK 0 and b(Pfltί)^K1 for some constants Ko

and Kt independent of / and μ. Hence

(4.3) bκι < μL(KOi Kt) \lμ - kλ\ = μp(\lμ - kλ\),

where p(r) = L(K0, K^r for r^O. Remarking (4.3) and following the idea of

Crandall and Pazy (cf. [11; p. 68]), we have for any <5>0

amfn ^ K{l(nμ - mλ)2 + nμ(λ - μ^2 + l(nμ - mλ)2 + mλ(λ - μ)γi2

(4.4)

+ nμp(\nμ - mλ\) + nμp(δ) + n2μ2(λ - μ)δ~2},

where K can be taken to depend only on ||x||, b(x), Co, Cu λOi ω and T. Notice

that (4.4) corresponds to the estimate (2.25) of [11]. Therefore we find that

U(t9 s)x = lim Π Jλm(s + iλjx, xe®

exists if {λm} is a sequence such that 0<mλm^t — s and mλm->t — s as m-*oo.

Moreover, according to the condition (I), we have (4.1) for x, ye Si, Thus we

can extend U(t, s) to the operator (denoted by U(t, s) again) defined on Θ satisfy-

ing (4.1). An argument similar to the proofs of [11; Propositions 2.1 and 2.2]
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implies that U(t, s)x is continuous in (t, s) for x e ^ . Noting this fact, we can

verify by a simple calculation that U(t9 s)x is continuous in (ί, s) for x e @.

Finally we observe the Lipschitz continuity of U(t, 0)x in t on [0, T] . Putting

Λ = τ/m and μ = t/n in (4.4) where s = 0, letting n, m->oo and then letting δ j 0,

we have

|| U(t, 0)x - U(τ, 0)x\\ g L0\t - τ|, Lo = K(2 + ΓL(K0, * i ) )

The proof is complete.

5. The evolution operator approach to parabolic problems

We consider a mixed problem (hereafter called (Pa.MP)) for quasi-linear

second order parabolic equations:

(5

(5

(5

•1)

•2)

.3)

14, +

«(0,

u(t,

H(t,

x) =

x) =

X, U, U

MO(X)

φ(x)

X) = μAu in

on

on

e,
Ω,

[0, c») x 5Ω.

Here, as before, we assume that uo(x) = φ(x) for xedΩ, and that Ω is a bounded

domain of Rn whose boundary dΩ is of class C3. It is known that if the normal

curvatures of dΩ e C 3 are bounded in absolute value by K then the distance func-

tion d(x) = dist(x, dΩ) is of class C 2 and satisfies \dx(x)\^do>0 at all points

whose distance from dΩ is less than <50, where d0 and δ0 are appropriate positive

constants such that δo<\jκ (cf. Serrin [18; Lemma 3.1]).

We now state the definition of a generalized solution of (Pa.MP).

DEFINITION 5.1. A function u defined in Q is called a generalized solution

of (Pa.MP) if: (i) for every T>0,ue&(ζΓτ) satisfies (5.2) and (5.3), and (ii)

u satisfies (5.1) in the distribution sense, that is, for every T>0 and every ψ

e C$(QT), we have

a {- uψt + H(t, x, M, ux)φ + μ(ux, φx)}dxdt = 0.
Ω

In this and next sections we shall apply the Generation Theorem stated in

the previous section in order to construct a generalized solution of (Pa.MP).

Let [0, T] be arbitrarily fixed. In what follows we assume that H satisfies the

assumptions (H.I)-(H.IV). Also we make the following assumptions on {u0,

ΦY

(B.I)* u 0 e C 2 + " ( Ω ) n C2(Ω);

(B.Π)* There exists a function ΦeC2+*(Ω~) such that Φ(x)gκ o(x) for



452 Yoshihito TOMITA

xeΩ9 Φ(x) = φ(x) for xedΩ and

(5.4) H(t9 x9 Φ, Φx) - μAΦ(x) g 0 for t ^ 0 and xeΩ.

Notice that there exists a constant μ0 such that

(5.5) μsnp {\AΦ(x)\ + \Ad(x)\; xeBδ°} ^ 1

for all 0<μ<μ o . Because we shall employ the vanishing viscosity method for
proving the existence of a generalized solution of (MP), we may assume without
loss of generality that μ in (5.1) is small. Henceforth it is assumed that (5.5)
holds (see Remark 6.1).

Let us work in the Banach space C(Ω) of all real-valued continuous functions
u o n S with norm: ||ϋ||0 = max{|t;(x)|; xeΩ}.

Define

3> = {veC2+"(Ω) Π C\Ω)\ v ̂  Φ on Ω, v = φ on dΩ}.

We start by defining the operators A(t) and b(-) associated with (Pa.MP)
in C(Ω).

DEFINITION 5.2 (Definition of A(t)). We define A(t) by veD(A(t)\ A(t)v = w

if and only if: (i) ve @, (ii) weC(Ω) and (iii) H(t, x, v, vx) — μAv = w in Ω.

