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§1. Introduction

Let J(X) be the J-group of a CW-complex X of finite dimension. Then by
J. F. Adams [2] and D. Quillen [10], it is shown that

(1.1) J(X) = KO(X)/KerJ, KerJ = ¥, (N, ke(P*—1)KO(X)),

where KO(X) is the KO-group of X, J: KO(X)—J(X) is the natural epimorphism
and P* is the Adams operation.

In this paper, we study the J-group of the standard lens space modulo 2r
(r22):

Lr(2") = S+ Z,,, Z, = {z€S':z¥" =1},

which is the orbit manifold of the unit (2n+1)-sphere S2"+1 in C**! by the
diagonal action z(z,..., z,)=(2z¢,..., 2z,). In the case r=1, L*(2) is the real
projective space RP?"*1, and its J-group J(L"(2)) is determined by J. F. Adams
([1, Th. 7.4], [2, 11, Ex. (6.3)]).

Let n be the canonical complex line bundle over L*(2"), i.e., the induced
bundle of the canonical complex line bundle over the complex projective space
CPr=S§2n+1/S! by the natural projection L*(2")->CP". Then, the main purpose
of this paper is to prove the following

THEOREM 1.2. Let r=2 and let r(n'—1) e KO(L"(2")) be the real restriction
of the stable class of the i-fold tensor product n'=nQ®---Qn of the canonical
complex line bundle n over L*(2"). Then the order of the J-image

Jr(n' = 1) e J(L"(27))
is equal to
2fmev) - f(nr;v) = max {s—v+[n/25]25"*: vSs<r and 2°<n},

where v=v,(i) is the exponent of 2 in the prime power decomposition of i and
max g=0.

Recently, we have proved in [5, Th. 1.1, 3.1] that the above theorem is valid
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also for any odd prime p instead of 2 and any r=1, by replacing 2 with p and 2s
with ps(p—1).

On the grouﬁ structure of the reduced J-group J(L*(2")) (r=2), we have the
following theorem, where

(1.3) a;=[nf2°], b,=n—2%, (0<s<r),
(1.4 X(@do) = Ly (-0, 25,0),

_ 2d—1
(1.5) Y(dv) = Xz d+2°(2j+1) )"

TureoreM 1.6. (i) J(L"(2") (r=2) is generated by
Jk and a,=Jr(n*-1) (0s=r-2),

where k=p—1 and p is the non-trivial real line bundle over L*(2").

(ii) ([6, Th. 4.5]) J: KO(L"(4)) = J(L"(4)).

(ili) The relations of J(L*(2")) for r=3 are given as follows:

(@) The case n#1 mod4:
(1.6.1) 2+er-1Jic =0, 2r142ag =0, 2rl-stag =0 (1<s<r—2).
(1.6.2) 29r-1Jix + T 12222771 U4ar-0)"2g =0  if a,22"2
(1.6.3) 2r—s=2%asy 4+ Y 5”3 2r-s=3+277v(+as)y = (1Z5s=r—-2,2%<a,).
(1.6.4) s _o(— 1)2'—"2f—'8—4+2’+1_v(“si’l""’)X(d"U)“u =0

(1=5s=5r-2,1=5d<2s,25+d<a,),

where 6=1 if 2d<b,,,, =0 otherwise.
(1.6.5) 222q9 — 3t_ Y(i,)or, =0 where 2!=Zi<2tl (a;<i<2-Y).

(b) The case n=1mod 4: The relations in (a), excluded the one in (1.6.4)
Jor s=r—2,2d=1+b,_, and the one in (1.6.5) for i=a,+1, and in addition,

(1.6.6) 2800y —t_ 2Y(a;+1,0)a,=0 where 2!<a,;+1<2t*l if a, <22,

For the special case that n=2""1a or 2'"1a—1, we can reduce the relations
of .7(L"(2’)) in (iii). of the above theorem to more simple ones, and J(L*(2")) is
given by the following explicit form, where Z,{(x) denotes the cyclic group of
order h generated by the element x.

THeoREM 1.7. (i) Ifn=2"'a—1(r=3, a=2), then J(L"(2")) is the direct
sum
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@5Z3 Zyo Koty @ Zy—y{Jx+ X izf 207 0r-1" 103
where h(s)=29:=22""""'a"1 for 0<s<r—1.
() If n=2r"1ta (r=3, a=2), then J(L"(2")) is the direct sum
Zy0y$oto) @ @il Zy(yotg—2%17% a5 @ Zyp—1){Jr+29r-27r-1q,_ 55,

where k(0)=2r"1*r, k(s)=20:"1=22""*"1a~1 for 1<s<r—2 and k(r—1)=29-1
=29,

By using the above theorem, we can determine the kernel of the homo-
morphism

(1.8) i*: J(Ln(2r)) — J(L"1(27)
induced by the inclusion i: L*~1(2") < L"*(2") as follows:

ProrposiTiON 1.9. i* in (1.8) is isomorphic if n=3mod4, epimorphic
otherwise, and
Z, QU@ if n=dm+2
Ker i* = {ZZ(J(&Z"'“)) if n=4m+1
Z ,LJ(@*™) if n=4m >0,

where 6=r(n—1)e K?)(L"(Z')) and
y=2min{r+L,142}  for n=4m=2lq with (2, q) =1.
By this proposition, we see immediately the following
THEOREM 1.10. The order of the reduced J-group J(L*(2")) is equal to
200, o) = (r+1)a,_;+ X523 (s+2) [(a,+1)/2]+ 1+,
where ag is the integer given by (1.3) and
(1.11) e=1 if n=1mod4, =0 otherwise.

By using Proposition 1.9 and Theorem 1.7 (ii), we can prove Theorem 1.2 by
the induction on n and r.

We prepare in §2 some known results on the K- and KO-groups of L"(2")
given in [4], and determine in § 3 the generators of Ker J in (1.1) for X=L"(2")
explicitly. Some lemmas for the coefficient X(d,v) in (1.4) are prepared in §4.

By using these results, we prove Theorem 1.6 in § 5, and Theorem 1.7 in §6.
In §7, we prove Proposition 1.9 in Corollary 7.11 and Theorem 1.10 in Proposi-
tion 7.9(ii) by using the results on Ker {i*: KO(L"(2")-KO(L""1(2")} ([4,
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Prop. 4.4]) and by studying the Adams operation ¥3 on K~0(L"(2’)). Theorem

1.2 is proved in §8.
For the special case that r<5, we give the direct sum decomposition of

J(L"(27)) in Proposition 9.3.
The author wishes to express his hearty thanks to Professors M. Sugawara
and T. Kobayashi for their valuable suggestions and discussions.

§2. The structures of K(L"(2")) and KO(L"(2"))

In this section, we prepare some known results on the K- and KO-rings of

the standard lens space L"(2").
Let n be the canonical complex line bundle over L"(27). Then,

(2.1) (N. Mahammed [9]) the K-ring of L*(2") is the quotient ring
K(L"2)) = Z[)[<n*" =1, (n—1)"**)

of the integral polynomial ring Z[n] by the ideal generated by n* —1 and -
(n—1)"*1, and the order of the reduced K-group R(L(2")) is equal to 2.

Moreover, consider the elements
2.2) c=n—1=0(0), o(s)=n*—1=(1+0)>*-1 (s=0)
in K(L*(2)). Then, (2.1) implies that
(2.3) o(s)=0 for s=r, ¢i=0 for i>n,
and by [8, Lemma 2.3], we see that
2.49) 2r-s=1tasghsg(s) = 0 (s=20)
where a, and b, are the integers in (1.3), i.e.,
(2.5) n=2a,+ b, 0=<b,<2s.

