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Introduction

Let p be an odd prime or p=0, and X be a simply connected finite CW-
complex whose integral cohomology group H*(X; Z) has no p-torsion if p#0.
Then we can consider the following conditions for X :

(ext) H*(X;Z),) is an exterior algebra A(x,,..., x,) over Z, where n;=deg x,
is odd = 3.

(H) X isamod p H-space, i.e., the p-localization X, is an H-space.

(reg) X is p-regular, i.e., X is p-equivalent to a product space S"' x --- x S"«
of spheres S": with odd n; =3.

It is well known that S" (n: odd) is a mod p H-space, and we see that (reg)
implies (H) (see Proposition 1.14). Further we see that (H) implies (ext) by
Hopf’s theorem (see Corollary 1.9). On the other hand, Arkowitz and Curjel [2]
proved that these conditions for p=0 are equivalent; and Kumpel [7] studied
some conditions that (H) implies (reg).

The purpose of this paper is to study the conditions that (ext) implies (H)
and (H) implies (reg). By using the obstruction theory, we prove the following

THEOREM 2.3. (i) The conditions (ext), (H) and (reg) for X are equivalent if
(ny,..., n) satisfies

(*) Pn,_,(S") =0 forany 1Si<k andany t=n; +---+n;, (12i,<---<i;=<k),

where Pm,_,(S") denotes the p-primary component of the homotopy group
m,—1(S8") if p#0 and °n,_,(S")=0.

(ii) The conditions (H) and (reg) for X are equivalent if (n,,..., n,) satisfies
(%) with s=1.

In this theorem, the assumptions on (n,,..., n;) are necessary. In fact, we
see the following

THEOREM 2.6. (i) If (n,,..., ny) does not satisfy (*), then there exists X which
satisfies (ext) and is not p-regular.

(ii) If (ny,..., ny) does not satisfy () with s=1 and p=5, then there exists
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a mod p H-space X which is not p-regular.
(iii) If (ny,..., ny) does not satisfy (x) with s=2, then there exists X which
satisfies (ext) and is not a mod p H-space.

We prepare some results on mod p H-spaces and p-regular spaces in § 1, and
we prove these theorems in §2. In §3, we consider the complex and quaternion
Stiefel manifolds SU(n)/SU(n— k) and Sp(n)/Sp(n — k), which are typical examples
of spaces satisfying (ext); and study some conditions that these manifolds are
p-regular (see Theorem 3.3).

The author wishes to thank Professor M. Sugawara for his many useful sug-
gestions.

§1. Preliminaries

In this paper, we assume that all spaces have base points *, all maps and
homotopies preserve base points, and all spaces have homotopy types of simply
connected (CW-)complexes.

Furthermore, we assume that p is a prime or p=0, and we use the following
terminologies and notations:

DEFINITION 1.1. A map f: X—Y is called a p-equivalence if the homo-
morphism

S H (X, Z,))— HW(Y; Z,) or f*:H¥Y;Z,)— H¥X;Z),)

of the (co)homology groups induced by f is isomorphic, where Z, is the cyclic
group of order p if p#0 and Z,=Q (the ring of rational numbers).

DEFINITION 1.2. A space X is called a mod p H-space if there exists a map u:
X x X—X such that u( , *), u(*, ): X—>X are p-equivalences, and u is called a
mod p multiplication of X.

DEerFINITION 1.3, A finite complex K is said to be p-universal if for any
map ¢: K—Y and any p-equivalence f: X— Y where X and Y are complexes of
finite type, there exist a map y: K—X and a p-equivalence h: K—K such that
oh~ fiy (~ means “is homotopic to’’), or equivalently (see [9; Th. 2.1]), if for
any map ¢': X'—>K and any p-equivalence f': X'— Y’ where X’ and Y’ are finite
complexes, there eixst a map y': Y'—K and a p-equivalence h’: K— K such that

W ~uf:

K. " .,k K_.¥_,
A L A
x—1 vy, x -y,
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Then the following are known:

(1.4) (i) ([9; Cor. 4.3]) Any finite co-H-space, e.g., any sphere, is p-universal
for any prime p or p=0.

(i) ([11; Th. 1.2]) Iff: X->Y is a 0-equivalence between finite complexes
and X is p-universal, then Y is also p-universal.

(iii) ([11; Th. 1.7]) Any finite mod p H-space is g-universal for any prime
q or q=0.

We also use the notion of the p-localization:

DEerFINITION 1.5. (1) A space X is said to be p-local if the homotopy group
n4(X) has a structure of Z,-module, where Z , ={b/aecQ|(a, p)=1} if p#0
and Z,,=0Q.

(2) For any space X, there exist a p-local space X ,, and a map ey ,: X=X,
uniquely up to homotopy satisfying the following condition: For any p-local
space K and any map f: X—K, there exists a map ¢: X, —K uniquely up to
homotopy such that gey ,~ f, ([4; II, Th. 1A]). (X(,), ex,,) or X, is called the
p-localization of X.

(3) By definition, for any map f: XY, there exists a map f,,: X =Y,
uniquely up to homotopy such that f, ey ,~ey ,f; and we have a map

lpy: [X, Y1 — [ Xy Yi)s il f1 = [fin]s

between homotopy sets. [, is said to be quasi-epic if for any map ¢: X ,,—
Y,), there exist a map f: X—Y and a homotopy equivalence h: Y, —Y,, such

(1.6) ([4; 11D (i) ex,,: X=X, is a p-equivalence.

(ii) f: X—Yisa p-equivalence if and only if f,, is a homotopy equivalence.

(i) (X = Xy Xy = Xoo) if p#gq;

(X% Y)p) = XX Yoy (XV Yy = X5y V Yy, (XA Y)p) 2 Xy A Yy,
where ~ means ‘“‘is naturally homotopy equivalent to”’.

(1.7) ([8; Th. 5.3]) Let X be a finite complex.

(i) X is p-universal if and only if 1,: [Y, X]-[Y,,), X,)] is quasi-epic
for any finite complex Y.