REMARK 5.1. If υe@ and H(t, x, v9 υx) — μAv = w in Ω, then the following

conditions are equivalent.

(ϋ)

(ϋ)'

(ϋ)"

(ii)'"

weC(Ω).

AυeC(Ω).

v + λow e C(Ω)

v + λwe C(Ω)

for some

for every λ>

•0.

0.

To see this, it suffices to note that v e & c CX(Ω) implies H(t, x, v, vx) e C(Ω).

DEFINITION 5.3 (Definition of b( )). Define the operator b( ) : @-+R+ by

b(v) = \\vx\\0 = sup{[Σ vXi(xyγf2; xeΩ} for ve 9.

From Definition 5.2 and Remark 5.1 it follows immediately that
satisfies the condition (II) in the Generation Theorem. Thus we may denote
@=D(A(t)). Note that J0cz^ and @ is a convex set. From now on we are
going to prove that {̂ 4(0} satisfies the conditions (I), (III) and (IV). To this end,



A Mixed Problem for the Hamilton-Jacobi Equation 453

we state without proof the following lemma which is a version of the maximum

principle.

LEMMA 5.1. Let aeC(Ω) be positive in Ω, (1^0(0), ί = l,..., n, and ε>0.

Ifve C2(Ω) n C(Ω) satisfies

a(x)υ(x) + Σ afa)ΌXi(x) - zAv{x) ^ 0 for xeΩ

and v^iO on dΩ, then v(x)7>0for xeΩ.

Throughout this section we choose a positive number λQ such that A o ω<l

and fix it, where ω is the constant in the assumption (H.IV). To verify the

condition (I) in the Generation Theorem, we shall prove:

P R O P O S I T I O N 5.1. Let 0<λ<λo. Ifu,ve@ satisfy u + λA(t)u = h and

v + λA(t)v = g•, respectively, then

PROOF. Since

u + λ[H(t, x, M, ux) — μΔu\ — h

and

v + λ[H(t, x, v, vx) - μΔv\= g

in Ω, the difference w = u — v satisfies

w + λHu(t, x, aΘ(x), pθ(x))w

+ λ(Hp(t, x9 aθ(x\ pθ(xj), wx) - λμAw = h - g,

where aθ{x) = v + θ(u - v), pθ(x) = vx + θ(ux - vx) and 0 < θ = 0(x) < 1.

Suppose that w has a positive maximum at xoeΩ (note that Ω is open).

Then, by the assumption (H.IV),

\\h - g\\0 ^ w(x0) + λHu(t, x0, aθ(x0), pe(x0))w(x0) ^ (1 - λω)w(x0).

This implies w(x o)g(l — λω)'1^ — g\\0, since 0<A<A o . Similarly we can show

that if w has a negative minimum at xteΩ then w(x1)^—(l — λω)~1\\h — g\\0.

Remarking that w vanishes on dΩ, we have the desired inequality. Thus the

proof is complete.

As an immediate consequence of Proposition 5.1, we have:

A.

COROLLARY. For he@, there is at most one solution ueD(A(t)) of
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We next prove that {Λ(t)} satisfies the condition (III). Of course, the
condition (IΙI)-(a) means that for h e & there is a positive constant λh such that
for every 0<λ<λh and every t e [0, T] we can prove the existence of a classical
solution u e Qt of the boundary value problem (hereafter called (BVP)):

(5.6) u + λ[H(t, x, w, ux) - μAu\ = A, xeΩ,

(5.7) u(x) = φ(x), xedΩ.

Before proceeding further, we want to note that the estimates appearing in
this section are independent of λ and μ.

LEMMA 5.2. For he® and 0<λ<λo, let u e C2(Ω) n C(Ω) satisfy (5.6)
and (5.7). Then

(5.8) ιφc)^Φ(x) for xeΩ.

PROOF. Since h e 3, we have

(5.9) Φ + λ[H(t, x, Φ, Φx) - μΔΦ~] - A ̂  0, xeΩ,

by the assumption (B.II)*. Hence we find that the difference vv = w — Φ satisfies
vv(x) = 0 for x e 5ί2 and

w + A[i/tt(. )w + Σ H P i ( .)»», - ^ w ] ^ 0, xeΩ,
i = l

where (•• ) = 0J x, Φ + Θw, Φx + θwx), 0<θ = θ(x)<l. Since l+λHu( ')tl-λω
>0, we have w(x) = w(x) — Φ(x)^0 for xeΩ by Lemma 5.1. The proof is com-
plete.

LEMMA 5.3. For he & and 0<λ<λo, let ueC2(Ω)nC(Ω) be a classical
solution of (BVP). Then there exists a function Ψ(x)eCco(Ω) such that u(x)
<LΨ(x)forxeΩand

(5.10) Ψ + λ[Jf(f, x, Ψ, Ψx) -μAΨ]Z: A, (ί, x ) G ^ .

