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1. Introduction

Let Q be a bounded domain in R" with smooth boundary 0Q2, and Q be the
cylinder (0, c0) x 2. We consider the mixed initial and boundary value problem
(hereafter called (MP)) for the Hamilton-Jacobi equation in Q:

(1.1 u, + H(t, x, u, u,) =0, (t, x)eQ,
(1.2) u(0, x) = uy(x), xe@,
(1.3) u(t, x) = d(x), (t, x) e R* x 0Q.

Here @ and R* denote 8=QU 0Q and R*=[0, o) respectively, u(t, x) is a
real-valued function, H: R* X Qx R'x R"—>R!, and u, denotes the gradient
(uy,s..., u,,) in the space variables x.

The purpose of this paper is to establish the existence and uniqueness of
global generalized solutions of (MP). We employ the so-called vanishing vis-
cosity method in proving existence for (MP). The reason for the employment
of this method lies in its advantage in estimating the local semi-concavity constant
which will be described in the next section. As an intermediate step in the de-
velopment, we shall solve a mixed problem for a nonlinear second-order parabolic
equation by making use of the semigroup approximation theory. The semigroup
approach enables us not only to prove the existence of a (generalized) solution
of the mixed problem for regularized parabolic equations, but also to employ
the vanishing viscosity method.

This investigation is a sequel to our earlier work [20] and is motivated by
the works of Aizawa [1, 3] and Kruzkov [15]. Aizawa [1] treated the Cauchy
problem for the Hamilton-Jacobi equation in one space variable

*) u, + f(u,) =0, t>0, —o0<x< + 0,

from the viewpoint of the nonlinear semigroup theory, and constructed a global
generalized solution, assuming only that f is continuous. He subsequently
studied the Cauchy problem for the multi-dimensional equation of this type from
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the same point of view (cf. [3]). For related works on similar treatments of
Cauchy problems, we mention the recent papers of Burch [7] and Tamburro
[19]. In these papers existence theorems have been proved under the assump-
tion that f=f(p) is convex in p=(p;,..., p,). See also the more recent work of
Burch and Goldstein [8] in which results concerning the Cauchy problem are
refined to study some boundary value problems for () in the quadrant R* x R*.
On the other hand, Kruzkov [15] has established the existence and uniqueness
of generalized solutions of the Cauchy-Dirichlet problem:

H(x, u, u,) =0, xeQ,
Ulog = .

However, his result cannot directly be applied to our problem (MP), since he
assumed that H(x, u, p) is nonincreasing in u and strictly convex in p.

We also note that some earlier results on mixed problems for Hamilton-
Jacobi equations were obtained by Conway and Hopf [9], Aizawa and Kikuchi
[4] and Benton [5, 6]. These authors proved the existence by using the varia-
tional method assuming that the Hamiltonian is strictly convex in p.

The outline of the present paper is as follows. In Section 2 we list the
assumptions on H, u, and ¢, and define a generalized solution of (MP). Further,
in that section, we state two theorems concerning the existence and uniqueness of
solutions. In Section 3 we verify the uniqueness and continuous dependence
result under the assumption that H is convex in p. Sections 4, 5 and 6 are
devoted to the study of a mixed problem (denoted by (Pa.MP)) for a nonlinear
parabolic equation of the form

u, + H(t, x, u, u,) = udu (>0,

where 4 is the Laplace operator. In Section 4 we state and prove the Generation
Theorem which is an appropriately modified form of the Crandall-Pazy theorem
[11; Theorem 2.1]. In Section 5, in order to apply this Generation Theorem
to (Pa.MP), we investigate boundary value problems for a nonlinear second-
order elliptic differential equation. In Section 6 we construct a generalized
solution of (Pa.MP). Section 7 contains the proof of our existence theorem for
(MP). Here, roughly speaking, our generalized solution of (MP) is obtained
as the limit of solutions of (Pa.MP) as u | 0.

The author would like to express his hearty gratitude to Professor S. Aizawa
for his constant encouragement and many valuable advices during the preparation
of this paper.

NotaTIoNs. In this paper the letters x, y, 4x, p and g are points in R".
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For p=(py,..., ps) and g=(qy,...,4,) in R", we set (p, )= Zp,q: and |p|?
=(p, p). For every T>0, let Q be the cylinder (0, T)xQ By Us(y) we
denote the closed sphere in R” of center y and radius 6. Similarly, for each
compact set K in R", U;(K) denotes the closed §-neighborhood of K. For every
small 6>0, let Q;={xeQ; dist(x, 02)>0} and let B’ be the boundary strip,
ie., Bi={xeQ; dist(x, 0Q)<d}. For given T>0, M,>0 and M, >0, we define

W(T, Mo) = {(t, x, u, p)e R*"*2; (t, x) € Qp, |u| £ M,, pe R"},
W(T, My, M) = {(t, x, u, p)e W(T, M,); |[p|=M,}.

We denote by .#(Q) the space of Lipschitz continuous functions on €. Similarly

we define #(Q,). Define by Cm**(Q) (resp. Cm*%(Q)) the space of all functions
in Cm(Q) (resp. C™(Q2)) whose derivatives of order m are Holder continuous
(with exponent &) on compact sets in Q (resp. Q). gxh denotes the convolution
of g and h.

2. Assumptions and results

Throughout this paper we shall assume for simplicity that the Hamiltonian
H(t, x, u, p) is real-valued and of class C2** with respect to all its arguments in
R} x @ x R. xRz (In fact, with respect to the t-derivatives of H, it suffices to
assume the existence and continuity of H,.) and satisfies the following four as-
sumptions:

(H.I) For every T>0,My>0 and M,>0, H is strictly convex in p
uniformly on W(T, My, M,). That is, there is a positive constant a, =a (T, M,
M) such that

(H (1, x, u, p)C, §)=i

M=

alin(t’ x, u, p)&&; = ay|¢|?

for all E=(¢)eR" and (¢, x, u, p)e W(T, My, M,) ;
(H.ID) l]?m H(t, x, u, p)/|p|=+ o0 holds uniformly on Qpx[—M,, My]
for given T>0 and M,>0;

(H.III) For every T>0 and My>0, there are two constants a,=a,(T, M)
and ay=ax(T, M) such that

IHx(t9 X, U, P)l é a2|p] + a3 for (t9 X, U, p)e W(T; MO);

(H.IV) For every T >0, there is a constant w=0 such that

H(t,x,u,p)2—w  for (t x,u, p)eQrx RLx R
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Now we give the definition of a generalized solution of (MP). It is known
that the mixed problem for the Hamilton-Jacobi equation does not have, in
general, a global classical solution even if the data are smooth. On the other
hand, in the class of weak solutions (Lipschitz continuous functions that satisfy
the equation a.e.) uniqueness fails.

DEFINITION 2.1. A function u(t, x) defined in Q is called a generalized
solution of (MP) if
(i) for every T>0, ue #(Q7) and u satisfies (1.1) a.e. in Qr,
(ii) u satisfies (1.2) and (1.3),
(iii) u satisfies a local semi-concavity condition in the following sense. For
each compact set K (= =Q) and every 6>0 such that U,y (K)<=Q, there is a
nonnegative and continuous function ag s(t) defined in (0, o) such that

u(t, x + 4x) — 2u(t, x) + u(t, x — 4x) < ag (1) |4x|?

for t>0 and x, x+ Ax, x — Ax € U4K) with |4x| <$.
It should be noted that the condition (iii) of Definition 2.1 is a modified form
of the semi-concavity condition:

u(t, x + 4x) — 2u(t, x) + u(t, x — 4x) < a(¥) |4x|?

for x, Ax e R", which Douglis [12] and Kruzkov [14] imposed on the possible
solutions in order to have the uniqueness for the Cauchy problem for the Hamilton-
Jacobi equation. In mixed problems, it seems more natural to weaken the
semi-concavity condition to our condition (iii). We also note that if we define
a generalized solution of (MP) without requiring (iii) then uniqueness may fail.

