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In this paper, all rings are assumed to be commutative with identity.

In Section 1, we first introduce the notions of Ky,-domains and K-domains
by making use of the terms of a Krull domain and an integral extension domain,
and give some properties of these integral domains. Theorem 3 is our main
result on K-domains. By reason that an integral domain R being a K,-domain
(resp. K-domain) does not always imply that its residue domain is a K,-domain
(resp. K-domain), we further give two definitions of a strong K,-domain and a
strong K-domain. We shall investigate the minimal prime ideals of a finitely
generated ideal in a strong K,-domain or a strong K-domain. Some results
obtained in this section show that strong K,-domains and strong K-domains have
some properties which noetherian domains have. For example, Theorem 9
asserts that if a is an ideal of finite altitude in a strong K,-domain R, then there
exists only a finite number of minimal prime ideals of a, and Theorem 7 asserts
that, in a strong K-domain 4, if a is an ideal in A4 generated by n elements, then
ht (B)<n for any minimal prime ideal P of a. In Section 2, for any n 2<n<
o0), in the same way as in [2], we construct a unique factorization local domain
(A, M) such that ht(t, u)A=n+1 for some elements ¢, u of M.

Throughout this paper, by the word ‘‘ideal” we mean an ideal different from
the ring itself. We use < and < for weak and strong inclusions respectively.

The author would like to thank Professor M. Nishi for his valuable comments
in preparing this paper.

1. Let Rc A be integral domains. Then A is said to be an integral extension
domain of R if A is integral over R. We begin with the following definitions.

DeriNITION. We say that an integral domain R is a K,-domain if there
exists a Krull domain B such that B is an integral extension domain of R.

DEerFINITION. We say that an integral domain A is a K-domain if A is an
integral extension domain of a Ky-domain.

Let R< A be integral domains. Then A is said to be almost finite over R
if A is integral over R and if the quotient field of A is a finite algebraic extension
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of the quotient field of R. The following assertions follow easily from the defini-
tions.

ProposITION 1. (a) Let R be an integral domain. Then R is a K,-
domain if and only if its derived normal domain R is a Krull domain.

(b) A noetherian domain is a Ky-domain.

(¢) If R is a Ky-domain, then a polynomial ring R[..., X,,...], i€l, is a
Ko-domain, where I is any set.

(d) IfR is a Ky-domain and A is an almost finite extension domain of R,
then A is a K,-domain.

Proofr. (a) If R is a Krull domain, then by the definition, R is a K,-
domain. Conversely, suppose that R is a K,-domain. Let B be a Krull domain
such that B is an integral extension domain of R. Let K and L be the quotient
fields of R and B respectively. By Theorem 1 in [3] By N K =Rgng holds for any
prime ideal P in B. Therefore if P is a height one prime ideal in B, then Rgng
is a principal valuation ring. Let R,, i €I, be the height one prime ideals in B.
Since B is a Krull domain, B=/\Bg. Hence R=Bn K-—/\(BSB, nK)=

iel

NRgnr s0 R=NRg,ng. Let a (#0) be a non-unit of R. Then the number
iel iel

of P, containing'a is finite, so aR has only a finite number of minimal prime
divisors. Thus R is a Krull domain.

(b) Let R be a noetherian domain. Since the derived normal domain of
R is a Krull domain, R is a K,-domain.

(c) By the assertion of (a) the derived normal domain R of R is a Krull
domain. Therefore R[..., X;,...] is a Krull domain. Thus R[..., X;,...] is a
K-domain.

(d) Let K and L be the quotient fields of R and A respectively. Since the
derived normal domain R of R is a Krull domain, and since L is a finite algebraic
extension of K, the integral closure of R in L is a Krull domain by Proposition
4.51in [8]. As is seen easily, the integral closure of R in L is the derived normal
domain of A. Thus A4 is a K,-domain.

ProrosiTION 2. (a) If R is a noetherian domain, then any integral ex-
tension domain of R is a K-domain. ,

(b) If A is a K-domain, then any integral extension domain of A is a
K-domain.

(©) If A is a K-domain, then a polynomial ring A[..., X;,...], i€l, is a
K-domain, where I is any set.

