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1. Introduction and summary

The theory of a fractional factorial design was originated by Fisher [18], who
treated the development of confounding systems for factorial designs (cf. [17,
40]), and further Finney [16] gave the first definitive approach. This theory
takes aim at the search of “good’’ fractional factorial designs (cf. [14, 19]).
There are many criteria of goodness, some of which are:

A. Save the number of assemblies (treatment combinations).

B. Estimate the unknown effects independently.

C. Minimize the value of some function f(T) on a class of designs T having
the same size (the number of assemblies) N, where f(T) evaluates a sort of
the loss of the information.

As f(T), the following types are used commonly:
det(Vy), tr(Vr) and the maximum characteristic root of Vr,

where o2V; is the variance-covariance matrix of the estimates of the effects based
on a design T. These optimality criteria are called the determinant, trace and
maximum root criteria, respectively. They aim to minimize the volume of a
confidence region for the effects of interest, the average variance, and the largest
variance of the estimates of all normalized linear combinations of the effects,
respectively (cf. [33]).

The complete design satisfies the criteria B and C, but it needs a large
number of assemblies, which imply that the complete design is unreasonable in
the sense of the criterion A. An orthogonal design, defined by Rao [27] in s™
factorials in which each of m factors has s levels, satisfies the criteria B and C
(cf. [1, 4, 6, 15, 20, 26]). This design can reduce the number of assemblies in
comparison with the complete design. However, an orthogonal design exists
only for special values of the size, and the use of such a design may be, in general,
uneconomic in the sense that it involves more than the desirable size. For an
example of 27 factorials of resolution V (the term resolution was defined by Box
and Hunter [2]), an orthogonal design needs 26=64 or 27=128 (the complete
design) assemblies since there exists no orthogonal design of size 25=32 and of
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resolution V (see Chopra [9]). On the other hand, the number of unknown
effects is 1+7+<;>=29. In an attempt to remedy this defect, Chakravarti [5]

proposed a balanced array (BA) by relaxing certain conditions to be an orthogo-
nal array. A fractional factorial design derivable from a balanced array has a
goodness such that

D. The variance-covariance matrix of the estimates is invariant under any
permutation of factors’ symbols.

A design satisfying the criterion D is called a balanced fractional factorial (BFF)
design, and it asserts some invariant test (see Section 5 in detail). The equiva-
lence between a BFF design and a balanced array was proved by Yamamoto,
Shirakura and Kuwada [38] in 2™ factorials of resolution 24 +1. Furthermore,
Kuwada [22], and Kuwada and Nishii [24] gave the similar equivalence in 3™
factorials of resolution V and in s™ factorials of resolution 24 + 1, respectively.

The analysis of a BFF design is not so easy since the estimates of the effects
of interest have some correlation. Srivastava and Chopra [34] gave the charac-
teristic polynomial of the information matrix of a balanced fractional 2™ factorial
(2m-BFF) design of resolution V by the direct computation. They further ob-
tained trace optimal designs (cf. [7, 8, 1013, 30, 32, 35, 36]). It is natural to
consider the class of BFF designs since they reflect the relation inherent to the
structure of the effects. The algebra generated by relation matrices can be
expressed as a direct sum of two-sided ideals. This fact enables to make the
analysis of a BFF design relatively easy. Yamamoto, Shirakura and Kuwada
[39] succeeded to give the characteristic polynomials of the information matrix
of a BFF design of resolution 24+1. Optimal 2”-BFF designs of resolution
VII are given by Shirakura [28, 29]. These results are derived by using the
property of the triangular multidimensional partially balanced association scheme
defined in the set of the effects up to ¢-factor interactions. The algebraic struc-
ture of the multidimensional relationship enabled Kuwada and/or Nishii [23, 25]
to get the characteristic polynomial of the information matrix of 3”- and of s™-
BFF designs of resolution V, respectively. Kuwada [21] further obtained
optimal designs in 3™'factorials of resolution V.

On another viewpoint of the development of a fractional factorial design,
a fold-over design in 2™ factorials was introduced by Box and Wilson [3], who
showed that a fold-over design has a good property such that no two-factor inter-
actions appear as aliases of the main effects. This property turned out to be
useful to construct 2™-FF designs of resolution IV (cf. [37]). A generalization of
the concept of a fold-over design will be proposed in Section 9.

This paper consists of ten sections. Section 2 provides the preliminary
results on an r™xs"-FF design. In Section 3, asymmetrical orthogonal arrays
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are introduced, and the equivalence between orthogonal arrays and orthogonal
designs in r™x s* factorials is proved. Section 4 is devoted to propose asym-
metrical balanced arrays and balanced designs in ™ x s* factorials. Section 5
provides the definition of a multidimensional relationship. In particular we
define a multidimensional relationship in the set of unknown effects to show the
equivalence between balanced arrays and balanced designs in ™ x s* factorials.
In Section 6, some methods of constructing asymmetrical balanced arrays are
described. Sections 7 and 8 deal with the derivation of the characteristic poly-
nomial of the information matrix of balanced designs in r™ x s" factorials. This
approach is based on the the structure of the algebra containing the information
matrix. In Section 9, level-symmetric designs are proposed and their goodness
is newly shown. Section 10 deals with some structural properties of balanced
level-symmetric designs in 2™ factorials.

For convenience, the notations and symbols below are used throughout this
paper. Their meanings are as follows:

m : The set {1, 2,..., m}.

n : Theset {1, 2,..., n}.

Z, : The set {0, 1,..., k—1} for any natural number k.

|S| :  The cardinality of a set S.

I :  The unit matrix of order k.

Gy, : The kxI matrix whose elements are unity everywhere, and Gy ; is
denoted by j,.

A’ : The transposed matrix of A.

w(a) : The number of non-zero elements contained in a vector e=(a,,...,
a) .

wy(a) :  The number of occurrence of Y among elements of a vector a.

w,(a@) : The r-rowed vector (wo(a), w,(@),..., w,_(a)).

wy(a@) : The s-rowed vector (wo(a), w,(a),..., w,_,(a)).

Oap . Kronecker’s delta.

S, . The symmetric group of k objects.

A . The k-times Kronecker product of a matrix 4, AQ---®A, for k=1

N~——— g ——

and A, is defined to be 1.
R(S,, S,): The set of matrices of size |S;| x |S,| over the real field, where S, and
S, are nonempty finite sets, and the rows and columns of matrices
are numbered by the elements of S, and S,, respectively.
diag[K,,..., Ki]: A matrix of size Y k., n;x Xk, n; whose diagonal positions
are given by K; (i=1,..., k) and the remaining positions are given by
zero matrices, where K; is a matrix of size n; x n;. '
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2. Fractional designs in 7 x 5" factorials

Consider an r™ x s* factorial design with m+n factors F,,..., F,, Gy,..., G,,
where F; (1<i<m) has r levels in Z, and G; (1=<j=<n) has s levels in Z,, An
assembly (treatment combination) will be represented by a row vector t=(f;--f,.»
g1-+-gn), Where f; (e Z,) and g; (€ Z,) denote levels of the factors F; and G;, re-
spectively. Let y(t) be the observed value based on ¢, and its expectation will be
denoted by #(t) for any assembly £. Let » be an r™s"-columned vector of all
n(¢) which are arranged in the lexicographic order of te Z, " x Z", i.e.,

2’ = (n(0---0, 0---0), (0---0, 0---01),..., (0---0, 0---0s—1),...,
n(0---0, s—1---s—1),...,p(r—1---r—1, s—1.--s—1)).
We consider a linear model that % can be decomposed as
7 = Demy ® E0,

where @ is an r™s"-columned vector composed of effects 6(e) arranged in the
lexicographic order of e=(&;+-+&,, {;+-{) €Zmx Z*, and

D=1[d(f,D] (f.£€Z), E=/[eg,0] (9,{€Z)

are, respectively, » X r, s X s non-singular matrices whose first columns are com-
posed of 1’s and whose all column vectors are mutually orthogonal. The above
equality is equivalent to

@D 1) = Seercper T dfo E)TT)or @ L)OE L 1oL

for any assembly t=(f;"* i, 91" gn)-

The effects 6(0---0, 0---0), 6(0---0£,0---0, 0---0) (1=<¢,<r—1) and 6(0---0,
0---0£;0---0) 1={;=s—1) are called the general mean, the main effects of the
factor F,; and those of the factor G;, respectively. In general, 0(¢;---&,, {-++C,) is
called a k-factor interaction if precisely k elements among &; and {; are non-zero.

Note that in the quantitative equi-spaced case, d(f, &) and e(g, {) are often
defined to be @,(f) and ¥(g) where &, and ¥, are orthogonal polynomials on
Z, and Z; of degree £ and (, respectively. For example, D and E are defined by

1 —1 1 -1 1
( 11 ) and| 1 0 —2 ), respectively, when r=2 and s=3.
1 1 1

Throughout this paper, we shall consider the situation that the set of unknown
effects is given by the following ©, or @, and the remaining effects are assumed
to be negligible:

Casel. O, =1{0(e)|e= (& {),we)<t¢} for 4(<m+n).
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Case2. O, ={0(e)|e=(§8), w(&)<4, w4} for £(<m)and £(<n).
Put

vy = Zp+q§ﬁ<’1’: ><Z )(V—l)p(s—l)q,

o= (Yo o)

Let 6, be a v;-columned vector composed of all effects in O, (i=1, 2).

Let T be a fractional 7™ x s* factorial (r™ x s"-FF) design with N assemblies
1@ =(f@...f0, g{@...g@)=(f, g®) for a=1,..., N. Then T can be par-
titioned into two submatrices F of size N x m and G of size N x n, which is denoted
by T=[F:G]. Let y(T)=[yE*)] (¢=1,..., N) be the N-columned vector
composed of the observed values y(t®). From (2.1), it can be expressed by

y(T) = E;0; + &(T),

where E; is the design matrix (of size N x v;) of T, and e(T) is the error vector (of
size N x 1) whose components are assumed to be uncorrelated and each has mean
zero and the same variance o2. The normal equation for estimating @; can be
written as

M8, = Exy(T),

where M= E7E is called the information matrix (of size v;xv;). If My is non-
singular, the best linear unbiased estimate of 8, is given by M7'E7y(T) and its
variance-covariance matrix is 62M7!. In this case, the resolution of a design T
is defined to be 2¢+1 or (24,+1, 24,+1) according as i=1 or 2.