We now state the assumptions on u, and ¢. Following Kruzkov [15],
we introduce a concept of local semi-concavity. E,; (Q) denotes the set of func-
tions v defined in Q such that v satisfies the following condition: For each
compact set K (c =Q) and every 6>0 such that U,(K)<Q, there is a constant
Cx,s such that

v(x + 4x) — 20(x) + v(x — 4x) < Cg 44x|?

for x, x+A4x, x— Ax € Uy(K) with |4x| <$.
We make the following assumptions on the data {u,, ¢}:

(B.D) uoe Z(2) n E,(Q);
(B.II) There exists a function ® € L(Q) such that &(x)Suy(x) for xeQ,
d(x)=¢(x) for x € 02, and

H(, x, &, D) <0, ae. in Q

for each t=0.
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The theorems described below are the main results of the present paper.
For the general existence and uniqueness, we have:

THEOREM 1. Under the assumptions (H.I)-(H.IV) and (B.I)-(B.II), there
exists a unique generalized solution of (MP).

Note that the uniqueness for (MP) we shall prove in the next section holds
under the assumption that H is merely convex in p.

The assumption (B.II) is rather implicit when applied to (MP). In the rest
of this section we shall give more explicit sufficient conditions. First we consider
the following assumptions.

(H-B) H,=0,i.e., w=0in (HIV). Also, ¢ satisfies
H(t, x,supp(x),0) <0  for (t,x)e0.
xedf2

Under the assumption (H-B), we can find a constant L such that

2.1 H(t, x,supop, p) <0 for (t,x)eQ and |p| < L.
o

THEOREM 2. Let the assumptions (H.)-(H.III), (H-B) and (B.I) be ful-
filled. Assume that {u,, ¢} satisfies

(2.2) lp(x) — ¢(M| S LIx — y|  for x, yedQ,
2.3 ug(x) = (x) = maX {6(y) — LIx — y|}  for xeQ,

where L is the constant satisfying (2.1). Then there exists a unique generalized
solution of (MP).

Proor. It is sufficient to verify that the {u,, ¢} satisfies the assumption
(B.IT). By the definition of @, we have

D(x;) — D(x;) = Ll;:gg{ln =yl = Ixy =y} = Llx; — x,f

for x,, x, € Q. Similarly, &(x,)—P(x,)<L|x; —x,|. Hence,
[D(x;) — D(x;)| < Lixy — x, for xy, x,€Q.

This shows that ¢ € #(Q) and ||®,|,<L. Therefore, from the definition of L
and the fact that @(x)<sup ¢(x) for x € Q, it follows that H(t, x, ¢(x), P,(x))<0

a.e. in Q for each t=0.
On the other hand, by (2.2) and (2.3), we see that

O(x) S LIx — xo| + ¢(xo)  for xeQ, x,€dQ.
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Then, since P(x)=d(x)—L|x—x,|, we have |D(x)— p(xo)| < L|x—x,| for every
x€Q and xy€0Q. This implies that &(x)=¢(x) for x € Q. The proof is com-
plete.

Next we assume, in particular, that
(H.IV)* H is independent of u, i.e., H=H(t, x, p); and satisfies H(t, x, 0)
<0 for (t, x) e Q.

Note that under the assumption (H.IV)* there is an L* such that
2.4 H(t,x,p) <0 for (t,x)eQ and |p| £ L*.

CoROLLARY 1. In addition to (H.I)-(H.III), let (H.IV)* be satisfied.
Assume that ¢ satisfies

lp(x) — ¢V = L*|x — y|  for x, yeodQ,
and that u, satisfies (B.I) and

ug(x) 2 P*(x) = max{¢(y) — L*|x — yl}  for xeQ,

where L¥* is the constant satisfying (2.4). Then there exists a unique generalized
solution of (MP).

Proor. This follows immediately from Theorems 1 and 2.

3. Uniqueness

In this section we prove the uniqueness part of Theorem 1 assuming only
that H is convex in p. Let T>0 be arbitrarily fixed. For each solution u, let

Mgy, M, be constants such that |u(t, x)| SM, on Qr and |u,(t, x)| <M, ae. in
Qy, and let

& = — min{H/(t, x, u, p); (t, x, u, p)e W(T, My, M,)}.
Without loss of generality we can assume @ =0. We now define
No = sup{[ 3 (H, (1, x, u, P)?1/%; (1, x, u, p) € W(T, Mo, M)}
For N2 N,, let o denote the cone:
A ={tx)eR'xR";0=<t =T, x| = N(T- 0},
and let S(7) be the horizontal plane of - with altitude t.

THEOREM 3 (Continuous dependence). Suppose that H is convex in p,
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i.e., the matrix (H,,, ) is nonnegative. Let u, v be generalized solutions of (MP)
with data {uq, ¢(t, x)} and {v,, Y(t, x)}, respectively. For u and v, let M,
be a common absolute bound, M, be a common Lipschitz constant with respect
to x, and let @& be the constant mentioned above. Then for 0<t<T,

sup {Ju(t, x) — v(t, x)|; xe S(¥) n Q}
(3.1) = e®[sup{lug(x) — vo(x)I; x € S(0) n 2}
+ sup {lg(t, y) — (@ D)I5 (7 e {1} x (S(2) n OQ)}].

Proor. Let {(t, x) be a function in CF(R"*1) such that {=0, {(t, x)=0
for 2+]x|22 1 and SS | Ldtdx=1, and let 1, x)=¢""*U(tfe, x]e) for &>0.
Let 0<p<t<T be fixed, and let Q2 be a subdomain of Q such that Q,;cQ°cQ;
and the Stokes theorem is valid for Q%. By a well-known extension theorem,
there is a continuous function #: R**!'—R! such that #=u for (t, x) e Q; and
|| M, for (t, x)e R**1. Again denoting & by u, we set u®(t, x)=({**u)(t, x).
In a similar fashion we define v®(¢, x)=({**v) (¢, x).

First we note that

u(t, X)) £ Mo and o1, x)| < M,
(3.2)
u(t, )l S M, and |oi(t, X)| S M,

hold for (t, x) € [0, T] x Q°, provided e<8/2. Secondly, we note that by virtue
of (iii) of Definition 2.1 and the result of [15; Lemma 2.4], there is a constant
C, depending only on &, p and T such that

(3.3) uj, £C and 05 <C

for every (t, x) e [p/2, T]x Q% and every le R", where uj, and v§; are the second
directional derivatives of u® and v® with respect to [, respectively.
We put

(3.4) (ue — v®), + H(t, x, u®, us) — H(t, x, v%, v) = Pi(t, x).
Now let d(n) be a function of CP(R!) such that 6=0, é(n)=0 for |y|=1 and
o(n)dn=1, and let 6,(n)=h"16(n/h) for any h>0. We define ®%(t, x) by
R! .

Pi(t, x) = (a4t — p) — a(t — Dt X) (u® — v°)>71,

where s is a positive integer, 0< h<-L

2 min {P, T'_T},

xlt, X)=x(t, X)=1—-ay({x[+ Nt — T) + h)
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and
w® =’ sindn  (E<RY).

It is easy to see that y(f, x)=0 outside of ¢, y=yx,(t, x)—1 as h ] 0 for (¢, x)
eint (") and

(3.5) Xe + Nolxxl S e + Nlxxl =0 for (1, x)ex".

