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1. Statement of results

In the n-dimensional Euclidean space R", we define the Riesz potential of
order a, 0 <a<n, of a non-negative measurable function f on R” by

UL = Reef () = b=y fOddy; - Ri) =[x,
For a set E in R" and an open set G in R", we set

Cop(E; G) = inf || f]|7,

where | f|, denotes the LP-norm in R", 1<p<co, and the infimum is taken over
all non-negative measurable functions f on R” such that f=0 outside G and
Uf(x)=1 for every xe E.

A set E in R* is said to be («, p)-semi-thin at x° € R" if

lim, o r*P~"C, (E N B(x°, r) — B(x°, r/2); B(x°, 2r)) = 0,

where B(x°, r) denotes the open ball with center at x° and radius ». We note here
that E is («, p)-semi-thin at x° if and only if

]imi—*oozi("-ap)ca,p(Ei; G;) = 0’
where E;={x€E; 27 <|x—x% <27*1} and G;={xeR"; 271 1 <|x— x| <27i*+2},
THEOREM 1 (cf. [2; Theorem 2]). Let O0<f<(n—uap)/p, and f be a non-

negative measurable function on R" such that UL £ 0. If

M lim,qrsorn | f(ypdy =0,

B(x%,r)
then there exists a set E in R" such that E is («, p)-semi-thin at x° and
limx—‘xU,xeR"-E |x — x| Uf(x) = 0.

REMARK 1. (i) (cf. [2; Theorem 2]) If ap=n and f is a non-negative
measurable function in LP(R") such that UY = oo, then there exists a set E in R"
with the following properties:
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(@) X1 Cop(ENB(x%, 2771) — B(x, 27%); B(x%, 27*2)) = 0;

. 1/p—1
(b) hmx_,xo,xeR.._EOogT;:%_;)_I_ Ul =o.

(ii) If ap>n and fis as above, then UY is continuous on R”.

REMARK 2. Let f be a non-negative function in L?(R"), and set

A= {XOER"; limsuprmrv'"g f(y)l’dy>0}.
,r)

B(x©

Then H,_,(4)=0 in view of [1; p. 165], where H, denotes the ¢-dimensional
Hausdorff measure.

For ze R" and a function u on R", we set
A u(x) = u(x+z) — u(x)

if the right hand side has a meaning, and define 47=A4,(47~1!) inductively with
Al=4,. Note that 47u(x) is of the form

oo Amit(x +k2),
where each g, , is an integer.

THEOREM 2. Let f be a non-negative measurable function in LP(R™) such
that UL % 0, and m be a positive integer. If 0<B<m and

(2) limrlo r(a+ﬁ—-m)p~n S

) Lf(=f(xO)rdy = 0,

B(xO,r
then there exists a set E in R" which is (a, p)-semi-thin at O and satisfies
3 lim, g ern-g [X[F™A2UL(x) = 0.

For a point x=(xy,..., x,) and a multi-index A=(4,,..., 4,), we set

A = Ay +od Ay A=A 0000,

et () () )"

Finally we shall establish the following result (cf. [3; Theorem 2]).

THEOREM 3. Let f be a non-negative measurable function on R" such that
U{ £ o0, and m be a non-negative integer not greater than o. If

@ lim,so remr=n{ 50— p(xo)rdy = 0

B(x9%,r)
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and
. N
Ay = lim,yo | () ROO= 01 0)dy
Rn=B(xO,r)

exists and is finite for each ). with |A|<m, then there exists a set E which is
(et, p)-semi-thin at x° and satisfies

) im0 vern— g [X =X "™{UL(x) = X3 sm (A1 Co(x = x0)*} = 0,

where C,=A, if |A|<a and C,=A,+f(x°)B, if |A|=a with B, which will be
defined later (in Lemma 4).

REMARK. Condition (4) implies the existence and finiteness of 4, for |A| <m.

If (5) holds for E which is («, p)-semi-thin at x9, then we say that Uf is m
times («, p)-semi-finely differentiable at x°.

