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In this paper, all rings are assumed to be commutative with identity.
In Section 1, we first introduce the notions of X0-domains and X-domains

by making use of the terms of a Krull domain and an integral extension domain,
and give some properties of these integral domains. Theorem 3 is our main
result on X-domains. By reason that an integral domain R being a X0-domain
(resp. X-domain) does not always imply that its residue domain is a X0-domain
(resp. X-domain), we further give two definitions of a strong X0-domain and a
strong X-domain. We shall investigate the minimal prime ideals of a finitely
generated ideal in a strong X0-domain or a strong X-domain. Some results

obtained in this section show that strong X0-domains and strong X-domains have

some properties which noetherian domains have. For example, Theorem 9
asserts that if o is an ideal of finite altitude in a strong X0-domain R, then there

exists only a finite number of minimal prime ideals of α, and Theorem 7 asserts
that, in a strong X-domain A, if α is an ideal in A generated by n elements, then

htOP)<n for any minimal prime ideal φ of α. In Section 2, for any n (2<n<
oo), in the same way as in [2], we construct a unique factorization local domain
(A, 9W) such that ht (t, u)A = n +1 for some elements f, u of M.

Throughout this paper, by the word "ideal" we mean an ideal different from
the ring itself. We use £ and c for weak and strong inclusions respectively.

The author would like to thank Professor M. Nishi for his valuable comments
in preparing this paper.

1. Let R^A be integral domains. Then A is said to be an integral extension
domain of R if A is integral over R. We begin with the following definitions.

DEFINITION. We say that an integral domain R is a K0-domain if there
exists a Krull domain B such that B is an integral extension domain of R.

DEFINITION. We say that an integral domain A is a K-domain if A is an
integral extension domain of a X0-domain.

Let R^A be integral domains. Then A is said to be almost finite over R
if A is integral over R and if the quotient field of A is a finite algebraic extension
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of the quotient field of R. The following assertions follow easily from the defini-
tions.

PROPOSITION 1. (a) Let R be an integral domain. Then R is a K0-
domain if and only if its derived normal domain R is a Krull domain.

(b) A noetherian domain is a K0-domain.

(c) If R is a K0-domain, then a polynomial ring #[..., Xi9...~], ie/, is a
K0-domain, where I is any set.

(d) If R is a K0-domain and A is an almost finite extension domain of R,
then A is a K0-domain.

PROOF, (a) If R is a Krull domain, then by the definition, R is a K0-
domain. Conversely, suppose that R is a ^0-dόmain. Let B be a Krull domain

such that B is an integral extension domain of R. Let K and L be the quotient
fields of R and B respectively. By Theorem 1 in [3] B% n K = R^nR holds for any
prime ideal φ in B. Therefore if ^ is a height one prime ideal in B, then R%r\R

is a principal valuation ring. Let %, i e /, be the height one prime ideals in J3.
Since B is a Krull domain, B = Γ\B^.. Hence R = B n K = Γ\(B^{ n K) =

*_ _ _
nib so Λ = ΛΛ^ 4 njι. Let a (^0) be a non-unit of R. Then the number

ie/ ie/ * _
of % containing a is finite, so aR has only a finite number of minimal prime
divisors. Thus R is a Krull domain.

(b) Let R be a noetherian domain. Since the derived normal domain of
R is a Krull domain, R is a X0-domain.

(c) By the assertion of (a) the derived normal domain R of R is a Krull

domain. Therefore R[_..., Xh...'] is a Krull domain. Thus #[..., Xi9...~\ is a
X0-domain.

(d) Let K and L be the quotient fields of R and A respectively. Since the
derived normal domain ,R of R is a Krull domain, and since L is a finite algebraic

extension of K, the integral closure of £ in L is a Krull domain by Proposition
4.5 in [8]. As is seen easily, the integral closure of R in L is the derived normal
domain of A. Thus A is a X0-domain.

PROPOSITION 2. (a) If R is a noetherian domain, then any integral ex-
tension domain of R is a K-domain.

(b) // A is a K-domain, then any integral extension domain of A is a

K-domain.

(c) If A is a K-domain, then a polynomial ring A[..., Xi9...]9 ϊ'e/, is a

K-domain, where I is any set.