ProoF. The assertions of (a), (b) and (c) follow immediately from Propo-
sition 1 and the definition of a K-domain.
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If p is a minimal prime ideal of a non-zero principal ideal in a noetherian
domain, then ht(p)=1. The following theorem shows that any K-domain has
this property.

THEOREM 3. Let A be a K-domain and let a (#0) be a non-unit of A.
Then any minimal prime ideal p of aA has height one.

Proor. Let R be a K,-domain such that A is an integral extension domain
of R. By (d) of Proposition 1, we may assume that R contains a. Let K and
L be the quotient fields of R and A respectively. The derived normal domain
R of R is a Krull domain by (a) of Proposition 1. It is obvious that the derived
normal domain 4 of A is the integral closure of R in L. Let P, i€l, be the
prime ideals in 4 such that each %, is lying over p. Since P; is a minimal prime
ideal of a4, P; n R is a minimal prime ideal of aR by the Going-Down Theorem.
Hence ht (;n R)=1 because R is a Krull domain. Therefore ht (B;)=1 for any
iel. Thus ht(p)=1.

An integral domain 4 is said to be an S-domain if for any height one prime
ideal p in A, the height of pA[X] in A[X] is one, where X is an indeterminate
(see [5], p. 26).

CoROLLARY 4. Let A be a K-domain. Then A is an S-domain. In par-
ticular, any integral extension domain of a noetherian domain is an S-domain.

ProOF. Let p be a height one prime ideal of A. Let a be a non-zero ele-
ment of p. Since ht(p)=1, pA[X] is a minimal prime ideal of a4[X]. By the
assertion of (c) of Proposition 2, A[X] is a K-domain. Hence ht(pA[X])=1
by Theorem 3.

In Section 2, for each n (2<n< o0), we give an example of a unique factori-
zation local domain (A, M) such that ht(t, uy)A=n+1 for some elements ¢, u
of M. Therefore K-domains do not satisfy the ‘‘Altitude Theorem of Krull”

that is a theorem concerning noetherian rings. Herein we introduce the following
notion.

DEFINITION. An integral domain A is called a strong K,-domain (resp.
strong K-domain) in case, for each prime ideal p in A, A/p is a K,-domain (resp.
K-domain).

The following assertions follow immediately from Propositions 1 and 2.

PROPOSITION 5. (a) Let R be a strong Ko-domain. Then a finite integral
extension domain A of R is a strong Ky-domain.

(b) Let R be a strong Ky-domain, and let Ry be a subring of R such that
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R is integral over Ry. Then R, is a strong K,-domain.

(c) Let R be a strong K-domain. Then any integral extension domain
A of R is a strong K-domain.

(d) Let R be a noetherian domain. Then the derived normal domain R
of R is a strong Ky-domain.

(¢) Let R be a noetherian domain. Then an almost finite extension domain
A of R is a strong Ky-domain.

Proor. The assertions of (a), (b) and (c) follow immediately from Propo-
sitions 1 and 2.

(d) Let P be an arbitrary prime ideal in R. By Theorem (33.10) in [5],
R/P is almost finite over R/(P N R). Hence R/P is a K,-domain by (d) of Propo-
sition 1.

(e) Since the derived normal domain A of A is the derived normal one of a
noetherian domain, A4 is a strong K,-domain. Therefore the assertion of (b)

implies that A4 is a strong K -domain.

REMARK. Let k be a field, and let B=k[X, Y, X/Y, X/Y?,...], where X, Y
are indeterminates. Then ht(YB)=2. Therefore k[X,, X,, X;,...] is not a
strong K-domain, where X; (i € N) are indeterminates.

Let A4 be a ring, and let B, p be prime ideals in 4 such that P> p and ht (PB/p)
=1. Then we say that p is directly below PB. We next prove that a strong K-
domain has the following property: If A is a strong K-domain and a is an ideal
in A4 generated by n elements, then for every minimal prime ideal p of a, ht (p)<n
holds. For the proof of this theorem, we need the following lemma.

LEMMA 6. Let A be a ring, and let a be a finitely generated ideal in A.
Let B be a minimal prime ideal of a. Then the following statements hold.

(@) For each prime ideal q properly contained in B, there exists a prime
ideal p such that p is directly below B and contains q.

(b) ht(P)=sup {ht(p); p is directly below P} +1.