(i) If X is p-universal, then I, :[X, Y]=[X,), Y] is quasi-epic for
any complex Y of finite type.

By these properties and a theorem of Arkowitz and Curjel [2] we have the
following

ProrosiTiON 1.8.  For a finite complex X, the following (1)-(3) are
equivalent:
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(1) X is a mod p H-space.
(2) There exist an H-space Y and a p-equivalence f: X Y.
(3) The p-localization X ,) of X is an H-space.

PROOF. (1)=>(3): Let u: X x X—X be a mod p multiplication of X. Then
u( , *), u(*, ): X—X induce homotopy equivalences X, — X, by definition and
(1.6) (ii), and we denote their homotopy inverses by ¢,, ¢,: X,,— X, respecti-
vely. Then we see that X, is an H-space by a multiplication [: X, x X,
8, X gy X X () = (X X X)) 22> X .

(3)=(1): If X, is an H-space, then so is X ,~(X,)0) Hence Hopf’s
theorem shows that H*(X o); Q) is an exterior algebra with finitely many odd
dimensional generators. Therefore X is mod 0 H-space by [2], and X is p-
universal by (1.4) (iii). Thus (1.7) (i) implies that for a multiplication /:
(X x X)(p)~X(p) X X(py— X, of an H-space X ,), there are a map u: X x X—»X
and a homotopy equivalence h: X ,,— X, such that u,, ~hj. It is clear that u
is a mod p multiplication of X. ,

(2)<>(3): (2)implies that Y, is an H-space and f,,,: X,)— Y, is a homotopy
equivalence. Thus (2) implies (3). Conversely (3) implies (2) by taking Y=X,,
because ex ,: X=X, is a p-equivalence by (1.6) (i). q.e.d.

COROLLARY 1.9. Let X be a finite mod p H-space, and assume that H¥*(X)
has no p-torsion if p#0. Then H¥*(X; Z)) is an exterior algebra:

HXX; Z,)) = Ay (Xy,..., %), X, H"(X; Z)), n;: odd (1Zi<Kk).

ProoF. H*(X; Z,)=H*(X); Z,) by (1.6) (i), and X, is an H-space by
the above proposition. Thus we have the result by Hopf’s theorem. q.e.d.

COROLLARY 1.10. (i) Let X be a finite complex and A is a subcomplex of
X. If X is amod p H-space and A is a retract of X, then A is a mod p H-space.

(ii) For finite complexes X and Y, X x Y is a mod p H-space if and only if
X and Y are mod p H-spaces.

Proor. (i) By Proposition 1.8, X, is an H-space. Let r: X—A be a re-
traction and i: AcX be the inclusion. Consider the homotopy fibre F of r,:
XA Then by using the homotopy exact sequence of r, which is split by
i(p)» We see easily that the composition of

FX Ay 25 Xy x Xy =5 Xy (j: FEX )
is a homotopy equivalence, where /i is a multiplication of an H-space X ,,. Thus
Ay is an H-space and A is a mod p H-space by Proposition 1.8.
(i) The necessity follows from (i) and the sufficiency is clear by definition.
q.e.d.
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DEFINITION 1.11. A finite complex X is said to be p-regular if there exists
a p-equivalence of X to a product space S™ x ---x 8"« of ni-spheres S": for odd
n; 12igk), and n=(n,,..., n,) (where 3<n,<---<n)) is called the type of X.

By (1.4) (i), (1.7) and (1.6) (ii), we see easily the following

LEMMA 1.12. For a finite complex X, the following (1)-(3) are equivalent:
(1) There exists a p-equivalence of X to S"t x -+ x S"x.

(2) There exists a p-equivalence of S"t x --- x S"< to X.

(3) The p-localization X, is homotopy equivalent to S{p) X --- X S}.

Finally we notice the following proposition which is an immediate con-
sequence of Proposition 1.8 and

(1.13) (Adams [1]) S?"*! is a mod p H-space for any odd prime p or p=D0.

PROPOSITION 1.14. If p is an odd prime or p=0, then every p-regular space
is a mod p H-space.

§2. The main theorems

In this section, we assume that p is an odd prime or p=0, and
(2.1) a sequence n=(ng,..., n,) consists of odd integers with 3<n,<---<n,;
and consider the following conditions for a finite complex X :
(ext), H*(X; Z) has no p-torsion and H*(X ; Z,) is an exterior algebra:
HXX; Z,) = Az (Xy5..., %), x;€ H'(X; Z)).
(H), X is a mod p H-space satisfying (ext), (see Corollary 1.9).
(reg), X is a p-regular space of type (n,,..., n,) (see Definition 1.11).

Then (H), implies (ext),, and (reg),, implies (H), by Proposition 1.14. When
p=0, Arkowitz and Curjel [2] proved that (ext), implies (H), and (H), implies

(reg),.
Now our main theorems are stated as follows, where

(2.2) Pn(S") denotes the p-primary component of the homotopy group =, (S")
if p#£0 and °z/(S")=0.

THEOREM 2.3. (i) The above conditions (ext);,, (H), and (reg), for a finite
complex X are equivalent if n=(n,,..., n,) in (2.1) satisfies

(2.4) Pr,_(S") =0 for anyl<i<kand anyt=n; +---+n;, (15i,<---<i;=k).
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(ii) The above conditions (H), and (reg), for X are equivalent if
(2.5) Pr,_(8") =0 forany 1Zi<k andany t=n;(i<j<k).

THEOREM 2.6. Let p be an odd prime.
(i) If (2.4) does not hold, then there is a finite complex X which satisfies

(ext),, and does not satisfy (reg),.
(ii) If (2.5) does not hold and p=5, then there is a finite complex X which

satisfies (H), and does not satisfy (reg),.
(iii) If the condition (2.4) with s=2 does not hold, then there is a finite com-
plex X which satisfies (ext), and does not satisfy (H),.

As a corollary of Theorem 2.3, we have the following
CoROLLARY 2.7 (Kumpel [7]). If p is an odd prime and
m—n +4=2p
for n=(ny,..., n,) in (2.1), then (H), and (reg), are equivalent.