Multiplying (3.4) by ®*(t, x) and integrating over Q, +=[0, T] x Q%, we have

SSQ,,T[(“"”‘)t¢’+§;f1.,(---)d,1(ue—ve)(p,

+(§;1 S:H,,(---) dA(u’—v"),,,)di‘]dtdx:SS

where (--)=(t, x, Aut+(1—Av%, uz+(1—-A)ps). We first let ¢ 0. By (3.2)
and the fact that u:—u, and vZ—v, a.e. in Q, r, we see that the right side of (3.6)
converges to zero as ¢ | 0. We now estimate the terms on the left side of (3.6)
from below. Clearly,

prdededx,
T

Qs,

fim SS (ut — v°),P*dtdx
Qs, T

&40

- SSQ 6t = p) = 8yt — D (u — v)*x(t, )dtdx
- S Sca T(“"(‘ = p) — a4t — 1)) (u — V)*x(t, x)dtdx

— (s — 1)%06 (= D)0, Ndtdx

=L+ Ip+ I3,

and

lim SSQ T(SIH“(---)dA) (u® — v¥)bedtdx

elo 0

> _ @SSQM(u — 0)®(t, x)dtdx,

where &(t, x)=(0,(t— p) — (¢ — (L, x) (w—v)>~1.
Before estimating the third term on the left side of (3.6), we consider I'*(t, x)
defined by

FE(L x) Ei j=1Hp;pj("') (lue + (1 - }')vs)xixj
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for (t, x)e[p/2, T1x Q% It is known that there exist I,,..., [, in R" such that
(i, 1)=46;; (6;;=Kronecker’s delta) and

Te(t, x) = 3t %) Gt + (1 = Dol

where p(t, x), i=1,..., n, are the eigenvalues of the matrix (H,,,) at (¢, x). Since
H is convex in p, we have, by (3.2) and (3.3),

Ir«t, x) < nCoC = C,,

where C, is a positive constant such that 0Zu(t, x)<C, on [p/2, T]x Q°, i
=1,..., n. Hence,

_H}%SSQT(‘?: 1(S;H,,,,,,(---)(,w +(1 - /l)v‘)xixjd,l» (u* — v¥)bedidx
2 -G @ =0t - p) - a - O, dids

We now estimate the third term. Integration by parts yields

limgg 3 S:Hm(m)d/l(u‘ — v7),, )oedtdx

el0 Qs,T\i=1

2 - \/HNOS:&?D"(“ — 0)25(o,(t — p) — oy(t — 7)x(t, o)dodt
h CSSQa T(u — 0)¥ (ot — p) — o4t — 7))ydtdx
B SSQG T(ah(t - P) - ah(t - ‘c))N0|Xx| (u - U)zsdtdx

-@s-1% SSQ,,,G;HP*(*)‘”) (u — ), B(t, x)dtdx

=Jip+Jopt+ J3p+ Jap

where do is the surface element, (—)=(t, x, Au+(1—A)v, lu,+(1—2A)v,) and
C=C,+C,+2C3M,. Here C,, C; are the constants defined by

CZ = Sup {iglalix.-(ta X, U, p)la (t, X, U, P)G W(T, MO, Ml)} s

Cs = sup{ 3 Hpult, %, u, P)I; (&, %, u, p)e W(T, Mo, M)}

It follows from (3.5) that I,,+J;,=0. In view of (i) of Definition 2.1,
we have
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Iyp 4 Jap > — (25 — 1)@SS (u — 0)d(1, x)dtdx.
Qs, T
Thus letting ¢ | 0 and then h | 0 in (3.6), we have
(u(e, %) = oz, x)Pdx = | (ulp, %) = olp, x)dx
S(p)nQe

gS(t)”.Q"

T

3.7) —(C+ 2s@)g (u(t, %) — oft, x))?dxd

pSS(r)nﬂ)¢s

T

- \/ﬁNOS (u(t, ) — ut, 0))**dadt < 0.

o pSS(l)ﬂc’Q&

We now put
F(t; s, 8) ES (u(t, X) — olt, x))?dx
S(t)nQs
and

G(t; s, 0) = S (u(t, o) — v(t, 0))**do.

S()néens
Using the Gronwall’s inequality and raising both sides to the power 1/2s, we have

(C+250)
F(z; 5, 0)12 5 e SEPenlF(p; 5, 6)12

(3.8)
+ (\/5No)”2‘<ng(n; s, 5)e“m“‘“’""“”dn>ms}
P

for every positive integer s. We next let s—o0 in (3.8). Using the well-known
fact that if Q is bounded then lim ||u||,= ||ul|,, for u € L*(Q), we have
po®

sup {|u(z, x) — v(t, x)|; xe S(t) n Q%}
(3.9 < e®CP)[sup {Ju(p, x) — v(p, x)|; x€ S(p) n Q?}

+ sup {Ju(t, x) — v(t, x)|; (¢, x) € <\tj< {t} x (S(t) n 9Q%)}]

forevery 0<p<t<T. Letting p |0 in (3.9) and then é | 0, we obtain the desired
inequality (3.1). The proof is complete.

As a consequence of Theorem 3, we have:

CoROLLARY (Uniqueness). Let H be convex in p. Then there is at most
one generalized solution of (MP).
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4. Generation Theorem

We now turn our consideration to the existence part for (MP). Our first
task is to construct a (generalized) solution of (Pa.MP). As indicated in the
introduction, we shall treat (Pa.MP) from a semigroup point of view in Sections 5
and 6. The main tool we use is the following Generation Theorem which is an
extension of the Crandall-Pazy theorem (cf. [11; Theorem 2.1]). We note that
the proof given below is essentially due to Crandall and Pazy.

Let X be a Banach space with the norm || ||. A subset A of X x X is in the
class of «7(w) if for each 1>0 such that Aw<1 and each pair [x;, y;Je 4, i=1, 2,
we have

(1 = Ao) llx; = x,ll S l(xy + Ayy) — (x5 + Ayl
For A>0 and t=0, let J,(t)=(I+AA(?))"! and D(J,(t))=R(I + AA(t)).

GENERATION THEOREM. Let A(Y) satisfy

(1) A®)eA(w) for 0Lt T,

(II) D(A(Y)) = 2 is independent of t,;

(I11) For each x€ 9, there is a A, > 0 satisfying the following (a) and (b):
(a) xeR(I + AA(Y))  forevery O0< A< i, and te[0, T],

(b) I'IJl(t,)x is uniquely determined for every A€ (0, A,) and every finite

family of real numbers {t;}*_, such that 0<t;,<T, i=1, 2,..., k;
(IV) There exists an operator b(-): 2 —>R* such that

(@) forxe2,0<i<i, and k=1 with s+ ki <ZT,
k
b(ITTJ,(s + iD)x) £ (1 + ACy)*C,,
i=1

where Cy and C, are constants independent of A; and
(b) for xe9,
IJa®x — Ja)xll = AL 2(Oxll, bJ 2(Ox)) [t — 5],

where L(ry, ry): R*xR*>R* is nondecreasing in (ry, r,), that is, L(ry, 1,)
SL(ry, ry) if rySryand rySr).
Then {A(t)} determines an evolution operator U(t, s) on % such that

4.1 1U(, s)x — U, s)yl| < e*@=9|x — yll

for x,ye P and 0Zs<t<T, that is, (i) U(s, s)=1I (the identity operator),
u(t, s)UGs, n=U(t, r) for 0Sr<s<t<T; and (ii) for xe 2, U(t, s)x is con-



