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Consider the vector equation
(1) x' = —1(1x)

where f: [a, o0) x R*— R" is continuous and sufficiently regular so that

(i) solutions of (1) vary continuously with initial data assigned at t=a,
and

(i) solutions of (1) can be continued until some components become

unbounded.
We seek to show the existence of a ‘‘monotone solution” x(¢) of (1) whose
components satisfy x;,(t)>0 and x}(t)<0 in [a, o) for 1<i<n.

The existence of such monotone solutions was first established by Hartman
and Wintner [5] under explicit bounds on f(t, x) which assured that all solutions
of (1) can be continued to t=00. This requirement was removed in [6] for the
case where n is even by means of a corollary of Sperner’s lemma and for general n
by means of Wazewski retracts in [2] (see also [3] and [4], Chapter XIV, Prob-
lems 2.8 and 2.9, for alternate techniques). The purpose of this note is to show
how a different form of Sperner’s lemma leads to the more general results ob-
tained by the theory of retracts and also to note the nonlinear form of criteria
which assure that the ‘‘monotone solution” of the scalar equation y™ —(—1)"-
f(t, y)=0 tends to zero.

Writing x>0 (x>0) in case all components of a vector x satisfy x;>0
(x;>0), we formulate the following hypotheses

(A) f(t, x)>0 whenever x>0 and f (¢, 0)=0;

(B) f;(t, x)>0 whenever x>0 and x;=0 and some x;>0, for 1<i<n and

Jj#i.
These hypotheses are essentially satisfied when a scalar n-th order equation

2 y® = (=0 f@t, y) =0

satisfying

(C) f(t, y)>0 whenever y>0 and f(t, 0)=0,
is represented as a first order system (1) by the transformation x;=(—1)i"1y(-1,
1<ign.

Our basic result is the following:
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THEOREM. Iff(t, X) satisfies (A) and (B), then (1) has a monotone solution
x (?) satisfying x (£)>0 and x’ (1) <0 in [a, ).

The proof will be based on the following corollary of Sperner’s Lemma
[1; p. 3771.

LeMMA. Let T" be an n—1 dimensional simplex with vertices ey,..., e,.
If there exists a closed covering {A,,..., A,} of T" with the property that for
every subsequence {i,, is,..., i,} of {1, 2,..., n} with 1<r<n

(2) eile,-z-"eir c Ail U Aiz U--U Air’
then NY_; A; is not empty.

Proor or THEOREM. Consider the n—1 dimensional simplex T* defined
in the positive n-tant of R* by x;+---+x,=1. Calling the vertices of T" e,...,
e, (where e; is the vector x with x;=4;;) we denote by x(t; x,) the solution of
(1) satisfying x (a)=x, for x, € T". It follows from (A) that solutions x (¢; X,)
of (1) will remain in the n dimensional simplex T"*! (with vertices 0, e,..., e,)
unless they exist across one of the closed faces corresponding to x;=0 for some
ie{l,..., n}. Identifying i=0 with i=n, we define for 1<i<n

A; = {xo€ T"|x (¢; X,) does not exit T**! with x;_; > 0}

and note that each A, is closed. Furthermore if x (a; x,)=e; for some i, then
x;—1(a; e)=0 while x}_,(a; e)=—f;_1(t, e)<0. Tt follows that x (; e;) exits
T**1 at e;, and therefore that e; € 4; for 1<i<n.

To show that the hypotheses of the Lemma are satisfied, we proceed by
induction to consider a face e;,---e; with r<n. Since e;--e; is bounded by
faces of lower dimension, it suffices to show that the interior of e, ---e; is con-
tained in A4; U---U 4;. To that end we note that since r<n, there must exist
an index i € {i,,..., i,} such that i;—1 is not an element of {i,,..., i,}. Then for
X, €(e;,---e;)° the i, coordinate of x, is positive while the i,—1 is zero, so that
x;,-1(a; Xo)=0 while x;__(a; Xo)= —f;,—1(t; X0)<0 by (B). Therefore x(¢; xo)
exits 7"*! with x; _,; =0, showing that e; ---e; = 4; = 4; U--- U 4,,.

Applying the Lemma, we consider a solution x (¢; xo) with xo,€ Nl 4.
From the definition of A; it follows that such x(f) can exit 7"*! only at x =0, but
this possibility is precluded by the assumption f(¢, 0)=0. Therefore x (¢; Xo)
>0 for a<t< oo, and by (A) we must have x’ (¢; Xo) <0 for a<t<oo.

REMARKS
1. Condition (B) only imposes conditions on the faces of T**1 correspond-

ing to x;=0 while condition (A) imposes conditions in the interior of T"*1,
However (A) can clearly be weakened to
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(A) >r i fit,x) >0 for x,eT" and (¢, 0)=0

to establish the weaker conclusion that some solution x (¢; X,) remains in T7+!
for a<t<oo. Thus our methods yield the generalizations obtained in [2] by
the theory of retracts. Also, if (A) is weakened to

(A)” f(t,x) >0 whenever x>0 and f(z,0) =0,

then by continuity we can still conclude the existence of a solution satisfying
x>0 and x’' <0 for a<t<oo.

2. In case (1) represents the scalar equation

(2 ym = (=D f@t, y) =0

satisfying condition (C) above, our theorem establishes the existence of a mono-
tone solution y(t) satisfying (—1)*~1yC¢-I(#)>0 for a<t<oo. It is clear that
such solutions satisfy lim,_, , y¥(t)=0 for i>1, but it does not necessarily follow
that lim,, , y(¥)=0. However, noting that the monotone solution of (2) satisfies
the integral equation

90 = y(e0) + | E DL 165, y(s))ds

t (Tl - 1)! ’ ’
one can apply well known techniques (see for example [7], [8]) to establish the
following: in case f(t, y) is monotone (increasing or decreasing) in y, some mono-

tone solution of (2) will tend to a positive limit if and only ifguo " 1f(t, c)dt< oo
for some ¢>0.
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