The rows and columns of E; are numbered by the elements of y(T) and 8,
respectively. The (y(£(®)), 6(e))-entry of Ey is given by

d(fgu)’ él)'“d(f)(na)’ 6m)e(gga)’ Cl)"'e(gﬁa)a Cn) (= d(t(z), 3’) Say)9

where ¢@ =(f{®).-f(®, g{---g®) and e=(&;-&ps {1--L,).  Thus a (6(e), O(e*))-
entry of My, denoted by m(6(¢), 6(e*)), can be expressed by

22 m(6(e), 6(*)) = -1 d(t®, )d(t®, &¥),

where e*=(&f---&x, (F--(5), E¥eZ, and (¥eZ,. This relation implies that
m(0(8), 0(3*)) = m(0(¢e), 0(e*)) if the k-th element of 8 and 8* are, respectively,
given by those of & and e* or those of ¢* and e for k=1, 2,..., m+n.
Note that if e¥*=0=(0---0, 0---0) in (2.2), then
mz(0(e), 6(0)) = XV d(®, e),

since d(*, 0)=e(x, 0)=1.
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Now some symbols describing an r” x s"-FF design T=[F: G] are introduced,
where F and G are matrices composed of elements in Z, and Z,, respectively.

For sequences u=(u,---u,) with 1su;<--<u,<m and v=(v,---v,) with
1o, <---<v,=n, let T, ,=[F,: G,] be the N x(p+¢q) submatrix of T=[F: G],
where F, is the N x p submatrix of F generated by u;-th columns (1<i<p) of F
and G, is the N x g submatrix of G given in the same way. In the special case
p=0or g=0, T,, is defined to be G, or F,. For a (p+q)-rowed vector (f, g)=
(fifp 919 in ZPxZ4, let uf:8 be the number of times that (f, g) occurs in
T,. as row vectors. Let y5 L=3N_, dt®, e) for any (&, {)=(&;-+-&p (L)€
ZrxZA, where
2.3) e =(0---0¢, 0---0¢, 0---0, 0-- 0{10 -0{, 0---0).

(uy) (up vy) (uq

{1} and {y} are arranged in the lexicographic order of upper indices (f, g) € Z,? x
Zaand (§,8)eZPxZ4 as

ﬂu,v [ { %] and ruv = EYu ]
Then we have the following

LEMMA 2.1.  For (u, v)=(uy -ty vy-v) (1Su; < <u,<m; 150, <+ <
v,=n), it holds that

(24) ru,u = (Dép) ® Eiq))luu,u .

ProOF. From the definitions of y§:% and uf'#, and d(x, 0)=e(x, 0)=1, we
have

(25 y&b =20 d0@, &) = TN {TT5= d(f @, &} {TT%=1 e(g'?, ()}
= Zf,-eZ,.,gjeZs {I_H,:l d(fu éz)} {H‘JI‘=1 e(gj9 C])}/'l u,’v

for any (§, {)=(,---¢p £y 0)€Z,P xZ4, which yields the required relation.
Here (f, g)=(f1"""fp»» 91--'9,) and & is given in (2.3).

3. Equivalence between orthogonal arrays and orthogonal designs

An orthogonal array OA[N, m, r, d] was defined by Rao [27] as an Nxm
matrix with entries in Z, whose any N x d submatrix contains all possible d-rowed
vectors in the same frequency A (=N/r4). An OA is an interesting subject in
combinatorics, and many works have been done. Now we shall extend the con-
cept of an orthogonal array. :

Consider an N x(m+n) matrix T=[F: G], where F and G are N xm and
N x n matrices with entries in Z, and Z respectively. We present following
definitions of an OA according to unknown effects @, or O,.
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DEFINITION 3.1. An N x (m+ n) matrix T is called an asymmetrical orthogo-
nal array of type 1 of strength ¢, size N, (m, n) constraints, (r, s) levels and index
set {4,,} (for brevity, AOAI[N, (m, n), (r, s), t]), if for arbitrary non-negative
integers p and q satisfying p+q=t,0<p<m and 0Zq=<n, uf:§=4,, for any
(u, )=y up vy-v) 1Su; <--<u,<m; 1sv;<--<v,<n) and any (f, g)=
(fl"'fps gl"'gq)ezrp xzsq-

ReMARK. (i) It is unnecessary to assume that t<m and t<n. (ii)) N=
rPsi, .. (iii) F and G are orthogonal arrays of levels r and s, respectively.

DerFINITION 3.2. T is called an asymmetrical orthogonal array of type 2
of strength (d, e), size N, (m, n) constraints, (r, s) levels and index A (for brevity,
AOA2[N, (m, n), (r, 5), (d, e)]), if uf:8=1 for any (u,v)=(uy--uy vy--v,)
(Isu;<-<u;sm;1sv<--<v,<n) and any (f, g8)=(f1""fs» 91°-9gc) €Z,% x
Ze.

REMARK. (i) N=rdsel. (ii)) F and G are an OA[N, m, r,d] and an
OAI[N, n, s, e], respectively.

DerFNITION 3.3.  An r” x s"-FF design T is called an orthogonal design of
resolution 24 +1 or (24,+1, 24,4+ 1) if its information matrix M, with unknown
effects @, or O,, is diagonal.

Let ©, be the set of effects given in Section 2 satisfying 2I<m+n, and T=
[F: G]=[t®],-,, n be an r"x s"-FF design of resolution 2£+1, where #* =
(f(@..flad glad...glaye Zmx Zn 1In this case, we have

THEOREM 3.1. An r™ x s"-FF design T is an orthogonal design of resolution
24+1 if and only if T is an AOA1[N, (m, n), (r, s), 2¢].

PRrOOF (Sufficiency). Let 6(e) and 6(e*) be elements in @,. Then the sum
of the number of non-zero elements of € and &* is at most 24. We can assume
that {i|£;#0 or {F#0} = {uy,..., u,ycmand {j|{;#0 or {¥#0}={v,,..., v cn
for p+gq=2¢4 (0<p=<m, 0=<q=n), where ¢ is given by (2.3) and &* is defined by
changing ¢; into £¥, and (; into {¥ in the elements of e. Here &, &f (€ Z,) and
;, {¥ (e Z)) may be equal to zero. From the assumption, the N x2£ submatrix
T, contains all possible 2¢-rowed vectors in the same frequency A,,=N/(rPs?),
where (u, v)=(u;- -u,, v1---0,). Since D and E are non-singular and their column
vectors are mutually orthogonal respectively, the relation (2.2) can be reduced to

m(6(e), 0(e®)) = X3, (@, e)d(E®), e*)
= o {TT=1 d(f52, L)Af ), EDIHTTS =1 e(gl?, Le(gly), TN}
= Apa 2 piezrgsez, L 1=1 d(fi £)A(fis SO} {115 =19, {eg)s TP}
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{=0 if e # e*,
>0 if &=e*

This shows that M is a diagonal matrix.
(Necessity). Let Tbe an r™ x s"-FF design whose information matrix M is
diagonal. Any off-diagonal entry, m(6(e), 6(¢*)), of M is equal to zero for

0(e), 6(e*) e ©,. This fact implies
ru,v = (N’ 0!"') 0)’

for any (u, v)=(u;---up, vy--v) I1Su;<---<u,<m; 150, <--<v,<n), where
p+q=2¢ (0=p<m;0=q=n). Solving (2.4) with respect to g, ,, we have

2.0 = (D, ® E) (N, 0,..., 0)
= (D(D'D)™")) ® (E(E'E) )N, 0,..., 0)' = N/(?5%)],pa

since D'D and E’E are diagonal and the first columns of D and E are j, and j,,
respectively. Thus T'is an AOA1 with index set {4, ,=N/(r?s?)| p+q=24}.

For T being an AOA1, the non-singularity of the information matrix My
yields

Nzrank E; =rank EZE; = |O4] = v;.
Therefore, we have the following
COROLLARY 3.2. For an AOA1[N, (m, n), (r, s), 24] satisfying 24 <m+n,
it holds that N2 z,.ﬂ.éﬂ(’;’ X;’ )(r—l)i(s—l)i.

COROLLARY 3.3. For an AOAIL[N, (m, n), (r, s), 24 +1] satisfying 24+1
<m+n, it holds that

Nz Z.-+,-§z(’}’ )( ; )(r—l)i(s— 1)/ + max {ziﬂ.:ﬂ( m—1 X " )
=061, S 7 )75 =00

PrROOF. Let O*= @1 u {0(6) | 5=(€1"‘ éma Cl"'(n)9 él #0’ W(€)=€ + 1} and
let @**=0,U {0(e)|(,#0, w(e)=¢+1}. The information matrix M¥ of T
given by unknown effects @* is diagonal, since

Hup = j'p-+~ 1,qJrp+1sa 5

where  (u, V)=(u; - Uppy, V10 (I=u; <U, <+ <Up, EM; 150, <+ <v,=n)
and p+q+1=2¢+1. Similarly, the information matrix M$* given by unknown
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effects @** can be shown to be diagonal. Therefore N >max {|@*|, |@**|}.

Let @, be the set of effects given in Section 2 satisfying 24,<m and 2¢,<n,
and let T be an r™ x s"-FF design of resolution (24,+1, 24,+1). An argument
similar to Theorem 3.1 and Corollaries 3.2-3 shows the following theorem and
corollary.

THEOREM 3.4. T is an orthogonal design of resolution (24,+1, 24,+1) if
and only if T is an AOA2[N, (m, n), (r, 5), (24,, 24,)].