PROOF. The assertions of (a), (b) and (c) follow immediately from Propo-

sition 1 and the definition of a ^-domain.
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If p is a minimal prime ideal of a non-zero principal ideal in a noetherian
domain, then Λf(p)=l . The following theorem shows that any K-domain has
this property.

THEOREM 3. Let A be a K-domain and let a (V0) be a non-unit of A.

Then any minimal prime ideal p of aA has height one.

PROOF. Let R be a K0-domain such that A is an integral extension domain
of R. By (d) of Proposition 1, we may assume that R contains a. Let K and
L be the quotient fields of R and A respectively. The derived normal domain

R of R is a Krull domain by (a) of Proposition 1. It is obvious that the derived

normal domain A of A is the integral closure of R in L. Let %, i e /, be the
prime ideals in A such that each % is lying over p. Since % is a minimal prime
ideal of aA, % n R is a minimal prime ideal of aR by the Going-Down Theorem.

Hence ht (% n R) = 1 because R is a Krull domain. Therefore ht (%) = 1 for any
167. Thus/ιf(p) = l.

An integral domain A is said to be an S-domain if for any height one prime

ideal p in A, the height of pA[X] in A[X~] is one, where X is an indeterminate
(see [5], p. 26).

COROLLARY 4. Let A be a K-domain. Then A is an S-domain. In par-
ticular, any integral extension domain of a noetherian domain is an S-domain.

PROOF. Let p be a height one prime ideal of A. Let a be a non-zero ele-
ment of p. Since ht (p)=l, p-4[X] is a minimal prime ideal of aA[X~]. By the
assertion of (c) of Proposition 2, A[X~\ is a K-domain. Hence ht(pA[X])=\

by Theorem 3.

In Section 2, for each n (2 < n < oo), we give an example of a unique factori-

zation local domain (A, $01) such that ht(t, ύ)A = n + \ for some elements f, u
of 2R. Therefore X-domains do not satisfy the "Altitude Theorem of Krull"
that is a theorem concerning noetherian rings. Herein we introduce the following

notion.

DEFINITION. An integral domain A is called a strong K0-domain (resp.
strong K-domain) in case, for each prime ideal p in A, A/p is a X0-domain (resp.

K-domain).

The following assertions follow immediately from Propositions 1 and 2.

PROPOSITION 5. (a) Let R be a strong K0-domain. Then a finite integral
extension domain A of R is a strong KQ-domain.

(b) Let R be a strong K0-domain, and let R0 be a subring of R such that
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R is integral over RQ. Then R0 is a strong K0-domain.
(c) Let R be a strong K-domain. Then any integral extension domain

A of R is a strong K-domain.
(d) Let R be a noetherian domain. Then the derived normal domain R

of R is a strong K-domain.
(e) Let R be a noetherian domain. Then an almost finite extension domain

A of R is a strong KQ-domain.

PROOF. The assertions of (a), (b) and (c) follow immediately from Propo-
sitions 1 and 2.

(d) Let 3̂ be an arbitrary prime ideal in K. By Theorem (33.10) in [5],
jξ/φ is almost finite over R/(φ n K). Hence R/ty is a ^-domain by (d) of Propo-
sition 1.

(e) Since the derived normal domain A of A is the derived normal one of a
noetherian domain, A is a strong X0-domain. Therefore the assertion of (b)
implies that A is a strong £0-domain.

REMARK. Let k be a field, and let J3 = /c[*, Y, X/Y, */72,...], where X, Y
are indeterminates. Then ht(YB) = 2. Therefore k[Xl9 X2, 3̂,...] is not a
strong .K-domain, where Xt (i e N) are indeterminates.

Let A be a ring, and let φ, p be prime ideals in A such that φ=>p and hi (φ/p)
= 1. Then we say that p is directly below φ. We next prove that a strong K-
domain has the following property: If A is a strong ^-domain and α is an ideal
in A generated by n elements, then for every minimal prime ideal p of α, ht (p)^ n
holds. For the proof of this theorem, we need the following lemma.

LEMMA 6. Let A be a ring, and let a be a finitely generated ideal in A.
Let ψ be a minimal prime ideal of a. Then the following statements hold.

(a) For each prime ideal q properly contained in φ, there exists a prime
ideal p such that p is directly below 9β and contains q.