PrOOF. According to Serre [12; V, Prop. 4], ?rn,,.(S")=0 if n is odd and
i<2p—3. Thus n,—n,+4=2p implies (2.5), because n;—1—n;<2p—3 by (2.1).
q.e.d.

To prove Theorem 2.3 (i), we prepare the following lemma which may be
known.

LEMMA 2.8. Let Y be a finite complex such that H*(Y ; Z) has no p-torsion
if p is an odd prime. Let n be an odd integer =3, and assume that

HY(Y; Pr,_(S") =0 for any integer t=n+2.

Then for any element ye H'(Y; Z)), there is a map f: Y—-S" with y=f*(v)
for some ve H"(S"; Z ).

ProOOF. When p is an odd prime, the mod p reduction H¥(Y)->H*(Y; Z)) is
epic since H*(Y) has no p-torsion by assumption. Thus we take an element
v € H'(Y) whose mod p reduction is a given element y. When p=0, we take
y € H*(Y) such that i (§)=qy in H(Y; Z,) for some q#0 in Q, where i: Zc
Q=2Z, is the inclusion.

Let Y! be the I-skelton of Y and ¢;: Y' <Y be the inclusion. Then the
projection r: Y"—Y"/Y""!1= v ;5% (§%=S") induces the epimorphism

r*: @ H(S") = HY(Y"|Y""Y) —> H(Y™),

and ¢}(J)=r*(3; ;) for some ii;€ H"(S%). For a generator ii € H"(S"), take
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maps ¢;: S"—S" with ¢F(#)=1;, and set
fo=(V;p)r: Y — v ;S" — S".
Then we have ¢}(7)=f¥(i1). Consider the cofibre sequence
VSp &, Ym ., Yt (Sp=S", ¢ s the attaching map)
and the exact sequence
@ HY(S}) <& HY(Y™) & H*(Y"*1) 0.

Then fX(@)=c¥{j)=c*(c¥, (§)) and hence (f,£)*(ii))=0 which shows that
[~ v, Si—>S". Thus there is a map

fn+1 Y"1 — S with fn+l‘ =fn'
Since ¢* is monic, f¥, (@) =c¢¥, () in H*(Y"*1). Therefore

(*) tiea(y) = fav() in HY(Y"'1: Z)

where u e H"(S"; Z,) is the mod p reduction of & when p#0 and u=(1/q)i,(i)
when p=0.

Now consider the map e: S"—S{,, of the p-localization. Then the ob-
structions for extending ef,,,: Y"*1—>S¢, to Y are in

HI(Y[Y™ 1 m_y(SE)) (12n+2),

where m,_,(S7,)=n,_ (SR Z, =Pr,_(S") (t2n+2) (cf. [4;1I, Th. 1B]).
Thus this group is 0 if t=n+2, since p is an odd prime or 0. This group is also 0
if t>n+2 by the assumption, because the projection r’': Y—Y/Y"*! induces the
isomorphism

¥ H(Y/ Y+ P, ((S™) — HY(Y; Pr,_(S™)) (t>n+2).
Thus

(*%) ef,sy: Y"*'— So ) has an extension f:Y— S7,,.

For this map f: Y—S7,,, there are a map f: Y—S" and a homotopy equi-
valence h: S7,,—S{,, such that f, ~ hf,, by (1.7) (i), because S" is p-universal
by (1.4) (i). Therefore ef~ fi,jey.,~hfipey ,~hf. Thisand (x*) show that the
diagram

* .
HY(S"; Z,) L5 HY(Y; 2,) <21 Ho(Y; Z)

H"(S?p); Zp)"i’ H"(S?p)’ ) __’ H"(Sn; Zp)
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is commutative, where h*, e* and ¢},, are isomorphic. Set v=e*h* le* !(u)e
H"(S"; Z,). Then y=f*(v) as desired, because ¢}, f*(v)=fr,(u)=¢F,(y) by
the above diagram and (*). g.e.d.

ProOF OF THEOREM 2.3. (i) It is sufficient to prove that (ext), implies (reg),.
Assume that X satisfies (ext), and (2.4) holds for n=(n,,..., n;). Then

H¥X; Z,) = A(xyy.., x), X, € H"(X; Z,) (1Sigk),

and HY(X; Pn,_(S"))=H'(X; Z)®*n,_,(S")=0 for any 1<i<k and any
t=n;+2. Therefore Lemma 2.8 shows that there are maps f;: X—S": and ele-
ments v; € H"((S":; Z,) such that x;=f¥*(v;) for ISi<k. Consider the map

frX o 8mxe xS, f(x) = (fi(x),... ilx)) (x€X).

Then f is clearly a p-equivalence and (reg), holds.

(i) We prove (ii) by the same way as the proof of Kumpel [7]. Assume
that X satisfies (H), and (2.5) holds. Let J, be the subalgebra of H¥*(X; Z,)=
A(xy,..., x,) (x;€ H"(X ; Z,)) generated by {x;|n;<n}. Then we can prove that
X satisfies (reg), by constructing maps

(%) fui Sy =Tl S" — X suchthat f¥|J,:J, = H¥S,; Z))

by induction on n; in fact, f, : S": x .-+ x S"*— X is a p-equivalence and X satisfies
(reg), by Lemma 1.12.