We notice that the group structure of K(L"(2")) is given explicitly in [4,
Th. 3.1].
For the reduced KO-group KO(L"(27)), consider the elements

(2.6) k=p—1, &=ro=d0), &is)=rn*-1)=ro(s),

where p is the non-trivial real line bundle over L*(2") and r: K—KO is the real
restriction. Then, the equalities

(2.7 ([4, Prop. 6.3(1)]) a(s)=46(s—1)+a(s—12=6>+X 15 y,;67 (s>0)

hold, and we have the following



J-groups of lens spaces modulo powers of two 663

TueoreM 2.8 ([4, Th. 1.9]). In the reduced KO-ring KO(L™(2%)), there
hold the relations

1 if n=1mod4,

29 =0 for i>a;+e a;,=[n2], ¢= { )
0 otherwise,

(2.10) &(r—1) = 2x;
and KO(L"(2%)) (r=2) is the direct sum
2.11)  KO(L"(2)) = @0 Z,w<FD, N’ =min{271—1,a,+8},

where the order u(i) and the generator &; are given by using a; and by in (2.5)
and k, & and &(s) in (2.6) as follows:

(i) r=2: u0) =2, Go =K (n=0),
u(0) =24,  Go=xk+2% (n21);
u(l) = 22a1+1) G, =4 (nx1).

(i) r=3: (@) Thecasen#¥1mod4: Fori=0,

u(©) = 2071, o =k + Tizh 20 e DIgr o1y (1227,
u(0) = 2, Go =K (n<2r-y),;
and for i=2*4+d=<a, with 0<s<r—2 and 05d <25,
u(l) = 2r-1+2ay G, = 7;
u(i) = 2r-s—2+as G; = a(s) + X5-, 2@ D@*DG(s—1) if i=2522;
ag.1+1 for 2d<b,,,,
s+1 for 2d>bs+15
5 = S E(DTT=D (2+3(0) — 2% O71545(5) + F 2} 20D 1545 4+ 1~1)
if i=25+d=3, d=1.

u(i) = 2@, a(i) = {

(b) The case n=1mod4: u(i) and &; are the same as (a) if i#a,+1
-2"%a,_,—1)®, and
u(i) = 291, 6; = ¢*'6() [Ti=3 (2 +6(1)
if i=a;+1-2"%a,_—1)=2"24d, 2d=b,_;+1 (n22"1");
u(i) = 2, 6 =g if i=a+1 (n<2Y).

We notice the following lemma for the real restriction r: K(L*(2"))—
KO(L"(2)).

%) The condition i#a;+1 mod 27-2 in (b) on p. 471 of [4, Th. 1.9] is incomplete. It should
be replaced by i #a;+1—27"%*a,_;—1) of above.
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LemMma 2.12. (@) r(ni-n"H=0 (i=1).

(ii) @*a(s)* = r(e®* 1a(s)?/(1 + o)~ (1 +0(s))") (s>0, k>0,1=0),
26%(s)* = r(o?*a(s)*'/(1+0)*(1+a(s))") (s>0, k>0, 1>0),

G 1e() I[T:28 2+ 6(1) = r(e®ta(s+ 1)/(1 + 0)4(1 + o(s)))
d>0,s5=1).

(iii) o =r{st {2z (- () ()b
j i
Proor. (i) Consider the complexification ¢: KO—K and the conjugation
t: K—»K. Then cr=1+tand ty=n"1 by [1, Th. 5.1], and hence cr(n*—n=%)=0.
Since c: K?)(L"(Z'))—»K'(L"(Z’)) is monomorphic if n=3 mod 4 by [11, (A.13)]
(cf. [4, Prop. 5.3]), we see (i) for n=3 mod 4 and so for any n by the naturality.
(ii) By [4, Lemma 6.2(i)], we see easily that

e(5*5(s)!) = cr(e™1a(s2/(1 +0)~ (1 +a(s))"),
26(545(s)") = er(aa(s)2!/(1+0)(1 +o(s))),
(@ 1e(D) Tz Q+6(D)) = cr(a?41a(s +1)/(1 + 0)¢(1 + 6(s))),

and these imply (ii) by the same way as the above proof.
(iii) By the first equality of (ii), we see that

5 = (@™ (1+0)*1) = r((g— D) (by 22)
= r{za (47D
= {0 (621 + i (-0 (3F ) s} (by ()
= r{zr {03 (F7 o} g.e.d.

§3. Some relations in J(L"(2"))
Now, consider the real restriction and the J-homomorphism
R(@r@) = KoL) L Jr@) - (r22),
where J is an epimorphism and
(3.1 KerJ = Y, L, L, = N, ke(P*—1)KO(L"(2"))
by (1.1). Furthermore, consider the subgroup W of K(L"(2")) defined by
(3.2) W= 3 W We=nNke(Pt—-DRLY2),
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where W% is the Adams operation on K(L*(27)). Then, we have

Lemma 3.3. (i) W is the subgroup of R(L*(2")) generated by
o4(1+0)o(s) 0Zs=sr—1,05d<25-1).
(ii) KerJ = rW.
(iii) Ker J is generated by
r(o4(1 + a)a(s)) (0<s5r—-2,0=5d<25—-1).

(iv) Consider the elements

(3.4) a, = J&(s) = Jro(s) e J(L"(2")) (as=01if s=r)

given in Theorem 1.6. Then (iii) means the equalities

(3.5 JIr(o%e(s)) = (—1)da, (0<s<r—2,0<d<2).
(v) The equalities (3.4) for s=r—1 and (3.5) imply

(3.6) Jr(o%a(s)) = (—1)%a, (0=Zs=r—1,0=d<2).

Proor. (i) Since Pini=n* by [1, Th. 5.1], the last half of (2.1) shows
that W,=0 if k=0mod 2 and W, is generated by {#*/ —n/} otherwise. By these
facts and the relation 2" =1 in (2.1), we see that W is generated by the elements

(*) os, k) = nk2* — n¥°, 0ss<r, 1=Zk<2s, (2,k)=1.
Since a(t,1)=0 and a(t,k+25"*)—a(t,k) =%*2'a(s) for 0<t <, the elements
(»*) nia(s), O0=ss<r, 1=5j<2s,

are the linear combinations of the elements of (x) and the converse is also true.
Further it is easy to see that the elements in (i) are the linear combinations of the
elements of (*x) and the converse is true.

(ii) Since the order of KO(L*(2")) is a power of 2 by Theorem 2.8, L, in
(3.1) is 0 if k=0mod 2. Also the group K?)(L"(Z’)) is generated by x and &¢
(i=1) by Theorem 2.8. We see easily that Prp=pk=p if k=1mod2 by [1,
Th. 5.1 and p?=1 ([4, (1.4)]), and so (P*—1)x=0 if k=1mod2. Therefore
Ker J is generated by the elements (P*—1)¢ (i=1). By Lemma 2.12 (iii), we see
that &' =rx for some x € K(L"(2")). Since Pror=r-¥% by [3, Lemma A2], we
have (P*—1)¢i=(P*—1rx=r(PE—1)x. Therefore KerJcrW holds. Also
the converse is easily seen by the equality Y¥or=ro¥k.

(iii) Consider the elements r(64(1+0)o(r—1)) (0<d<21—1). Then we
have
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r(e*(1+0)o(r—1)) = r(n(n— 10> " - 1) (by (2.2))
= szt (e (L4 Y-
(by 77" "'=n"2""" and Lemma 2.12(i)).

In the above equalities, we see easily that each element #2"~'~i—pn' is a linear
combination of the elements #*2*—y2* (0<s<r—2, 1Sk<2r-5"1 (2,k)=1) and
hence that of the elements o%(1+0)a(s) (0<s<r—1,0=d<25—1) in the same
way as the proof of (i). Thus we have (iii).

(iv) is an immediate consequence of (iii) and (1.1).

(v) follows from (i)—(iv). q.e.d.

For any non-negative integers a, b, u and v, consider the integers 6(a,b; u,v)
and 6(a; v) defined by

i2v u b
(1D Babsu) = Tipo (— 12" Sheo (-0 (10, 2 0, )(2),
(1.9 6a30) = 660 40) = Tizo (-2 ;5. ).
Then, we have the following
LeMMA 3.8. The equalities (3.4) for s=r—1 and (3.5) imply the equalities

(3.8.1) Jr(e®a(u)®) = (—1)3*t 3 r=1 6(a,b; u,v+1)(a, 4 —o,) (a+b2+>0),

(382) Jr(o%) = (—=1)*a, + (= 1)* X324 0(a; v+ 1) (041 —a)  (0<a<2)
= (=12 X525 6(a; v+ 1) (04 1 — ),

where a,=0 for s=r.
To prove this lemma, we prepare two lemmas for the integers in (3.7.1-2).