Proor. (a) Let E={peSpec(A4); Pop=2q}. Since q is an element of
E, E is not empty. E is an ordered set with the inclusion relation. Since a is
finitely-generated, and since B is a minimal prime ideal of a, E is an inductive set.
Let p be a maximal element of E. Then ht (B/p)=1 by the maximality of p.

(b) It suffices to show that sup {ht(p); p is directly below B} is infinite if
ht () is infinite. Suppose that ht (P)=oo. Then for each positive integer n,
there exists a chain of prime ideals PoPB,>:-->P,>P,+ in 4. By the asser-
tion of (a) we may assume that ‘B, is directly below B. Since ht(PB,)>n,
sup {ht (p); p is directly below B} >n. Hence sup {ht(p); p is directly below P}
is infinite.
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TueorEM 7. Let A be a strong K-domain, and let a be an ideal in A
generated by n elements. Then ht (B)<n holds for any minimal prime ideal

P of a.

Proor. Let a=(a,,..., a,)A. We prove the assertion by induction on n.
If n=1, then the assertion is obvious by Theorem 3. Assume that n>2. Let
p be any prime ideal in A which is directly below . Since P is a minimal prime
ideal of a, p does not contain a; so we may assume that p#a,. Then ht (P/p)=1
implies that PAy is a unique prime ideal in Ay containing (p+a;A)Ag; so the
radical of (p+a;4)Ag is PAg. Therefore (p+a;A)Ag contains (a)™ (i=2,..., n)
for some positive integer m. We write (a,)"=(c;+ab;)/s with ¢;ep, b,e A and
se A—P. Let q be a minimal prime ideal of b=(c,,..., ¢,)4 contained in p.
Since the radical of (b+a;A)Aq contains a; (i=1, 2,..., n), we have m
=PAg. Thus \/(q+a,A)Ag=PAg. Therefore B/q is a minimal prime ideal
of @,(A/q), where a,=a, mod q. By hypothesis 4/q is a K-domain, so ht ($/q)
=1 by Theorem 3. Therefore o p2q implies that p=q. Then by the induc-
tive hypothesis, ht (p)<n—1. Thus ht(P)<n by Lemma 6.

For an ideal a of a ring R, the supremum of heights of minimal prime ideals
of a is called the altitude of a. For the sake of convenience we use the following
notations: Let R be an integral domain, and let a be an ideal in R. Then we
denote by Ming (R/a) the set of minimal prime ideals of a, and denote by S(a)
the set {ne N; Ming (R/a) contains infinitely many height n prime ideals}. If
S(a) is not empty, we define t(a) by #(a)=inf S(a). Theorem 9 and Theorem 11
are concerned with strong Ky-domains.

LEMMA 8. Let R be a Ky,-domain. Let a (#0) be a non-unit of R, and let
a be an ideal such that S(a) is not empty. Then the following statements hold.

(@) There exists only a finite number of minimal prime ideals of aR.

(b)) ta)>1.

(c) There exists a height one prime ideal p in R such that S(b) is not empty
and t(b) <t(a) for some ideal b in R/p.

Proor. (a) Since the derived normal domain R of R is a Krull domain,
the number of minimal prime ideals of aR is finite. From this fact the assertion
follows immediately.

(b) Let b be a non-zero element of a. Then Ming (R/bR) is a finite set by
(a). Hence a has only a finite number of height one minimal prime divisors.
Therefore t(a)>1.

(c) Let b be a non-zero element of a. Let py,..., p, be the minimal prime
ideals of bR. Let n=t(a). We may assume that p, is contained in infinitely
many height n minimal prime ideals B; (ieI) of a. Set c=if\lﬂ3,. Then, since

€
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¢ contains a, each B; is a minimal prime ideal of c. Therefore B,/p, is a minimal
prime ideal of ¢/p, and ht (B;/p,)<n for each iel. Thus S(¢/p,) is not empty
and t(¢/p,)<n.

THEOREM 9. Let R be a strong Ky,-domain. Then the following statements
hold.

(@) Let a be an ideal in R. Then for each positive integer n, there exists
only a finite number of height n minimal prime ideals of a.

(b) Let a be an ideal in R whose altitude is finite. Then there exists only
a finite number of minimal prime ideals of a.