COROLLARY 3.5. For an AOA2[N, (m, n), (r, s), (d, e)], it holds that
N _—>.: Lr(d) * Ls(e) ’

where
‘,-’;(,(’? )(r— 1)! if d=2d* (even),
L(d) =
2o (T )=+ (MR o= i d = 24% + 1 (0dd),
25;0<;f)s—1)i+<”;1 Ys=1e+1 i e=2e*+1 (odd).

4. Asymmetrical balanced arrays and balanced designs

Orthogonal designs are desirable in the sense that all unknown effects can be
estimated uncorrelatedly. However, since the existence conditions of an orthogo-
nal design are severe, such a design exists only in restricted cases. Next we con-
sider the criterion D in Section 1.

As an illustration of goodness, we consider a 2™ x 3*-FF design T of resolution
III, in which unknown effects are the general mean and all main effects. Let
0, be a (m+ n)-columned vector composed of some main effects

¥ = (6(10---0, 0---0),..., 6(0---01, 0---0), 6(0---0, 10---0),..., 6(0---0, 0---01)).

For testing hypothesis H: 8,=cj,., for a given constant ¢ against alternative
that @4 #cj,,+n We give the statistic F defined by

F = {W'Vi'u/(m+n)}/{S*/(N—vs)},
where
u=1[0:1,,,: 01VrEry(T) — ¢m+n>
S? = y(TY(Iy — E;VrED)y(T),
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ve=1+m+2n, 62V, is the variance-covariance matrix of 0* and Vy=M7zl
Here F is distributed according to a noncentral F-distribution with m+n and
N —v, degrees of freedom and the noncentrality parameter (@4 —cj,+,)'Vsl:
(04 — ¢j m+,) if the distribution of the error vector e(T) is N(0, 62Iy). This test is
desirable to be symmetric in F,..., F,, and in Gy,..., G,. This requirement means
that V3! should belong to the matrix algebra %, which is generated by (m+ n) x
(m+ n) matrices

I, 0) Gum 0) (O G,,,,,,) 0 0 (00 d 00 )

(o 0/’ (0 o \o o/ (Gn,,,, o)’ (o 1,,) an (0 Gpnl
In this case, V! € 44 holds if My is invariant under any permutation of F,,..., F,,
and of G,,..., G,, i.e.,, My=My.,, for any 1€ S, and pe S,, where T=[F: G],
Tee=[F*: G*] and F* denotes the matrix whose i-th column is given by t(i)-th
column of F (i e m) and G* is defined in the same way. Thus it is reasonable to
consider designs having the good property that M, is invariant under any per-
mutation of the factors Fy,..., F,, and G4,..., G, respectively.

Let T=[F: G] be an r™xs"FF design with unknown effects @, where

O=0, or O,.

DERNITION 4.1.  The information matrix M is said to be balanced with
respect to @ if My=Mr.,, for any (z, p)e S, x S,.

DEFINITION 4.2. A fraction T is called a balanced design if My is non-
singular and Mz!=M7i,, for any (z, p)e S, x S,.

The following definitions of an asymmetrical balanced array (ABA) are given
by relaxing the some condition of the asymmetrical orthogonal array of type 1
or of type 2.

DEFINITION 4.3. An N x(m+ n) matrix is called an asymmetrical balanced
array of type 1 of strength 1, size N, (m, n) constraints, (, s) levels and index set
{APo "' Pr-1> G0 qs-1) | Zi=o P+ 252b49;=1, Zp;Sm, Zq;<n} (for brevity,
ABAI[Na (ma n)’ (7‘, S)’ t] {;L(P’ q)})’ if ‘u{,’g=l(p0 *Pr-1>90"""9s- 1) for any (.f’ g)
=(f1"fp 919, satisfying w(f)=(po'--p,-1) and wy(g)=(qo""*q5-1), and for
any (u, v)=(uy---up, v;--0) (1Su; <---<u,<m; 1=5v,<---<v,<n), where p;
and g; are non-negative integers such that Zp,=p and 2q;=q. Here p+g=t.

DEFINITION 4.4. An N x (m+ n) matrix is called an asymmetrical balanced
array of type 2 of strength (d, e), size N, (m, n) constraints, (r, s) levels and
index set {A(po***Pr-1, go***4s-1) | 2520 Pi=d, X5=5 q;=e} (for brevity, ABA2[N,
(m, n), (r, 5), (d, )J{A(p, @)}), if uf;#=Apo - Pr-1> qo'*-4s-1) for any (f, g)=
(f1 o 91°--g.) satisfying w,(f)=(po**P,- 1) and wy(8)=(go"-"4s-1), and for any
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(u, V)=(uy ug vy--vy) (1Su; < <uy<m; 1<, <+ <v,<n), where p; and gq;
are nonnegative integers such that Xp;=d and Zq;=e.

Then we have the following

THEOREM 4.1. Let T be an r™xs"-FF design with unknown effects O,
satisfying 26 <m+n. Then My is balanced with respect to ©, if and only if T
is an ABAL[N, (m, n), (r, 5), 261{M(po**Pr-1, 4o"**ds-1) | ZPi+2q,;=24}.

PRrROOF (Sufficiency). Suppose T be an ABAIL[N, (m, n), (r, s), 2¢]. Then
any entry, mp(6(e), 0(e*)), of M can be expressed as

m(0(e), 0(e*))
= X0y (T80 d(f2, E)A(f2, EEDMTTS=1 €92, L, )e(g'?, TED},

where §;=¢&¥ =0 forany iem—{u,..., u,} and {;={¥=0for any jen—{vy,..., v}
and p+q=24 0<p=<m,0=qg=n). From the assumption of T,

my(0(e), 0(e*) = X ez, gsez, (11i=1d(fis Eu)d(fis &5}
AITj=1 9 £o)e(g EDIAw(f1:f,)s w2(g1+:9,)) -

This relation shows that m(8(e), 0(e*))=m,(0(e®), O(e*?)) for any w=(t, p)e
S, xS, where €°=((. 1) Emp Loty o) and e* is defined similarly.
Therefore M is balanced with respect to @,.

(Necessity). The assumption that My is balanced implies that all y5:% de-
pend only on w,(§) and w,(§) for any (§, &)=(&;---&, {4+++,), and for any
(U, )=y tp, y--v) (1Suy < <u,<m; 150, <---<v,<n), where p+qg=2¢
(0=p=m,0=g=n). Solving (2.4) with respect to gz, ,, we have

#u,u = (D(_pl) ® E(_ql))'ru,v .

Therefore, g, , does not depend on (u, v) since 7, , depends only on p and q. We

can define A(po:* P15 go'**qs-1) by pf;& if wi(g)=(po--'p,—1) and wy(f)=
(40°-+95-1) for any p; and gq; satisfying Zp;+2q;=2¢, since uf§ depends only
on w;(f) and wy(g). Thus T is shown to be an ABAL[N, (m, n), (r, s), 2¢]

{A(Po'“Pr—p qO'“Qs—l)}'

An argument similar to Theorem 4.1 shows the following
THEOREM 4.2. Let T be an rm"xs"-FF design with unknown effects ©,

satisfying 24,<m and 26,<n. Then My is balanced with respect to @, if and
only lf T is an ABAZ[N9 (m’ n)’ (r’ S)) (25,., 24s)] {l(Po"'Pr—v qO'“qs—l)}'
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5. Multidimensional relationships

As a generalization of an association scheme, a multidimensional partially
balanced association scheme was introduced. By omitting the condition that the
relation of a multidimensional partially balanced association scheme is sym-
metrical, we have a multidimensional relationship. The following definition is
due to Kuwada [21].

Consider p mutually disjoint nonempty finite sets S;,..., S, with |S;|=n;
each. Suppose that an association is defined for each ordered pair (x;, X;3),
where x;,,€S; and x;,€S;. Let IT-/ be a set of associations defined on the set
S;xS;. We denote

& ={8;,....,8,} and @ = {IIt:1, IT\:2, [1>,..., [I»-P}.

DErINITION 5.1.  The pair (&, %) is called a multidimensional relationship
if the following two conditions are satisfied.

Cl. With respect to any x;, € S;, the objects of S; can be divided into ni-J dis-
joint classes and the number of objects in the set {x;, € S;| the association of
(Xig» X;p) is a} is niyJ for a € I/, The numbers n':/ and n);7 are independent
of the particular object x;, chosen in S;.

C2. Let S, S; and S; be any three sets, where they are not necessarily distinct.
Let the association of (x;,, x;;)€S;xS; be «, where aell®»i. Then the
number of objects x,, (€ S;), which satisfies that the associations of (x;,, X;.)
and of (x, x;;) are respectively g and v, is q(i, j, «; k, f, y) which is de-
pendent only on i, j, a, k, § and y, where e IT*-* and y e IT*/.

Consider an association aell:J. Let AL/ eR(S; S;) be the adjacency

matrix defined by
o 1 if the association of (x;,, x;;) is «,
AY I (Xigy Xjp) = {
0 otherwise,

where AlJ=[Api(Xi xj)]. Let DiJ=[Dp(x, x*)]e R(\U}-1 S;, Vi1 S;) be
the relation matrix defined by
1 if (x, x*¥) € S; x S; and the association of (x, x*) is a,

iice, 29 = | |
0 otherwise.

Then we have

LEMMA 5.1. The matrices A:J and D} satisfy the following:
(1) Alijun,=niijs,  for aell"J.
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(D) Xeenis AT = G-

Iy ApkAkd =3 cniiq(, j, as k, B, ALY for Bell* agnd yell%J,
av) X Xeem.sDii =G,, where a = Yn;.

(V) Dp*DE“J = 0y 4 3 peini q(is j, @5 k, B, y)DL7 for Be Il and yeII*J.

LEMMA 5.2. The linear closure & of D (aeIlJ; i, j=1,..., p) is a matrix
algebra.

Proor. Lemma 5.1 (V) shows that ABe # if A and B are contained in 4.
Therefore # is a matrix algebra.