Lemma 3.9. (i) 6(a,b;u,v) is the constant term q, of the right hand side

of
(1—-x)2(1-x2") = Y2251 g,x* mod 1 —x2",
(ii) O(a,b;u)=0 if b21, u=v.
(i) 6(a,b;u,v) =1 if a+b2#<2v.
Proor. (i) follows immediately from the definition (3.7.1). (ii) and (iii)
are seen easily by (i). q.e.d.

Lemma 3.10. () ¥3¢, —1)f< 2}) B(a+j,b; u0) = — B(a,b+1; u,0).
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@ E3 -0 )0@+i=0 i uzo.

Proor. We notice that ((1+x)— 1)¥(1+x)*=x*(1+x)* shows the equality

o= (%) (“77)= ~04(, %)

(i) By (3.7.1) and the above equality, the left hand side of (i) is equal to
v u u i 2“ j
Zi;o(_ 1)12 2=0( - l)c(z +1)2%=1(~ 1)"( J >(i2?i-'é2u )(l:.)

- 2@0(_ 1)i2° 38 (— I)c(2"+l){(— 1)zu< 20— (:_1+ 1)2¢ )_(izv fczu)} (ﬁ)

and the last is equal to the right hand side, since (z>+( c l: 1 >=( b;l,' 1 ) .
(ii) The result follows from (i) for 5=0 and Lemma 3.9 (ii). q.e.d.

ProoF oF LEMMA 3.8. By Lemma 3.3(v), it is sufficient to show that (3.6)
implies (3.8.1-2).

We show the first equality of (3.8.2) by the induction on a. For a=1, the
desired equality is the definition (3.4). Let 2s<a<2s*l, s21 and d=a-2".
Then we have

Jr(o%) = Jr{cdo(s)—(c90(s)— %)}
= (=1)d, — Jr( gt ( )a‘“l) (by (3.6) and (2.2))
= (=)o, — T35 (- 1)d+,+1< )

SR = >N S CIVAET CENIERR) (Al CREES

(by the inductive assumption)
= (=1l + (—1)4 3525 0(d+25; v+ 1) (0t 4 — %) (by Lemma 3.10(ii)).

Thus the first equality of (3.8.2) holds, and so the last one of (3.8.2) by Lemma
3.9(iii). Since (3.8.1) for b=0 is (3.8.2), we show (3.8.1) by the induction on b.
Let b=1. Then

Tr(coo(u)?) = T2, ( 2 ) Tr(c™ia(u)t-1) (by (2.2))

= Tl T2 ()bt 1(2>9(a+;b Luv+1) (0t —2y)

(by the inductive assumption)
= (=1)#**1 32y —0(a,b; u,v+ 1) (0,4, — ) (by Lemma 3.10(i))
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Therefore we have (3.8.1). q.e.d.
By the above results, we have the following

ProPOSITION 3.11.  J(L"(2") (r=2) is generated by
Jk and o (0<s=r-2),

where Jx is the J-image of k in (2.6) and oy is the element of (3.4). Furthermore,
J: K'b(L"(4))g.7(L"(4)), and the relations between these generators for r=3 are
given by the J-images

1 ifn=1mod4,

G.11.1) J@G) =0 for a,+e<i<2, a={ ,
0 otherwise,

(3.11.2) u(i)J(G) =0 for O<i<N'=min{2""'—1,a,+¢},

of the relations (2.9) for i<2! and u(i)a;=0 of (2.11) in KA(')(L"(Z')). Here,
the left hand sides of (3.11.1-2) can be written by Jx and oy (0<s<r-2) by
using Lemma 2.12(ii), (3.8.1-2) and the equality

(3.11.3) 4_y = J@Er—1) =2Jk  (cf. 2.10) and (3.4)).

PrROOF. By Theorem 2.8 and (2.7), KO(L"(2")) (r=2) is an abelian group
generated by the elements

a (1Zi<2~1)  and K

with the relations (2.9) for a, +e<i<2"! and u(i)6;=0 in (2.11). Furthermore,
by Lemma 2.12 (iii) and (2.2), the subgroup generated by &* (1 <i<2"1) coincides
with the one generated by

r(a4o(s)) 0=s<r—1,0=d<29);
and it contains Ker J, which is generated by
r(a%o(s) + 0?*1a(s)) (0<s<r—-2,05d<25-1)

and is 0 if r=2, by Lemma 3.3(iii). Thus, we see the proposition for J(L(2r))
=KO(L"(2))/Ker J, by Lemmas 3.3 (iv)—~(v) and 3.8. q.e.d.

We notice that there hold the relations
3.12) r-s=ltey = (0<s<r) in J(L"Q2"),

where a, is the integer in (2.5). In fact, (3.12) is the Jr-images of the relations
(2.4) in K(L"(2") by (3.6). In §5, we use these relations to represent the left
hand sides of (3.11.1-2) by Jx and «a,.
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§4. Some preliminary lemmas for binomial coefficients

In this section, we prepare some lemmas for the integers 6(a,b;u,v) and
0(a; v) given by (3.7.1-2).

LemMA 4.1. Let 0OSv<r. Then
(42) S (— 1)k( )6(2d+1+k v+1)
2d+1 2d+1 )
=(_1)d2jel d+2u+1j)=(—1)d2jel d+1+2”+1j) lf dgo;
(4.3) T 2o2vi-a(— 1)'<<2 -2 )0(2d—1+k,1;v,v+1)=0
if 1=d<2v1;
@4 sE (T ) ed+k 25w )
= 2(—‘ 1)d+1 stz {(_ 1)2u+1< d+2“+2"+1_]> d+2"+1] )}

if 0Zuzv and d=1,

and the last is equal to 2(—1)4*1X(d,v) if u=v, where
@5 X@o)=Ta(-pem(,29.) @>0,020

is the integer given by (1.4).

Proor. By Lemma 3.9(i), we see easily that the left hand sides of (4.2-4)
are the constant terms of the polynomials of degree less than 2°*! obtained from

(4.2)' (1 — (1 __x))Z"—d(l — x)24+1 — x2"—d(1 _x)2d+1,
4.3)’ X224 )R- 1(] - x2°),
(4.4)’ X2=24d(] — x)24(] — x2“)2

by reducing mod 1 —x2°**, respectively.
Thus we see the first equality in (4.2). The second equality in (4.2) is clear.
Since r>uv, (4.3)' is congruent to

x2v+2v-l—d(1 _x)2d-1(1 —x2") = x2°'1—d(1 - x)““l(xz" -1

mod 1—x2"*'. The last is a polynomial in x with degree less than 2*1 by the

assumption 1<d<2?*!, and its constant term is 0. Thus we see (4.3).
(4.4) is equal to
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(1 —x)2d(x2=24=d 4 x2r+24=d _ 2x2-d),

Thus the left hand side of (4.4) is equal to

ZJEZ {("1)‘”2“ d+2u+20+1]> + (_l)d 2u<d 2u+2v+1]>
2d
+ 2(_ 1)d+1( d+2v+1j >} ’

which is clearly the right hand side of (4.4). The desired result for u=uv is clear.
q.e.d.

Now, in the rest of this section, we give some lemmas for the integers X(d,v)

given in (4.5).
By (4.5), we see immediately the following

LeMMA 4.6. X(d,v) is the constant term p, of the right hand side of
(= Df2 (1 —xP(y—1) = T it mod =1 (y=x7),
where u is a sufficiently large integer with 2% Zmax {2v+1, 2° + d}.

From now on, we denote by
v(n) = vy(n) and u(n) = py(n) for any positive integer n

the exponent of 2 in the prime power decomposition of n and the number of
terms in the dyadic expansion of n, respectively. Also, we regard that u(0)=0.

LemMMmA 4.7 (M. Sugawara). (i) u(d) +vd)=m if d<?2m
(i) u(d+c)+ ud—c) =2u(d) +v(c) — m if 0<cZd<2m.

Proof. (i) Let d=29t+-.-+4+2% (d;>--->d,=0). Then u(d)=t and w(d)
=d, by definition, and we see easily (i).