PROOF. By the assumption (H.Π), we can choose a vector 1°=(/?,..., ZJ)

e JR" such that for all (ί, x) e Q^

ί, x, 0, J°) ^ (

Here diam Ω denotes the diameter of the domain Ω. We define

(5.11) Ψ(x) = (J°, x) + a = Σ l°iXi + a, xeΩ,
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where a = ||ft||0 — min {(/°, x); xeΩ}, It is evident that

(5.12) 0 ^ ||Λ||o ύ Ψ(x) S (diamθ)|l°| + ||ft||0, xeΩ.

It follows from (5.11), (5.12) and the assumption (H.IV) that

(5.13) H(t, x, Ψ, Ψx) - μAΨ ^ - ωΨ(x) + H(t, x, 0, Z°) ^ 0

for all ίe[0, T] and xeΩ, and hence, by using (5.12) again, we obtain (5.10).
Therefore, the argument similar to the one at the end of the proof of Lemma 5.2
implies that Ψ(x) — u(x)^0 for xeΩ. Consequently,

(5.14) u(x) S Ψ(x) S (diamθ)|/°| + ||Λ||0.

The proof is complete.

Next we shall establish an a priori estimate for the first derivatives of solutions
of (BVP). We are now in a position to give a comment concerning the restriction
of λ occurring in (BVP). According to Lemmas 5.2 and 5.3, for each given he @
there is a positive constant Mo such that

(5.15) | | i ι | |ogM o smax{| |Φ| |o, ||y||o}

for all classical solutions u of (BVP). Hence, by the assumption (H.III), there
are positive constants a2 and α3, depending on ft, such that \HJt9 x, u, p)\ ^a2\p\
+ α3 for (ί, x, M, p) e W(T, Mo). For such a2 and a3, we can choose a positive
constant λh(<λ0) such that for all λe(0, λh)

(5.16) (1 - (a2 + ωμ)" 1 ^ 1 + (a2 + ω + l)λ, a3(a2 + ω + ϊ)λ ^ 1.

For later applications, we consider (BVP) with 0<λ<λh and 0<μ<μo (cf.
(5.5)).

LEMMA 5.4. Let he@, and let λh be as mentioned above. Suppose that
for λ e (0, λh), u e C3(Ω) n C\Ω) satisfies (5.6) and (5.7). Then we have

\\ujo ^ (1 + λC0)Cu

where C0 = a2 + a2 + co + 2 and Cγ is a constant depending only on H, Ω and ft.

PROOF. First we choose a σ0 such that σ 0 ^ | |Φ X | | O + IIMo N o t e that the
inequality

(5.17) Φ(x) + σd(x) ^ ft(x), x e Bδ°

holds, provided σ^σ 0. In fact, since Φ(x) = h(x) = φ(x) for xedΩ, we have
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We also take two sequences {σm} and {δm} such that

( i ) σm ^ σ0 and δm <Ξ <50, m = 1, 2,...,

(ii) σOT ί oo and δm j 0 as m -> oo,

(iii) for each m, the inequality

(5.18) M - M^ σmδm ^ M - M + 1

holds, where M=min Φ(x) and M=max ^(x).
xeΩ xeΩ

It is not difficult to see that we have \Φ(x) + σmd(x)\<>\\Φ\\0 + σmδm^
+ M-M+ l = Mfor allxe£*™and ro = l, 2,...; and

lim g(*. * . " . * » + g»*χ) = i ί m H(t,x,u Φ +σmdx)lim = i ί m | ^ | = + 0 0

for (ί, x, M) e [0, Γ] x β ^ x [-M, M].
Hence there are positive constants σ t ( = σ m i )>l and δx ( = δmi)<δ0, in-

dependent of A and μ, such that

(5.19) H(t, x,Φ + σ±d, Φx + σtdx) - μ(AΦ + σ^ί/) ^ 0

for (ί, x)e[0, 7 ] x B a i ( c [ 0 , T]xJ5 ίo). In fact, we have only to choose σx

so large that

H(t,x, Φ + σ,d Φx + σidx)ldχl ^ j for (/> χ) e [ O j r ] χ β ί l
σl\"x\

From (5.17) and (5.19) it follows that Φ = Φ + σtd satisfies

(5.20) Φ + A[fί(ί, x, Φ, Φx) - μJΦ] - h ^ 0,

Furthermore, using (5.18) and Lemma 5.3, we can verify that Φ(x)^.M^u(x) if
d(x) = δ1 and ^(x) = 0(x) if d(x) = 0, and hence

(5.21) Φ(x)^u(x) for xedBδκ

Proceeding in the same way as in the proof of Lemma 5.3, and noting (5.20)
and (5.21), we have

(5.22) u(x) ^ Φ(x) = Φ(x) + σ±d(x) for

Combining this with Lemma 5.2 yields

Φ(x) - σxd(x) ^ Φ(x) ̂  M(X) g Φ(x)