Take fo=x*: So(=#*)— X, and assume that f, in () is constructed. If n+1¢
{n(..., n;}, then we may take f,,,=f,. Assume n+1e{n,,...,n}. Then
n_y<n+l=nm=--=n;_;<n; for some i<j. Regarding f,: S"—X as the
inclusion, consider the commutative diagram

@1 1
o (S,) ®Z, S ®1 1(X)®Z, 1 Te(X, S)®Z,— -

‘[h J'/z lh

..._,H*(S";zp)_fn_*_, Hy(X; Z,) —®* , H,(X, Sy Z)—,

where ¢ is the natural inclusion and h's are the mod p Hurewitz maps. Then
Hu(X, S,; Z,)=0 for *<n by (%), and h: n,,,(X, S,)®Z,~H,. (X, S,; Z)) is
an isomorphism. On the other hand, S,=]T1,,<, S"=1I1,,<, S" since n is even,
and 7,(S,)®Z,= @, <,1,(S")®Z,=0 by the assumption (2.5). Thus the
cokernel of ¢y : 7, (X)—n,,,(X, S,) is a torsion group whose order is prime to
p, and ¢,®1: 7, (X)®Z,—n,, (X, S,)®Z, is epic. Therefore we have
elements g, € 7, ,(X) such that

Pxh(g,®1) = h(¢x®1) (9,®1) = ¢u(u) (ist=j-1),
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where u, e H,,,(X; Z,) is the dual element of x,e H**(X; Z)) (ist<j) with
respect to the basis {x; ---x;, | k;<---<k;} of H¥(X; Z,). Here h(g,®1) and u,
are primitive elements. Also H,,(S,; Z,) has no non-zero primitive elements,
because any non-zero element in H"*!(S,; Z,) is decomposable. Further
Juw: Hyi1(Sy; Z,)-H,,(X; Z,) is monic, because f¥: H¥(X; Z,)-»H*(S,; Z,)
is epic by (). Thus the above equality and the lower exact sequence in the above
diagram show that

h(g.®1) =u, in H,.(X;Z) (istzj-1).
Therefore by the definition of u,, g,: S"*=S8"*1- X satisfies that
(**) gi(x,) is a generator of H**1(S"; Z)) (ist<j—1).
Now, by using a multiplication p of a mod p H-space X, define a map
29 w:Xx--xX(lcopies)—> X by pu,=p and = p(y_,x1),
and put
Jar1 = Bjoir 1t X giX X g;_1): Spyq = Sy xSmix o xS — X,

Then by (*) and (**), we see immediately that f¥,,|J, 4 : Jur 12> H*(Sy41; Z))
is an isomorphism, as desired. q.e.d.

Thus we have proved Theorem 2.3 completely.
To prove Theorem 2.6, we use the following

LEMMA 2.10 ([19; 1.1.6]). Let F(A,,..., A;) be the fat wedge of complexes
Aq,..., Ay, ie.,

F(Ai,..., A) = {(ay,..., ap) € A; X --- X A, | a; = * for some i} .

Then ZF(A,,..., Ay) is a retract of X(A, X .- x A,), where X denotes the reduced
suspension.

In the following, the product space and the fat wedge of spheres are denoted
simply by

S(n) = S*tx-..xS" and F(mn)= F(S™,...,S") for n = (ng...,n),
respectively. Then we have a cell decomposition
(2.11)  S(m) = (*Uem)x - x(xUe™) = F(m)U el (jn|=n,+-+ny),
where the attaching map &: S!!=1— F(n) is the Whitehead product of higher order.

LEMMA 2.12. Assume that a countable complex X is an H-space. Then
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f(©) =0inmn, _(X) for any map f: F(n) —> X,
where F(n), |n| and & are the ones in (2.11).

ProOOF. Put S=S(n) and F=F(n) and let r: ZS—ZXF be the retraction by
Lemma 2.10, and g: S—QXX (Q denotes the loop space) be the adjoint map of
(Zf)r: ZS—>XF—->XX. Then g|F=c¢f: F->QXX (¢: X<QXX). On the other
hand, according to James [5; 1.8], there is a retraction q: QXX —X by the as-
sumption. Thus we have a map

f=qg9:S— QXX — X with f|F=gqcf=f.
Therefore f,(£)=0 by the cell decomposition in (2.11). q.e.d.

Now we use the following notations:

(2.13) (1) For any sequence n=(n,,..., n;) of (2.1), the set of finite complexes
X satisfying the condition (ext),, (H), or (reg), will be denoted by ext(n), H(n) or
reg(n), respectively.

(2) For any sequence nmn=(n,,..., n;), we set |[n|=n,+---+n,. For any
sequences n and m, n U m denotes the sequence consisting of integers in n or m;
and for a subsequence m of n, n—m denotes the complementary subsequence of
minn.

LEMMA 2.14. For any sequences n and m of (2.1), a finite complex X sati-
sfies (ext),, (H), or (reg), if and only if X x S(m) satisfies (ext),ym>» (H)pum O
(reg)num, respectively, where S(m) is the product space of the spheres in (2.11).

PrOOF. By the definition of (ext),, (H), or (reg),, we see easily the lemma
by Corollary 1.10 (ii) and (1.13). q.e.d.

PROPOSITION 2.15. For an odd prime p and a sequence n=(n,..., n;) of
(2.1), the following hold:

(i) Ifk=2and Pr|, - (S")#0 for some i, then ext (m)2H(n).

(ii) Ifk=2and Pm,,_(S")#0, then ext(n)R2reg(n). If p=5 in addition,
then H(n)2reg(n).

(i) If k=23 and Pny, _,,-1(S")#0 for some i, then ext(n)2H(n).

Before proving this proposition, we prove Theorem 2.6.

PROOF OF THEOREM 2.6. (iii) Assume that (2.4) with s=2 does not hold for
n=(n,,..., n,). Then we have a subsequence m=(m,,..., m;) of n such that
s22 and Pr,, - (8")#0 for some i.

In case of n;=m, for some t, Proposition 2.15(i) shows that there is a finite
complex Yeext(m)—H(@n). Then X=Yx S(n—m)eext(n)—H(n) as desired,
by Lemma 2.14.
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In case of n;#m, for any t, consider the subsequence m’'=mU (n;) of n.
Then Proposition 2.15 (iii) shows that there is Yeext(m')—H(m'), and
Yx S(n—m') e ext (n)— H(n).

(i) Assume that (2.4) does not hold for n=(n,,..., n,). Then we have a
subsequence m=(m,,..., my) of n such that rm, _,(S")#0 for some i. If
s22, then ext(n)z2H(m)>reg(n) by (iii). Assume s=1. Then m,=n;>n,
for some j and ?m, _(S")#0. Therefore the first half of Proposition 2.15 (ii)
shows that there is Yeext(m')—reg(m') where m'=(n;, n;). Thus X=Yx
S(n—m’') e ext(n) —reg(n) by Lemma 2.14.