(i) Let c=2¢t4.--42¢ (¢;>-->¢;20). If c=d, then (ii) is seen easily
by (). If t=1 and c<d, then (ii) holds since the right hand side is equal to
2+¢;—m which is non-positive. Thus, we assume c<d and prove (ii) by the
induction on t.

Suppose t=2 and d, =c¢;. Then

ud+c) = w(d—2%14c—2) + 1, wd—c) = p(d—2%—(c—2°)).

Thus we see (ii) for =1 easily since ¢c—2¢:=0, and for /=2 by the inductive as-
sumption since d —291 <2m~1,
Suppose t=2 and d, >c¢, > ->c,2d,>c,,,, and put
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d'=d— 24 =292 f...4 24 < 2d2%1,
=204 21 =c—c"<d, " =2°1+4...4 2,
and consider the non-negative integers o and § such that
| W(d+c) = pd +¢ +29+¢") = p(d +¢) + «
wd—c) = p(d —c' +24~c") = u(d' -c') + B.

(*)

If s=0, then ¢"=0, ¢’=c and f=1, and hence we see (ii) by the inductive assump-
tion. If s=1, then ¢"=c, ¢'=0 and we see (ii) easily. Let 0<s<l. Then, (x)
and the inductive assumption imply that

ud+e) +ud—c)z2t -2+ ¢, — (d,+1) + a + B.

If o+ B =1, then this implies (ii) easily. If a+ =0, ie., if a=0=}p, then the
definition (%) implies that

242 Kd' — ' <d' + ' <292%1) (dy,eq,..., ¢) = (dy+5,dy+s—1,...,d,).
Thus, we see that ¢’ <242~ and so ¢, ; <d,—2, and that

Hd+E) = p(d'+ 200+ ¢+ 20 +(7=2%) = U(d +25+),
Md—) = p(d' =200+ )+ 24 = ("= 2%)) Z u(d' =25+ +¢) + 1.

By the inductive assumption or (ii) for d=c, these equalities imply easily (ii).
q.e.d.

LeEmMMA 4.8. v(n!) = X5, [1n/2']] = n — pu(n).

Proor. The desired equalities follow immediately from the definitions of
v(n!) and u(n). q.e.d.

By the above lemmas, we can study the exponent of 2 in the prime power
decomposition of X(d,v).

LemMMA 4.9. Put
X(d,v) = 2°@0¢(d,p) (&(d,v): odd integer)
for the integer X(d,v) (>0, v=0) in (4.5). Then,
(i) v(d,0)=2d, &d,0)=1;
(i) w(d,v) = [d2°7'] + wd—-2""1[d[2°7'])  (v>0).

Proor. (i) is obvious by the definition of X(d,0).
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(i) Putd=2""la+b, 0<b<2v L.
The case a=0: X(d,v)= (be> by (4.5), and

(4.10) v (( 2 )) = W(2B)!)—2v(b!) = 2b—p(2b) —2(b— (b)) = u(b)

by Lemma 4.8. Thus the desired equality is obtained.
The case a>0: Put (1—x)*"=1+y+2B(x) (y=x2"). Then

(4.11)  A-xP4x(y—1) = (1—x)*")*(1-x)**x°(y—1)
= Tt () @BOY 1+ ) - DA =5
= 29B(x)*(y—1)(1 —x)?*x¢ mod 1— y?
Let b=0. Then, since
B(x)s = Y (2Vac,xk where ¢, is odd if and only if k=2""1a,
(4.11) for ¢=24—2v—d=2v—2v—2v"1g (2 2 max {2°*1, 2 +d}) implies that
(=141 —x)*9x(y—1) = 29(1—y) + 29*1P(x) mod 1—y?

for some polynomial P(x). Thus, we see (ii) by Lemma 4.6.
Let 0<b<2v""!, Consider the set

4={(,j): 1sisv, 15j=2771},
and the involution o: 4—4 given by o(i,j)=(i,2*" —j+1). Put
Bi,j) = 2712 =1) and afi,)=(= 12" zesn( p 2 )

for (i,j)e 4. Then,

(4'12'1) ﬂ(lh’) =2"— ,BO'(i,j), a(la.]) = aa(i’j) =1 mod2;
and B(x)=((1-x)?>"—1—y)/2 is given by
(4.12.2) B(x) = X i.jea AG, D), A, ) = 27 a(i, j)xPC: D,

To study B(x)?, we consider the set
F={f:{1,...,a}—-4}

and the involution ¢: F—F given by gf=0of. Then ¢ has only one fixed point
g, the constant map to (v, 1), and

(*) F={g} U GUoG (disjoint union)
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for some GeF. For any feF, let f(i,)) ((i,)) € 4) be the number of elements in
S74(,))), which satisfies X ;..f(i,/))=a. Then by (4.12.1-2) and (*), we see
easily that

(3.13) B(x)* = X er[Ti=1 Af()) = A(0,1)* + X o (TTe=1 A (D) + I1t=y Aaf (1))

= a(©,1)?x*" 7' + ¥ 16 22Da(f) (x*) + x2rak),

where p(f), a(f) and k(f) for fe G are given by
p(f) = Z(i,j)ed =0f@E,) = Zi-1 (0=D)f; (fi= fiilf(i’j)) »
a(f) = I1g jpea ®(i:7)7 9P =1 mod?2,
k(f) = Zipea BGDIGD) = Zjpea 2712 = DS, J)-

Now, by Lemma 4.6, (4.11) for c¢=2*—-2"—d (d=2""1a+b, 2* 2 max {2v*1,
2° +d}) and (4.13), we obtain easily the equality

(=1)X(dyv) = 2° {( - 1)"oc(v,1)"( 2: )

In this equality, a(s,1) and «(f) are odd, and v(( 2b ))=u(b) by (4.10). Thus,
we see the desired result v(d,v)=a+ u(b) by showing that

@1 pD+1+v((,%,)) > KB (m = (H-2"ta-21)
for any fe G and | with m<b. By Lemma 4.8, this is equivalent to
4.14) p(f)+1+u(b+m)+u(b—m) > 2u(b).

If m=0, then (4.14)" is trivial. Suppose m>0. Then by Lemma 4.7,

u(b+m)+u(b—m) = 2u(b)+v(m)—v+1,

since 0<m=b<2"1. On the other hand, by the definitions of p(f), k(f) in
(4.13) and m in (4.14), we see easily that

p(f) 2v—ip, V(m)2io—1  (ip=min{i: f;#0, 15i<0v}).
These inequalities imply (4.14)', and we obtain (4.14) as desired. g.e.d.
LeMMA 4.15. Let £(d,v) be the odd integer given in Lemma 4.9. Then

(i) qew=2(,2)  for vzs,

and (257 1,5)=1 if s=1, =3 mod 8 if s=2.
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(ii) 5(2‘—1,sf1)=2_2{(2‘,2j1)-—2}El mod4  for s=2.

Proor. The first equalities in (i) and (ii) follow from the definition (4.5) and
Lemma 4.9. For the rest, it is sufficient to show that

) 2—1(2,2_’1)53 mod8  if s22.

The left hand side of () is the product of
(22—27q)[(271 = 257*q) = (2* - @)/(2*" 1 —q)

for2<k<s, 1<g<2*1and (2,q)=1. In the group Z¥ of reduced residue classes
mod 8, (2k—q)/(2¥"1—q)=1if k=4, and (7/3)(5/1)(3/1)=3. Thus, we see (*).

LemMMmA 4.16. Let 0<d<2s. Then
S0 (—1)2'2"X(d,s-i) = 0.

PrOOF. Set X'(d,v)=3Y jez< d +2,,]) Then, we can show that

(4.17) v 27X (do—i) = X'(dy) (v=1)

by the induction on v as follows. The desired equality is (4.17) for v=s, since
X@0)= (%) = X(d,0) by the assumption 0<d<2"

By the definition, we see that X(d,0)=X'(d,0)=2X"(d,1), which is (4.17) for
v=1. Assume (4.17) for v. Then, we see that

v, 27 X(dw—i) + X(dw) = X'(d,v) + X(d,v) = 2X'(d,v+1),
which is (4.17) for v+ 1. Thus (4.17) holds for v=1. q.e.d.

§5. Proof of Theorem 1.6

By using (3.8.1-2), Lemma 2.12(ii) and the results obtained in the previous
section, J(&*) in (3.11.1) and u(i)J(G,) in (3.11.2) can be represented by Jx and o,
as follows.