Then, since
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-L(u(xί9..., xt + ft,,..., xn) - w(xχ,..., *„)) ^ σx + \\ΦX\\O ^ 2σx

for xedΩ and every small ftf such that (xl9...9 X|+h f>..., xn)eBdί, ί = l,..., n, we
obtain |uJCί(x)|^2σ1 for xeδΩ, ί = l,..., n. Consequently we have the boundary
estimate:

(5.23) WuJcvo) = sup[Σ uxt(x)*y'2 ^ 2nσx = Cx.
xedΩ i = l

We can now establish an interior estimate for ux with the aid of (5.23).
Differentiating both sides of (5.6) with respect to xi9 multiplying by uXι and sum-
ming from i = 1 to n, we have

(μχ9 ux) + λ(Hx, ux) + λHu(ux, ux)

+ ^ \^PiuXiXiuXi - λμΣ,uXiΔuXi - (Λx, ux) = 0.

Setting Z(X) = (MX(X), UX(X)), we have

(1 + λHu)z A

Suppose that z has a positive relative maximum z(x0) at x o e Ω . Then

(1 + λHu)z(xo) + ACH^ Wjc(x0)) - (Λ^xo), Wjc(x0)) ^ 0.

By the assumption (H.III) and the fact that 1 -λω>0 for 0 < λ < λ θ 9 we get

||Λ,||o + A[(α3 + 1) + (α2 + ω + 1) ||ΛX | |O],

since 0<λ<λh. Here we have used the fact that both inequalities in (5.16) hold
for λ e (0, AΛ). Now we must treat two cases separately.

Case 1: \\hx\\0^ 1. In this case, we have, by noting Cx ^ 1,

\ux(x0)\ ^ 1 + λ(a2 + α 3 + ω + 2) = 1 + λC0 ^ (1 + λC0)C±.

Case 2: l^HΛ^Uoί^C!). In this case, we have

\ux(x0)\ ^ (1 + λ(α2 + α 3 + ω + 2)) ||ΛJ|0 ^ (1 + λC0)Ct.

Consequently,

\ux(x0)\ ^ (1
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and hence, by (5.23), we have | J M X | | 0 ^ ( 1 + A C O ) C 1 . Thus the proof is complete.

We are now able to prove the following result, which implies that {A(t)}

satisfies the condition (III).

PROPOSITION 5.2. For he@, there exists a λh(0<λh<λo) such that (a)

heR(I + λA(t)) for all 0<λ<λh and O ^ ί ^ T ; and (b) for every {4}£=1 with

0<λk<λh and every {tk}k=ι with 0^tk^T9 there exists a sequence {uk} of solu-

tions of

ί u + λk[H(tk9 x9 u, ux) - μΔu] = a*-*, xeΩ,

1 u(x)*= φ(x), xeδΩ,

where u° = h.

PROOF. Let us prove this by showing that (a) and (b) hold with the λh

obtained in deriving (5.16). We can prove (a) by using the a priori estimates

obtained in Lemmas 5.2-5.4, and by using the Tychonoff fixed point theorem

(cf. [17] or [18]). Here we note that in order to be able to seek a solution in

C\Ω) we assume that @ c C2+a(Ω) and H e C 2 + α .

It remains to prove (b). To this end, we first verify a simple (but basic)

result that under the assumption of its existence, each uk satisfies

(5.24) Φ(x) ^ uk{x) ^ Ψ(x) for xeΩ,

where Φ(x), Ψ(x) are the functions appearing in the assumption (B.Π)*, and

given by (5.11), respectively. We prove this by induction on k. Lemmas 5.2

and 5.3 imply that (5.24) holds for fc=l. Assume that (5.24) is already proved

for the integers less than or equal to fc — 1 . Remarking (5.4) and (5.13), we have

by the hypothesis of induction

Φ + λk[H(tk9 x, Φ, Φx) - μΔΦ~\ - u*- 1 ^ 0

and

Ψ + λk[H(tk, x9 Ψ, Ψx) - μAΨ] - M*-1 ^ 0

for xeΩ. Therefore the arguments used in the proofs of Lemmas 5.2 and 5.3

can be employed to obtain (5.24) for uk.

By virtue of (5.24), we have | | M k | | 0 ^ M 0 where Mo is the same constant as

in (5.15). This implies that the λh may be taken as a λuk, fc=l,..., N, since we

can take the same a2 and α 3 as before (cf. (5.16)). Now the proof of the existence

of uk can be carried out in a similar way as in the proof of (a). (For the a priori

estimates of | |u*| |0, see the next proposition.) The proof is complete.
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The following propositions make the observation that {Λ(t)} satisfies the

condition (IV) in the Generation Theorem. Let

uk = Π hit + iλ)h.

PROPOSITION 5.3. Let he@ and 0<λ<λh. Then,

(5.25) b(f\Jx(t + iλ)h) = ||u*|lo ύ (1 + λC0)*Ct

for every integer k such that t + kλ^T, where Co, Cί are the same constants as

in Lemma 5.4.