Consider an r™ x s"-FF design with unknown effects ®, where @ =0, or 0,.
A multidimensional relationship is defined in @ as follows:
The set of all effects {0(e) | e=(&;--&pmy {1+°Lp), Ei€ Z,, {;€ Z,} is partitioned
into U S, 4, where

Spq=10&) &= Ep {10 = (§, &), wy(§) = p, w(£) = g}

and p=(po'*-Pr-1)» §=(qo'-*q5s-1)- Here p; and g; are non-negative integers
satisfying 3. p;=m and >.q;=n. Theset S, , has m!n!/(po!---p,_1!qo! " qs-1!)
(=np,q say) elements. Let S, xS,. be a subset of @ x O, where r=(p, q) and
r*=(p* q*). Let
. GTTr s
e {W= w, V)IU. rxrjU =p,jjU=p }’
Visxs, jV' =q,jV =q*
where all entries of U=[u(i, i*)] and V=[v(j, j*)] are non-negative integers for
i, i*eZ, and j, j*€Z,. An association of (6(e), O(e*))€ S, x S,. is defined by
W=, V)ell" if u(i, *)=|{uem|{,=i, {¥=i*}| and v(j, j*)={ven|{,=/,
(k=j*}| for any i,i*eZ, and j, j*€Z, where e=(&,---£,, {;---(,) and &*=
(EF---EX, CF---(¥). It can be shown that the associations, defined in the set O,
satisfy C1 and C2. Put #2={II"""}.

THEOREM 5.3. The pair (0, #) is a multidimensional relationship and the
algebra & generated by all relation matrices contains the unit matrix I.

Proor. It follows that Ay =1I,, if W=(diag(p), diag(q)), where r=(p, q).
Therefore # contains I.

The parameters of the associations are given below:
n, =S, =min!/(po!---pr-1'q0!++qs-1 1), nom = |II""],

n = {TT5=4 PG, 0)Lui, 1= 1))} {TT5=h 4, Y(e(, 0)1-v(j, s— 1D},
q(r’ 1'*, Wla T**, WZ: W3)
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= {an’il,—i%‘=0u1(i> i*)!/(xioi*!”'xir-—li* ‘)}
A, TT5 w0 010 P oV jem 10D}

where 3, extends over all non-negative integers x;; (0=1i, j, k<r—1) such that
YiXip=u3(J, k), 2 x;p=u,(i, k) and ¥ x;=u,(i, j), and X, extends over all
non-negative integers y;; (01, j, k<s—1) such that 3; y;u=0vs(j, k), 2 yix=
v,(i, k) and X, yip=v,(i, j)- Here r=(po=p,-1, Go'*"qs—1)> T*=(P§* P71, 43
egity), ¥ =(p8* - p, q8% i), and Wi=([u (i, )], [v(), j*)D) 0=i, i* =
r—1,0<j,j*<s—1;1=1, 2, 3).

Note that My (or M7!) is balanced, i.e., My=My-.,, for any (7, p)e S, x S,,
if and only if M; (or M7!) is contained in &%, since a maximal invariant with
respect to S, x S, is W=(U, V).

In this case, we have the following

THEOREM 5.4. Let T be an r™ x s"-FF design of resolution 24+1 or (24,+1,
24,+1). Then the following conditions are equivalent each other:
(i) Tis an asymmetrical balanced array.
(ii) Mg is balanced.
(iii)) Mg7! is balanced.

PrROOF. Theorems 4.1 and 4.2 show that conditions (i) and (ii) are equiva-
lent. Since £ is a matrix algebra with the unit matrix I, it follows that M, e £
is equivalent to M7le 4.

6. Constructions of asymmetrical balanced arrays

Srivastava [31] gave a necessary and sufficient condition for the existence
of a balanced array [N, m, 2, t] by solving some linear program when m=t+1
and t+2. His method can be extended to the general case m=t+1(I1=3).
But it is difficult to solve its linear program when [ is large. For practical use,
we may only consider a simple array, named by Shirakura [29] in 2™ factorials.
We now construct an asymmetrical balanced array derivable from a balanced
array.

M1. Simple array method.

Let Q(po*Pr—1> 9o "qs—1) be a matrix of size {m!n!/(po! - pr—1!qo!-*
gs—1 D} x(m+n) whose all row vectors are different each other and each row
vector (fi*fm 91-:-9,) has the same weights w,(f;:--f,)=(po:--pP,—1) and
wy(g1--9n)=(go"*qs-1), Where p; and q; are non-negative integers satisfying
Y pi=mand > q;=n. The row vectors of Q(po:-p,—;, go***qs-1) are considered
as assemblies of an r™ x s"-FF design. T is called a simple array with index set

{MPo"Pr-15 4o 45-1) | Pi20, 4;20, Zpi=m, 2g;=n} if T is composed of
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Q(Po***Pr-15 40 *ds-1) MPo***Pr-15 do***qs—1)-times for any (po***Pr-1, do***qs-1)-
Then T is an ABAIL[N, (m, n), (r, s), m+n] with index set {A(po:**Pr—1> 9o***

qs- 1)}
M2. Direct concatenation method

Let F be a balanced array [N, m, r, t] and G be a balanced array [N*, n, s,
t*]. Then T, defined by the direct concatenation of F and G, is an ABA2[NN*,
(m, n), (r, s), (¢, t*)]. Indices of T, A(po'**Pr—1> 9o **qs—1), are given by Ag(po--*
Pr—1)246(qo "+ qs-1), Where Ag(-) and Ag4(-) are indices of F and G, respectively.
Now the direct concatenation T of F=[f;;] and G=[g,,] is defined by the matrix
of size NN* x (m+n) whose rows are given by (fi1,---> fims Jk1s++> Iin) (1SN,
1<k N*).
M3. Reduction method

Let ¢ and ¥ be mappings from Z, into Z, and from Z, into Z_, respectively.
Let T* be a BA[N, m*, s*, t] for m¥*=m+n. Partitioning T* as [F*: G¥]
(F*=[f;;] and G*=[g,,] are matrices of size N x m and N x n, respectively), T is
defined by [¢(F*): Yy(G*)], where ¢(F*) and Y(G*) are derived from ¢ and v,
i.e., ¢(F*) is a matrix of size N x m whose i-th row is given by (¢(fi1),---» O(fim)
and Y(G*) is a matrix of size N x m whose i-th row is given by (Y/(g;1)---> ¥(gin))-
Then Tis an ABAL[N, (m, n), (r, s), t].
M4. Fold-over method

Let T*=[F*: G*] be an ABAI[N; (m, n), (r, s), t]. Let mappings ¢: Z,—
Z, and Y: Z,—~Z, such that ¢(i)=r—1—i and Y(j)=s—1—j for any i€ Z, and
jeZ, Then the 2N x (m+n) matrix [ ¢(F;*) w?(:*)} is also an ABAI[2N,
(m, n), (r, s), t], which, further, is a fold-over design. Note that the definition
of a fold-over design was given by Box and Wilson [3].

7. Notations of the associations

We consider the multidimensional relationship algebra defined in the set of
effects OF={0(e)|e=(&, &y C1--Ln), W(€) <2} ie., OF is the set of effects up
to two-factor interactions.

Let W=(U, V) be an association defined in the set S,xS,.cOf xOF,

where r=(P’ q)z(Po"'Pr—n 110"'qs—1), r*=(P*a q*)‘—‘(PE')‘"‘Pf—p ng:‘—l), U=
[uij] (i,jEZr) al‘ld V= [Ukl:l (k’ lEZs)' Here D;s p:k> uij, ks qt’ Uy are non-
negative integers satisfying

2opi =2t =m, XiSiq = Xizbgk =n XiEipi+ Ziclak
(7.1) =2, ipr + Zidiat £ 2, XiZbui; = pi, Xizbui; = pl,

1 1 %
2iova=q, and Y FZhv,=qf.
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Hence the number of non-zero elements among p; (1<i<r—1)or p¥ (1<5isr-1)
is at most two. According to the non-zero elements of p, p* and U, the matrix
U will be denoted as follows:

((Uo if po = p§ =ugo =m,
u(©, k; 0) if po=m, pf=m—1, p¥t=1, ugo=m—1, ug, =1,
u(0, kk; 0) if po=m, p§=m—2, p¥f =2, ugo=m—2, ug, =2,
u(O, kl; 0) if po=m,p§=m—2,pf =pF =1L ugo=m—2,up, =ug =1,
u(i, k; 0) if po=pé=m—1, p=p¥=1, ugo=m—1, uy =1,
u(i, k; 1) if po=p§=m—1, p;=pi =1, ugo =m=2, o =ug =1,
u(i, kk; 0) if po=m—1, p,=1, pt=m—-2, pf =2, ugo=m-2,
Uop =uy =1,
u(i, kk; 1) if po=m—1, p,=1, p§=m—=2, p¥ =2, ugo =m—2,
Ugr =2, Ujp =1,
u(i, kl; 0) if po=m—1, pf =m—=2, p,=pF =p¥ =1, ugp=m-2,
Ug =ty =1,
u(i, kl; 1) if pp=m—1, pd=m—=2, p;=p¥ =p¥=1, ugo=m-2,
Ug =ty =1,
u(i, kl; 2) if po=m—1, pf=m—-2, p=pf =pf=1, ugo=m-3,
Uor = Ugp = Ujo = 1,
u(ii, kk; 0)if po=p§ =m—2, p;=pf =2, ugo=m-—2, uy, =2,
U= { u(ii,kk;1)if po=pt=m—2, p,=pF =2, ugo =m-3,
Ujo = Uop = Uy = 1,
u(ii, kk;2)if po=p§=m—2, pi=p¥ =2, ugo=m—2, u;o = g, =2,
u(ii, kl1; 0) if po=pé=m—-2, p;=2, pf =p¥=1, ugg =m-2,
up=uy=1,

u(ii, kl; 1) if po=p§=m-2, p;=2, pf =pF=1, ugo=m-3,

u(ii, kl; 2) if po=p§ =m=2, py=2, pf =pf =1, ugo=m-3,

u(ii, k1; 3) if po=p§=m—2, p;=2, pf =p¥=1, ugo =m—4,

Uip =2, Uggp=1Ug =1,
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u(ij, k1;0) if po=p§=m—2, p;=p;=pi=pf =1, ugo=m—4,
Uy =1ug =1,

u(ij, kl; 1) if po=p§ =m—2, p;=p;=pi=pf =1, ugo=m-2,
u(ij, kl; 2)if po=p§=m=2, py=p;=pf=pf =1, ugo=m-3,
u(ij, kl; 3)if po=p§ =m—2, p;=p;=pf =pf =1, ugo=m=3,
u(ij, kl; 4)if po=p§=m—2, py=p;=pf=pf=1, ugo=m-3,

Uop = Uy = Ujo = 1,

u(ij, kl; 5) if po = p§ =m-2, Pi=D;=Dik = F=1, ugo=m=3,

)

um =ui0 = ujk= 1,

u(ij, kl; 6) if po=p§=m—2, p;=p;=pi =pf =1, ugo=m—4,

\ Uop = Ugp = Ujg = Ujo = 1,

where 150, j<r—1,i<j, 1=k, ISr—1, k<l
Furthermore, the transposed matrix of u(x, y; -) in the above will be denoted by
u(y, x; -) for (x, y)=(0, k), (0, kk), (0, k), (i, kk), (i, kI) and (ii, k).