LeMMA 5.1. If2!<i<2t*1L21 then
(D@ = 2272y — X0, Y(i0)e,  in J(L"(27),

where Y(i,v)=zjez(l+22v’(2j+l) > is the integer given in (1.5).

Proor. By Lemma 2.12(ii), we see that
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F = r(o1)(1+0)-1) = T2+t ( 2 —kl;'*‘ 1 )r(a2i—1+k),
since (1+06)> =n?"=1 by (2.1). Therefore
J@) = Zroi (— 1)k+1(2 )0(21—1+k 1) (s —0).

The coefficient of a,, ; —a, in the right hand side of this equality is given by (4.2).
Thus, we see the desired equality

(=019 = 252 Sgea (135001, )t =t 1) = 2720 = Thoy Yi0),

by noticing Y .z z+2]1 >=2“'2 and Y(i,0)=0 for v>t+1. g.e.d.

In the following lemmas, we use the relation
(5.2) 2r-v-itavy =0 (0Zv<r) in J(L"2") (cf. (3.12)).

LEMMA 5.3. Let 0Ss<r—2,1<d<2sand a,,,=1. Then, in J(L*(?2")),

2"—2‘—d ( l)k < 2' 25 d)
T=b 0(2d— 1+k,1; s+ 1,0+ 1)2rs"3+4as41(er,  y —ar,) = 0.
PROOF. 02d—1+k,1;s+1Lv+1)=0 for v<s
by Lemma 3.9(ii). Also
2r-s=3asriy = = 2r-s"3tasn1y for v=s+2

by a,=0 and (5.2), since a,=a, if t<t' by the definition of g, in (2.5).
Furthermore (4.3) shows that

Sr=2e-d (= 1)"(2 -2 = )6(2d-—1+k,1;s+1,v+1)=0 for p=s+1.

Thus, we see the lemma. q.e.d.
LemMA 5.4. u(i)J(G;) in (3.11.2) for r=3 can be written as follows:
(@) The case n#1mod4:

2r-1Jk + T3 2 T @2y (g, 22772),

(40 wOIG)={] (@, <2,

For i=2'+d=<a, with0<s<r—2and 05d<2s,
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(5.4.2) u(1)J(G,) = 2r-1+2a1g,
(5.4.3) u(i)J(g)) = 2r~s"Hasg, 4 F 97l 2T @t Dy if i=2922,
(5.4.4) u(@J(@) = X3-0(— l)zs-v+42r—s-4+2-+x—.,a,“)X(d,v)av if i23,d31.

(b) The case n=1mod4: u(i)J(G;) are the same as (a) if i#a;+1—
2r-%(a,_,—1), and

(5.4.5) u(i)J(G) =0
if i=a,+1-2"%a,_,—1)=2""2+d, 2d=b,,,+1 (a;22"?),
(54.6) u(i)J(@) = 2%0y — Tt 2Y(i,0)a,
if i=a;+1 (a,<272, 2'<a,+1<2%Y),

Here ag, b, and a'(i) are the integers in (1.3) and Theorem 2.8(ii), and X(d,v)
and Y(d,v) are the ones in (1.4-5).

Proor. We see (5.4.1-3, 6) immediately from the definitions of u(i) and &;
in Theorem 2.8 (ii), by (3.4) and Lemma 5.1.
Consider u(i) and &; for the case that

i=2+d=<a,, 15s=r-2, 1=5d<2s,
in Theorem 2.8 (ii), (a), i.e.,

Asq + 1 for 2d§b,+1,

u(@) = 2r—s—3+a’(i)’ a'(i) = {
( ) ( ) Agsyq for 2d>bs+l9
5, = 6416(1) TIi=d 2 +3() + Sit] (= 1) 20D O-1545(s+1—1).

Then, by noticing that the condition a, =i implies a’(i)=2, and by using the last
two equalities in Lemma 2.12(ii), (2.2) and (1+06)*"=1 in (2.1), we see that

G ={(+ Xi(—-1*e-nem-2g ., where

{ = r(e®-1(1 40} >=dg(s + 1)), {, = r((1+0)*~2"~4o(u)?).
By expanding (1 +¢)* and by using (3.8.1), we have
9O = SEF (=0 (¥ T TY) Db 00d— 14 L s+ Lo+ D) (1 —a),
1@ = ZEF 0 (FTE ) Db 0d -+ 2 w04+ D o — ).
Lemma 5.3 means that u(i)J({)=0. These and Lemma 3.9 (i) imply that

u()J(@) = Tizh Tinigleo (— 1) 2r-em stz e’ Op, (41— ),

where the coefficient p,, is equal to
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Pow = TEF 4 (-0 (¥ T T 0d+ K230+ 1)

=20 Sy {074 (g2 ey ) + (g4, )} Gy @),

If v—1=s2u or s=v=u, then we see easily that

r—s—442svtg'(iy 2 r—1—v+a, > r—1—(v+1)+a,4,
by noticing a'(i)=2, a'(i)=a,,, and that the definitions of a, and b, imply
5.5) a,=2"va, + [b,/2°] = a, if t=v.
Therefore, by (5.2) and the last half in (4.4),
(*)  u@J(@) = Ti=o(— 12" Har12rmsmar 270’ D X (d,0) (04 1 — ) -
Furthermore, we see by (5.5) that

r—s—4+2st1-vg'(i)+v(d,v)

2st1=v §f 2d<b,,,
0 if 2d>b,,,
2 r—1—(v+1)+a,,+1+2’+1‘”—(s-—v+2) g r_l—(v+1)+av+1’

= rs =4ty =By 12114270, +(d0) + |

because a'(i)=a,,,+1=2if 2d<b,,,, and
a()=a5122 and ¥Wd,v) 2 [d)2°71] 2 [b44/2°*']  if 2d>b,,,

by Lemma 4.9. Thus, by the definition X(d,v)=2"(4:"¢(d,v) in Lemma 4.9, we
see that 2r—s—4+2**'"va’ () X(d,v)at,, ; =0 in (*), and (5.4.4) is shown.

Finally, (5.4.5) is shown in the above proof of u(i)J({)=0 for i=2""2+d,
2d=b,_,+1. q.e.d.

Now, we are ready to prove Theorem 1.6 in § 1.

Proor oF THROREM 1.6. Based on Proposition 3.11, we complete the proof
of Theorem 1.6 by combining (5.2), (3.11.3), Lemmas 5.1 and 5.4. q.e.d.

§6. Proof of Theorem 1.7

Let r=3, n#1mod4 and n=2"—1. Then, the relations (1.6.1-4) of
J(L"(27)) in Theorem 1.6(iii) are written as follows:

(6.1) 2Mtar-1Jg =0, 2ritaovhigy =0, 2rivvtavy, =0 (1Svsr-2),
(62)  29-1JK + D123 2002 ey 22T o ()
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(6.3)  Tioo 2s 3 l2142 7 = 0 (1S5Sr—2),
(6.41) Zi=0 (_1)2""2r—s—4+a.,—[b,+1/2"]+2'*1"’+v(d.v)§(d’v)ao =0

(15s5r—-2,252d=<b, ),

(6.4.2) Zf}=0 (_1)2!‘vzr-s-4+au-[b.+1/2"]+V(d,v)f(d,v)ocv =0
(18s8r=2,by,,<2d<25%),
by (5.5) and X(d,v)=2"4:¢(d,v) in Lemma 4.9.

LEMMA 6.5. The relations (6.1), (6.3) and (6.4.1) are equivalent to (6.1),
(6.3) and

(6.6) 2r=s=3taulbs+ /21425 vy = (0 (1SsSr—2,0=50v=s).
Proor. By Lemma 4.9, we see that v(d,v)=1 (v=0,d=1). Thus (6.6)

implies (6.4.1). Also we notice that (6.1) implies (6.6) for s with b, <25 In
fact, if by, <25, then

r—s—3+a,—[by,/2°]+25* 1" 2 r—1—-v+a, for v<s,

since 25722 —v+1.
Now suppose that (6.1), (6.3) and (6.4.1) hold. Then, we can prove (6.6) by

the induction on s as follows:
Let s=1. If b,<2, then (6.6) for s=1 holds by the above notice. Assume

b,=2. Then b,=2+b, and [b,/2]=1, and (6.4.1) for d=1 is the following
form:

2r—3+a1a1_2r—1+ao—b1ao = 0’

because v(1,1)=1=¢(1,1) and v(1,0)=2, £(1,0)=1 by X(1,1)=2 and X(1,0)=22.
On the other hand, (6.3) implies

2r—3+61a1 + 2’-‘2+ao—b1a0 = O.