COROLLARY. Let f be a function in Lf (R") such that U/ 1'% 0. Then U},
is m times (m, p)-semi-finely differentiable almost everywhere on R".

This is an easy consequence of Theorem 3 and [4; Theorem 4 in §II]. Ac-
cording to [3; Theorem 2 and Remark 1 in §3], U/ is k times (m, p)-finely
differentiable on R” except for a set whose Bessel capacity of index (m—k, p) is
zero; but in case k=m, this does not give any information.

2. Proof of Theorem 1

Before giving a proof of Theorem 1, we prepare several lemmas. Let us begin
with

LEMMA 1. Let f be a non-negative integrable function on B(O, 1), and
and y be real numbers. If

timaor{  fo)dy =0,
B(O,r)
then the following are satisfied:
D) If B<O0, then lim, o r® SB(O ISy = 0.
ii) If n—y+1>0and >0, thenlim,_,,|x|# SB 0 (x| +1yD?- - f(y)dy =0.
0,1
Proor. We shall prove only ii), because i) can be proved similarly. For

5,0<5<1, set 8(6)=sup0<,§,,r7""SB(o £()dy. Then we have
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lim sup, ..o |x|? S (x]+ 1Y)77 (y)dy
B(0,1)
= limsupeolxl? | (xl+ Iy sy
B(0,9)

s
= timsupeo—y+ A ' {{  so)dy} et +ryro-rmrar
< const. &),
which implies ii).

For a non-negative measurable function f on R", we write

Ui = 5=yl () dy

{y;lx—y|l2|x|/2}

+| =yl f (n)dy = U'(x) + U"(2).
{vslx=yl<|x|/2}

Since R, is locally integrable on R”, UZ % oo if and only if S A +1yD*"f(y)dy

< 00; in this case, U’(x) is finite for x# 0.

LEMMA 2. Let 0<f<n—a+1 and UL £ 0. Then the following are equiv-
alent:

i) lime,o|x|fU'(x) = 0; i) lim,, r"”’_"g f(y)dy =0.
B(0.r)
Proor. Since |x[*U'(x) 2 leﬂg " [x=yl*="f(y)dy = const. |x|**F~n
B(0,|x|/2)
S f(y)dy, i) implies ii).
B(0,|x|/2)

Suppose ii) holds. If |x—y|=|x|/2, then |x|+|y| =< 5|x— y|, so that Lemma 1
gives

lim Sup,.. [XIPU'(x) S limsup, .o [x1? | $=(x|+ [y~ (»)dy

= 5""*lim Supxaolxl”s (Ix1+1yD*="f(y)dy = 0.
B(0,1)
Thus the lemma is proved.

LEMMA 3. Let f be a non-negative measurable function on R" satisfying
(1) with x°=0 and a real number 8. Then there exists a set E in R" which is
(o, p)-semi-thin at O and satisfies

]imx—'o,xeR"—E |x|fU"(x) = 0.

Proor. Take a sequence {a;} of positive numbers such that lim;_, , a,=o0
and
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lim;. a2+ | fwdy =0,
3(0,2—i+2)
and define
E;={xeR"; 27 < |x| <271, U"(x) 2 a;'/P2!#}
fori=1, 2,.... If xeE;and |x—y|<|x|/2, then |y|<2~i*2, Hence

S [x=yle=nf(y)dy = U"(x) Z ay!/p2if
B(O,Z'i*'z)

for all x € E;, so that

CuolEis B(O, 274) < a2~ | fwdy,
B(0,2-t%2)

which implies that E=\U{ | E; is («, p)-semi-thin at O. Clearly,
lim, o sern-g|X|PU"(x) = 0.
Thus the proof of the lemma is complete.
Now we are ready to prove Theorem 1.

PrOOF OF THEOREM 1. Without loss of generality, we may assume that
x0 is the origin 0. By our assumption, f satisfies ii) in Lemma 2, so that i) in
Lemma 2 holds. Now our theorem follows readily from Lemma 3.

We next give a characterization of («, p)-semi-thin sets.