450 Yoshihito ToMiTA

tinuous in (t, s) on the triangle 0<s<t<T.
Moreover, for x € 2 we have
@A) U, s)x is given by

(4.2) U, s)x=1lim ["‘[J,_-_s(s +i%i)x O<s<t<T),
i=1 n

(i) U(t, O)x is Lipschitz continuous in t on [0, T].
ProoF. The reader is referred to [11; the proof of Theorem 2.1]. Let
x€e 2 and O<pu<i<i, <Ay, where A, is a constant such that L,w<1. Set

k
Pi,k = P“‘x = :.[:IIJA'(S + i/{)x,

A, = ”P/l,k - P,;,x” s
by = IJ,(s + WP, ;—y — J (s + kAP, ;4] .
Proceeding in the same way as in [11] yields
Qe S 0ay_y -y + Pay;—1 + by,

where a=pA"1(1—pw)~! and f=(A—p)i~'(1—puw)~t. By the condition (IV)-
(b), we have b, ;< uL(HPu,,II, b(P,))lu—kA|. By [11; Lemma 2.2] and the
condition (IV)-(a), we have ||P,,| <K, and b(P,;)<K, for some constants K,
and K, independent of  and u. Hence

4.3 by = uL(Ko, Ky) |lu — kAl = pp(|lp — kAJ),

where p(r)=L(K,, K,)r for r>0. Remarking (4.3) and following the idea of
Crandall and Pazy (cf. [11; p. 68]), we have for any 6 >0

A S K{[(npr — mA)? + np(Z — w12 + [(np — mA)? + mA(A — w)]'/?
(4.4)
+ npp(lnp — mi|) + npp(d) + n2p*(A — p)é=%},

where K can be taken to depend only on | x|, b(x), Cy, Cy, 49, w and T. Notice
that (4.4) corresponds to the estimate (2.25) of [11]. Therefore we find that

U(t, )x = lim [TJ,.(s + id)x, X€D
m=—o j=1

exists if {4,,} is a sequence such that 0<ml,<t—s and ml,—»t—s as m—oco.
Moreover, according to the condition (I), we have (4.1) for x, ye 2. Thus we
can extend U(t, s) to the operator (denoted by U(t, s) again) defined on 9 satisfy-
ing (4.1). An argument similar to the proofs of [11; Propositions 2.1 and 2.2]
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implies that U(t, s)x is continuous in (¢, s) for xe 2. Noting this fact, we can
verify by a simple calculation that U(, s)x is continuous in (1, s) for x € 2.

Finally we observe the Lipschitz continuity of U(t, O)x in t on [0, T]. Putting
A=1/m and u=t/n in (4.4) where s=0, letting n, m—oo and then letting é | O,
we have

1U@, 0x — U(z, 0)x|| = Lolt — 1|, Lo = K(2 + TL(K,, K})).

The proof is complete.

5. The evolution operator approach to parabolic problems

We consider a mixed problem (hereafter called (Pa.MP)) for quasi-linear
second order parabolic equations:

6. u, + H(t, x, u, u,) = pdu in Q,
(5.2) u(0, x) = uy(x) on @,
(5.3) u(t, x) = ¢(x) on [0, o©0) x 0Q.

Here, as before, we assume that uy(x)=¢(x) for x € 02, and that Q is a bounded
domain of R" whose boundary 02 is of class C3. It is known that if the normal
curvatures of dQ € C3 are bounded in absolute value by « then the distance func-
tion d(x)=dist (x, 0Q2) is of class C? and satisfies |d,(x)|=d,>0 at all points
whose distance from 0Q is less than d,, where d, and §, are appropriate positive
constants such that §,<1/k (cf. Serrin [18; Lemma 3.1]).

We now state the definition of a generalized solution of (Pa.MP).

DEFINITION 5.1. A function u defined in Q is called a generalized solution
of (Pa.MP) if: (i) for every T>0, ue %(Qy) satisfies (5.2) and (5.3), and (ii)
u satisfies (5.1) in the distribution sense, that is, for every T >0 and every Y
€ C3(Q 1), we have

SS (= ufy + H(t, %, w, u )y + puy, Y)}dxdt = 0.
[V X o]

In this and next sections we shall apply the Generation Theorem stated in
the previous section in order to construct a generalized solution of (Pa.MP).
Let [0, T] be arbitrarily fixed. In what follows we assume that H satisfies the
assumptions (H.I)-(H.IV). Also we make the following assumptions on {u,,

¢}

(B.D* uyeC**¥(Q) n C¥D);
(B.I)* There exists a function ®e C**%(Q) such that ®(x)Suy(x) for
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x € Q, B(x)=d(x) for xe0Q and

;.9 Ht, x, ®, &) — udd(x) £0 for t=0 and xeQ.
Notice that there exists a constant y, such that

(5.5) psup{|49(x)| + |4d(x)|; xe B’} < 1

for all 0O<pu<puy. Because we shall employ the vanishing viscosity method for
proving the existence of a generalized solution of (MP), we may assume without
loss of generality that u in (5.1) is small. Henceforth it is assumed that (5.5)
holds (see Remark 6.1).

Let us work in the Banach space C() of all real-valued continuous functions
v on & with norm: |v],=max {|v(x)|; x € Q}.
Define

9 = {veC?*(Q) n CYQ);v=® on &, v=¢ on Q).

We start by defining the operators A(f) and b(-) associated with (Pa.MP)
in C(Q).

DEFINITION 5.2 (Definition of A(t)). We define A(t) by ve D(A(Y)), A(Hv=w
if and only if: (i) ve 2, (i) w e C(Q) and (iii) H(t, x, v, v,)—pdv=w in Q.

REMARK 5.1. If ve 9 and H(t, x, v, n,)—pudv=w in Q, then the following
conditions are equivalent.

(ii) weC(Q).

(i)’ Ave C(Q).

(ii)” v + Aowe C(Q) for some Ay > 0.
@{i)” v+ Awe C(Q) for every 1> 0.

To see this, it suffices to note that ve 9 < CY(Q) implies H(t, x, v, v,) € C(Q).

DEFINITION 5.3 (Definition of b(-)). Define the operator b(-): 2R+ by
b(v) = [vello = sup {[X v, ()12, xe B} for ved.
i=1

From Definition 5.2 and Remark 5.1 it follows immediately that {A(¢)}
satisfies the condition (II) in the Generation Theorem. Thus we may denote
2 =D(A(f)). Note that 2c9 and 9 is a convex set. From now on we are
going to prove that {A(t)} satisfies the conditions (I), (IIT) and (IV). To this end,
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we state without proof the following lemma which is a version of the maximum
principle.

LemMA 5.1. Let ae C(Q) be positive in Q, a;e C(Q), i=1,...,n, and ¢>0.
If ve C¥(Q) n C(Q) satisfies
a(x)v(x) + i a(x)v,(x) —edo(x) 20  for xeQ
i=1

and v=0 on 99, then v(x)=0 for x € Q.

Throughout this section we choose a positive number A, such that low<1
and fix it, where w is the constant in the assumption (H.IV). To verify the
condition (I) in the Generation Theorem, we shall prove:

PrROPOSITION 5.1. Let 0<iA<iy. If u,ve2 satisfy u+AA()Ju=h and
v+ AA(t)v=g, respectively, then

lu —vllo = (1 — A0)~YIh — gllo.
Proor. Since
u + ALH(t, x, u, u,) — udu] = h
and
v+ A[H(, x, v, v,) — pdv] = g
in Q, the difference w=u — v satisfies
w + AH (1, x, ay(x), pe(x)w
+ MH(t, x, ag(x), po(x)), wy) — Audw = h — g,

where ag(x)=v+0(u—0v), ps(x)=v,+0(u,—v,) and 0<0=0(x)<1.
Suppose that w has a positive maximum at x, € Q2 (note that Q is open).
Then, by the assumption (H.IV),

Ih = gllo 2 w(xo) + AH,(t, X0, ag(Xo), Po(Xo)IW(x0) = (1 — A)w(Xo).