(c) If dim (R) is finite, then Spec (R) is a noetherian space.

Proor. (a) Suppose that S(a) is not empty. Since R/p is a K,-domain
for any prime ideal p in R, by repeated use of (c) of Lemma 8, we see that there
exists a prime ideal p in R such that S(b) is not empty and #b)=1 for some ideal
b in R/p. This contradicts the assertion of (b) of Lemma 8.

(b) This follows immediately from the assertion of (a).

(c) This follows from the assertion of (b) and Proposition 1.1 in [7].

CoRrROLLARY 10. Let R be a strong Ky-domain, and let a be a finitely
generated ideal in R. Then there exists only a finite number of minimal prime
ideals of a.

Proor. It suffices to show that the altitude of a is finite. Let a be generated
by n elements. Then the altitude of a is not greater than n by Theorem 7.

THEOREM 11. Let R be a strong Ky-domain, and let B be a height n prime
ideal in R. Then there exist n elements ay,..., a, of ‘P such that ht(a,,..., a,)R
=n. In particular, P is a minimal prime ideal of a certain ideal generated by
n elements of B.

Proor. We prove the assertion by induction on n. If n=1, then the as-
sertion is obvious, and we assume that n>2. Let P be a prime ideal such that
p is directly below P and ht(p)=n—1. By inductive hypothesis there exists
n—1 elements ay,..., a,_; of p such that ht (a,,...,a,_;) R=n—1. Let p,,...,
p, be the minimal prime ideals of (a,,..., a,—;)R. Then ht(p)=n—-1 (i=1,...,7)
by Theorem 7. Therefore B is not contained in p; U--- Up,. Let a, be an ele-
ment of P—p, U---Up,. Then it is easy to see that ht(a,..., a,-1, a,)R=n.

An almost finite extension domain of a noetherian domain is a strong K-
domain by (e) of Proposition 5. So we have the following corollary.

COROLLARY 12. Let A be an almost finite extension domain of a noetherian
domain R. Then the following statements hold.
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(@) If a is an ideal in A generated by n elements, then ht(p)<n holds
for each minimal prime ideal p of a.

(b) Letabeanarbitraryideal in A. Then there exists only a finite number
of minimal prime ideals of a. (Heinzer [4])

(c) IfPisa height n prime ideal in A, then there exist n elements a,,..., a,
of B such that ht(a,,..., a,)A=n.

Proor. The assertions of (a) and (c) follow immediately from Theorem 7
and Theorem 11 respectively.

(b) Let M* be the set of ideals in A which have an infinite number of mini-
mal prime divisors. Set M={bnR;be M*}. It suffices to show that M is
empty. Suppose that M is not empty. Since R is noetherian, M has a maximal
element with respect to the inclusion relation. Let bn R be a maximal element
of M. Then, as is seen easily, b N R is a prime ideal in R. Set p=bnR. Since
A is a strong K-domain, there exists only a finite number of minimal prime ideals
of pA by Corollary 10. Let p,,..., p, be the minimal prime ideals of p4. Then
we may assume that p, is properly contained in infinitely many minimal prime
divisors B,, iel, of b. Set c=NP,. Since b is contained in ¢, each P; is a

iel
minimal prime ideal of ¢. Therefore by the maximality of p in E, we have ¢n R

=p, which implies that ¢/p, N R/p=0. Therefore c=p,. This is a contradiction.
Thus M is empty.

REMARK. Since the derived normal domain A of a noetherian domain R
is almost finite over R, A satisfies (a), (b) and (c) of Corollary 12.

2. Example 1

Let n be an integer greater than 1. Here we give an example of a unique
factorization local domain (A4, M) such that ht (¢, uy)A=n+1 for some elements
t, u of M. For the construction of this example, we need the following lemma.

LemMA 13. Let (A, M) be an (n+ 1)-dimensional regular local ring, and
let {t,t,,...,t,—y, u} be aregular system of parameters of A. Let X,,..., X,_,
be indeterminates. Then the following statements hold.

(@) Let P=(t, uX +ty,...,uX,_,+t,_)AX ..., X,—1). Then P is a
prime ideal in A(Xy,..., X,_{).

(b)) PnA=tA.