The notation on V is defined by changing U, u, p, m and r into V, v, q, n
and s, respectively. These matrix notations on U and V will be used from now on.
(We notice that these notations are different from those used in Kuwada and
Nishii [25].)

8. Irreducible representations of M, with effects %

We consider an r™ x s"-BFF design with unknown effects
OF = {0(e) | w(e)=2}.

THEOREM 8.1. The algebra # generated by the relation matrices D(r, r*;
W) of size v¥ x v} is a semi-simple, completely reducible matrix algebra, where

Vf=Zi+j§2< '11 )( 7 >(r—1)i(s—1)f.

Proof. Let B(r, r*; W) be a symmetric matrix of size v} x v} defined as
follows:
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D(r, r*; W) if U=U and V' =1V,

B@r, r*; W) ={
D(r, r*; W) + D@, r*; W’) otherwise,

where W=(U, V) is the ordered pair of matrices U and V, and W'=(U’, V').
Then £ is generated by symmetric matrices B(r, r*; W). This completes the
proof.

We can represent D(r, r*; W) by the linear combination of Di(r, r*) which
are the basis of two-sided ideals of # (see Kuwada [21], Kuwada and Nishii
[25]). In fact we have the following relations between D(r, r*; W) and
D% (r, r*), where W=(U, V), r=(p, q) and r*=(p*, g*). (We use the notation
D#¥ instead of D¥(r, r*), for brevity.)

In the case V=v, (ie., g=q*=(n, 0,..., 0)),

D(r, r*; W)
Dg lf U= Ug,
m1/2D3 if U=u(0, k; 0),
( m )1/2Dg if U= u(0, kk; 0),

{2( m )}I/ZDS if U = u(0, kI; 0),

D} + D%, if U=u(, k;0),
(m—1)D§ — D%, if U=u(, k; 1),

{2(m—1)}V/2D§ + (m—2)'/2D% if U= u(i, kk; 0),
(m—2) {(m—1)[2}1/2D§ — (m—2)'/2D% _ if U= u(i, kk; 1),

(8.1){ (m—1)2D§ + (m/2)V/2D% . + {(m — 2)/2}V/2 D%,

if U=u(, kl;0),
(m—1)12D§ — (m[2)/2D%,, + {(m — 2)/2}/2D},,
= if U=u, kl; 1),

(m—2)(m—1)"2D§ — {2(m—2)}'/2D5,, if U=u(i, kl;2),
D§ + D} + D%, if U= u(ii, kk; 0),
2(m—2)D§ — 2D} + (m—4)D%,, if U=u(ii, kk; 1),
(m2‘2>Dg+Df-(m—3)D§“ if U = u(ii, kk; 2),

2'2[D§ + Di + D%, ] if U = u(ii, kl; 0),
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(1/2)'2[2(m —2)D§ — 2D% + {m(m—2)}'/2D%__ + (m—4)D%_ ]

(1/2)12[2(m —2)D§ — 2D} — {m(m—2)}'/2D% . + (m—4)D%, ]

(m—-2)D§ — D} + D§ — (m— 2)2D%,, — (1/2) {m(m — 2)}1/2[D%, ,—
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if U= uii, kI; 1),

if U =u(ii, kl;2),

21/2[( m= 2>D0 + D} — (m—3)D ,“] if U= uii, kI; 3),
D& + D% + Df + D% + D% | if U = u(ij, kI; 0),
D3+D’1’——D”—DI“+DIL if U= u(ij, kI; 1),
(m—2)D§ — D — D§ + (m—2)/2D%,, + (1/2) {m(m —2)}'/2[ D%, ,+ D% ,,]

+ (m—4)/2D%,, if U =u(ij, kl; 2),
(m—2)D§ — Di — D + (m—2)[2D%,, — (1/2) {m(m—2)}!/2[ D%, + D%, ]

+ (m—4)/2D%,, if U =u(ij, kl; 3),
(m~—2)D§ — Df + D§ — (m—2)/2D%,, + (1/2) {m(m—2)}'/2[D%,,—D%,.]

+ (m—4)/2D%,, if U =u(ij, kl; 4),
f43]

+(m—4)2D%,, if U =u(ij, kI; 5),

2<m2—2>’)3 + 2D} — 2m—3)D},, if U = uij, kl; 6).

In the case U=u, (i.., p=p*=(m,0,...,0)), D(r, r*; W) is expressed by the
linear combination of D*(r, r*) by changing U, u, p, f, r, m, D, and D, into V, v,

q, g, s, n, D3 and D, respectively. For example,

D(r, r*; W) = 2(n—2)D§ — 2D% + (n—4)D?

922

In the case U=u(*, 0; 0) and V=u(0, *; 0),

D(r, r*; W)
(mn)'/2D} if U =u(,0;0), V=150, k; 0),
{(31) }UZDO if U =u(ii, 0;0), V=100, k;0),
(5 )" s if U = u(ij, 050), V=0(0, k; 0),
n 1/2 . ) .
{m( 2 )} D§ if U=u(,0;0), V=10, kk; 0),

if U=uq, and V=1(ii, kk; 1).
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{ }”ng if U = u(ii, 0; 0), V= 0(0, kk; 0),
{2( m >< >}”ng it U =u(ij,0;0), V=00, kk; 0),
oml 12y . . _ .

m( 5 D§ if U =u(i,0;0), V=00, kl; 0),

n\|1/2 . ..
2)} Di  if U =u(ii,0;0), V=u0, kl; 0),

n\|1/2 . ..
<2>} Di  if U =uij,0;0), V=u0, kl; 0).

In the case V=u(j,
example,

D(r, r*; W) =n'2[D§+D% 1 if U=u(i, k;0) and V=1(j,0;0).

; 0), we get D(r, r*; W) by multiplying n'/2 to (8.1). For

In the case U=u(j, 0; 0), we get D(r, r*; W) by changing m, n, p, U and u,
which are contained in the terms given by multiplying n'/? to (8.1), into n, m, q,
V and v, respectively. For example,
D(r, r*; W) = {2m(n—1)}'/2D§ + {m(n—2)}'/2D% .
if U=u(j,0;,0) and V= (i, kk; 0).

In the case U=u(i, j; é,) and V=uv(k, I; é,) (,, 6,=0, 1),

D(r, r*; W)
D§ + D%, + D3, + D} it 6,=8,=0,
(m—1)[Di+D? 1—[D%, +Di]  if 8,=1 and &, =0,
"\ (n=1)[Dg+D%, ]~ [DE, +Di] if 6,=0 and &, =1,
(m—1)(n—1)Dj — (m—1)DZ, — (n— D%, +Di  if &, =5, = 1.

In the case U=u(0, j; 0) and V=uv(0, I; 0), it holds that D(r, r*; W)=(mn)/2D§,
where 1< j<r—1land 1ZI<s—1.

Let Di{(r*, r)=Di(r, r*) (x=0, 1,...,5), D} (@* r) = D%, (r, r*)’ and
D}, (r, r*)=Dj} (r, r*)’, where D¥(r, r*) are matrices appear in the above re-
lation. Note that D(r, r*; W) =D@*, r; W’'). Then any of the relation

matrices D(r, r*; W) is expressed by a linear combination of D*(r, r*).

Let #,, #; and &, be the linear closures [Dj(r, r*)], [D}, (r, r*)] and

[D; (r, r¥)], respectively, for a=0, 1,...,5. These ideals satisfy the following

theorem and we omit its proof.
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THEOREM 8.2. (i) #,B3=0,3%, for a, =0, 1,...,5,f, g. (ii) The multi-
dimensional relationship algebra is decomposed into the direct sum of eight
two-sided ideals &, (=0, 1,..., 5, f, g), i.e.,

g=-@o@g1@"'@gs@-@f@gg-

(i) 4, is isomorphic to the complete t, X T, matrix algebra for a=0, 1,..., 5, f,
g, where 1= +s)(r+s—1)/2, t,=r(r—1)/2, 1,=(r—-1)(r—2)/2, t;=s(s—1)/2,
Ty =(06-1)(-2)2, 15=0-1)(G—-1), 1,=0—-1)(F+s—1) and 1,=(s—1)-
(r+s-—-1).
(iv) The multiplicity of the irreducible representation of M with respect to &,
is ¢, @=0, 1., 5, £, 9), where ¢o=1, ¢,=m(m=312, ¢=("3"), ¢;=
nn=312, ¢o=("3 ") ds=(m=1D(n=1), ¢;=m—1 and g,=n—1.