This implies w(xy)<(1—Aw) 1||h—glly, since 0<i<i,. Similarly we can show
that if w has a negative minimum at x; € @ then w(x,)=—(1—Aw) !|h—g|,.
Remarking that w vanishes on 02, we have the desired inequality. Thus the
proof is complete.

As an immediate consequence of Proposition 5.1, we have:

COROLLARY. For he 9, there is at most one solution ue D(A(Y)) of



454 Yoshihito TomrTA

u+AA(u=h.

We next prove that {A(f)} satisfies the condition (III). Of course, the
condition (III)-(a) means that for he 2 there is a positive constant 4, such that
for every 0<A</, and every te[0, T] we can prove the existence of a classical
solution u € 2 of the boundary value problem (hereafter called (BVP)):

(5.6) u + ALH(t, x, u, u,) — pdu] = h, x€eQ,
(5.7 u(x) = ¢(x), x€0Q.

Before proceeding further, we want to note that the estimates appearing in
this section are independent of A and pu.

LEMMA 5.2. For he 9 and 0<i<l,, let ue CAQ)nC@) satisfy (5.6)
and (5.7). Then

(5.8) u(x) = d(x) for xeQ.
Proor. Since he é, we have
(5.9 @ + A[H(t, x, D, D) — ud®] — h <0, xeQ,

by the assumption (B.I)*. Hence we find that the difference w=u — @ satisfies
w(x)=0 for x € 02 and

W+ ALH ()W + ﬁle(---)wx, —udW] 20, xeQ,
P2

where (---)=(t, x, D+6w, d,.+0W,), 0<O0=0(x)<1. Since 1+1H, (- )=1—lw
>0, we have W(x)=u(x)—®P(x)=0 for xe Q by Lemma 5.1. The proof is com-
plete.

LEMMA 5.3. For he 9 and 0<Ai<ly, let ue CQ)n C(Q) be a classical
solution of (BVP). Then there exists a function P(x)e C*(Q) such that u(x)
<¥(x) for xe Q and

(5.10) Y+ A[H(t, x, ¥, ¥,) — ud¥1=h, (t,x)€0r.

Proor. By the assumption (H.II), we can choose a vector [°=(13,..., I9)
€ R" such that for all (¢, x)e Q7

H(t, x, 0, I°) 2 ((diam ) [I°] + [[h]lo)e.

Here diam Q denotes the diameter of the domain 2. We define

(5.11) Yx)=(%x)+a= Z"‘, Bx; + a, xXeQ,
i=1
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where a=||h|o—min {(I° x); xe Q}, Itis evident that

(5.12) 0 =< |hllo £ P(x) £ (diam Q) |I°] + [|h],, xeQ.
It follows from (5.11), (5.12) and the assumption (H.IV) that

(5.13) H(t, x, ¥, ¥,) — pud¥ =2 — 0¥(x) + H(t, x,0,19 =0

for all te[0, T] and x e, and hence, by using (5.12) again, we obtain (5.10).
Therefore, the argument similar to the one at the end of the proof of Lemma 5.2
implies that ¥(x)—u(x)=0 for xe Q. Consequently,

(5.14) u(x) £ Y(x) < (diam Q) |19 + ||A]lo.
The proof is complete.

Next we shall establish an a priori estimate for the first derivatives of solutions
of (BVP). We are now in a position to give a comment concerning the restriction
of A occurring in (BVP). According to Lemmas 5.2 and 5.3, for each given h e 2
there is a positive constant M, such that

(5.15) lullo = Mo = max {[|®]lo, || ¥]lo}

for all classical solutions u of (BVP). Hence, by the assumption (H.III), there
are positive constants a, and a;, depending on h, such that |H (¢, x, u, p)| <a,|p|
+ a5 for (t, x, u, p)e W(T, M,). For such a, and a;, we can choose a positive
constant 4,(<4,) such that for all Ae(0, 4,)

(5.16) I—(a,+o) ) 1=1+@+o+DA aj@a+o+1)As1.

For later applications, we consider (BVP) with 0<A<4, and O<u<py, (cf.
5.5)).

LEMMA 5.4. Let he 9, and let A, be as mentioned above. Suppose that
for 2€(0, 4,), ue C¥Q) n CYQ) satisfies (5.6) and (5.7). Then we have

"ux”0 é (1 + A'CO)CI’
where Co=a,+a;+w+2 and C, is a constant depending only on H, Q and h.

Proor. First we choose a o, such that o= | ®,|lo+ ||h.lo- Note that the
inequality

(5.17) D(x) + od(x) = h(x), X € B%o

holds, provided 6=0,. In fact, since &(x)=h(x)=¢(x) for xe€dQ, we have
|D(x) = ) = (| Dllo + | h:ll0)d(x) S 0 d(x), if 02 05.
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We also take two sequences {c,,} and {J,} such that
(i) 6,20, and 94,=Zd, m=1,2,..,
(ii) 6,10 and 6,{0 as m— oo,
(iii) for each m, the inequality

(5.18) M-M<6,6,<M—-M+1

holds, where M=min &(x) and M =max ¥(x).
xeN xe

It is not difficult to see that we have |®(x)+6,d(xX)| S |Pllo+ 0m0m=IPlo
+M—M+1=M for all xe B and m=1, 2,...; and

lim 2@ x, u, Pt 0pd) _ i HE, x, u, Py+0,dy) ld,| =+

m—o Om m— o Uml dx

for (t, x, u) € [0, T]x B®=x [— M, M].
Hence there are positive constants ¢, (=0,,)>1 and 6, (=6,,)<0dy, in-
dependent of A and p, such that

(5.19) H(t, x, ® + 0yd, &, + 6,d,) — p(4D + 6,4d) = 0

for (¢, x)e[0, T]x B% (c[0, T]x B%). In fact, we have only to choose o,
so large that

H(, x, ¢-I¢;a|1‘¢;,|¢,+aldx) |d,] =1 for (¢, x) € [0, T] x B%,
1 X

From (5.17) and (5.19) it follows that #=®+0,d satisfies
(5.20) &+ A[H(t, x, ®, D) — yd®] —h =20, xeB%.

Furthermore, using (5.18) and Lemma 5.3, we can verify that &(x)=M = u(x) if
d(x)=98, and &(x)=¢p(x) if d(x)=0, and hence

(5.21) &(x) = u(x) for xedB.

Proceeding in the same way as in the proof of Lemma 5.3, and noting (5.20)
and (5.21), we have

(5.22) u(x) £ B(x) = d(x) + 7,d(x) for xeB%,
Combining this with Lemma 5.2 yields
D(x) — 0,d(x) £ B(x) < u(x) £ D(x) + a,d(x), xeB%,

Then, since
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Tli— (u(xl""’ Xi + hi"", xn) - u(xls"" xn)) é 0y + "dsx”O é 20'1

for x € 0Q and every small h; such that (x,,..., X;+ h;,..., X,) € B%, i=1,..., n, we
obtain |u,(x)| <20, for x€0Q, i=1,...,n. Consequently we have the boundary
estimate:

n
(5.23) lusllcon =f£a?z[i§1ux‘(x)2] 112 £ 2n6, = C,.