(b) ht (φ) = sup {ht (p) p is directly below φ} + 1 .

PROOF, (a) Let £ = {peSpec(^4); φiDp^q}. Since q is an element of
E, E is not empty. E is an ordered set with the inclusion relation. Since α is
finitely generated, and since $ is a minimal prime ideal of α, E is an inductive set.
Let p be a maximal element of E. Then ht OP/p) = 1 by the maximality of p.

(b) It suffices to show that sup {ht(p)ι p is directly below φ} is infinite if
ht(9β) is infinite. Suppose that ht(ty) = ao. Then for each positive integer n,
there exists a chain of prime ideals φ => ̂  => z> φπ => tyn+ 1 in A. By the asser-
tion of (a) we may assume that ^x is directly below φ. Since /ifOPJ^n,
sup {ht (p) p is directly below $} > n. Hence sup {ht (p) p is directly below φ}
is infinite.
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THEOREM 7. Let A be a strong K domain, and let α be an ideal in A
generated by n elements. Then ht(ty)<n holds for any minimal prime ideal

PROOF. Let a=(al9...9 an)A. We prove the assertion by induction on n.
If n = l, then the assertion is obvious by Theorem 3. Assume that n>2. Let
p be any prime ideal in A which is directly below 9β. Since ty is a minimal prime
ideal of α, p does not contain α so we may assume that p $ a x . Then ht (φ/p) = 1
implies that tyA% is a unique prime ideal in A% containing (p-\-a^A)A^\ so the
radical of (p + a^Ay is tyA%. Therefore (p + a^Ay contains (a^m (i = 2,..., n)
for some positive integer m. We write (fli)

m = (ci-haii>i)/5 with qep, bteA and
seA — φ. Let q be a minimal prime ideal of b = (c2,..., cnM contained in p.
Since the radical of (b + a^Ay contains at (ϊ = l, 2,..., n), we have

Thus x/(q + α1y4)y4^ = φ^4φ. Therefore φ/q is a minimal prime ideal
of a^A/oi), where al=aί modq. By hypothesis A/q is a X-domain, so Λf OP/q)
= 1 by Theorem 3. Therefore φop^q implies that p = q. Then by the induc-
tive hypothesis, ht (p) <: n — 1. Thus ht (9β) <; n by Lemma 6.

For an ideal α of a ring R, the supremum of heights of minimal prime ideals
of α is called the altitude of α. For the sake of convenience we use the following
notations: Let R be an integral domain, and let α be an ideal in R. Then we
denote by MinR CR/α) the set of minimal prime ideals of α, and denote by S(α)
the set {neΛΓ; MinR(R/a) contains infinitely many height n prime ideals}. If
S(α) is not empty, we define ί(α) by ί(α)=inf S(α). Theorem 9 and Theorem 11
are concerned with strong X0-domains.

LEMMA 8. Let R be a K0-domain. Let a (^0) be a non-unit of R, and let
α be an ideal such that 5(α) is not empty. Then the following statements hold.

(a) There exists only a finite number of minimal prime ideals of aR.
(b) f(α)>l.
(c) There exists a height one prime ideal p in R such that S(b) is not empty

and t(b)<t(a)for some ideal b in R/p.

PROOF, (a) Since the derived normal domain R of R is a Krull domain,
the number of minimal prime ideals of aR is finite. From this fact the assertion
follows immediately.

(b) Let b be a non-zero element of α. Then MinΛ (R/bR) is a finite set by
(a). Hence α has only a finite number of height one minimal prime divisors.
Therefore f(α)>l.

(c) Let b be a non-zero element of α. Let PI,..., pr be the minimal prime
ideals of bR. Let n = ί(α). We may assume that pί is contained in infinitely
many height n minimal prime ideals % (iel) of α. Set c = Λ%. Then, since

ie/
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c contains α, each % is a minimal prime ideal of c. Therefore φί/pί is a minimal
prime ideal of c/px and ht(<^βi/p1)<n for each iel. Thus Sίc/pJ is not empty
and ί(c/p1)<n.

THEOREM 9. Let R be a strong K0-domain. Then the following statements
hold.

(a) Let α be an ideal in R. Then for each positive integer n, there exists
only a finite number of height n minimal prime ideals of a.