(ii) Assume that p=5 and (2.5) does not hold for n=(n,,..., n,). Then
Pm,, - 1(S")#0 for some n;<n;. Thus the second half of Proposition 2.15 (ii)
shows that there is YeH(m)—reg(m) where m=(n, n;). Hence X=7Yx
S(n—m)e H(n)—reg(n) by Lemma 2.14. g.e.d.

PROOF OF PROPOSITION 2.15. (i) Let aen, - (5" be an element of order
p by the assumption. Consider the fat wedge F(n)=F(S",..., S"*) in (2.11)
and the inclusion ¢: S"ic F(n). Then ¢,: n,(S")>n.(F(n)) is monic and the
order of f=c¢,(a) € n4(F(n)) is also p. Consider the diagram

Sinl=t %, F(n) — S(n) = F(n) Uy el

R

Sinl=1 22, F(n) — Y

‘| |
Sin=1818 pmy 2, ¥ = F(n) Uespel®l

F(n) Ups‘ e"‘l

of cofiber sequences, where ¢ is the map in (2.11) and 0 is a map of degree p.
Since &4(0)=pé and (E+P)(0)=p(é+PB)=p&, there exist maps ¢: Y—>S(n)
and : Y- X such that the above diagram is homotopy commutative. There-
fore ¢ and Y are 0-equivalences by the five lemma, since sois . Thus H*(X; Q)=
H*(Y; Q)= H*(S(n); Q). Furthermore dim H*(S(n); Q) is equal to the number
of cells of S(n) in (2.11), and the latter is equal to that of X by definition. There-
fore H¥*(X; Z) is torsion free. Consider

H*S(m); Z) 25 HxY; Z) Y5 Hxx: 7).

Then ¢* and y* are isomorphisms if *<|n|. If *=|n|, then these groups are
Z, and ¢* and y* send generators to p times of generators. Hence we see
that H¥(X; Z,)=H*(S(n); Z,), and H*(X; Z,)=A(x,,..., x,) (x;€ H"(X; Z))).
Thus X eext(m). Furthermore the induced homomorphism A%: H¥(X; Z,)—
H*(S"i; Z,) of the restriction Z;=4|S": §"i—»X of . in the above diagram
satisfies A¥(x;)#0 (1=j=<k). Therefore, if X is a mod p H-space with multi-
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plication u, then
(2.16)  p(Ay x - x2): S()— X x --- x X (k copies) £, X (y, is the map in (2.9))

is a p-equivalence, and there is a p-equivalence f: X—S(n) by Lemma 2.12.
Consider the compositions

g: Fin) =% X L s(n) P sni €, Sn, and  ge: S™ < F(n) — Sy,

Then g¢ is also a p-equivalence. On the other hand, g,(¢)=0 by Lemma 2.12
and A,(¢+B)=0 by the definition of .. Thus g4(8)=0 and (g¢)4(x)=g«(B)=0.
This contradicts that the order of a is p. Therefore X & H (n).

(ii) The first half: For [ =2, the induced homomorphism

Pu: T(SOQID) — me(S2-1)  (p: SO(21) — S?!-1 is the projection)

is epic if =2 or 4 and Im p,=2m,(S?~') otherwise by [14; 23.4]. Let
a€m,,_1(S") be an element of order p(#2) by the assumption. Then we can
take fem,,_,(SO(n, + 1)) such that p,(f)=2«, and we have the n,-sphere bundle
X over S”: with characteristic class 8. Since n,>n, +1, it is clear that X e ext(n).
On the other hand, consider the homotopy exact sequence n,,z(S"l)—a> Ty, —1(S™)—
T,,-1(X)—0. Then Im 0 is generated by 2a, and ?n,,,_ (X)="(n,,-,(S")/Im 0) £
Pr,,—1(S™) since the order of 2« is p. Thus X &reg(n) as desired.

The second half: The result is immediate consequence of Harper’s result
([3; p. 554]) that for any aem,,_,(S™), there is a mod p H-space Y* such that
Y* is p-equivalent to S"1\UJ,e"2\Je"*"2 (p=5). If we take a to be an element
of order p by assumption, then °m,,_,(Y*)=Pm,, _,(S" \U,e")#EPm,,_,(S")
and we see that Y e H (r) —reg(n).

(iii) Let aem,, -,(5") be an element of order p by the assumption, where
m=n—(n;). Then by the same way as the proof of the first half of (ii), we have
the sphere bundle

S Y -Z, Siml  with characteristic class BE M| -1 (SO(n;+1)),

where p,(f)=2a. Consider the pull-back diagram

sncx—Y L,y sm

“| B

S(m) ¥, §im|

where ¥ is the map collapsing the fat wedge F(m) to *. Then the induced homo-
morphism ¢'*: H¥(X ; Z,)-»H*(S"; Z,) is epic, because Ye'=¢ and ¢* is epic.
Thus S": is totally non homologous to zero in X, and we see that H¥*(X; Z,)=
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A(xy,..., x,) where x;=n"*(u;) if j#i and x; is an element with ¢"*(x;)=u; (u; is a
generator of H"(S"; Z))) (cf. [17; 15.47]). Therefore X €ext(n).

Now consider a lifting ¢: e!™!—» X of the characteristic map ¢: el™!—S(m)
of the |ml-cell of S(m) in (2.11) with ¢|SImI=1=¢: SImI=1 5 F(m). Then &=
$|S!™1-1 is a lifting of &, and &= pr,& represents py(B)=20 € m|,, -,(S"?) by the
constructions. Therefore X has a cell decomposition

X = F(m)x S"\J (elm x S"t) = F(m) X 8"t \U g, 54 (e!™ x %) U (el™ x e"1).