We can now establish an interior estimate for u, with the aid of (5.23).
Differentiating both sides of (5.6) with respect to x;, multiplying by u,, and sum-
ming from i=1 to n, we have

(s ux) + MHy, uy) + 2H (uy, uy)

+2 3
i,j=

i

Hp;ux_,xiuxl - l#iumd“m - (hxi ux) = 0'
i=1

1

Setting z(x)s(ux(;c), u,(x)), we have

(U+ 2H)z + MH,, u) + 5 (H,, 2)

- }“T/‘Az + Au Z"‘, ul ., — (hy u) = 0.
i,7=1

Suppose that z has a positive relative maximum z(x,) at x, € Q. Then
(1 4 AH,)z(xo) + A(Hy, u(xo)) — (h(Xo); ux(xo)) < 0.
By the assumption (H.III) and the fact that 1 —Aw >0 for 0<A<4,, we get
[u(xo)l = llhsllo + Al(as + 1) + (a2 + © + 1) | hyllo],

since 0<A</,. Here we have used the fact that both inequalities in (5.16) hold
for A€ (0, 4,). Now we must treat two cases separately.

Case 1: | h.]o=<1. In this case, we have, by noting C, =1,
lug(xo)l S 1+ Aa; + a3+ @ +2) =1+ ACo < (1 + ACo)C;.
Case 2: 1Z|hlo(£C,). In this case, we have
[u(xo)l = (1 + Aaz + a3 + © + 2)) || llo = (1 + ACo)C;.
Consequently,

[ux(xo)l = (1 + ACo)Cy,
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and hence, by (5.23), we have ||u,|o=(1+1Cy)C,. Thus the proof is complete.
We are now able to prove the following result, which implies that {A4()}
satisfies the condition (I1I).

PROPOSITION 5.2. For he &, there exists a Ay (0< A, <Ay) such that (a)
he R(I+AA@) for all 0<A<i, and 0Lt<T; and (b) for every {} -, with
0< A, <4, and every {t;}}-, with 0L, <T, there exists a sequence {u*} of solu-
tions of

! u + A[H(t, x, u, u,) — pdu] = u*~1, xeQ,
u(x) = ¢(x), x€0Q,
where u®=h.

Proor. Let us prove this by showing that (a) and (b) hold with the 4,
obtained in deriving (5.16). We can prove (a) by using the a priori estimates
obtained in Lemmas 5.2-5.4, and by using the Tychonoff fixed point theorem
(cf. [17] or [18]). Here we note that in order to be able to seek a solution in
C4(Q) we assume that 2 = C?*¢(Q) and H € C?*e,

It remains to prove (b). To this end, we first verify a simple (but basic)
result that under the assumption of its existence, each u* satisfies

(5.29) d(x) £ uk(x) £ ‘I’(X) for xe@Q,

where &(x), P(x) are the functions appearing in the assumption (B.II)*, and
given by (5.11), respectively. We prove this by induction on k. Lemmas 5.2
and 5.3 imply that (5.24) holds for k=1. Assume that (5.24) is already proved
for the integers less than or equal to k—1. Remarking (5.4) and (5.13), we have
by the hypothesis of induction

D + lk[H(tk, X, ¢, (px) —_ yAdi] — yk-1 < 0
and
Y+ L[H(t, x, ¥, P,) — pd¥] —u*"1 20

for xe@. Therefore the arguments used in the proofs of Lemmas 5.2 and 5.3
can be employed to obtain (5.24) for u*.

By virtue of (5.24), we have |u*||,<M, where M, is the same constant as
in (5.15). This implies that the 1, may be taken as a A, k=1,..., N, since we
can take the same a, and a; as before (cf. (5.16)). Now the proof of the existence
of u* can be carried out in a similar way as in the proof of (a). (For the a priori
estimates of |Juk]o, see the next proposition.) The proof is complete.
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The following propositions make the observation that {A(f)} satisfies the
condition (IV) in the Generation Theorem. Let

uk = TTJ,(t + idh.
i=1
PROPOSITION 5.3. Let he 9 and 0<A<A,. Then,
k
(5.25) b(_ljlh(t + il)h) = |lukllo = (1 + ACo)*C,

for every integer k such that t+kA<T, where Cy, C, are the same constants as
in Lemma 5.4.

ProoF. Let &(x)=®(x)+o,d(x) be as in the proof of Lemma 5.4. . Since,
by the choice of o, and 8, in the proof of Lemma 5.4,

H(t+ 24, x, , &) — ud® =20 on B%

and &(x)=ul(x) for x € B% (cf. (5.22)), ¥ satisfies (5.20) with ¢ and h replaced by
t+24 and u!, respectively. Hence, by Lemma 5.1 and (5.24),

B(x) < u(x) £ B(x) = B(x) + 0,d(x) for xeB.
This yields with the same constant C, ‘as in (5.23)
(5.26) [lu2llcony = Ci-
Calculating in the same way as before, we have
luZllo < (1 + ACo)*Cy,

by using the estimates ||ullo<(1+1C,)C, and (5.26).
Proceeding similarly step by step, we complete the proof of Proposition 5.3.

PropPoSITION 5.4. Let J,(t)h=u and J,(s)h=v for he§,0<l<,1,, and
0=t,s<T. Then

(5.27) llu — vllo = AL(llullo, b)) |t — sl,

where L(ry, ¥;)=Csup {|{H(t, x, u, p)|; (t, X, u, p)e W(T, ry, r,)} with a positive
constant C independent of t, s and- h.

Proor. - Clearly, the difference w=u— v satisfies
0=w+ A[H(t, x, u, u,) — H(s, x, v, v,)] = Audw

= w + ALH(, %, u, u)(t — 5) + Hifs, %, a(x), ugw
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+ (Hp(s, X, U, ﬁ(X)), wx)] - lﬂAW,

where 7, d(x) and p(x) are determined by the mean value theorem.
Suppose w has a positive maximum at x,e Q2. Then

w(xo) + AH,(S, Xo, d(xo), ux(x0))W(xo) = A(sup |H,]) [t — s].

Here the supremum is taken over all (¢, x, z, p)e W(T, |lulo, b(u)). Conse-
quently,

w(xo) < AC(sup |H,|) |t — s| = AL(|lullo, b))t — sI,

where C is an appropriate constant such that (1—Aw) 1< C for 0<i<4i,. (Since
we may assume without loss of generality that lo,w<1/2, we can take C=2.)
Similarly, we see that if w has a negative minimum at x;, € Q2 then w(x,)=
—AL(Jlullo, b(w))|t—s|. Remarking that w vanishes on 02, we have (5.27).
The proof is complete.

Combining the results obtained above, we conclude:

THEOREM 4. Suppose that H satisfies the assumptions (H.I)-(H.IV). Let
{A(t)} be a family of operators of Definition 5.2. Then {A(t)} determines an
evolution operator U(t, s) on 9.

Moreover, we have

(i) For each given uge 2 and each 0<e<A,, the problem

e~ 1(u(t) — u(t — ¢)) + A([t/ele)u(t) = 0, t=0,
(5.28)

u(t) = uo, < 0,

has a unique solution u®(t) on [0, ) and hfn us(t)=U(t, O)uy uniformly in t on

compact sets, where [t/e] is the greatest integer in te.
(ii) Ifve 2, then U(t, O)v is locally Lipschitz continuous in t.
(iii) U@®=U(t, 0) satisfies

IU@Mu — Utpllo < e*lu —vlo  for u,ved.