(b) Let α be an ideal in R whose altitude is finite. Then there exists only
a finite number of minimal prime ideals of a.

(c) If dim (R) is finite, then Spec(Λ) is a noetherian space.

PROOF, (a) Suppose that 5(α) is not empty. Since Λ/p is a X0-domain
for any prime ideal p in R9 by repeated use of (c) of Lemma 8, we see that there
exists a prime ideal p in .R such that S(b) is not empty and ί(b)= 1 for some ideal
b in JR/p. This contradicts the assertion of (b) of Lemma 8.

(b) This follows immediately from the assertion of (a).
(c) This follows from the assertion of (b) and Proposition 1.1 in [7],

COROLLARY 10. Let R be a strong K0-domain9 and let a be a finitely

generated ideal in R. Then there exists only a finite number of minimal prime

ideals of a.

PROOF. It suffices to show that the altitude of α is finite. Let α be generated
by n elements. Then the altitude of α is not greater than n by Theorem 7.

THEOREM 11. Let R be a strong K0-domain9 and let φ be a height n prime

ideal in R. Then there exist n elements aί9...9 an ofty such that ht(aί9...9 an)R
= n. In particular, 9β is a minimal prime ideal of a certain ideal generated by

n elements of 9β.

PROOF. We prove the assertion by induction on n. If n = l, then the as-
sertion is obvious, and we assume that n>2. Let φ be a prime ideal such that

p is directly below 9β and /ιί(p) = n —1. By inductive hypothesis there exists

n-1 elements αl5..., an^1 of p such that ht (aί9...9 an_1)R = n-l. Let P!,...,
pr be the minimal prime ideals of (al9..., a^^R. Then /ιί(pf) = n —1 (i = l,..., r)
by Theorem 7. Therefore φ is not contained in pί U ••• U pr. Let an be an ele-

ment of Φ-PI U ••• U pr. Then it is easy to see that ht(aί9...9 an_ί9 an)R = n.

An almost finite extension domain of a noetherian domain is a strong X0-

domain by (e) of Proposition 5. So we have the following corollary.

COROLLARY 12. Let A be an almost finite extension domain of a noetherian
domain R. Then the following statements hold.
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(a) // α is an ideal in A generated by n elements, then ht(p)^n holds
for each minimal prime ideal p of a.

(b) Let o be an arbitrary ideal in A. Then there exists only a finite number

of minimal prime ideals o/α. (Heinzer [4])
(c) If^β is a height n prime ideal in A, then there exist n elements al9...9 an

such that ht(aί9...9 an)A = n.

PROOF. The assertions of (a) and (c) follow immediately from Theorem 7
and Theorem 11 respectively.

(b) Let M * be the set of ideals in A which have an infinite number of mini-
mal prime divisors. Set M={b n R9 beM*}. It suffices to show that M is
empty. Suppose that M is not empty. Since jR is noetherian, M has a maximal
element with respect to the inclusion relation. Let b n R be a maximal element
of M. Then, as is seen easily, b n R is a prime ideal in R. Set p =b n R. Since
A is a strong K0-domain, there exists only a finite number of minimal prime ideals
of pA by Corollary 10. Let p1?..., pr be the minimal prime ideals of pA. Then
we may assume that p r is properly contained in infinitely many minimal prime
divisors φ. , ie/, of b. Set c = Λ%. Since b is contained in c, each % is a

ie/

minimal prime ideal of c. Therefore by the maximality of p in E, we have c n R
=p, which implies that c/px n R/p =0. Therefore C = P!. This is a contradiction.
Thus M is empty.

REMARK. Since the derived normal domain A of a noetherian domain R
is almost finite over R, A satisfies (a), (b) and (c) of Corollary 12.

2. Example 1

Let n be an integer greater than 1. Here we give an example of a unique
factorization local domain (A9 9JΪ) such that /if (ί, u)A = n + l for some elements
ί, u of 9W. For the construction of this example, we need the following lemma.

LEMMA 13. Let (A, 9JI) be an (n + ϊ)-dimensional regular local ring, and
let {t9 *!,..., *„_!, u} be a regular system of parameters of A. Let Xί9...9 Xn-ι
be indeterminates. Then the following statements hold.