Therefore 2r—2ta0=b1g =0 =2""3%a14,, which are (6.6) for s=1.
Let s> 1, and assume inductively (6.6) for s—1, i.e.,

(*) 2r-s=2tav=lbd/2° 127y = 0 (0Zv<s—1).

If by,y<25 then (6.6) holds for s by the above notice. Assume b, =25
Then by, ,=25+b,. Consider (6.4.1) for s and d=2* (0<k<5s):

(**) $_o (—1)2°7v2r=s=4%au=lbas1/2°14 24 174y (25, 0) E QK 1)y = 0,

Here, 25*170—[b,,,/2°]=25""—[b,/2], and &(2*,v) is odd and
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vkv) =1 if k<uv, = 2k-ot1l if kv,
by Lemma 4.9. Thus, by (6.1) for v=s and (%), (*%) is
T g s das b2V 2y ) (0<k<s).
These equalities and (6.3) imply (6.6) for s, as desired. g.e.d.
Now, we are ready to prove Theorem 1.7 (i).

ProOF OF THEROREM 1.7(i). Let n=2"la—1(r23,a=2). Then b, =
2511 (0£s<r—2). Thus there is no relation in (6.4.2), and (6.6) for s=r—2
is the following form:

(*) 28vq, =0 0=v=sr-2).
Furthermore, (x) and (6.2) imply
20r-tJx + Y r 229 lg =0,

Conversely, it is easily seen that (*) and (++) imply (6.6) for s<r—2, (6.1),
(6.2) and (6.3).
Thus, Theorem 1.7 (i) is proved by Theorem 1.6 (iii) and the above lemma.
qg.e.d.

To prove Theorem 1.7(ii), we use the following

LEMMA 6.7. Assume b,,;=0. Then the relations (6.1), (6.3) for s=t and
(6.4.2) for s=1 and 2"1 <d<?2! are equivalent to the relations (6.1) and
2r—4+a1a1 — 2r—3+aoa0 (lf t=1),

(6.8)
2r-t~3+a,at + 2r-t—2+a¢_1at_l + 2r—t+ag_2at_2 =0 (lf tgz).

Proor. Let t=1 and assume b,=b,=0. Then, the relation (6.8) is
(6.4.2) for s=1=d, since v(1,1)=1=¢(1,1) and v(1,0)=2, &(1,0)=1. Also, (6.3)
for s=1 follows from (6.8).

Let t=2 and assume b,,;=0. Consider (6.4.2) for s=t and d=2*"1:

(*) :’=0 ( —_ 1)2‘ "’2r~t~4+a.,+v(2‘ -1, ”)5(2"1,0)0:,, = 0'
Here, £(2t71,v) is odd and

-1 modd4 if v=t,

2t=1 p) = 2t 2t-1 4 E{ '
A ) 2! ) 1 mod4 if v=t-1,

by Lemmas 4.9 and 4.15. Thus, (6.1) and () imply (6.8), since 2>k +3 if k=3.
Conversely, assume (6.1) and (6.8). Then (6.3) holds for s=t, since
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Z::=0 2r—t—-3+a,,+2t"vav — 2r—t-2+a,a' + 2r—t—l+a¢-1at_1 = 0.
Furthermore, we can show the equality
(%*) Yo (— 1) Tv2rmtmatantv(d,0)E(d p)y, = 0 2*1<d<2y)

in (6.4.2) for s=t as follows: Let d=2t"1+2* (0<k<t—1). Then, &(d,v) is
odd and
vdp) =2 +1 if k<vZt, = 2t-v 4 2k—vtl if (<LK,

by Lemma 4.9. Thus (**) holds by (6.1) and (6.3), since 2t~*=t—v+2 if t—v
=2. Let d=2"1+d’ with u(d’)=2. Then,

w(dw) = 270 +2 (by Lemma 4.9),
and we see (*x) by (6.1). g.e.d.

LemMMA 6.9. Assume b,,,=0. Then, the relations (6.1), (6.3) for 1<s=t
and (6.4.1-2) for 1 <s<t are equivalent to the relations (6.1) and

(6.10) ort=3tavy = Qrt-2tav-iy . (1S0<H).

Proor. The assumption b,,,;=0 implies b,,,;=0 (1=s=t). Therefore,

there is no relation in (6.4.1).
Now, suppose that (6.1) and (6.3), (6.4.2) for 1<s<t hold. Then, by the

above lemma, there hold the relations
2"‘4+ﬂla1 —_ 2r—3+aoa0,

(6.8)’
2rosT3tasg  Qrost2tas-y 4 Qrstas-zg , =0 (1<s=H).

Thus (6.10) for t=1 is the first equality in (6.8)".
Assume inductively that (6.10) holds for t—1(=1), i.e., that

(6.10)’ or-t-2tavy = Qr-t-ltav-iy _ (1Sv<{).

Then, (6.10) for v=t¢ follows easily from (6.8)' for s=t, (6.10)' for v=t—1 and
(6.1) for v=t—1. Let 1<s<t and assume inductively that (6.10) holds for s<v

<t. Consider the equality
*) t_o (=12 2t 4tatv @ E(d)e, =0 for 21<d<2f
in (6.4.2). Then, by (4.5), Lemma 4.9 and the condition 25-1<d <23, we see
that w(d,0)=w(d,s) and &(d,0)=&(d,s) for s<v<t, since X(d,o)=( 2;’)=X(d,s).
Therefore

(@ Xt in (*)is equal to
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—2rmtm4tadtv(di)E(d s)a,  (by the inductive assumption (6.10) for s<v=1).

Furthermore, if v<s, then w(d,0)=25"¢(=s—v+1) by Lemma 4.9, and hence
r—t—4+a,+v(d,v)=r—t—3+s—v+a, Therefore

(b) X521 in (x) is equal to
TEmh 2SI @0 A, (by (6.10))
= 2r-t=3%as-1tv(di)E(d s, (by Lemma 4.16).
Thus, (*) is the following form:
(*%) 2r-tdtatv(d, sy = Jrot-3tas-iv(dis)y for 2s71<d<2s,

since &(d,s) is odd. (*x) for d=25"1 is (6.10) for v=s, since v(25"1,5)=1 by
Lemma 4.9. Therefore, (6.10) holds for 1 v <t by the induction on v; and hence
(6.10) is shown by the induction on t¢.

Conversely, we see easily that (6.1) and (6.10) imply (6.8)’. Furthermore
(*x) follows from (6.10), since v(d,s)=1 for 25"1<d <2 by Lemma 4.9. There-
fore we see that (6.1) and (6.10) imply (6.3) and (6.4.2) by the above lemma and
the above proof. g.e.d.

Proor oF THEOREM 1.7(ii). Let n=2"la(r=3,a=2). Then b,_;=0.
Thus (6.10) for t=r—2 is the following form:

©) 200~y = 28v-1g (1gvsr-2).
Furthermore, by (6.2) and (6.1), we see that
(x*) 20r=1Jic + 20r-2q,_, = 0.

Conversely, it is easily seen that (x), (**) and 2" 1*80q; =0 imply (6.10) for
t<r—2,(6.1), (6.2) and (6.3).
Thus, Theorem 1.7 (ii) is proved by Theorem 1.6 (iii) and the above lemma.
q.e.d.