Let T be an ABA1[N, (m, n), (r, s), 4] with index set {A(py " Pr-1> do*"" 95— 1)}
Let p(W) be the entry, m(0(¢e), 6(e*)), of My if an association of (0(e), 6(&*)) is
W=(U, V), where 6(¢), 0(e*)e ®,. All p(W) can be expressed by linear com-
binations of {y} (see Lemma 9.3 described shortly), where ¢ is given by the linear
combination of {1} (see (2.4)).

The information matrix My is represented by D(r, r*; W) (see Theorem 5.4).
Therefore M is also represented by D*(r, r¥) as

My = X p(W)D(r, r*; W)
= Zr,r* Zasz=0 Ka(r9 r*)Dg(r’ r*) + Zr,r"‘ 2?,j=1 {Kf,-j(r, r*)D}”(rs r*)
+ x,,(r, T*)D} (r, T¥)} .

Here we recall the fact that r and r* are represented by U and V (see (7.1)).
Then k,(r, r*) are given as follows:

In the case V=uv,,
KO(r’ r*)
p(uo, Vo),
m12p(u(0, k; 0), vo),

(7)) puo, kk; 0), vo),

(O paco, k15 0), v,

(8.2)( p(u(i, k; 0), vy) + (m—1)p(u(i, k; 1), vo),
{(m—1)/2}12{2p(u(i, kk; 0), vy) + (m—2)p(u(i, kk; 1), v)},
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= l (m—1)Y2{p(u(i, kl; 0), vo) + p(u(i, kl; 1), vy)}
+ (m —2)p(u(l’ kl, 2)9 UO) s

plulii, Kk 0), vo) + 20m— 2)p(uii, ke 1), vo) + (™ 2)plu(ii, ks 2), vo),

21/2':p(u(iis kl’ O)a UO) + (m_z) {p(u(”9 kl’ 1)’ UO) + p(u(”’ kl, 2)’ UO)}

+ (m2_2>p(u(ii, kl; 3), Uo):l

P, Kl 4), v0) + p(uCi, K15 5), v0) +2("™ 3 )pu(is, ki 6), vo).

In the case U =u,, ko(r, r*) is expressed by p(U, V) as above by changing U, u,
p, rand minto V, v, g, s and n, respectively. For example,

1/2
ko, ) ={2(5 )} pluo, w00, kI; 0))
In the case U=u(x, 0; 0) and V=v(0, *; 0),
(mn)2p(u(i, 0; 0), v(0, k; 0)),

( m )n}llzp(u(ii, 0; 0, (0, k; 0),

{
{25 ) ptatii, 05 0), w0, k3 0),
{

KO(r’ r*) =

In the case V=u(j, 0; 0), we get x,(r, r*) by multiplying n'/?2 to (8.2). For
example,

Ko(r, ) = n'/2{p(u(i, k; 0), v(j, 0; 0)) + (m—1)p(u(i, k; 1), v(j, 0; 0))} .
In the case U=u(0, j, 0), we get kq(r, r*) by changing m, n, p, U and u, which

are contained in the terms given by multiplying n!/2 to (8.2), into n, m, q, V and
v, respectively.
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Ko(r, T*)
= {m(n—1)/2}*2{2p(u(0, j; 0), v(i, kk; 0)) + (n—2)p(u(0, j; 0), v(i, kk; 1))} .
In the case U=u(i, j; *) and V=u(k, I; *), it holds that

Ko(r, ) = p(u(i, j; 0), v(k, 15 0)) + (m—1)p(u(i, j; 1), v(k, I; 0))
+ (n—=Dp(u(i, j; 0), v(k, I; 1)) + (m—1)(n—Dp(u(i, j; 1), u(k, I; 1)).
( p(u(ii, kk; 0), vo) — 2p(u(ii, kk; 1), ve) + p(u(ii, kk; 2), vy),
2112{p(u(ii, kl; 0), vy) — p(u(ii, kl; 1), vo) — p(u(ii, kl; 2), vy)
+ p(u(ii, ki 3), vo)},
p(u(ij, kl; 0), vo) + p(u(ij, kl; 1), vo) — p(u(ij, kI; 2), vo)
— p(u(ij, kl; 3), vo) — p(u(ij, kl; 4), vo) — p(u(ij, kl; 5), vo)
+ 2p(u(ij, kl; 6), vy).

Kl(r9 r*) =

K3(r, r*) is given in the same way as k,(r, r*). For example,
K3(r, 1*) = pug, v(ii, kk; 0)) — 2p(uq, v(ii, kk; 1)) + p(uo, v(ii, kk; 2)).
K2(r, 7*) = p(u(ij, kl; 0), vo) — p(u(ij, kl; 1), vo) — p(u(ij, kl; 2), vo)
— p(u(ij, kl; 3), vo) + p(u(ij, kl; 4), vo) + p(u(ij, k1; 5), vy).
K4(r, *r) = p(uo, v(ij, kl; 0)) — p(uo, v(ij, kl; 1)) — p(uo, v(ij, kl; 2))
— plug, v(ij, kl; 3)) + p(uo, v(ij, kl; 4)) + plue, v(ij, kl; 5)).
xks(r, r*¥) = p(u(i, j; 0), v(k, I; 0)) — p(u(i, j; 1), v(k, I; 0))
— p(u(i, j; 0), vk, I; 1) + p(u(i, j; 1), v(k, 15 1)).
p(u(i, j; 0), vo) — p(u(i, j; 1), vo),
m'2{p(u(i, j; 0), v(0, k; 0))— p(u(i, j; 1), v(0, k; 0))}.
Ky, 7)) = (m=2)2{p(u(i, jj; 0), vo) — p(u(i, jj; 1), vo)} -
Ky, 7) = (m2)'2{p(u(i, kl; 0), vo) — p(uli, kl; 1), vo)} .
Kr (s %) = {(m—2)/2}72{p(u(i, kI; 0), vo) + p(u(i, kl; 1), vo) —2p(u(i, kl; 2), v)} -
K7, T¥) = p(u(ii, kk; 0), vo) + (m—4)p(u(ii, kk; 0), vo)
— (m—3)p(u(ii, kk; 0), vy).

Kfzs(r’ r*) = {m(m—2)/2}1/2{p(u(u’ kl; 1): UO) - P(u(u’ kl; 2), vO)} .

K, (r, 7¥) =
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Kp r, 1) = (1/2)Y2[2p(u(ii, kI; 0), vo) + (m—4) {p(u(ii, kl; 1), v,)
+ p(u(ii, ki; 2), vo)} — 2(m—3)p(u(ii, kl; 3), vy)].

Krys(rs 7*) = (1/2) [2{p(u(ij, kI; 0), vo) — p(u(ij, kI; 1), vo)}
+ (m=2) {p(u(ij, k1; 2), vo) + p(u(ij, kl; 3), vo) — p(u(ij, kl; 4), vo)
— p(u(ij, kl; 5), vo)}].

Kyl 7) = (1/2) {m(m —2)}2{p(u(ij, kl; 2), vo) — p(u(ij, kI; 3), vo)} .

Ko, ) = (1/2) [2{p(u(ij, k1; 0), vo) + p(u(ij, kI; 1), vo)}

+ (m—4) {p(ll(lj, kla 2)’ UO) + p(“(l.]a kl’ 3)’ DO) + P(u(lja kl, 4)7 UO)

K, (r, ) (1Si< j<4) are given in the same way as x;, (r, r*). For example,

Kﬂlz(r9 r*) = (n_z)”z{P(uo, U(i, .]]9 0)) - P(“o, U(ia j.]) 1))} .

Here k,(r*, r), k, (r*, r) and k,, (r*, r) are defined by x,(r, r¥), x,, (r, r*)
and x,, (r, r*), respectively, for 0Sa<5 and 1Si<j<4.

Let K,=[k,(r, r*)] (of size 7, x1,) for =0, 1,..., 5. Let

r—1 r—1 () 2" (r-1)(s—1)

—— T ——/ —— /]

rK,,1,1) Kq,(1,2) K;.(1,3) K, ,(1,4) K, (1, 5)]
Kf21(2’ 1) Kfzz Kf23 Kfz4 Kf21(2’ 5)
Kf = Kf31(3’ 1) Kfaz Kfn Kfu Kf31(3’ 5)
Kf41(4’ 1) Kfaz Kf43 Kf44 Kf41(4’ 5)
L K;,,(5, 1) Kfu(S, 2) K, .5, 3) K;,,(5 4 K[ (5, 5)]

of size 7, x 1, where K, =K =[k; (r, )] (251, j<4), K, (1, D=K[, (i, 1)
=[x, (p, (n0---0)), (p*, g*N] (i=1,2,..., 4),

K, (5 1) =K, (34 5 = [x;, (P 9> (p*, (n0---0))]3=1:::571

(the range of p* is dependent on i=1, 2, 3,4), K, (5, 5) =[x, ,(Ps q,)> (Ps> 95)]
(a, B=1,...,v—1;79,0=1,...,s—1). Here Pa=(m(;~)1, o,..., 0,(1; 0,...2r(2)1)and q,
=mn-10,...,0,1,0,...,0). We define the matrix K, of size 7,x 1, in the same
way(;; K,. ” e

From Theorem 8.2, there exists an orthogonal matrix P of order v§ such that

1 ¢s s ¢g
N e | r—

. —
P’MTP = dlag [Ko, Kl""’ Kl,..., Ks,..., Ks, Kf,.--, Kf, Kg,..., Ky] .
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Now M is the information matrix of size v} x v}, and v} is dependent on
constraints m and n. As shown above, however, M can be expressed by the
matrices K, of size 7,x 1, for a=0, 1,..., 5, f, g. Note that 7, is independent of
m and n.

Thus we have established the followings:

THEOREM 8.3. Let T be an ABALI[N, (m, n), (r, s), 4]. Then T is a bal-
anced design of resolution V if and only if all K, (x=0, 1,..., 5, f, g) are positive
definite.

THEOREM 8.4. The characteristic polynomial of My is given by
det(Mr—xIvt) = [T13=0 {det (K, —xI )}¢=] {det (K, —xI, )}#+{det (K, —xI, )}*s,
if T is an ABAL[N, (m, n), (r, 5), 4].