Assume that X is a mod p H-space with multiplication u. Then the restriction
lj=A| 8" (4;=¢") of the inclusion A: F(m)x S"ic X and p define a p-equivalence
S(n)— X by (2.16). Thus there is a p-equivalence f: X—>S(r) by Lemma 1.12.
Consider the composition

g: Fm)x St —* X L5 S(m) P55 smi % sy

Then g|S" is also a p-equivalence. On the other hand, g,(§)=0 by Lemma

2.12, and A4(€+20)=0 by the above cell decomposition of X. Thus 2g,(a)=0

and (g | S")4(x)=0. This is a contradiction and X is not a mod p H-space.
q.e.d.

Thus Theorem 2.6 is proved completely.
In the conclusion of this section, we notice the following theorem which
gives a sufficient condition that a complex in ext(n) belongs to reg(rn).

THEOREM 2.17. For n=(n,,..., n,) of (2.1), let X eext(n), i.e.,
HYX; Z,) = A(xy,.., ), x;€ H'(X; Z,),
and suppose that there is a subsequence m of n satisfying

(2.18) Pmp,. -(S")=0 for any i and any subsequence n’ of n with n;&m and
n+2p-2<in|.

Then X ereg(n) if X satisfies the following two conditions:

(2.19) There exists a map f: X—S(m) such that f*: H¥(S(m); Zp)—*H*(X; Z)
sends a generator uje H*(S"i; Z,) to x; for any n;em.

(2.20) P'x;=0 in H 22X, Z,) forany iwithn; & m.
Proof. Under the conditions (2.20) and (2.18), we prove the following

(2.21) For any i with n;&m, there is a map g;: X —»S" such that g¥(u;)=x; for
g¥: HX(S™; Z,)»H*(X; Z,) and a generator u;€ H"{(S"; Z)).

Then these maps g; together with f in the condition (2.19) define a p-equivalence
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f>< I—Inien—m gi: X — S(m)x S(n_m) = S(n),

and the theorem is proved.

To prove (2.21), we take i with n;&m and set n=n;, g=n;+2p—3 and x=x;
for the simplicity. Since ?n,(S")=0 for m<gq by [12; V, Prop. 4], we can
construct

g: X1 — S, with g*u) = ¢*(x)
(u is a generator of H*(S¢,,; Z,) = H"(S"; Z)))
by the same way as the proof of Lemma 2.8, where ¢: X< X.

Now take any (g +1)-cell of X with attaching map 5: S7>X4%. Then, for
gn: S9-S¢,,, we have a homotopy commutative diagram

e e

51— 51, s
] K
n —_— n h n n

S(p) S(p)—’ S(p) < S

for some homotopy equivalence h and some map v, where e’s are the
p-localizations. Every horizontal map in this diagram is a p-equivalence, and
hence '

H*(C,,; Z,) = H¥C,; Z,) (C, is the mapping cone of a).
It is well known that 2'=0 on H*(C,; Z)) if and only if ven,(S") is 0 in ?r(S")
(e.g., cf. [16; 5.2]). Thus we see that

(*) 2'=0o0n H¥C,,: Z,) if and only if gn=0 in Pr(S7,)=n,(S?,).

Consider the induced homomorphisms

H\(C,,; Z,) L5 H1'(C,; Z,) < Hei(xe1; Z) K2 Hevi(x; Z,),

an»

where §: C,—C,, is the map induced by g, and ¢’ and ¢” are the inclusions.
Then §* is clearly isomorphic, and (2.20) and the equality g*(u)=¢*(x) show that
2'=0o0n H¥C,,; Z,). Thus gn=0 by (*); and we have an extension

gt X1 — Sy, of g with g'™*(u) = ¢*x).

Now, by the same way as the proof of Lemma 2.8 by using the condition (2.18),
we can get a map

g: X — S" with G*u) = x.

Thus (2.21) is proved. q.e.d.
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§3. The p-regularity of the Stiefel manifolds

In this section, we study the p-regularity (p: odd prime) of the complex
(resp. quaternion) Stiefel manifold

W,k = SU(n)/SU(n—k) (resp. Sp(n)/Sp(n—k)),

which is a typical example of a complex satisfying (ext), in §2 for n=
Qd(n—k+1)—1,...,2dn—1), in fact,

3.1 H*(W, s Zp) = A(wzd(n—kﬂ)—u---, Wign-1), degw; = j,
where d=1 (resp. 2), (cf. [16; 1V, 4.7]). We notice that
Win-1 = SU(n) (resp. Sp(n))

is p-regular if and only if p=dn by [13;V, Prop. 7]. Furthermore, W, =
S2d4n=1 is p-regular.
The main result of this section is the following theorem, where

3.2) r(iy =dm—i+1), s(i)=i{r()+r(1)—1} = u(i, i),
u(i, j) = Xiz8 {2r(i=D—1} = j{r()+r(i—j+1)—1} .
THEOREM 3.3. Let 2£k<n—1 and consider the condition
(3.4) dk-1D+1<p,ordlk—1)+1=pand n=0modp (d=1 (reps.2)).

(i) If (3.4) does not hold, then the complex (resp. quaternion) Stiefel
manifold W, , is not p-regular.

(ii) Under the condition (3.4), W, is p-regular if the following condition
(1) or (2) holds:

(1) dnZp, or (s(k)+2)/r(k)<p (e.g., p=2k+1 and dn=dk?* —k—d+?2).

(2) dn>p, (s(k)+2)/r(k)>p and

P, (S*WD-1y =0 forany t=2da+u(i,j) = 2r(i)+2p-2,
where i, j and a are integers with2< j<i<k,0=Za < j(i—j) and (s(i)+2)/r(i)> p.

By using this theorem, we shall give some p-regular Stiefel manifolds in
Examples 3.9, 3.11 and 3.12 below.

To prove Theorem 3.3, we prepare some results. The following proposition
is well known and is verified easily by the comparison theorem of Zeeman [20;
Th. 2].