6. Relationship between the evolution operator and (Pa.MP)

The main aim of this section is to show the existence of a generalized solution
of (Pa.MP). Our approach to this problem depends much on the theory of non-
linear evolution equations in a Banach space. We associate (Pa.MP) with the
initial value problem for an abstract quasi-linear parabolic equation of the form

du(t)/dt + A(Hu(t) = 0, 0Zt<T
u(0) = u,

(ACP)
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in the Banach space C(2), where T'is a given positive number.
For each given u, € 2 and each & such that 0<e<4,,, let u®(f) be the solution

[t/e]

of (5.28), i.e., uf(f)= T1J,Geuo. Put (ue(t) (x)=u(t, x). It should be noted
i=0

that (5.24) and (5.25) imply

6.1 flus(t, o < My and  [ui(t, -)llo = M,

for all te [0, T], where M, and M, are independent of ¢, u.

In order to prove that (U(f)uy)(x)=u(t, x) is a generalized solution of
(Pa.MP), we intend to verify that there exists a subsequence {g(i)} such that
ut-y_ a.e. in Qr. To do so, we shall make use of the concept of local semi-
concavity. Before stating a lemma, we list some notations.

Define
1 0srs1,
(6.2) n(r) =¢expl(r—1%(r-2] 1=srs2,
0 2=5r.

Clearly, n e C3(R*). For ve C¥Q), yeQ and 6>0 with U,,(y)=Q, we set
lewson = SUP {0(x); x€ U(p), [€RY), |
1lew, s = sup {n(|x — yl/&)vu(x); x € U,(y), le R},

B1% w260y = Max{|Blgw, a0 13-
The following lemma plays an essential role in our later discussions.

LEMMA 6.1. Let he 2 and O<u<po (<1). Then for each yeQ and
every 8>0 such that U,s(y)<=Q, there exist positive constants C=C(8) and
Ay=A,(0), independent of p, such that

(6.3) L% v, um S (LHAO* RS0, .00
for 0<i<l, and k=1, 2,..., [T/, where u¥= fl J(ilh.
=1

Proofr. We shall prove this by induction on k. Let us first prove (6.3)
for u'. For simplicity, we denote u! by u. Let I=(l,,..., l,)e R" with |l|=1
be arbitrarily fixed. By definition, u satisfies

(6.4) u + A[H(t, x, u, u,) — udu] = h, xef.

Carrying out the second directional differentiation with respect to I in (6.4),
we have easily



462 Yoshihito Tomrra
n n
uy + i[i Zle;leilj + 2Zle,ulz“t + H,,(u)?
WJj= i=
n n
(6'5) + 2i ZIHX(pjliqul + 2.21Hup4uluxd + Huull
J= i=

+i ‘:L__:__lep,“xglux,l + Ealiuxﬂl - ”Aull] = hll'

By virtue of (6.1), we have
Sup{li jE=1Hx1x!lilj| + 2|i§1Hx¢uliull + IHuul(ul)z} é Cz’
where the constant C, is independent of A and u. Here we take the supremum
over all (¢, x, u, p)e W(T, My, M,) in order to be able to proceed on with our
argument. ’
Set w=uy. Since H is strictly convex in p, the inequality
i"Z=I‘Hp(pjuxilule = (pr(ul)x’ (ul)x) = all(ul)xlz

holds with a constant a, =a,(M,, M,)>0. By the Schwarz inequality., We have
2 3 Hyplite] SO0 ()] + - | H, 012
i‘,j=1 XipjtiTxy = 4 X 01 pXx ’
- a; 2, 4 2
2'2 Hupiuluxgll é T I(ul)xl + - IHpuul' .
i=1 a;
Therefore, from (6.5) it follows that
(6.6) w+AHw+ -%—lall(u,)xlz + A(H,, wy) — Audw — hy < ACy,
where C,=C,+C; and
4
C3 = '—aTSup{alxllz + IHupullz; (t, X, U, p)E W(’.T, Mo, Ml)} .
Multiplying both sides of (6.6) by (#(|x — y|/6))? and setting z=nw, we have
(1 + 2H)zn + +-Aa,2% + dn(Hy, 2,) — MH,, 1)z = iundz

6.7
+ 20u(ny, z,) + Au(dn — QR l*/m)z — n?hy £ ACH3,

since w(x)* = [(u))|%.
We now suppose that z has a maximum z(x,) (>1) on U,4y). Since z
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vanishes on 0U,4(y), X, is an interior point of U,s(y). Using the Schwarz
inequality again, we get

(1+AH,)zn + % laz? — ’1{%— z2 4 aL (H,, nx)z}
1

—{ 4 2+ L (= QIndl* )2} - ity < ACart,
whence
(1 = d0)2(xn(1%o—¥1/8) S 12hulvg) + 2Ca® + ACs,

where Cs=C,(d) is a constant independent of 1 and u. Here we have used the
fact that there is a constant C(5), depending only on &, such that |5.|2<C(8)y
and (4n—Q2|n.*/m)*<C(6)n. Thus we have

(6.8) z £ (1= 20) (1 + 2Ce) | kw0

for 0<A< 2y, where C¢=C4(8)=C,+Cs. But a simple calculation allows us to
choose 4,=1,(8) small enough so that (1 —Aw) <1+ (w+1)A and A +1)C=1
hold for all 0<A</, Hence, it follows from (6.8) that for every Ae(0, 1,) we
have

zs(1+ ie)lﬂli(uz.,(y)),
where C=C(8)=w+Ce+2. Consequently we have

Ialff(Uzd()’)) é (1 + AC)|h|%(Uzd()’))

for every 0<i<Z,.

Next we prove (6.3) for u* under the assumption that (6.3) holds for u*-1.
Let wk=u¥ and z¥=n(|x—y|/d)w*k. Then, by virtue of (6.1), we see that z*
satisfies (6.8) with h; replaced by u¥ !. Hence the argument similar to the
proof for u! (=u) implies that

|84 Ew200m S 1+ 2O 8 Ew, 400 S (L + A0 R0, 400))
for 0<A<Jl, This completes the proof of Lemma 6.1.

From now on we will verify that u(t, x) is a generalized solution for (Pa.MP).
Let K be an arbitrary compact subset of Q and >0 be so small that U,4K)<Q.
Denote

[tolEw, sy = SUP {(Uo)u(xX); x € U,4(K), le R"}.

Since we may assume without loss of generality that |uo|g ), k)21, Lemma 6.1
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shows that for every ye K and 0<i< 1,
[ g waon = 1T Ew,som

S (1 + A0 o] Ew, o0

S (1+20)* | uol 5w, a1
whence for every 0Zt<T

[u(t, ewsky S €luolpw, sy = k.60 -

From this it follows that
(6.9) us(t, x + Ax) — 2u’(t, x) + u®(t, x — 4x) < ag «1)|4x|?
for te [0, T] and x, x+ 4x, x— Ax € U,K) with |4x]| <d.

Now, as in [3], we use the next lemma concerning the convergence of a se-
quence of locally semi-concave functions.

LeMMA 6.2 (Kruzkov). Let {u™}2_, be a sequence of Lipschitz continuous
functions on Q such that
(i) lu™lo = Mo and |ufle, S M, m=1,2,.,
(i) for each compact K< <= Q and 6>0 such that U,,(K)<=Q,

um(x + 4x) — 2u™(x) + u™(x — 4x) £ ag 45/4x/|?, m=1,2,..

with a constant ag s for x, x+A4x, x—Ax € U(K): |4x| <.

Then there exist ue %(Q) and a subsequence {u™®} such that u™®-u
uniformly on Q, u"®—u_ in LYQ) and u™d—u, a.e. in Q. Moreover, the
limit u satisfies (i) and (ii) with the same constants.

Proor. See [15; Lemma 3.1].