COROLLARY 8.5. For T being a balanced r™ x s*-FF design of resolution V,
the inverse matrix of My is expressed as

M7! = Pdiag [K5?, K7,..., K71,..., K51, K51, K74, KL, K4, KU]P'.
The trace and determinant of Mz! are given by

tr (Mz!) = 230 0. tr(K5") + o, tr (K71 + @, tr (K71,
det (M7") = [X3-0 {det (K7)}?=]{det (K7")}?#7{det (K;")}¢s.

There are, in general, a large number of possible balanced ™ x s»-FF designs
of resolution V with each number of assemblies N (=v§). Out of these designs,
one must choose a design which allows us to estimate all v} effects and, further,
which minimizes the loss of the information in some sense. The functions, which
evaluate the loss of information, are mostly defined in terms of characteristic
roots of the information matrix M, as shown in Section 1. Thus it is very useful
to obtain the characteristic polynomial of M (or Mz!).

Consider a 22x 32-FF design of resolution V derived from an ABAIL[N,
(2, 2), (2, 3), 4] with index set {A(pop1> 909192)| Po+P1=2, o+q,+q,=2} for
v¥ (=20)<N<36. In Table, optimal balanced designs with respect to the
trace and determinant criteria are given with values of tr (Mz') and det (M71),
respectively, for each N in the above-mentioned range. Here matrices D and E

1 -1 1
are defined by (i - i) and (1 1 —2), respectively.
1 0 1
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TaBLE Optimal balanced 2? x 32-FF designs of resolution V

N A tr (Vr) a det (V)

20 011101100110110001 1.83025 100011011100110011  6.36818E-26
21 011101110010101101 1.45307 001100110011011101  9.43434E-27
22 010101111010101101 1.31019 010101101110111001  2.23445E-27
23 011101110011101101 1.14578 011100110011011101 5.89646E-28
24 010101101110111101 1.06156 110011011101110011 1.47412E-28
25 100111011101101111 0.99675 011101101110111101 5.70625E-29
26 010101101111111101 0.93256 111011010110111011  2.21117E-29
27 100111111101101111 0.87151 110011011101111111 8.57667E-30
28 011101101111110111 0.81967 011110111011011110  3.53788E-30
29 110111111101101111 0.76828 010110111011111111 1.41515E-30
30 110111101111110111 0.71995 111011110111111011  6.14215E-31
31 011101110111111111 0.69937 110011011111111111  2.50913E-31
32 101111110111111111 0.65344 110111011111110111 1.09681E-31
33 111111110111111102  0.63474 110111011111111111  4.83634E-32
34 111111110111111111 0.59375 110111111111110111  2.13269E-32
35 110111111111111111 0.57465 110111111111111111  9.47862E-33
36 111111111111111111 0.55556 111111111111111111  4.21272E-33

2=(2(02, 002), (02, 011), 2(02, 020), (02, 101), 2(02, 110), (02, 200),
(11, 002), (11, 011), A(11, 020), (11, 101), (11, 110), (11, 200),
(20, 002), 2(20, 011), (20, 020), (20, 101), (20, 110), (20, 200)).

9. Optimality of level-symmetric designs in s,---s,, factorials

We consider an s;--s,, factorial design with m factors F,,..., F,,, where F;
has levels 0, 1,...,5;—1 for i=1,..., m. We use notations similar to Section 2.
The assembly £=(t,,..., t,,) is represented as an element of Z, x---xZ, . Let
7 and @ be the expected values of all observations and all factorial effects, respec-
tively. Then we assume that  can be expressed by the effects @ as

v = D1 ®”'®Dm0'

Here D;=[d(t, &)]o<s,cs5,-1=[d{(0), di(1),..., di(s;—1)] is an s;xs; non-singular
matrix whose first column d,(0) is composed of 1’s, whose all column vectors are
mutually orthogonal, and whose entries d(t, €) satisfy dy(s;— 1 —t, &)=(~—1)%d(t, ¢)
for any t,ee€Z, (i=1,...,m). Note that the matrix D;, defined by orthogonal
polynomials, satisfies these restrictions.

We assume that (£ + 1)-factor and more interactions are negligible, i.e., all
unknown effects are elements of

@2 = {0(61"“’ gm)lsiezsp W(81,..., 8m) é g} .
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Let 8, be a v,-columned vector composed of all effects in @,, where v,=|0,|.
Let T be a fractional s,---s,, factorial (s,---s,,~FF) design with N assemblies £(*) =
(t@,..., ), Then T can be identified with an N x m matrix whose a-th row is
t@®. Let y(t®) be the observation based on an assembly #* and y(T) be an
N-columned vector [y(¢®)] expressed by

¥(T) = E;8, + (T),

where e(T) is the error vector whose components are assumed to be uncorrelated
and each has mean zero and the same variance 62. The (y(£(®), 6(e))-entry of
the design matrix Ep is given by

d,(t®, &))-+d (2, &,) (= d(t®, e), say).
The normal equation for estimating @, can be written as
M;6,= Ery(T),
where M;=E}E; is the information matrix whose (6(e), 6(e*))-entry is given by
3=1d(E®, )d(t®, %) (= m(0(e), 6(e*)), say)

for e=(gy,..., &,) and e*=(ef,..., &&). An N x m matrix T is called the fractional
Sy-+-S, factorial design of resolution 24+1 if M; is non-singular. For the
design of resolution 24 + 1, the best linear unbiased estimate of #, can be obtained
by

6, = VTE'Ty(T),
where Vpy=M7z!. The variance-covariance matrix of BAE can be shown to be
Var (8,)=02V;.

Let p(e)=XN-,d(t®, e) for any eeZ, x---xZ, . Let A(#) be the multi-
plicity of the assembly ¢ in T for any t=(t,,..., t,,). Using A(t), we have

N, dt@, &) =Y, d(t, e)Ar).
Therefore we can get the following
LemmA 9.1. r=D1®--®D,A,
where 7 and A are the sq:-s,-columned vectors

T = [7(81,"" 8",)] and 2 = [)‘(tl""a tm)] (85, tiEZsi)'

DerINITION 9.1. An N xm matrix, T, is called an orthogonal array of
strength d if any N x d submatrix T; contains all possible d-rowed vectors in the
same frequency A; for any sequence i=(i,:--iy) with 1=<i,<---<i;<m, where T,
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is given in the same way as Section 2. Here 4, is equal to N/(s;,--+s;,).
We have the following by an argument similar to Theorem 3.1.

THEOREM 9.2. Let T be an s,---s,-FF design of resolution 24+1, where
2¢<m. Then 8, can be estimated uncorrelatedly, i.e., M7! becomes a diagonal
matrix, if and only if T is an orthogonal array of strength 24.

ReEMARK. One of the assumptions on D;, dys;—1—t, &) =(—1)%d(t, &)
(1£i<m), is not necessary to prove Lemma 9.1 and Theorem 9.2.

The following definition of a level-symmetric design is a generalization of the
concept of a fold-over design.

DEerINITION 9.2. For T being an s,--s,-FF design, T is called a d-level-

symmetric design if the following relation holds:

SHFAtgsenns bigperes Ligpeens ) = ¥ A(typeuny S5 =1 =1 5y Sj— 1 — 1000y 1)

forany 1<i,<---<izSmand any (¢,,..., ;) (t,, =0, 1,..., s;, — 1), where two sum-
mations Y * extend over t;=0, 1,..., 5;—1 for any jem—{ij,..., i}.

Note that if T is a d-level-symmetric design, then T is also a d*-level-sym-
metric design for any d*=1,...,d—1.

An effect O(ey,..., &,) is called an odd or even effect according as Y ¢; is odd
or even. The set of unknown effects ®, can be partitioned into the two sets
©,,and O, , composed of odd and even effects, respectively. Corresponding to
this partition, the vector @, can be decomposed into

01,0 )

01 = (
02,2

LemMa 9.3. Let my(6(a), 6(B)) be an entry of My such that Y (o;+B;) is
an odd integer, where a=(ay,..., &,) and B=(By,..., B,,) are elements in Z; x -
xZ,,. Then my(0(a), 0(B)) can be represented by a linear combination of
elements of {y(es,-.., &n) | 2.&; is odd}.

PrOOF. An entry mp(0(a), 8(B)) is given by X ,d(ty, a)d (ty, By)--
(s )t B)A(tys...5 t,,).  The column vector (dy(0, a)d,(0, B),..., di(s;—1, a)-
d(s;—1, B (=die)*di(), say) can be expressed as dio)rdi(f)= T3 -
cle; o, P)dfe)=Dcia, B) where cfa, p)=(c/0; «, B),..., cs;—1; o, B))’ is given
by (DiD)'Did(x)*d{p). Therefore we have cy(e; a, B)=c(e)d(e) di(x)*d(p),
where c(e) is the (e, &)-entry of (D;D;)"1, since D.D; is a diagonal matrix. By
the condition d(s;—1—t, &)=(—1)%d(t, ¢), it holds that

c(e; 0, B)=0 if e+a+pisodd.
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Any entry of M, can be expressed as a linear combination of elements of {y(e,,...,
g,)} as follows:

me(8(a), 0(B)) = X, [TTr {528 ciless o BNt €)3A(E s, £m)
= 2 AT & oy B)IY(Ers €250ns Em) -

Here c¢;(e1; o1, B1) Cr(Ems Oms B)=0 if X (;+f;) is an odd integer and Yg; is
an even integer. This completes the proof.

THEOREM 9.4. Let T be an s,:-s,,-FF design of resolution 24+1, where

20<m and 5,23 (i=1,..., m). The best linear unbiased estimate 52=<qﬂ-">

0,e

satisfies Cov(éﬂ,o, 52’e)=0 if and only if T is a 24-level-symmetric design, where
Cov(X, Y) denotes the covariance matrix between random variables X and Y.