(c) Let B=A[tyft,...,t,_4/t], and let N=(t, t,/t,...,t,-1/t, u)B. Then
By, is an (n+ 1)-dimensional regular local ring. In particular, {t,t/t,..., t,_,/t,
u} is a regular system of parameters'of B,

(d) tBanA=(,ty,..., t,_)A.

Proor. (a) Let A*=A(X,,...,X,_.,). Since ( uX;+t;,...,uX,_+
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ti—1, WA =(, ty,..., t,_q, WA¥=MMA*, {t,uX,+1t,,...,uX,_+t,_;,u} is a
regular system of parameters of A*. Therefore P is a prime ideal in A*.

() Let p=(t, uX +ty,...,uX,_;+t,_)A[X,..., X,-1]. By our assump-
tion, A/tA is a regular local ring and {#,,..., {,, #i} is a regular system of parame-
ters of A/tA, where #;=t,mod (t4) and #=u mod (t4). Hence {u, —7,,..., —#,-1}
is an (A/tA)-regular sequence, so (i X, +1,,..., X, _; +1,-1) (A/tA) [X,,..., X5-1]
is a prime ideal in (A4/t4)[X,,..., X,~;] by Proposition 2 in [1]. Therefore
p=(t, uX,;+ty,..., uX, - +1t,-1)A[X ..., X,—1] is a prime ideal in A[X,,...,
X,-1]. Since PnA[X,,..., X, ]=Dp, it suffices to show that pnA=t4. Let
¢ be any element of pn A. We write c=g,- t+:§;g,~ -(uX;+1t), where g;e A[X,,
vees Xpeq] (i=0, 1,..., n—1). By substituting —(#;/u) for X;, we see that ¢ is of
the form (b/u™)t. Since A is a unique factorization domain and u is relatively
prime to t in A, b is divided by u™ in A. Therefore c belongs to tA. Thus pn A4
=tA.

(c) Let C=A[X,,..., X,—-1], and let |*=(t, ty,..., t,—y, U, Xq,..., Xp-1)C.
Then Cg. is a 2n-dimensional regular local ring, and M*Cg.=(t, tX,—1,...,
tX, 1=ty Xiseoes Xpa1)Cou» 50 {8, t X — 1ty st X,y —toy, U, X5y X g}
is a regular system of parameters of Cg.. Therefore Cqu/(tX,—14,..., tX,_1—
t,-1)Cq. is an (n+ 1)-dimensional regular local ring. As is seen easily, Cg./(1X,
—tyseees tX 1 —1,~1)Caqs~ Bg,.

(d) Bg/tBa~Cgu/(t, tX; —t1,..cs X, 1 —1—1)Cae=Caqu/(t, t15eee; t_1)Capa
which is isomorphic to a localization of (A4/(8, ty,..., t,—1)A) [ X1ye-. Xp-1].
Therefore tBy N A=(t, t,..., t,—1)A.

Now we construct regular local rings 4, (m=1, 2, 3,...) inductively. Let
Ay be an (n+ 1)-dimensional regular local ring, and let {¢, to1, to2,-++s ton-1y> %}
be a regular system of parameters of 4,. Let X;; (i=1, 2, 3,..., j=1,...,n—1) be
indeterminates. Set A;=A¢(X;15...» X1(n—1))» and set t;;=uX,;+1,; for j=
1,....,n—1 Then B;=(¢, t;1,..., tyn-1))A4; is a prime ideal in A, by (a) of
Lemma 13. Set A,=A;[t(i/t,..., tyn-1y/t]n,, Where Ry=(1, t14/t,..., tyu-1/t,
A [t,1/t,..., tja-1)/t]. Then by (c) of Lemma 13, A4, is an (n+ 1)-dimensional
regular local ring. Generally for each m (m>2) we set inductively A4,,_,=
Apm—2Xmiseees Xmn-1)) and t,;=uX,,;+(tm-1);/t) for j=1,..,n—1. Then
PBom—1=( tutseees tmn—1))A2m-1 is a prime ideal in A,,-,. And set A4,,=
A2m-l[tm1/tx"" tm(n—l)/t]sz,,.’ where gtm=(t’ tml/t’"" tm(n-l)/t’ u)A2m—1[tm1/':'--,
tmn-1)/t]. Then by repeated use of Lemma 13, we see that for each m>0,
A,, is an (n+ 1)-dimensional regular local ring.