PROPOSITION 3.5. Suppose that a complex X of finite type satisfies
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H*X:Z) = A(u,|ac A) ® Z,[v,|be B] for * <N,

where the degrees of u, and v, are odd and even, respectively, and Z [ ] denotes
the polynomial algebra. Then

H¥QX; Z,) = A(ovy|be B) ® Z [ou,|ae A]
for * < min{N -2, pdeg(ou,)—1|ac A},

where o denotes the cohomology suspension.
The following theorem is a generalization of Stasheff’s result [14; Prop. 4]:

THEOREM 3.6. Let X and Y be complexes and f: X—>Q?'Y be a map for
some 121, and suppose that

HYX; Z,) = A(x,,...,x,), HXY;Z,)) = A(y,..., y,)

and f*(6*y)=x; for any 1Zi<r, where n,=degx;=degy;,—2l is odd and
n1<'“§nr' If

p2 (4+2N)/(1+n;) (N=ZXi.n),
then X is a mod p H-space.

ProoF. By the assumption on Y and by the repeated use of the above
proposition, we see that

H¥Q'Y; Z)) = A(6?'y,,...,0%'y,)  for * < p(n;+1)—3.

Therefore the homotopy fibre F of f,: X,)=(2*'Y), is (p(n,+1)—5)-
connected. Furthermore F is homotopy eqivalent to the p-localization of the
homotopy fibre of f ([4; 11, 1.10]), and hence n,(F) is p-local.

Consider the homotopy commutative diagram

|4 f
Xy vV Xp) > Xip) - (2%'Y),

Jf L‘u»)

X X Xp) UTLIITN (Q2Y) () X (QXY),, = (XY x Q2Y),,),

where ¢ is the inclusion, F is the folding map and u is the loop multiplication of
Q2'Y. Then the obstruction for extending F to a multiplication X, x X ,—

X (p are in
(%) H*(X(p) A Xpys Ta—1(F)).

This is 0 for *< p(n, +1)—4, since F is (p(n, +1)—5)-connected. On the other
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hand, because H¥(X,); £Z,)=H*(X; Z,)= A(xy,..., x,), HX,); Z) (*>N) is
a torsion group whose order is prime to p and hence so is H*(X,,A X(,); £)
(*>2N). Thus the group of (%) is 0 for *> p(n, + 1)—4 by the universal coeffi-
cient theorem, since m,(F) is p-local and p(n;+1)—4>=2N by the assumption.
Therefore X, is an H-space and X is a mod p H-space by Proposition 1.8.

q.e.d.

Now we can prove Theorem 3.3 by using the following

LemMA 3.7. (i) (James [6; Th. 1.4]) There exists a positive integer m> k such
that the projection n: W, ,—W, ,=S2m~1 has a cross-section 0: S?4m~1 W, ..
(i) Let J: W, ,—Q™W, ., be the adjoint map of the composition of

0x1 h
Sde A Wn.k = Sde—l*Wn’k m,k* Wn,k Wm+n,k’
where * denotes the join and h is the intrinsic join due to James. Then
¥ W4 1) = Or44-2am-1 Sfor any m+n—k+1st<m+n.

PrOOF OF THEOREM 3.3. (i) According to [10; Th. 1.1], (3.4) is equivalent to
the condition that 2'=0 on H*(W, ,; Z,). Itis clear that 2!=0 on H*(X; Z)
for any p-regular space X. Thus we see (i).

(i) We prove (ii) for W,,=SU(n)/SU(n—k) and d=1. The result for
Sp(n)/Sp(n—k) and d=2 can be proved similarly.

(1) The case n=p: In this case, there is a p-equivalence ¢: S3x S5 x--- x
S2n=15SU(n) by Corollary 2.7 and (3.1). Let n: SU(n)— W, , be the projection
and put

f= ”(4"52("_k)+1 X eee X SZn-l): SZ(n—k)+l X eee X S20-1 ke

Then we see easily that fis p-equivalence.

The case (s(k)+2)/r(k) < p: Since p=(s(k)+2)/r(k)={k(Qn—k)+2}/(n—k+1)
by (3.2), we can apply Theorem 3.6 to J in Lemma 3.7 (ii) and we see that W, ,
isamod p H-space. Thus W, , is p-regular by Corollary 2.7 becauae p =(s(k)+2)/
r(k)=k+1.

(2) Let k'(<k) be the maximum number with (s(k’)+2)/r(k’)<p. Then
(3.4) holds also for k=k’. Thus W,, is p-regular by (1). Assume inductively
that W, ; is p-regular for k'<i<k, and consider X =W, ;,, and the composition

f=¢n: X =W, —> W, — S(m) (m=Q2n—2i+1, 2n=2i+3,..., 2n—1))

of the projection m and a p-equivalence ¢. Then n in Theorem 2.17 is
(2n—2i—1)Um, and (2.19) holds clearly. Further (2.20) holds by [10; Th. 1.1]
since (3.4) holds for k=i+1. The condition (2.18) is contained in the last con-
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dition in (2). Thus X=W, ., is p-regular by Theorem 2.17, and so is W, , by
the induction. q.e.d.

PrOOF OF LEMMA 3.7. We prove (ii) by using (i) which is proved in [6;

Th. 1.4].
We regard W,, as the set of all normal systems (4,,..., 4,) of vectors Z; in
Fe(F is the complex or quaternion field) with (4, 1;)=4;;. For any a>b>c

and I, let

(3.8) e Wop— Worypey and m W, — W,

be the inclusion and the projection given by &(4,,..., 4,) =(A15.-es Apy €4t 1re-es €as))
(e; is the i-th unit vector in F**!) and n(2,,..., 2,)=(A.41,..-» 4). The intrinsic
join h: W, «W, ,—»W, ., is defined by

(%) h((Ays...s Ap)s (yseees f1p)y, ) =(Vy,.o0y ), vj=2; cOS(7t[2) + p; sin (mt/2) e F™ x
Fa=Fm*a for (Ay,..., 2) € Wy, (15, fty) € W, pand 021,

Then the diagram

~r*1 1*5

W, 6*Wa,p < - m, b+ 1%Wa b > W b1 1%*Wast, b1
(%) lh lh
€
Wm+a,b Wm+a+l,b+1

is homotopy commutative. In fact, ((Zy,..., 2o+ 1), (Uyseees tp), VE Wy %W,
is mapped to