PRrROOF (Sufficiency). Consider e=(gy,...,e,)€Z; x -+ X Z; such that the
sum of g, (1=k=n) is odd and the remaining elements are equal to zero where
1=n<24. Since T is an n-level-symmetric design and d(t, €)=(—1)Z=d(t*, e),
the following relation holds:

1We) = X, di(t1; €1) Ayt E)AE) = ZHT k=1 di(tiy 8,3 2% AE)
= (12 [Z* I Tk =1 di(tir €D} Z** A(D)]
+ 2T T =1 di (8 €} 2% A% (%))
= (12 Z* A+ (= D) {TTk=1 di (8, &)} Z**AD)] = 0,
where t*=(t},..., t¥) is defined by (s, —1—t4,..., s,—1—t,) for any t=(¢4,..., t,),

the summations > * and > ** extend over all t;,..., t;, and the remaining t;, re-
spectively, and d=Y¢; (odd). Therefore Lemma 9.3 leads to m(0(a), 6(8))=0
for any 6(a)e 0, , and any 0(8)€ ©,,. Thus we have Cov (5“, éﬂ,e)=0.

(Necessity). The submatrix of My corresponding to &, ,row and 8, .-
column is 0 since Cov (8, ., 8;.)) =0, i.e., my(6(a), B(8))=0 for all (@) € O, , and
0(B)€ @, ,. These relations and the assumption that s;=3 imply y(e,..., &,)=0
for any e=(gy,..., &,) (€Z;, X+ xZ; ) such that w(e)<2¢ and Yg; is odd.
Solving the relation in Lemma 9.1 with respect to 4, we get

(9'1) 2=E1 ®"'®Emr9

where E;=Dy(D;D;)~!. The entries of the s;xs; matrix E,=[e(t, ¢)] (¢, e€ Z,)
satisfy es;—1—t, )=(—1)%e(t, &) since D;D; is diagonal. Put e;(t;, &) -
e(tws Em)=e(t, €). Then it holds that

Ae) = 2, elt, e)y(e)-
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Furthermore, we have e(t*, &)=(—1)Ze e(t, €). Let {iy,..., i,,} be any subset
Ofm and let {jla"',jm—Zl} be m—{il,..., izg}. Let X(il,..., i22)=I-}l®...®I'xnm,
where x; =1 (k=1,...,24), x;,=0 (s=1,..., m—2¢) and

Ix =

I, if x,=1,
{jé, if x,=0.
From (9.1) we have
9.2 X(igyeers i29)A = (IFE)®-® (IZmE,)r.
If x,=0, then I*=E,=j, E,=(1, 0,...,0). The relation (9.2) yields
S Mt ) = By (T €4t €,))0(008,,0:+-06,,,0-+:0)

where the summations 3, and 3, extend over all ¢; (1=s<m—2¢) and ¢,
(1=£k=24), respectively. Now p(0---0g;,0---0g;,,0---0)=0 when 3¢, is odd.
Hence the range of the last summation can be restricted to g, satisfying X ¢ is
even. Recall the relation [T2L, e, (t;,, & )=112% e, (s;,, —1—t;,, &,) for ¢, satis-
fying X ¢;, is even. Thus we have

D M seens Sy = 1=t 50y Siyy = 110000y By)
= 2 Ml seees Lippees Liggoeens ) s
which implies that T'is a 24-level-symmetric design.
In the case s, =---=s,,=2, we have the following

THEOREM 9.5. Let T be a 2"-FF design of resolution 24 +1, where 24 —1

<m. The best linear unbiased estimate of 8, satisfies Cov(él,,,, éﬂ,e)=0 if and
only if Tis a (2¢ —1)-level-symmetric design.

10. Structural properties of 2"-BFF designs

Throughout this section, we consider a balanced fractional 2™ factorial
(2m-BFF) design T of resolution 24 + 1 with N assemblies, where D is defined by

G _}) For simplicity, we use symbols 0, and ;.. instead of 6(0, 0,..., 0)

and 6(ey,..., &,), respectively, where ¢, =---=¢g;, =1 and the remaining elements
k

P

are all equal to zero. Let y, and y, be 9(0, 0,..., 0) (=N) and y(1,..., 1, 0,..., 0).
Since T is a 2"-BFF design, y,=7(¢y,..., &,) for any (eq,..., &,) € Z,™ satisfying
w(ey,..., &m) =k, where 1 <k =24 (cf. [38]).

We use the method of the analysis of a 2™-BFF design in Yamamoto,
Shirakura and Kuwada [39] to derive the following two theorems.
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THEOREM 10.1. Let T be a 2™-BFF design of resolution V derived from a
BA[N, m, 2, 4] with index set {uy, U1».--» a}- The covariance matrix be-
tween the estimates of main effects and those of two-factor interactions is zero
if and only if the indices satisfy po=p, and p, =u;.

PrOOF (Sufficiency). The relations uo=p, and u, =p; suggest that Tis a
4-level-symmetric design. This fact implies that T is also a 3-level-symmetric
design. Therefore Theorem 9.5 yields Cov (éz,a, éz,e)=0, where 65 ,=(04,..., 0,,)
and 03 ,=(0p, 012, 0135+, Opy— 1 m)-

(Necessity). The information matrix, M, of a balanced design T can be
decomposed by the orthogonal matrix P, of order v} as

m—1 ('Zn)_m

. ———
MT = Plzdlag [Ko, Kl""’ Kl’ Kz,..., K2]P2,

where v;‘=1+m+(g’> and K,, K, and K, are matrices of size 3x3,2x2, 1x1,

respectively. By changing K; for K;! (i=0, 1, 2), M7! can also be represented
in the same way. Since the submatrix corresponding to 6, ,row and 6, -
column is 0, K7! is diagonal and the (2, 3)-entry of K71 is zero, while K, is given
by

[?o — 72 (m—2)"2(y; —73) :]
1= .
(m=2)12(y;—y3) yo + (m—4)y, — (m—3)y,
Therefore y, =73, and further from the form of
1/2
Yo - milZy < 5 ) V2
Ko = Yot (m—1)y, m{m—1)[2}1/2y, ,
-2
(sym.) Yo + 2(m—2)y, + (’"2 ),,4

we get 7,(yo—7,)=0. Since K, is positive definite, y,—7,>0. Hence y; =y;=0.
The relation between y; and y; is given by

o 1 -4 6 —4 1] v
Uy 1 -2 0 2—-1]||7y
u |=Q@j1e)l1 0 =2 0 1{|7,].
U3 1 2 0 -=2-11||v7vs
Uy 1 4 6 4 1|74

Thus we have po=p,=(1/16) (yo + 6y, +74) and py =p3=(1/16) (o —74)-
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THEOREM 10.2. Let T be a 2"-BFF design of resolution 24+1 derivable
from a BA[N, m,2,2¢] with index set {pg, l1s-..s Uz}, Where 6=<24=<m.
The covariance matrix between the estimates of p-factor interactions and those
of q-factor interactions is O for any 1<p<q=<¢ if and only if T is an orthogonal
array of strength 24 —1, i.e.,

Mo+ fy =y + fy == figg1 + Hay, OF
Ho =My ==y and py =pz=-=p, ;.

PrOOF (Sufficiency). Let T be an orthogonal array of strength 24 —1.
Then m(6;,...;,, 0;,...;,)=0 for all p-factor and g-factor interactions (1=p<g=
£). Therefore the estimates of p-factor interactions and those of g-factor inter-
actions have no correlations.

(Necessity). There exists an orthogonal matrix P, of order v} such that

m-1 2)-(1) 1-(2)
. —— —— ——
MT = P,ﬂ dlag [Ko, Kl""’ Kl’ Kz,..., Kz,..., Kﬂ,'“’ KQ]PQ Iy

where K, isa ({—i+1)x(4—i+1) matrix (i=0, 1,..., £) and v =1 +<T >+ et
(’Z) because T'is a balanced design. From the assumption on My, M7(p, q) is

the zero matrix for 1<p<q=</¢, where M7!(p, q) (resp. M(p, q)) denotes a sub-
matrix of M7! (resp. M) corresponding to (p-factor interactions)-rows and
(g-factor interactions)-columns. Therefore K; and K;! are diagonal for 1=i</.
Here all entries of M (£ —1, ¢) equal either y,, y3,..., V24-3 OF Y251, and (¢ —1,
¢ —i+1)-entry of K; is given by some contrast of these elements (1=i<¢—1).
These contrasts are linearly independent. Therefore y, =7y;=---=v,,_; since
K;(1=i<¢-1)is diagonal. Considering M71(¢ —2, ¢), we can also prove that
Yo=7V4=+=V25-,. NoOw our assumption on Mrz! implies that Kz! can be
expressed by

ay a,--a,
e
a:,l 0 ..b,l
On the other hand, K, is given by
[ Yo mt/2y, )

mt2y yo 4+ (m—=1)y, -

ko=| (3) " 4n(3)
(5) " () e

....................................
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The (1, 2)-, (3, 2)-, and (4, 2)-entries of KoKg! (=1, ) imply that yoa; +m'/2y,b,
=0, y,a, +m'/2y,b; =0, and y,a,+m'2y,b, =0, respectively. These relations
must hold for some (a,, b;). Here b; >0 since Kg! is positive definite. There-
fore we have (y,)*—(y1)*=0and yoy,—(y,)*=0.  Thus y,(y;—70)=0, i.e., y,=0
or y,=7,. If y,#0, the relation y, =y, (=N) must hold. This contradicts the
assumption that M, is non-singular. Therefore y;=y,=:--=7,,_,=0, ie., T
is an orthogonal array of strength 24 —1. Here T is a balanced array of strength
2¢ and with index set {ug, Uy5..., h2s}. It can be easily proved that T is also a
balanced array of strength 24 —1 and with index set {uo=+ gy, U1+ Haseees Uag—1+
Us,}. For T being an orthogonal array of strength 2¢ —1, the relation pug+pu, =
Bitpy=-"=Upp_1+Hy must hold, ie., po=p,=--=py and py=p3=--=
Uy, 1. This completes the proof.
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