(a) Let φ=(t,uXι + tl9...9uXn_l + tΛ-l)A(Xl9...,Xn-l). Then φ is a
prime ideal in A(X 19..., Xn~ι).

(b) φrU = fΛ.
(c) Let B^XDJί,...,^!/!], and let 9l=(ί, tjt,..., t^Jt, u)B. Then

BX is an (n + l)-dimensional regular local ring. In particular, {f^/f,..., ίn-!/ί,
u} is a regular system of parameters of B^.

(d) fJJRrM = αΊ, ,f,,-ιM.

PROOF, (a) Let A*=A(X19...9 Xn-i). Since (t,uXl + tl9...9uXn~l +
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t9uXl + tl9...9uXn-1 + tn-ι9u} is a
regular system of parameters of A*. Therefore ^ is a prime ideal in A*.

(b) Let p = (ί, tiZi + f!,..., uXn-i + tt-JAlXt,..., A:,-!]. By our assump-
tion, Aft A is a regular local ring and {?!,..., ?π^!, w} is a regular system of parame-
ters of A/tA, where fj^ mod (tA) and w = w mod (tA). Hence {w, — ίl5..., — f«-ι}
is an (4/k4)-regular sequence, so (uX1 + ll9...9 ΰXn^i + tn^1) (A/tA) [Xl9...9 Xn-\\
is a prime ideal in (A/tA)[Xl9...9Xn-1'] by Proposition 2 in [1], Therefore
p = (t,uXί + tί,...,uXn-ί + tn-.1)A[Xί,...9Xn-1'] is a prime ideal in A[Xl9...9

JP,,-ι]. Since $ n 4[-XΊ,..., Ar

π>1] = p, it suffices to show that p ΓiA = tA. Let

c be any element of p n Λ. We write c=g0 f + Σ 0i * (κ<XΊ + fj), where 0J e A[Xi9

..., A^J (i = 0, 1,..., n-1). By substituting —(tju) for X|, we see that c is of
the form (b/um)t. Since A is a unique factorization domain and u is relatively
prime to tin A, b is divided by um in 4. Therefore c belongs to tA. Thus p f t A

(c) Let C = ̂ [Z1,..., JΓ..J, and let 3t*=(ff ί^..., *._!, ιι, JT lf..., ^-JC.
Then C^* is a 2n-dimensional regular local ring, and 9l*C9Z* = (ί, ίXj--^,...,

is a regular system of parameters of C%*. Therefore C
is an (n + l)-dimensional regular local ring. As is seen easily,

(d) B*ltB*ίzCvl(t9 tXι-tl9...9 tX^-t^JC^CvKt, tί9...9 ίn-ι)C»
which is isomorphic to a localization of (A/(t9 tl9...9tn-1)A)[Xί9...9Xn-l'].
Therefore tB% Γ\A=(t9 tl9...9 tn-ι)A.

Now we construct regular local rings Am (m = l, 2, 3,...) inductively. Let
A0 be an (n + l)-dimensional regular local ring, and let {ί, tol9 ί02> > ^(n-i)* u}
be a regular system of parameters of A0. Let Xtj (i = l, 2, 3,..., j = l,..., n — 1) be
indeterminates. Set ^41=y40(Jί11,..., -XΊ(n_i)), and set t 1 j = uX1j + t0j for 7 =
1,..., n — 1 Then Φι=(ί, in,..., fi(Π-i)Mι is a prime ideal in At by (a) of
Lemma 13. Set A2=A1ίtίίlt9...9tί(n.ί^ί9 where 9lι=(ί, ίn/ί,.. , ί1(n-D/ί,
"MilΛiΛj j ίioi- !>/*]• Then by (c) of Lemma 13, A2 is an (n + l)-dimensional
regular local ring. Generally for each m(w;>2)we set inductively A2m-ι =

^2m-2(^miv..,^m(n-i)) and t^uXnj + ttfr-wIt) for 7 = 1,..., π-1. Then

^m-l^ί^ίmlv ^mίi -D^m-l ίs a Prίme ideal in ^2m-l And Set ^2m =

Λ2m-ιlΛ,ι/f,..., ίW(»-i)/ί]^ where 9lm=(ί, ίml/ί,.. , ίm(Λ-i)/ί, «M2»i-iP«i/^-f
ίm(π_υ/ί]. Then by repeated use of Lemma 13, we see that for each
Am is an (n + l)-dimensional regular local ring.