ProrosITION. Let 0<f<(n—oap)/p and EcR". Then E is (a, p)-semi-thin
at O if and only if there exists a non-negative function f in LP(R") such that

UL %o, lim,ior@rr{  f(3)pdy=0 and lim, .z IXPUL)=00.
B(O,r)

Proor. The “if”’ part follows readily from Theorem 1. Suppose E is
(o, p)-semi-thin at O, and set E;=E n B(0, 2~*)~ B(0, 27%). Take a sequence
{a;} of positive numbers such that lim,_, , a;= oo and

lim, , , af2'"=*P)C, (E;; G;) = 0, G, = {x; 277! < |x| < 27i*2},

For each i, we can find a non-negative function f; on R” such that f; vanishes
outside G;, UJ«(x)=1 for x € E; and

S FYPdy < Cyp(Ei; G) + app2-it=ep+n),

Define f=32, a2 f,. Then

lim infx*O,er |x|”U{(X) g limi»oo a; = .
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Moreover, lim;_, , 2!(»=(=+A)p) g [a;2'8 f(y)]rdy =0, which implies
lim,_, , 2{(*=(@+8)p) S f(y)rdy = 0.

B(0,2-i+1)~B(0,2"1)

This is equivalent to

lim..,, 210 cx+o» | Fyydy = o.
B(0,27%)

Thus the proposition is proved.

3. Proof of Theorem 2

We first show the following lemma.

LEMMA 4. Let U(x)=S . |x—yl*"dy. Then UeC®B(x° 1)). If
B(x%,1)
A is a multi-index with |A|=ua, then B;=(0/0x)*U(x°) is independent of x°; in fact,

_ 3V Ry
Bi={ 0 () ROV asw),

where A=21"+)" and |)"|=1.

Proor. Take 1,0<n<1, and ¢ e CZ(B(x° 1)) which is equal to 1 on
B(x%, n). Write

UG = be=ylro0dy +{ | lx=yl T - @()1dy.

(x°,

Then one sees easily that U e C°(B(x° n)). Hence U e C®(B(x° 1)) by the
arbitrariness of 7.
Let A=A"4+1", |A|=a and |A"|=1. Set k,(x)=(0/0x)* R,. Then (3/dx)*

U(x)=SB(xo b k,(x—y)dy for x e B(x°, 1). For the above ¢, we have
0\ 0 \A"
(?:7) (S k*’(x‘J’)‘P()’)dJ’N e = T S kr()’)<7y‘> [o(x°—y)—11dy

(o) ke o0=y)-114
50,1\ 0y »ILP X" =Yy Y

k(eGP —) = 11yVdS()
0B(0,1)

(%) (on s eGP loO) =11y | +] ki ase),

9B(0,1)

so that
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CHLE Fvio, KD dSO).

’

PRrROOF OF THEOREM 2. We write

Ul = b= Y1 f )My

Rn—B(x9,1)
+S3(xo,1) Ix_y'a—"[f(.l’) —f(xO)]dy +f(x0)g

= Uy (x) + Us(x) + f(x)U;(x).

|x—yl*"dy
B(x%,1)

In view of Lemma 4, U, and U, are infinitely differentiable on B(x°, 1), so that
they satisfy (3) with E empty. Thus it remains to prove that U, satisfies (3) with
E which is (o, p)-semi-thin at O. For this, we may assume that x° is the origin O,
f(0)=0 and f vanishes outside B(O, 1); in this case, U,=U%(x). Note that

lim, o r7-" gm F()dy=0by @) with y=a+f—m. Write
4zU4(0) = (42R,) (= 9)f )y

R"=B(0,(m+2)|x])

SB (ZR) (=) f(dy = U'(x) + U"(x).
(0,(m+2)|x])

If ye B(O, (m+2) |x|), then we obtain by the mean value theorem,
|AmR,(— y)| < const. |x|™(|x| +|y])==m".
Hence Lemma 1 gives
limsup,..q [x|#~"|U'(x)|

< const.limsup,.o [x*m | (x| + Iyl s ()dy = 0,
B(0,1)
For positive integers i and k, k<m, we set