Let M,, be the maximal ideal in 4,,. Set A=m\>{OA,,,, im=m\ZJosm,,, and P=

UP,nm+1- Then the following assertions hold.
m20

(@) tAymizNAzms1=Pom+1 and Popyy N Aom=1A4,, for each m>0.
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(b)) P=tA.

(©) PBoms+1Pu for each m>1. In particular PHu.

(d) BNAyms1=Pom+y for each m=1.

() ht(M)=n+1, and M>P>0 is a saturated chain of prime ideals in
A. In particular A is not catenary, and ht (t, b)A=n+1 for any be M—P.

(f) A is a unique factorization domain.

ProoF. (a) This follows immediately from (b) and (d) of Lemma 13.

(b) This is obvious from (a).

(¢) Suppose that P,,, ., contains u. Since uX 4+ 1)+ Enil0), i=1,..., n—1,
are elements of By,s1, Pom+ 12, tui/ts- s tmn—1)/ts WAz 1 =M1 1, Which
is a contradiction,

(d) Since P does not contain u, we have Py 1 SBN A2ps1SMopmsry-
Therefore ht (M,,,4 1/P2m+1)=1 implies that B,,,. =B N A5,+1-

(e), (f) Since Ap=1im (A;,)4,, holds, we see that ht (P)=1. Let Q be a

m

prime ideal in A such that M2Q2P. Then by () M, 2QN A1 2
PB,m+1 for each m>0. If there exists a positive integer m, such that QN 4,4,
=P, .+ for any m>mg, then Q=B. On the other hand, if there exist integers
my<m,<my<--- such that QN A,,,+;=Ms,,+,, then Q=M. Thus M>P>0
issaturated. Set B, =A,, and set inductively B,,=B,,_ (X n1,-.., Xpmn—1,) for each
positive integer m. Then B,, is an (n+ 1)-dimensional regular local ring for each
m>0. Set B= \ By Then B=Ao[X 1ses X1tnm1yees Xmiseers Xmiu 1yo-+- Jmpes
where 0% =MoAo[ X1 1reer X1gue1yeeer Xmtsoos Xmuosyei-].  Therefore B is
a unique factorization domain. Since A4,,_[1/f]=4,,.[1/t]1=B,[1/t] holds,
we have A[1/t]=B[1/t]. Therefore dim (A[1/t])=n. Hence dim (4)>n+1.
On the other hand A=lim (4,,) implies that dim (4)<n+1. Thus dim (4)=
n+1. Finally we show tl";at A is a unique factorization domain. Since ht (t4)
=1, A,, is a principal valuation ring. For each m>0, 4,,, is a Krull domain,
s0 Ay [1/t]1 N (A2m)ia,,,=A2m- Hence A[1/t1nA,,=A. Thus the facts that
A[1/1] is a Krull domain and A4, is a principal valuation ring imply that A4 is a
Krull domain. Since t is a prime element in 4, and since A[1/f] is a unique

factorization domain, by Nagata’s theorem ([7], p. 21) we see that A is a unique
factorization domain. Thus the proof is complete.

Now we obtain the following conclusion.

THEOREM 14. (A4, M) is an (n+1)-dimensional unique factorization local
domain and ht(t, WA=n+1.

Example 2

We here give an example of a unique factorization local domain (4, M)
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such that ht (¢, u)A= oo for some elements ¢, u of M. For the construction of
this example we need the following lemma.

LemMA 15. Let k be a field, and let t,t,,...,t,,...,u be algebraically
independent elements over k. Let X, X,,..., X,,... be indeterminates. Set
R=K[t, t,, t5,..., u], m=(t, t;, t5,..., u)R, B=R[t,/t, t,/t,...] and RN=(¢, t,/t,
t,/t,..., u)B. Then the following statements hold.

(@) Let K =k(X,, X,,...). Then
Ry(X1, X3,..) = KI[t, ty, tayeees Ulnkieies a1+

(b) t, t,/t, t,/t,..., u are algebraically independent over k.

(C) B%=k[t9 tl/t’ tz/tv"’ u](t,n/l,tz/t,...,u)'

(d) tBynR,=(t, ty, ty,...)R,.