Let 9Jlm be the maximal ideal in Am. Set A= \J Am9 9Jl= W 9Mm and
m^O m^O

+ι Then the following assertions hold.

(a) tA2m+2nA2m+1=.φ2m+ι and Φ2m+ιnA2m = tA2mfor each
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(b) φ=L4.

(c) ^2m+ι^w/or each m>l In particular φίti.
(d) φr\A2m+1 = y2m+ί for each m>L

(e) /if (9Jl) = n + l, and SOiz>^Jz)0 is a saturated chain of prime ideals in
A. In particular A is not catenary, and /if (f, b)A = n + lfor any beSOί —φ.

(f) A is a unique factorization domain.

PROOF, (a) This follows immediately from (b) and (d) of Lemma 13.
(b) This is obvious from (a).
(c) Suppose that φ2w+1 contains u. Since wX ( m + ι χ / + (fOTj /f), ; = !,..., n-1,

are elements of φ2w+1, $2m+ι2(f, fml/ί,.,., fm(n-i)/ί, wM2 m + 1=aR2 m + 1 > which
is a contradiction.

(d) Since φ does not contain u9 we have ^β2m+1£^P ^A2m+1d3Jl2m+1.
Therefore ht (9K2m+ J^2m+ 0 = 1 implies that <p2w+, = $ n Λ2m+,.

(e), (f) Since AP = \m (A2m)tA2m holds, we see that ht 0β) = l. Let C be a

prime ideal in A such that ^ί^Q^φ. Then by (d) 9JΪ2m+ 1 2Qn X2»+ι 2
^$2m+1 f°Γ eacn w >0. If there exists a positive integer m0 such that Q n A2m+1
= ̂ 32m+1 for any m>m0, then Q=^β. On the other hand, if there exist integers
m 1 <m 2 <m 3 < such that Q n A2mi+ί=

<3R2mi+l, then Q=9Jl. Thus 9Jl=>^=DO
is saturated. Set B0=A0, and set inductively Bm=Bm.i(Xmί9...9 ^m(n-i)) for each
positive integer m. Then Bm is an (n + l)-dimensional regular local ring for each

m>0. Set£= \jBm. Then β = A0[Xn,..., XUH-»,..., Xmi,...9 Xm(n-i)>.Ίw*>

where ^* = 9JloX[^ιι^..,^ι(π-i),...,^wι,...,^^ Therefore B is
a unique factorization domain. Since 42m-ι[l/f] = 42m[l/f] = i?m[l./f| holds,
we have 4[l/f]=JB[l/f] Therefore dim(^l[l/ί]) = n. Hence dim(A)>n + l.
On the other hand A = lm^(Am) implies that dim(^4)<n + l. Thus dim(4) =

m
n + 1. Finally we show that A is a unique factorization domain. Since ht(tA)
= 1, /4M is a principal valuation ring. For each m>0, A2m is a Krull domain,

so A2m[llt]n(A2JtAΛm=A2m. Hence ^l[l/ί]nΛx = ̂ - Thus the facts that
A[l/t~] is a Krull domain and AtA is a principal valuation ring imply that A is a
Krull domain. Since ί is a prime element in A, and since ^4[l/ί] is a unique
factorization domain, by Nagata's theorem ([7], p. 21) we see that A is a unique
factorization domain. Thus the proof is complete.

Now we obtain the following conclusion.

THEOREM 14. (A, 9JI) is an (n + \)-dimensional unique factorization local
domain and ht(t, u)A =

Example 2

We here give an example of a unique factorization local domain (A, 9JI)
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such that ht(t, u)A = oo for some elements t, u of 90Ϊ. For the construction of
this example we need the following lemma.

LEMMA 15. Let k be a field, and let t9 tl9...9tn9...9u be algebraically
independent elements over k. Let Xl9 X2ί..., Xn, » be indeterminates. Set
R = /c[ί, tl9 t2,..., 11], m = (ί, tl9 t29...9 u)R9 B = R[tllt9 f2/f,...] and 9l = (f, tjt,
t2/t9...9 ύ)B. Then the following statements hold.