Since U(t)u, is Lipschitz continuous in ¢t on [0, T] and (U(t)u,) (x)=u(t, x)
is Lipschitz continuous in x with the Lipschitz constant M, for each t=0, u(t, x)
is Lipschitz continuous in (2, x), and hence u is differentiable at almost all points
of Qr. Furthermore, by (6.9) and Lemma 6.2, we find a subsequence {u*(V}
such that {u%®} converges to u, a.e. in Qr as (i) 0. Multiply (5.28) by
arbitrary ¥ € C¥(Qy) and integrate over Q,. Integrating by parts and letting
¢ | 0 through the subsequence {&(i)} yield

ggq (= wp, + H(t, X, u, u W + p(uy, ¥)}dtdx = 0,

since [t/e]—>t as ¢ | 0. It is easy to see that u satisfies (5.2) and (5.3).



A Mixed Problem for the Hamilton-Jacobi Equation 465

Thus we conclude:

THEOREM 5. Let H satisfy the assumptions (H.I)-(H.IV), and let U(t)
be the evolution operator on 9 obtained in Theorem 4. Suppose that {u,, ¢}
satisfies (B.1)* and (B.II)*. Then u(t, x)=(U(t)uy)(x) is a generalized solution
of (Pa.MP).

RemARK 6.1. Under the same assumptions as in Theorem 5, we can prove
the existence for (Pa.MP) without requiring that x>0 is small. In fact, our
restriction on u (cf. (5.5)) was used in Lemma 5.4 to derive the a priori estimate,
independent of u, for the first derivatives of a solution of (BVP). For this pur-
pose, however, we have only to take a positive constant a, > 1 such that

H(t’ X, ® + ald9 q)x + Gldx) g uo, Sup{'d¢(x)| + IAd(x)l; X€ BTO-}

for all (¢, x) e [0, T]x B%. Notice that, in general, o, depends on u, @ and Q.

7. Proof of Theorem 1

This section is devoted to the verification of the existence part of Theorem 1.
First recall that Q is assumed to be a bounded domain whose boundary Q2 is of
class C3. Let the normal curvatures of 62 be bounded in absolute value by x.
As was carried out by Kruzkov [15], we approximate Q by a sequence {Q™} of
domains with the following properties:

(i) QmecQmc ), and 0QmeC™, m=mg, mo + 1,....

(ii) For each m=m,, the distance function d™(x) corresponding to Q™ is
of class C2? and satisfies |d™(x)| =d,>0 in the boundary strip B™={x € Qm; d™(x)
<3,}, where d, and §, are constants such that §,<1/k. (In (i) and (ii), it is as-
sumed that m, is sufficiently large.)

In what follows, let m>m,. Put
fio(x) = ug(x) — d(x).

Note that fiy(x)=0 for x € Q and 1y(x)=0 for x € 0Q from the assumption (B.II).
Let {™(x) be a function in CF(R") such that {"(x)=1 if xe€Qs,, {"(x)=0 if
x€R"—Q;,,, (™20 and ||{?|o<k,m with a constant k, independent of m.
Furthermore, we set

g(x) = o(x){™(x)

and let A%-¢ and ®* be mollified functions of % and ¢, respectively, where
e<l1/2m. (Take peCE(R") such that p=0, p=0 for |x|=1 and Sp(x)dx:l;
and set p(x)=¢""p(x/e) for e>0. Define fif-t=p, *(f and P*=p xP.)
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We consider the following mixed problem:

u, + H(t, x, u, uy) ——;1— = u,du in m=(0, T) x Qm,

(Pa.MP)" u(0, x) = ag-5(x) + ®*(x) = dam(x) on Qm,
u(t, x) = ¢*(x) on [0, T] x oQm,

where ¢* is the restriction of @* to Q™ (¢ and p,, will be determined below).
The following lemma allows us to show that H,,=H —1/m, 4% and ¢* satisfy
the hypotheses of Theorem 5.

LemMmA 7.1. (1) If e<1/2m then ag(x)=®d%(x) for xeQm, in(x)=¢d(x)
for xe 0Qm, and

1351 c1my = max{| @5(x) | + | (@§).(x)|; x€ @} = C

with a constant C independent of m.
(2) For each m=my, there are constants e=¢(m) and pu,,>0 such that

(7.1) H(, x, ¢°, d2) —% —u, A9 <0, xeOm

(7.2) Umsup {| 4®5(x)| + | dd™(x)|; x € B"} £ 1.

(3) Let K be a compact subset of Q and 6 be a positive number such that
U,sK)=Q. Then there exists a constant ag s, independent of m, such that

%(x + 4x) — 2a%(x) + 4%(x — 4x) < ag 4|4x|?

for x, x+4x, x—Ax € Uy(K) with |4x| <6, provided U, K)< Qg

4) H,(t, x,u, p)=H(t, x, u, pp—1/m satisfies the assumptions (H.I)-
(H.IV) with all the constants corresponding to a,, a,, az and w being independent
of m.

Proor. (1) and (4) are clear. Also, uyeE,,(22) implies immediately (3).
We now give only the proof of (2). For each given m we first take ¢=¢(m) so
small that

IH(t9 X5 ¢£9 ¢§) - H(t7 X, ¢’ ch)] < 1/4m'

Since H is convex in p and continuous, we see that

H(t, x, D, %) < 8‘"gp<—’-c—€l>11(t; ¥, ®(p), D,(»)dy + 4—;1— é#

by making e=¢(m) smaller if necessary. Here we have used the assumption (B.II).
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Hence,

e pey— L < 1

H(, x, 9, 9%) —— o

Fix such an e=¢(m)>0. We next choose u,, >0 small enough to insure that (7.2)
and —1/2m+ p,, sup {|{49%x)|; x € @™} <0 hold.

The proof of Lemma 7.1 is complete.

Notice that we may suppose u,, | 0 as m—oo. Lemma 7.1 and Theorem 5
imply that it is possible to construct a generalized solution u™(t, x) of (Pa.MP)™
via the Generation Theorem, and that there are constants M, and M, satisfying
lum(t, x)| S M, for (t, x)e Q% and |u™(t, x)|SM, a.e. in Qp, respectively. More-
over, it is easily shown that if K is a compact set in Q and 6>0 is such that
U,5(K) =g, then

u™(t, x + Ax) — 2u™(t, x) + u™(t, x — 4x) < ag 4(t)|4x|?

for x, x+4x, x—A4x € Uy(K) with |4x| <4, where ag ,(f) is a positive and non-
decreasing function of ¢ (cf. (6.9)).

Since {Q™} converges to Q as m— oo, by using Lemma 6.2 and a diagonal
argument, we can find a subsequence {u™®} and ue £(Q;) N E,(Qy) such that
um -y uniformly on any compact set of Qr, u™—u_ a.e. in Qr and u(t, x)=
¢(x) on [0, T]x0Q. (E,(Qr) denotes the space of all v such that v satisfies
the condition (iii) of Definition 2.1.)

We next prove that u satisfies (1.1). For arbitrary ¥ € C3(Qr) there is an
m;, such that

SSQT{ —um(t, x)¥, + (H(t, x, u™, u) —#> U+, (um, |//x)} dtdx =0

for all m=m,. Letting m— oo in the above yields

0= SS (= uy, + H(t, x, u, uy}dtdx
Qr

- SSQT{“' + H(, x, u, u)}pdrdx,

since ue .#(Qy). Hence u satisfies (1.1) a.e. in Q. It is clear that u satisfies
(1.2) and (1.3). Therefore, the limit function u(f, x) is a generalized solution
of (MP). Finally we note that {u™} itself converges to u because of the unique-
ness for (MP). The proof of Theorem 1 has been completed.
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