() Let P=(t, uX,+1t;, uX,+t,,... ) R(X,, X5,...). Then P is a prime
ideal in R (X,, X,,...) and Pn R, =tR,,.

(f) Set tf=uX;+t;(i=1,2,...). Then t, t¥[t, t§[t,..., u are algebraically
independent over K=k(X, X,,...).

Proor. It is easy to see that the assertions of (a), (b) and (c) hold.

(d) We see that the assertion of (d) is proved immediately by the same
proof as in (d) of Lemma 13.

(e) Since(t,uX;+t,...,uX,+t)R.[X; ..., X,]isaprimeidealin R, [X,,...,
X,] for each positive integer n, (t, uX,+t;, uX,+t,,... )R, [X,, X5,...] is a
prime ideal in R, [X,, X,,...]. Hence B is a prime ideal in R (X,, X;,...).
The equality B n R, =tR,, can be proved by the same way as the proof of (b) of
Lemma 13.

(f) By the assertion of (b) it is enough to prove that ¢, t}, t¥,..., u are alge-
braically independent over K.. Let K,=k(Xj,..., X,). Then K,(t, uX,+t,,...,
uX,+t, u)=K,(t, ty,..., t,, u). The transcendental degree of K,(t, t,..., t,, #)
over K, is n+2, and so ¢, uX, +1t,,..., uX,+1, u are algebraically independent
over K,. Therefore t, uX;+t,, uX,+t,,..., u are algebraically independent over
K.

Now we construct infinite dimensional unique factorization local domains
A, (n=1, 2,...) inductively. Let k be a field, and let ¢, tyy, toz,.--» Lops---» 4 bE
algebraically independent elements over k. Let X,,, (m, n=1, 2,...) be indetermi-
nates. Set R=Kk[t, toy, tozs..., u], m=(t, toy, toz,..., ¥)R. Then we set Ao, 4,,
By, Ay, A3, B3, Ays... as follows:

Ay =R,,

Ay = Ao(X 15 X125--), By = (0 114, 112, ) Ay,
where t;; = uX,; + t; (j =1, 2,...),

Ay = Aylt4/t, tyoft,. gy
where R, = (¢, t4/t, tya/ty.., WA [t14/t, 1o/t ... ],
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Ay = Ay (X3, X32,..), By = (1, 2y, t23,...)43,
Where t21=uX21+(t11/t) (]= 1, 2,...),

A2n—1 = Az»:-z(an, an’ )9 ‘an 1= (t tnl, n2s>* )A2n 1s
Whel'e t".l = anj + (t(n—l)j/t) (] = 1, 2,...),

A2n = A2n—1[tn1/t, tnz/t’---]it,.’
where 9‘tn = (t’ tul/t’ tnl/t:"" “)AZn—l[tnI/t, tn2/t""] ’

Let M, be the maximal ideal in the local domain A,. Set A= U A,,, M=
k}_/oml,, and P= U B,,.,. Letk, be the field over k generated by X;; (1—1 2,..
n2 n20
n, j=1, 2,...). Then the following assertions hold.

@) t, tu-1)1/t, tw-1)2lts..., u are algebraically independent over k,.
(0)  Azp—y = Ki[t, ta— 1)1/t tn-1y2/tseoss Wdit,tenm 1yttt 1y2/t0ei)
Aazn = Kalt, tay[t, taa[tseees Wi tmittnaity..n) -

(c) B does not contain u.

@ B0 Azir=Bonss for each n >0.

(€) 1Ay, N Appy = PBou—y and Pyuyy N Ay =1A4,,  for each n.

) P=1A4

(g) dim(4)=o00, and M>P>O0 is a saturated chain of prime ideals in A.
In particular A is not catenary and ht(t, b)A= oo for any be M —P.

(h) A is a unique factorization domain.

Proor. (a) and (b) follow from Lemma 15, and (c)~(h) are proved by
the same way as in case Example 1.

Thus we obtain the following conclusion.

THEOREM 16. (A4, M) is an infinite dimensional unique factorization local
domain and ht (t, u)A is infinite.

ReEMARK. The local domain (4, M) in Example 1 is a finite dimensional
unique factorization domain which is not a strong K,-domain.
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