(a) Let K = k(Xl9 X2,...). Then

(b) f, fjί, t2/t9...9 u are algebraically independent over k.

(c) Ba = fc[f, f j f, f2/f,..., W](f,fι/f,f2/f,.,u)
(d) *J3*n£m = (Mι, ί2, )Km
(e) Lef φ = (t9uX1 + ti,uX2 + t29...)Rn(Xl9X29...). Then φ is α prime

ideal in Rm(Xί9 X2,...) and φ n Xm = ίXm.
(f) Sef if = fiX, + ίf (i=l, 2,...). Then t, ίf/ί, ίj/ί,..., u are algebraically

independent over K=k(Xί9 X2,...).

PROOF. It is easy to see that the assertions of (a), (b) and (c) hold.
(d) We see that the assertion of (d) is proved immediately by the same

proof as in (d) of Lemma 13.
(e) Since (f, uX{ + tί9...9 uXn-}-tn)Rm{_X1 ..., Jfπ] is a prime ideal in RU[XΪ9...9

X^\ for each positive integer n, (ί, uXί + tί9 uX2 + t2,...)Rm[Xί9 X2» ] is a

prime ideal in Rm[Xί9 X2,...~\. Hence φ is a prime ideal in Rm(Xi9 ^2» )
The equality φ n Rm = tRm can be proved by the same way as the proof of (b) of
Lemma 13.

(f) By the assertion of (b) it is enough to prove that ί, if, ί*> > u are alge-
braically independent over K. Let Kn = k(Xί9..., Xn). Then Kn(t, uXί + tί,...9

uXn + tn9 u) = Kn(t9 tί9...9 tn9 u). The transcendental degree of Kn(t9 tl9...9 tn9 u)
over Kn is n + 2, and so ί, uXί + tί9...9uXn + tn, u are algebraically independent
over Kn. Therefore ί, uX^ + tί9 uX2 + t29...9 u are algebraically independent over
K.

Now we construct infinite dimensional unique factorization local domains
An (n = l, 2,...) inductively. Let k be a field, and let f, ί01, t029...9 t0n9...9 u be
algebraically independent elements over fe. Let Xmn (m, n = 1, 2,...) be indetermi-

nates. Set fl = fc[f, ί01, f 02»— » "]» m=(A ^oι» ίo2>—» M)^ τhen we set ^o» ^ι»
?!, A29 A39 φ3, A4,... as follows:

where ίlt/ = uXυ + t0j (j = 1, 2,...),

^2 = ̂ l[ίllΛ^12/^...]^

where 9lt = (ί, ίu/ί,
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A3 - A2(X2ί, X22,...\ φ3 = (f, '21, t22,...)A3,
where t2J = uX2J + (ίw/ί) (j = 1, 2,...),

where ίπj. = uXπ, + (ί(._1M/ί) 0 = 1, 2,...),

Λ2» = Λ2,,-ιlΛι/ί> ί»2/ί. ]an.
where <RB = (ί, ίπl/ί, ίπ2/ί,..., uM^.^/i, ίπ2/ί,...],

•

Let 9Jln be the maximal ideal in the local domain An. Set A= \j An, S0l=
n£0

\J 9HΠ and φ = \j φ2n + 1 Let fcπ be the field over fe generated by Xt (i = 1 , 2, . . . ,
w^O π^O
n, j = 1, 2,...). Then the following assertions hold.

(a) ί, f( Π -i)i/f, ^n-oaM ' M αre algebraically independent over kn.

(c) ^P does not contain u.
(d) <p n A2n+ί = <β2B+1 for each n > 0.

(f) φ = M.2" '
(g) dim (A) = 00, and 50ίz)^3=>0 is a saturated chain of prime ideals in A.

In particular A is not catenary and ht(t9 b)A = oo for any fee9Jt —φ.
(h) A is a unique factorization domain.

PROOF, (a) and (b) follow from Lemma 15, and (c)~(h) are proved by
the same way as in case Example 1.

Thus we obtain the following conclusion.

THEOREM 16. (A, SDΪ) is an infinite dimensional unique factorization local
domain and ht(t, u)A is infinite.

REMARK. The local domain (A, 9PΪ) in Example 1 is a finite dimensional
unique factorization domain which is not a strong K0-domain.
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