PROOF. Let Φ(x) = Φ(x) + σίd(x) be as in the proof of Lemma 5.4. Since,

by the choice of σ± and δί in the proof of Lemma 5.4,

H(t + 2λ, x, Φ, $x) - μΔ$ ^ 0 on B^

and Φ(x)^ux(x) for x GB^ (cf. (5.22)), Φ satisfies (5.20) with t and h replaced by

and M1, respectively. Hence, by Lemma 5.1 and (5.24),

Φ(x) ^ u2(x) ^ Φ(x) = Φ(x) + σ±d(x) for x

This yields with the same constant Cγ as in (5.23)

(5.26) \\uϊ\\am ύ Cv

Calculating in the same way as before, we have

ll̂ llo s a + λcoycu

by using the estimates | | i ι ί | | 0 ^ ( l +λC0)C1 and (5.26).

Proceeding similarly step by step, we complete the proof of Proposition 5.3.

PROPOSITION 5.4. Let Jλ(t)h = u and Jλ(s)h = υ for he @90<λ<λh and

O^t,s<LT. Then

(5.27) H«-t> | | o £λL( | | t ι | | o , & ( n ) ) | ί - s | ,

where L(rt, r2)=Csup{\Ht(t,x, u, p)\; (ί, x, u, p)e W(T, rί9 r2)} with a positive

constant C independent of t, s and h.

PROOF. Clearly, the difference w = u — v satisfies

0 = w 4- A[H(ί, x, M, tix) - H(s, x, v9 υj] - λμΔw

= w + λ[Ht(Ί, x, M, ux)(t - s) + Hu(s, x, α(x), ux)w
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+ (Hp(s, x, v, p(x)), wj] - λμΔw,

where ϊ, d(x) and p(x) are determined by the mean value theorem.

Suppose w has a positive maximum at x 0 e Ω. Then

w ( x 0 ) + λHu(s9 x0, a ( x 0 ) , u x ( x 0 ) ) w ( x 0 ) g A(sup | J f f | ) \t-s\.

Here the supremum is taken over all (ί, x, z, p)s W(T, \\u\\θ9 b(u)). Conse-

quently,

w(x0) ^ ^C(sup \Ht\) \t - s\ Ξ AL(| |M| | 0 , &(«)) |ί - s|,

where C is an appropriate constant such that (1 — λω)"1 ^ C for 0 < λ < λ Ό . (Since

we may assume without loss of generality that Λ.oω<l/2, we can take C=2.)

Similarly, we see that if w has a negative minimum at xγeΩ then w(xί)^

—λL(\\u\\0,b(u))\t — s\. Remarking that w vanishes on dΩ, we have (5.27).

The proof is complete.

Combining the results obtained above, we conclude:

THEOREM 4. Suppose that H satisfies the assumptions (H.I)-(H.IV). Let

{Λ(t)} be a family of operators of Definition 5.2. Then {A(t)} determines an

evolution operator U(t, s) on Q)'.

Moreover, we have

( i ) For each given uoe@ and each 0<ε<ΛW o, the problem

ί ε-\u(t) - u(t - β)) + i4([ί/β]β)ιι(0 = 0, t* 0,
(5.28)

[ u(t) = u0, t < 0,

has a unique solution uε(t) on [0, oo) and limuε(f)=U(t, 0)w0 uniformly in t on
ε i O

compact sets, where [ί/ε] is the greatest integer in tjε.

(ii) If veΘ, then U(t, 0)v is locally Lipschitz continuous in t.

(iii) U(t)=U(t,0) satisfies

\\U(t)u-U(t)v\\0^e<»<\\u-v\\0 for

6. Relationship between the evolution operator and (Pa.MP)

The main aim of this section is to show the existence of a generalized solution

of (Pa.MP). Our approach to this problem depends much on the theory of non-

linear evolution equations in a Banach space. We associate (Pa.MP) with the

initial value problem for an abstract quasi-linear parabolic equation of the form

ί du{t)jdt + A{t)u(t)=O, O^t^T,
(ACP)

U(
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in the Banach space C(Ω), where Γis a given positive number.

For each given u0 e Si and each ε such that 0<ε<λuo, let uε(f) be the solution
[ί/ε]

of (5.28), i.e., wε(ί)= Π Λ(iΦo Put ( « E ( 0 ) W Ξ « a ( U ) It should be noted

that (5.24) and (5.25) imply

(6.1) ||wε(ί, . ) l l o ^ M o and \\ux(t, )llo S Mί

for all t e [0, T], where M o and Mi are independent of ε, μ.

In order to prove that (U(t)uo)(x) = u(t, x) is a generalized solution of

(Pa.MP), we intend to verify that there exists a subsequence {ε(j)} such that

uB

χW-*ux a.e. in Qτ. To do so, we shall make use of the concept of local semi-

concavity. Before stating a lemma, we list some notations.