Finally, we notice the following
REMARK 6.11. In J(L?""'(2") (r=3), there hold the relations

29vq, = 200-1*tlg,_, (1Sv=r-3),
22a,_, + 2%a,_5 = 0 = 2Jk + 2%a,_,.
In fact, the last two relations are (6.2) and (6.3) for s=r—2, respectively, by

(6.1). The first one is (6.10) for t=r—3, which is valid by Lemma 6.9 since b,_,
=0 and (6.4.1-2) holds for s<r—3 by (1.6.4).
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§7. The induced homomorphism on the J-groups of
the inclusion L"~1(2") < L*(27)

Throughout this section we assume r=2, and we use the following notation:
7.1y L+t = Ln2r), Li" = Ly(2);
where L3(2")={[z¢s-.., 2,] € L"(2"): z, is real 20} <L*(2"). Then we have
(7.2) L¥[Lk-1 = Sk,

For the induced homomorphism

if: KO(LY) — KO(LE™) (i Li* <L),

we have the following proposition, where the elements
(7.3) 6=re=m—2 and x=p—1 in KOLK (k>0)

are the ones in (2.6) for k=2n+1, and are defined to be the images i}, 6 and
i%, 1% for k=2n.

ProrosiTioN 7.4 ([4, Prop. 4.4]). i¥ is isomorphic if k=7, 6, 5 or 3
mod 8, and epimorphic otherwise. Furthermore,
[ Z,.(2G%m 1) if k=8m+4,
Z,{g¥m*1y if k=8m+2,
Z,{xG*) if k=8m+1,
Z,{a*my if k=8m>0.

.5 Ker i} =

LBMMA 7.6. The equality kG?™=27G2" holds in KO(LE™+1).

Proor. Consider the c-images of 27¢?™ and ¢?"*! in KO(L8m+3), where ¢
is the complexification. Then c¢(2'G¥")=2"g%m= —2r"1g4m*1£0 and c(¢?"*!)
=g4m*2=(0 in K(L8"*3) by [4, Lemmas 4.3 and 2.9(ii)] and (2.4). Thus §2m*!
#2rg2m£0 in KO(L8™*+3), and so 232" #0 in KO(LE™*!) by the above proposi-
tion. Therefore by the above proposition, we have xg2m=2rG2m in KO(L8™*+1).

q.e.d.

To study the induced homomorphism if: J(Lk)-J(L¥"1), we use the
following

(7.7 ([2, 11, (3.12)] and [10]) Let X -t Y=, Z be a cofibering of finite
connected CW-complexes and assume that the upper sequence in the commuta-
tive diagram
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R0(z) =~ KO(Y) 2%, KO(X) — 0
bbb
J2) 5 J(v) — JX) —0

is exact. Then, the lower sequence is also exact.

LeMMA 7.8. Let ¥3 be the Adams operation on KO(L¥). Then
(W3 —1)5 = (3 —1)5 + z};l( 7}." )32i-fai+f (iz1),
and 32'—1=2"*3mod 2"*4, where v=v,(i).

Proor. For the first half, it is sufficient to show ¥35=4g(G+3)?2, since ¥3
is a ring homomorphism. By the complexification c: KO(L¥) - K(L¥), we see
that

c¥36 = A+)Pem—1) =n*=2+973 = (—-2+n")(n+1+n")
=1+ -D{1+)n—-1)+3}* = (3G +3)?),
since 6=r(n—1), cr=1+t and tm=n"' (¢t is the conjugation). By [4, Prop.
5.3], ¢: KO(L¥)»R(L¥) is monomorphic if k=7mod8. Thus ¥35=5(¢+3)?
in KO(L¥) for k=7mod 8, and also so for any k by the naturality.

The last half can be shown by the induction on v. If v=0 (i is odd), then
32i-1=(23+1))—1=23mod 2*. Let v=1 and assume 3%"*—1=2"*2mod 2"*3
for any positive odd integer u. Then 32*"'¢—1=(32"¥2—1=(1+2"*2+
2"*3g)2—1=2"*3mod 2**4. Therefore we have the desired result. g.e.d.

By using the above results and Theorem 1.7, we see the following proposi-
tion, where (ii) is Theorem 1.10:

ProrosiTION 7.9. (i) The induced homomorphism
it JILH) — JLEY (e L 'Lk, r22)
is isomorphic if k=17, 6, 5 or 3mod 8, epimorphic otherwise, and

Z, Iy if k=8m+4,
Z, (@) if k=8m+2,

(7.10) Ker i¥={ Z,{2"J(¢*™)) if k=8m+1, r<l+2,
0 if k=8m+1, rzl+2,
Z n{J(G*™)) if k=8m>0,

where 1=v,(4m), i.e., 4m=2'q with odd q, and h=min {r,l+2}.
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(i) #J(L~2) =200,
o(nr) =(+Da,_; + X22(s+2)[(a,+1)/2]+1+¢,

where $G is the order of a group G, a, and ¢ are the integers in (1.3) and (1.11),
respectively.

Proor. Consider (7.7) for the cofibering L¥'<L¥—S* in (7.2). Then,
the first half of (i) is obvious by the first half of Proposition 7.4.

Furthermore, by (7.5) and Lemma 7.6, it is easy to see that Ker i} is a cyclic
group generated by the generator of the group given in the right hand side of
(7.10).

Now, we can show that

4 if k=8m+4,

2 if k=8m+2, or k=8m+1 and r<I+2,
1 if k=8m+1 and r=1+2,

2h if k=8m>0.

(*) #Kerif <

In fact, Ker i, , is generated by 2J(¢?"*1). On the other hand, (¥3-—1)(¢?"*1)
=(34m+2 _1)g2mt1=23g52m+1 (g: odd) in KO(LE™*5) by Lemma 7.8 and (2.9).
Therefore 23J(62m+1)=0 in J(L&m*5)=J(L8m+4) by (1.1), since #J(LX) is a power
of 2 by Theorem 2.8 and (1.1). Thus, (*) for k=8m+4 holds. () for the second
case is easily seen by (7.5) and (7.7) for the cofibering L¥-1cLk—Sk. Now, the
generator of Ker if, ., is 2°J(6?™). On the other hand, by Lemma 7.8 and (2.9),
(P3—1)52m=(3*m —1)52m =21+2bg?m (b: odd) in KO(LE™*'). Thus 2+2J(52)
=0 in J(L&m+1) by (1.1), and (*) for the third case is valid. Finally, Ker i, is
generated by J(62™) and 2"J(G2™)=0=2!*2J(62™) in J(L&™) by the above proof.
Thus (*) holds for k=_8m.

Now, (*) implies that

TR #Ker i, < 2vn, Y(n,r) = 23 (1+2) [(a,+1)/2] +ra,—y,

T1i2L48) #Ker ifyy < 20-++1, TGV #Ker ify, 5 < 200=DMIH,

TI5E5241 BKer if 4 S 2200208142,
and hence we see by the routine calculations that

(*+) (*) implies #J(L"(2"))<2?™" and the equality holds if and only if the
equality holds in (%) for any k<2n+1.

On the other hand, by Theorems 1.6 (ii), 2.8 (i) and 1.7 (ii), we see easily that
$J(L(27) =20 for n=2""lg—1, a=2.

Thus, we see the proposition by (xx). q.e.d.
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Proposition 7.9 (i) implies immediately the following corollary, which is
Proposition 1.9:

COROLLARY 7.11. For the induced homomorphism
i*: J(LY2) — J(L1@27) @ L)L), r22),
i* is isomorphic if n=3 mod 4, epimorphic otherwise, and

Z,{2J(a?m+1)> if n=4m+2,
(7.12) Ker i* =(¢ Z,{J(¢?™*1)) if n=4m+1,
Z,{J(@*™)) if n=4m>0,

where y=2min{r+1,1+2} (]=y,(4m)).

§8. Proof of Theorem 1.2

To prove Theorem 1.2, we prepare some lemmas.
LeMMA 8.1. The following equality holds in J(L"(2")) (r=2):
Jr(ni—1) = Jro(v) =a, for iz1,
where v=v,(i) is the exponent of 2 in the prime power decomposition of i.

Proor. By the proof of Lemma 3.3, we notice that the kernel of J:
KO(L"(27))- J(L"(27)) is generated additively by the elements

r(nio(s)) 0Zs<r, 1£j<2s).

If 2s<i<2stl) then ni—1=nlo(s)+n/—1 where j=i—2% by (2.2). If j>0 in
addition, then Jr(n'—1)=Jr(n/ —1) by the above notice and o(s)=0 (s=r). By
continuing this process, we have the desired equality by the definitions of v,(i)
and oy in (3.4). q.e.d.