Ey={re R 27t gixl <27, k= y <= f()dy Zaptr2to-ol,

(s lkx—y|<|kx|/2}

where {a;} is a sequence of positive numbers such that lim;,,a;=0c0 and
lim,, ,, a;2¢(»~7P) S f(y)rdy=0. If xeE,,, then
B(O,m2-i+2)
kaS x—zlo=n f(kz)dz = a7\ /p2iB-m,
{z;]x—z|<|x|/2}

so that



522 Yoshihiro Mizuta

CunlErsi BO, 27+2) 5 kera ko | flezypdz

B(0,2-i+2)

< kav-"aiziw-mg f(yrdy.

B(O,m2-i*2)
Hence lim,, ,2i"=*PC, (E;;; B(O, 271*2))=0. Set E=\Up., U E;;. Then
it is easy to see that E is («, p)-semi-thin at O and

N—— Jkx =yl £ (3)dy = 0.

(y;lkx=y|<|kx|/2}

On the other hand,

pxton | Jkx =yl £ ()dy

{yeB(0,(m+2)|x]); | kx—y| 2 |kx|/2}

gconst.lxly’"g f(»)dy—-0 as x—0
B(0,(m+2)|x])

and by Lemma 1,

xipn | YIS ()dy 0 as x—0.
B(0,(m+2)|x])

Therefore lim, o yegn—g |X[#"™U"(x)=0, and hence our theorem is obtained.

4. Proof of Theorem 3

We may assume that x°=0, and set

9 \4
K, ) = Rix=) = Zpagsm G 5435 ) Rl= ).
For the sake of convenience, let B,=0 if |[A\|<a. For x e B(0, 1/2), write
|x|_"'{Uaf(x)—Z|1|§m('“)_lcle}

= Ixf Kl DS O)y

R"-B(0,1)

+ 15t K%, LS ~f(O)]dy

B(0,1)-B(0,2|x|)

. 0\
— X Dy @) M | (Y RO DL0)~FO)ldy

+ 10 xt{lim, 1o | Ko, 1)y = 5 i 52D Bu?}

B(0,1)-B(0,r)

+ el [x= Y=L (9) ~f (0)1dy

{yeB(0,2]x|);|x~y| 2|x]/2}
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Hlm =YL =f(O))dy
= U (x) + Uy(x) — Us(x) + f(O)U 4(x) + Us(x) + Ug(x).
It is clear that lim,_, U(x)=0. If|y|=2|x|, then
[Km(X, P)I < const. [x["*1(|x] +[y[)==""m"1,
so that by Lemma 1,

limsup,_,o | U,(x)|

< const.limsupaolxl || (Ixl+ Iy 1£() ~F(O)ldy = 0,

since lim, , , <" SB(O 1/0)=F(©)ldy=o0.
If |A| <m, then aga{in by Lemma 1,

0 \*
(2% ) RL=9)TI0)~F(0)1 | dy

lim sup,_.o lxll"""'g

B(0,2[x|)

< const. limsup .o |x|“'-m§ lyl==m=141| £(3) —£(O)ldy = 0.
B(O,2|x])

If |A| <, then (8/0x)*R, is locally integrable, and if |A| =, then

0 \'R(=y)dy =0
gB(O,r)—B(O,s)(ax> =)y =

for any r and s, r>s>0. Hence if |1]=m, then by the definition of 4,,
. d \
lim, o { (55 ) RA-DLIG)-F(0)1dy=0 a5 x-0.
B(0,2|x|)—B(0,r)

Therefore, lim,_, U;(x)=0. Since U(x)= SB(O N |x—yl|*~"dy e C*(B(0, 1)),

A
Us00) = el {UM) = 2y ()13 (55 ) VO -0 a5 x>0
As to U, we obtain

|U ()] S const. [x{=~ | U O)=/(O)ldy=0 a5 x-0.

B(0,2]|x

In view of Lemma 3, one finds a set E in R” which is («, p)-semi-thin at O
and satisfies

lim, o xern-£ Ug(x) = 0.
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Thus the proof of Theorem 3 is complete.
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