Define

(6.2) η(r)

1 O ^ r ^ l ,

e x p [ ( r - l ) 3 / ( r - 2 ) ] l ^ r ^ 2 ,

0 2 ^ r.

Clearly, ηeC2(R+). For veC\Ω\ yeΩ and <5>0 with [/2a(j;)cΩ, we set

\v\ε(uό(y)) = sup {%(*); x e Uδ(y)9 ί e B " } ,

\ϋ\E(u2ό(y)) = sup {η(\x - y\lδ)vu(x); x e U2δ(y), leRn}9

\v\E(U2ό(y)) = maχ{l^l£(C/2<5(y))» 1}

The following lemma plays an essential role in our later discussions.

LEMMA 6.1. Let he@ and 0 < μ < μ o (<1). Then for each yeΩ and

every <5>0 such that U2δ(y)c:Ωi there exist positive constants C = C(δ) and

Xh = Xh(δ), independent of μ, such that

(6.3) lwfcΓ£(c/2d(y)) =

for 0<λ<Xh and /c=l, 2,..., [T/λ],

PROOF. We shall prove this by induction on k. Let us first prove (6.3)

for w1. For simplicity, we denote uι by u. Let / = (/!,..., ln)eRn with |Z| = 1

be arbitrarily fixed. By definition, u satisfies

(6.4) u + λ\H(U x, u, ux) - μΔu] = h, xeΩ.

Carrying out the second directional differentiation with respect to / in (6.4),

we have easily
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., I 3 Γ V U 7 7 i 1 V XT 1 *.
uιι + L̂ λ HχiXjhιj + 2 Σ,**xmΨι -

ft n

(o.jj -t- z 2* *iχiP huXjι "Γ -̂ 2-(*iuptUιUXiι + iiuUu

n n

+ Σ HPiPjuXiluXjl + Σ HPi
Uχiiι - μ^w«] = ^«

By virtue of (6.1), we have

sup^ Σ ^ W A I + 2| i ^ W + l̂ uJCWi)2} S C29

where the constant C2 is independent of A and μ. Here we take the supremum

over all (ί, x, u, p) e W(T, M o , Mx) in order to be able to proceed on with our

argument.

Set w = un. Since H is strictly convex in p, the inequality

n

Σ HptpjUxtluXjl = \HpP(Ul)x> (Ul)x) = ΛlKWz)jcl
i ,J = l

holds with a constant α 1 = α 1 (M 0 , M ! ) > 0 . By the Schwarz inequality, we have

Therefore, from (6.5) it follows that

{6.6) w + λHuw + ^λa^udJl2 + λ(Hp9 wx) - λμAw - Λw ^ AC4,

where C 4 = C 2 + C 3 and

C 3 = -i-sup{|H p j c/| 2 + |//w p W ί |
2; (ί, x, u, p)e Pf(T, M o , M x ) } .

" 1

Multiplying both sides of (6.6) by (η(\x — y\/δ))2 and setting z = ηw, we have

(1 + AHJzif + i - Aα l22 + λη(Hp, zx) -MHn ηx)z - λμηΔz

(6.7)

since W
We now suppose that z has a maximum z(x0) (>1) on C/25W- Since z
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vanishes on dU2δ(y)> *o *s a n interior point of U2δ(y). Using the Schwarz

inequality again, we get

(1 + λHu)zη + \λaxz
2 - λ[^-z2 + J - (Hp9 ηx)ή

-λ\«±-z2 + -±-(Aη- (2\ηx\
2/η))ή - η2hu ^

whence

(1 - λω)z(xo)η(\xo-y\lδ) ^ η2hn(x0) + λCAη
2 + λC5η,

where C5 = C5(δ) is a constant independent of λ and μ. Here we have used the

fact that there is a constant C(<5), depending only on δ, such that \ηx\
2^C(δ)η

2LΏd(Aη-(2\ηx\
2lη))2^C(δ)η. Thus we have

(6.8) z ^ (1 - λώ)-\l + λC6)\h\\iU2δ{y))

for 0<λ<λo, where C 6 = C6(<5) = C 4 + C 5. But a simple calculation allows us to

choose lΛ = ίΛ(δ) small enough so that (1 — λ ω ) " 1 ^ l + (ω+. l)A and A ( ω + l ) C 6 ^ l

hold for all 0<λ<Xh. Hence, it follows from (6.8) that for every λe(0, Xh) we

have

where 0 = (?(5) = ω + C 6 4- 2. Consequently we have

for every

Next we prove (6.3) for uk under the assumption that (6.3) holds for uk~x.

Let wk = uk

ι and zk = η(\x — y\/δ)wk. Then, by virtue of (6.1), we see that zk

satisfies (6.8) with hn replaced by wff1. Hence the argument similar to the

proof for u1 ( = u) implies that

I β*l!(»,.(,)) ^ (i + AC) I fi""11 £(„„(,), g (l + λCγ\ h\\{Vl6(y))

for 0<λ<Xh. This completes the proof of Lemma 6.1.

From now on we will verify that u(tyx) is a generalized solution for (Pa.MP).