Now, let f(n,r; v) be the non-negative integer such that
(8.2) #Jro(v) = $a, = 27 in J(Lr2") (=0, r=2)

by Proposition 7.9 (ii), where #a denotes the order of «. Then by the definition
of «, in (3.4) and (2.9),

(8.3) f(n,r;v) =0 if n=0 or v=r.
LeMMA 8.4. Ifn=2""'a and r2>3, then

f(nr;v)=r—1—v+2~1=va¢  for n>0, 0Zv<r.
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Proor. The equality for a>2 is easily seen from Theorem 1.7(ii) and «,_,

=2Jk of (3.11.3).
Consider the case n=2""!. Then, by Corollary 7.11,

$J(G2m) = 21 qn JILAT'2Y))  (dm=2r).

On the other hand, 2r¢2m=2r+4m-25 in KO(L?*~'(2")) by [8, Lemma 2.3].
Thus, we obtain

$a, = $J(G) = 21+

Furthermore, this relation, the ones in J(L2""'(2")) given in Remark 6.11 and
o, ; =2k imply immediately

o, =r—1—vy+2r-1-v 0=v<n),
which is the equality for a=1. q.e.d.

Consider the commutative diagram (r = 3)

Ker i* < J(L"(2r)) —* 5 J(Lm=1(27)

(8.5) jn* jn'*
Ker i'* < J(Ln(2r-1) 2, J(Lr-1(2r-1))

of the induced homomorphisms, where i and i’ are the inclusions and n and =’
are the natural projections induced by the inclusion Z,.-1<=Z,.. Then we have

the following
LemMa 8.6. If n#£0mod 2! (r=3), then
n*| Ker i*: Ker i* — Ker i'*
is isomorphic.

Proor. If n=4m=2!q (q: odd), then the assumption nz#0mod 2!
implies r—1>1 and so min {r+1, I+2}=I1+2=min {r,/+2}. Thus, we see
immediately the lemma by Corollary 7.11, by noticing that n*ry=rn*n=rn and
hence n*J(6*)=J(G*). g.e.d.

LemMmA 8.7. If n#0mod 2r! (r=3), then
S(n,r;v) = max {f(n—1,r;v), f(n,r—1;v)}.
Proor. Consider the diagram (8.5). Then the definition (8.2) implies that

f(n,r;v) 2 max {f(n—1,r;v), f(n,r—1;v)},
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since i*a,=0o, and n*a,=a,. Moreover, if f(n,r; v)>max {f(n—1,r;v), f(n,r—1;
v)}, then the non-zero element 2/(mri"~1g in J(L"(2")) is mapped to 0 by i* and
n*. This contradicts Lemma 8.6. Thus we have the lemma. q.e.d.

Proor oF THEOREM 1.2. By (8.3), it is sufficient to show that
(8.8) f(n,r;v) =max {s—v+[n/25]25"V: v<s<rand 2°<n} (0=Zv<r).

(8.8) for r=2 is an easy consequence of Theorems 1.6 (ii), 2.8 (i), (3.11.3) and
(3.4). By Lemma 8.4, (8.8) holds if r=3 and n=0mod 2r-!.

For the case r=3 and 2""la<n<21(a+1), assume inductively that (8.8)
holds for (n—1,r;v) and (n,r—1;v) instead of (n,r;v). Then, we see easily that
the right hand side of the equality in Lemma 8.7 is equal to

{f(n,r—l; V) if a=0,
max {f(n,r—1;v), r—1—v+[(n—1)/2-1]2r-1-v} if a>0,
and hence to the right hand side of (8.8). Thus Lemma 8.7 implies (8.8) by the

induction on n and r.
These complete the proof of Theorem 1.2. q.e.d.

§9. J(L"(2") for r<5

J(L"(4)) is given by Theorems 1.6(ii) and 2.8 (i).

In this section, we present the direct sum decomposition of J(Ln(2r)) for
r=3, 4 or 5 explicitly in Proposition 9.3 without proof, which is obtained from
Theorem 1.6 by the direct computations of the integers X(d,v) and Y(d,v) for
v<3 and the routine calculations.

Before we state the result, we notice the following

PROPOSITION 9.1. (i) In Theorem 1.6, J(L"(2")) (r=3) is the direct sum
of the subgroup Z,, - ,{Jx+a(r—1)) and the one generated by a;, (0<s<r-—2),
where

m(r—1) =2, ar—1)=0 if n<2r1,

m(r—1) = 21, or—1) = Y12320@77 17 -DAar-0-1g  jf p>2r-1,
(ii) Let n<2'. Then there exists an isomorphism
f Iy = J@) (23,
which is given by
9.2 fUx)=Jk + a(r-1), fla)=0a, (0Zs<r).
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Proor. In the relations (1.6.1-6) of Theorem 1.6, Jx appears only in the
first one of (1.6.1) and (1.6.2). Thus (i) follows immediately from Theorem 1.6.

(ii)) The assumption n<2" implies that m(r—1)=2=m(r) in (i) and that
$J(Lr(2r+1))=4#J(L"(27)) by Proposition 7.9(ii). On the other hand, n*(o;) =0
and n*(Jx)=0 for the homomorphism 7*: J(L*(2"*1))—J(L"(2")) induced by the
natural projection m: L*(2")—L"(2"*!). Thus, we obtain the desired iso-
morphism f by (9.2). g.e.d.

PROPOSITION 9.3.%) Let r=3,4 or 5. Then J(L"(2")) is the direct sum
Zm0y$00) @ @iz} Zp(iy$oi +0(D)> @ Zp(p— 1)<+ 2(r—1)),

and the last summand is the one given in (i) of the above proposition, and the
order m(i) (0Li<r—2) and the element a(i) (1<i<r—2) are given in Table 1,
2 or 3 for r=3, 4 or 5, respectively, where J(L"(2")) for n<2r~1 (r=4 or 5) is
isomorphic to J(L"(2"~1)) by (ii) of the above proposition.

TABLE 1 (r=3)

nitz=1) m(0) m(1) a(l)

0 1

1 2 1

2,3 23

4¢ S41+2 22t-1 2ay (t=1), —22**1q, (t>1)
4t+1 22t 22’+1a0

4142, 3 241+3 22t+1 0

TABLE 2 (r=4)

n(it=1) m(0) m(1) a(l) m(2) a(2)
8¢ 24t-1 izf’flo (t=1),
- t>1
. % (>1) | =230, —2% (t=1),
28t+3 4t 4r+1 22t 1 0
8t+1 =24+ g, 22+lg 4 26t+3q ) (1>1)
8:+2,3
41+2 4t+3
8t+4 Q8146 2 2 a, 22t 22:+10,1 +26:+4a0
845
22t+1 0

8t+6, 7 28t+7 24t+3 0

%) In [7, Prop. 5.3], T. Kobayashi and M. Sugawara have already computed J(L*(8)), and
J(L™(16)) has been computed by T. Kobayashi.
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TABLE 3 (r=>5)

[1]
2]
(31
[4]
[5]
[61
(7]
(8]

[91

n(i=1) m(0) m(1) a(l) m(2) a(2)
16¢ 28t—1 _28:+1a0
25a;+215q, (t=1),
1601 | oterss | 20| 2o | 2T gaieigg 191200340 (51)
16¢+2, 3 281+2 28x+1a0
4 __n4t+1, __912t+4
167+4 S161+6 24 28tH g —212t%4q,
4t+1 41+1 12t+4
16245 28143 8+, 2 2 a;+2 ag
16¢+6, 7 2161+7
16¢+8
16¢+9 216t+11 28t+4 _28t+50(0 24t+2 24t+3a1+2121+10a0
16:+10, 11
16¢+12 28t+6 28t+74,
7 | p16t+14
16413
24t+3 0
167414, 15 || 216t+15 28t+7 0
nit=1) m(3) a(3)
—23q,—2%, —221¢ (t=1)
16t <n=<16t+7 22t-1 2 ! 0 ’
sns + 22’+1a2+26'+3a1+214‘+7a0 t>1)
16:+8, 9, 10, 11 22t _22:+1a2+26t+4a1+214t+10a0
16r+12, 13, 14, 15 22t+1 0
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