(Vi5e-» vy V) (v; is the onein (x) and v= 2,; cos(nt/2)+ e, sin(mt/2))
by h(1xg), and to (vy,..., Vp, €psqa+1) DY eh(mx1)(p*1) where ¢: W, i1 =W, 54,y
is the map given by ¢(A,..., Ay, Ao+ 1)=ps+ 15 A1se-es Ap). Therefore h(lxe)~

eh(nx1)(¢p*1)~eh(n*1) and (**) is homotopy commutative, because ¢ ~ 1.
Now let §: S2¢m~1 W, , be a cross section of n: W, ,—» W, ;=S2¢""1 given

in (i) and put

0, = n0: S2m=1 — W, , — W, forany 1Zb<k,

which is a cross section of n: W, ,— W, ;=S52¢"-1,  Furthermore let J,: W, ,—
Q24mWw, . . be the adjoint map of the composition of

0,%1 h
S2m A W, =S 21w, P e ew WL, (b—a=n—k).

Then by the homotopy commutativity of (**), we have the homotopy commutative
diagram
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& T
> > Q2d(a+1)-1
Wa,b a+1,b+1 S (a

lj,, lJ,,“ 111

Qumpy P rmpy L 2T g2amgad(mtat1)-1
m+ta, m+a+1, *

By noticing that J, is the adjoint map of 1: S2dm A S2d(a+1)=1_, §2d(m+a+1)-1 gpd
by the induction on b, we see easily that

J:: H*(QdeWm+a,b; Zp)—>H*(Wa,b;Zp) (b_a=n_k)

satisfies J3(629"w, 4 - 1) = W34t — 24m+1 fOr m+a—b+1(=m+n—k+1)<t<m+a.
Thus J=J, satisfies the desired equality. q.e.d.

Thus Theorem 3.3 is proved completely.
In the rest of this section, we give some examples satisfying the conditions
of Theorem 3.3.

EXAMPLE 3.9. Assume that dn>p, (s(k)+2)/r(k)>p, s(k—1)<2p?>—4 and
(3.4). Then the condition (2) in (ii) of Theorem 3.3 holds, if one of the following
(1)~(3) holds for any integers i and j with 2< j<i<k and (s(i)+2)/r(i)> p:

(1) b(i, j)<2(p—1) when j=1 mod 2d.

(2) b(i, j)<min {p(p—1), r(i)(p—1)} when j=2 mod 2d.

(3) a(i, )#0 mod p—1 and [a(i, )/(p—1]1=[b(i, )/(p—1)] when j=1,2
mod 2d, where a(i, j)=[u(i, j)/2]—r(i)+ 1, b(i, j)=[s(j)/2]—r(i)+1.

ProOF. For any i and j with 2< j<i<k and (s(i)+2)/r(i)> p, put
t =2da+u(i,j) and | =1t-2r(i) where 0=a Zj(i—}j).

Then u(i, j)<t 22dj(i — j)+u(i, j)=s(j) by (3.2) and
(*) Iy =u(i, j)=2dr(i) =1 £ 1, = s(j)—2dr(i), 1—1, =0 mod 2d.

Furthermore 11, <s(k)—2dr(k)=s(k—1)—1<2p?—5 by the assumption. On
the other hand, by a result of Toda [18; Th. 7.1],

(3.10) P, (S24r(D-1) = 0 (I=t—2dr(i) < 2p*-5),

if 1 is not equal to 2c(p—1)—1 (1=c=p), 2¢(p—1)—2 (dr(i))<c<p) or 2p(p—1)
-2.

Assume that j=1 mod2d. Then [ is odd, and (1) implies that I, <4(p—1)—1.
Further (3) implies that 2c(p—1)— 1<, <2(c+1)(p—1)—1 for c=[a(i,j)/
(p—1)]. Thus (3.10) holds for t=2dr(i)+2p—2 by (*). Assume that j=2
mod 2d. Then [ is even, and (2) implies that I, =2b(i, j)—2<min {2p(p—1)—2,
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2dr(i)(p—1)—2}. Further (3) implies 2c(p—1)—2<1, =1, <2(c+D(p—1)-2
for c=[ali, j)/(p—1)]. Thus (3.10) holds by (*). Assume that d=2 and j=0, 3
mod4. Then I—1,=0mod 4 and [,=0, 1 mod 4, and (3.10) holds. q.e.d.

ExaMPpLE 3.11. (i) SU(n)/SU(n—k) (2<kZ6) is p-regular in the following

cases:

(k=2) p=S5,0or p=3and n=4,5,7.

(k=3) p=7,0r p=5and n=5,6, 8, 10, 12.

(k=4) pz=11,or p=7and n=6,17,9, 12, 15.

(k=5) p=13,orp=11and7<n<11,n=14,19, n=221,0or p=7 and n=1.
(k=6) p=17,0or p=13and 8<n<13,n=31,0r p=11and 8<n<1l.

(ii) Sp(n)/Sp(n—k) (2=<k<6) is p-regular in the following cases:

(k=2) p=S5,0r p=3and n=6,9.

(k=3) p=7,0r p=5and n=5, 15, 20, 25.

(k=4) p=13,orp=11and n=7.

(k=5) p=17,0or p=13and n=11, or p=11 and n223.
(k=6) p=19,0r p=17and n=8,n=11, or p=13 and n=33.

This example follows from Theorem 3.3 by using Example 3.9. Furthermore,

by -using a result of Toda [18] on Pr,,(S") (n: odd) for 2p2—5<1<2(p®+p)

(p—

(1]
[2]
[31
[4]

[51
[61]

1)—5, we see the following
ExAMPLE 3.12. (i) SU(n)/SU(n—k) is also p-regular in the following cases:

(k=2) p=3and 8<n=<18 with n#11, 14, 16.
(k=3) p=5andniseven with 14<n<58, n#20, 22, 34, 38, 40, 44, 48.

(ii) Sp(n)/Sp(n—k) is also p-regular in the following cases:

(k=2) p=3and n=6,9. (k=3) p=S5and n=15, 20, 25.
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