Let K be an arbitrary compact subset of Ω and <5>0 be so small that U2δ(K)dΩ.

Denote

\uo\E(u2δ(κ)) = sup{(fio)κ(x); x e l

Since we may assume without loss of generality that \u-0\EiU'2δ(iK))^ί9 Lemma 6.1
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shows that for every yeK and 0<λ<λh

I u k I E(Uό(y)) = I " ^ I E(U2δ(y))

S(l+λC)k\u0\*EiU2δiy))

S(l+λC)k\u0\E(U2δ(K))9

whence for every 0 ̂  t ̂  T

\uε(U )\E(uό(κ)) ^ edt\u0\E(U2ό(K)) = aKtδ(t).

From this it follows that

(6.9) κβ(f, x + Jx) - 2u%U x) + iιβ(f, x - Δx) ^ aKiδ(t) \Δx\2

for ίe[0, Γ] and x, x + Jx, c - J x e t / ^ K ) with

Now, as in [3], we use the next lemma concerning the convergence of a se-

quence of locally semi-concave functions.

LEMMA 6.2 (Kruzkov). Let {um}%=ί be a sequence of Lipschitz continuous

functions on Ω such that

( 0 llwmllo = Mo and \\uy\\n :g M l 5 m = 1, 2,...,
(ii) for each compact KczczΩ and <5>0 such that U2δ(K)czΩ,

um(x + Δx) - 2um(x) + um(x - Δx) <; aκJΔx\2, m = 1, 2,...

with a constant aKδfor x, x + Δx, x — Δxe Uδ(K): \Δx\<δ.

Then there exist ueJ?(Ω) and a subsequence {wm(i)} such that um(l)->w

uniformly on Ω, u^l)^ux in L\Ω) and u™W->ux a.e. in Ω. Moreover, the

limit u satisfies (i) and (ii) with the same constants.

PROOF. See [15; Lemma 3.1].

Since U(t)u0 is Lipschitz continuous in t on [0, T] and (U(t)uo)(x) = u(t, x)

is Lipschitz continuous in x with the Lipschitz constant Mi for each ί^O, w(ί, x)

is Lipschitz continuous in (ί, x), and hence u is differentiate at almost all points

of Qτ. Furthermore, by (6.9) and Lemma 6.2, we find a subsequence {uε(i)}

such that {uε

x

(i)} converges to ux a.e. in Qτ as ε(i) 10. Multiply (5.28) by

arbitrary ψeCo(Qτ) and integrate over Qτ. Integrating by parts and letting

ε I 0 through the subsequence {ε(0} yield

{ - uψt + H(U x, w, ux)ψ + μ(ux, ψx)}dtdx = 0,
QT

since [f/ε]->ί as ε | 0. It is easy to see that u satisfies (5.2) and (5.3).
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Thus we conclude:

THEOREM 5. Let H satisfy the assumptions (H.I)-(H.IV), and let U(t)

be the evolution operator on <& obtained in Theorem 4. Suppose that {u0, φ}

satisfies (B.I)* and (B.Π)*. Then u(ί, x) = (U(t)uo)(x) is a generalized solution

o/(Pa.MP).

REMARK 6.1. Under the same assumptions as in Theorem 5, we can prove

the existence for (Pa.MP) without requiring that μ > 0 is small. In fact, our

restriction on μ (cf. (5.5)) was used in Lemma 5.4 to derive the a priori estimate,

independent of μ, for the first derivatives of a solution of (BYP). For this pur-

pose, however, we have only to take a positive constant σί > 1 such that

H(t9 x, Φ + σtd9 Φx + σxdx) ^ μσx sup{|JΦ(x)| + \Δd(x)\\

for all (f, x) e [0, T] x Bδo. Notice that, in general, σ{ depends on μ, Φ and Ω.

7. Proof of Theorem 1

This section is devoted to the verification of the existence part of Theorem 1.

First recall that Ω is assumed to be a bounded domain whose boundary δΩ is of

class C3. Let the normal curvatures of ΘΩ be bounded in absolute value by K.

As was carried out by Kruzkov [15], we approximate Ω by a sequence {Ωm} of

domains with the following properties:

(i) Ω1/m c Ωm cz Ωί/2m and dΩmeC°°, m = m0, m 0 + 1,....

(ii) For each m^m0, the distance function dm(x) corresponding to Ωm is

of class C2 and satisfies \d^(x)\^.do>0 in the boundary strip Bm = {xeΩm; dm(x)

<b*0}9 where <J0 and b*0 are constants such that b*0<l/κ. (In (i) and (ii), it is as-

sumed that m0 is sufficiently large.)

In what follows, let m ^ m 0 . Put

ύo(x) = uo(x) - Φ(x).

Note that uo(x)^O for x e Ω and ύo(x) = 0 for xedΩ from the assumption (B.II).

Let ζm(x) be a function in C$(Rn) such that ζm(x)=l if xeΩ5/m, ζm(x) = 0 if

xeRn — Ω3/m9 ζm^0 and | |C?||o^/ci^ with a constant kx independent of m.

Furthermore, we set

and let #gf'ε and Φε be mollified functions of (Vξ and Φ, respectively, where

ε<l/2m. (Take ρeC$(Rn) such that p^O, p = 0 for | x | ^ l and \p(x)dx=l;

and set pε(x) = ε~np(x/ε) for ε>0. Define βgI'ε = pε*ώgt and Φe = pε*Φ.)
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We consider the following mixed problem:

ut + Hit, x, u9 ux) — ± - = μmAu in Qψ = (0, T) x Ωm,

κ(ί, x) = φε(x) on [0, T] x

(Pa.MP)w

where </>ε is the restriction of Φε to dΩm (ε and μm will be determined below).

The following lemma allows us to show that Hm = H— 1/m, wg1 and φε satisfy

the hypotheses of Theorem 5.

LEMMA 7.1. (1) // ε<l/2m then ul$(x)^ΦE(x) for xeΩ™, ύ%(x) =

for x e dΩm, and

ϊί/i a constant C independent of m.

(2) For each m^.m0, there are constants ε = ε(m) and μm>0 such that

(7.1) H(t, x, Φ\ Φ ε) — ^ - μ m J Φ ε ^ 0, x 6 δ»,

(7.2) μ m s u p { I A Φ ε ( x ) \ + \ A d m ( x ) \ ; x

(3) Let K be a compact subset of Ω and δ be a positive number such that

U2s(K)czΩ. Then there exists a constant aκδ, independent of m, such that

WS(x + Ax) - 2u'ζ(x) + ύ'Six - Ax) ̂  aKtδ\Ax\2

for x, x + Ax, x — Axe Uδ(K) with \Ax\<δ9 provided U2δ(K)ciΩ6/m.

(4) Hm(t9 x9 u, p) = H(t, x, u, p) — 1/m satisfies the assumptions (H.I)-

(H.IV) with all the constants corresponding to α 1 ? α2, α 3 and ω being independent

of m.

PROOF. (1) and (4) are clear. Also, u0eEloc(Ω) implies immediately (3).

We now give only the proof of (2). For each given m we first take ε = ε(m) so

small that

\H(U x, Φ\ Φ%) - H(t, x, Φ,Φε

x)\ < l/4m>

Since H is convex in p and continuous, we see that

, Xf'Φ9 Φε

x) ^ 8-^p(^ZΣ^H(t9 y, Φ(y), Φ,(y))dy + -^ ύ - ^

by making ε = ε(m) smaller if necessary. Here we have used the assumption (B.II).
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Hence,

m ~ 2m

Fix such an ε = ε(m)>0. We next choose μm>0 small enough to insure that (7.2)

and — l/2m + μmsup{|JΦ ε(x)|; xeΩ m }<0hold.

The proof of Lemma 7.1 is complete.

Notice that we may suppose μm I 0 as m->oo. Lemma 7.1 and Theorem 5

imply that it is possible to construct a generalized solution um(t, x) of (Pa.MP)m

via the Generation Theorem, and that there are constants Mo and Mx satisfying

\um(t, x ) | ^ M 0 for (ί, x)eQψ and |w™(ί, x)\^Mι a.e. in Qψ, respectively. More-

over, it is easily shown that if X is a compact set in Ω and <5>0 is such that

U2δ(K)aΩβ/mthen

um(t, x + Ax) - 2um(t, x) + wm(ί, x - Ax) ^ aKδ(t) \Ax\2

for x, x + Ax, x — AxeUδ(K) with |Jx|<(5, where aκδ(t) is a positive and non-

decreasing function of t (cf. (6.9)).

Since {Ωm} converges to Ω as m->oo, by using Lemma 6.2 and a diagonal

argument, we can find a subsequence {um{i)} and u e &(QT) Π El0C(Qτ) such that

um(i)_^u uniformly on any compact set of Qτ, M^(i)-^wx a.e. in Qτ and w(ί, x) =

φ(x) on [0, T~]xdΩ. (Eloc(Qτ) denotes the space of all υ such that v satisfies

the condition (iii) of Definition 2.1.)

We next prove that u satisfies (1.1). For arbitrary ψeCfi(Qτ) there is an

m1 such that

{ ( , ) ^ ( ( , , , J ) ^ ) Ά μ m ( , ^ ) J = 0

for all m'^.m^. Letting m->oo in the above yields

{-uψt + H(t, x, u, ux)ψ}dtdx
QT

{ut + H{t, x, iι, ux)}ψdtdx,
QT

since u e ^ Q ^ ) . Hence u satisfies (1.1) a.e. in Qτ. It is clear that u satisfies

(1.2) and (1.3). Therefore, the limit function u(t, x) is a generalized solution

of (MP). Finally we note that {um} itself converges to u because of the unique-

ness for (MP). The proof of Theorem 1 has been completed.
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