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§ 1. Introduction

In his paper [20], H. Toda introduced the elements βs, Igis^p-l, in the

p-primary component of the stable homotopy of spheres for an odd prime p, and

L. Smith [18] extended them to an infinite family {βs}s^l5 in case p^5. Later,
with the development and plentiful knowledge of the Adams-Novikov spectral
sequence based on the Brown-Peterson homology BP such as [5], it is clarified

that these jS-elements are detected in Extfjp^pGBP*, BP*), the second line of the
E2-term of the spectral sequence, which consists of an extensive family of elements

βs/r,ί with suitable triple indices including βs = βs/ιfι (cf. (4.1)). The construction
of the homotopy elements βs is immediate from the one of the 4-cell complex
called F(l) and appropriate stable self-maps of V(\) [18], and in this way, L.
Smith [19], R. Zahler [23] and the first author [9], [11], [12] constructed homo-
topy elements which correspond with the generalized /Γs in Ext2 including

βsp/r (s ̂  1, 1 ̂  r < p), βsp/p (s ̂  2), βsp2/pf2 (s ̂  2),

where βsp/rίί—βsp/r and some of these were called ε's and p's in earlier literatures
(see (2.4), (2.5)).

The purpose of this paper is to study the products βsβtp/r with rgp and

βsβtp2/pί2 in πj, the stable homotopy ring of spheres, in case p^5. In particular,
we shall study whether they are trivial or not. In this direction, H. Toda [21]

obtained a formula of βsβt extending the earlier work of N. Yamamoto [22]

and including the relation βsβtp = Q which is the case r= 1 of ours.

THEOREM A. Let p be a prime ^5, and r, s, t be positive integers with

r^p and r^p—1 ift=l. Then the element βsβtp/r in πj is trivial, if one of the

following holds:

(i) r^p-2.

(ii) r = p — 1 and s φ — 1 mod p.
(iiϊ) r = p — 1, p and t = 0 mod p.

The next cases we have to investigate are (iv) r = p— 1, s = — 1 mod p and

ί^Omodp; and (v) r = p and f^Omodp. For the case (iv), we obtain a weak
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result that the products are trivial in the E2-term Ext4 (§6). In contrast with

these cases, the products are shown to be nontrivial for the case (v) with a minor
restriction of 5, by investigating their images in the cohomology of the Morava

stabilizer algebra, in a similar method as in [17].

THEOREM B. Let p be a prime ^5. // 5^0, 1 modp and tφQmodp with

t^.2, then the elements βsβtp/p and βsβtp2/p,2 in π| are nontrivial.

In §2, we prepare some lemmas by using the relations in the track groups

[M, M]* and [F(l), F(l)]*, where M is the modp Moore spectrum and F(l)

is the spectrum constructed in [18], and we prove Theorem A in §3. We give

in §4 the representation of the β-elements in the £2-
term °f the Adams-Novikov

spectral sequence, and prove Theorem B in §5 by computing the restriction of
them in the cohomology of the Morava stabilizer algebra. Finally in §6, we give

some relations concerning the products of two β-elements in the £2"
term °f the

spectral sequence.
The authors would like to thank Professor W. S. Wilson who advices them

the method to show Theorem B, and Professor M. Sugawara for his suggestion
of combination of the authors and encouragement during the preparation of this

paper.

§ 2. The /3-elements and some lemmas

Throughout this paper, let p be a prime ^5 and q = 2(p-ί).
Let S be the sphere spectrum, and define the mod p Moore spectrum M

and the spectra X(r) for rM (X(l)=V(l) in [18]) by the cofiber sequences

(2.1) S -P-+ S -!-> M -£-» ΣS, where p is the map of degree p,

(2.2) Σ'*M -^M~^ X(r) -^ Σr«+1M (q = 2(p - 1)) ,

where α: ΣqM^M is the map with παz = α1? the element of Hopf invariant 1,

(cf. [9]). Then we have the maps

(2.3) Σ*X(r)-±+X(r+ϊ)-!L>X(r) (r^l) with

Air = ir+ !<*, πr = πr+ ̂ A9 ir = Bir+ 1 and π,B = απr+ 1.

Furthermore, consider the maps

β( = $ in [18]): Γ<*+1>«Jr(l) - > X(ΐ),

(2.4) R(r) : Σ**+U*X(r) - > X(r) (l^r<p) with R(l) = β*,

, X(p)
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given in [21], [9], [11], respectively. Then the β-elements in the stable
homotopy πj are defined as follows :

(2.5) & = ππj/J M (s^l), βsp/r = ππrR(r)*iri (l^

βsp/p = ππpR(pY°npi (5^2),

where βspn=βsp. We notice that these elements are denoted by ψs in [18],

Ps,P-r in [9], ρs>0 in [H]> respectively.
To study these elements, we use the following elements :

(2.6) δ = iπ, J8(i) = π^ i, (s^l),

β(Sp/r) = πrR(r)si, (lgr<p, s^l) with j8(sp/1) = j3(sp), and

in [M,M]*;

(2.7)([21]> « '=«ιΛl w ) , β' = β^lx(ί), and

α" with α'ΊΊ = tz'ij in

Then we see immediately that

(2.8) /W) = /W-ι>αl'~1~r

by (2.3) and the relations

(2.9) ([9; Th. C], [11 Th. CΠ]) AR(r) = R(r+l)A, BR(r+Γ) = R(r)B

LEMMA 2.10. For integers r^O and s^l, consider the elements

B(r,s) = (β(1)δγβ(s), C(r, s) = a<55(r, s) in [M, Af]».

Then

( i ) 5(r, s) = πίβ'rβsiί if sφ-l mod p. (ii) C(r, s)= -π1j8
/|la/j8sϊ1.

(iii) δC(r, s)= -π1j8'ra//j8βi1. (iv) C(r, s)δ= -π^β^Ί^

PROOF. The following relations are given in [21; Cor. 2.5, Lemma 3.1,
(3.8), (3.9), (3.11), Th. 5.1, and (5.6)]:

(2.11) (β

a^!=— πX, 5a5πx= — π!^, 52 = 0; j5(r)jS(s) = 0 if r + s^O modp;

andβ'ξ = ξβ' for any ξe[X(l), *(!)]*.
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Then we have

γπίβ
si1=π1β''β*i1 if 1+s^Omodp, and

Thus (i) and (ii) are proved, (iii) and (iv) follow from (ii) and (2.11). q. e. d.

Let A* be the subring of [M, M]# generated by δ and α, and I* be the two

sided ideal of [M, M]* generated by all indecomposable elements other than δ and

α. Then by the structure of A* which is given in [22; Th. Ill] (cf. [8; Th. 4.1]),
we see that [M, M~\* = A*@I* and α*: A*-+A*+q is an isomorphism in non-
negative dimensions. Hence we obtain the exact sequence

(2.12) ---- >/,_ f J!^/M_^[Mf *(!)!

from the exact sequence ••• -> [M, M]n_q-^ [M, Af]n ^4 [M,

^H [M, M]Π_g_ 1 -> associated to the cofiber sequence (2.2). The structures of
/„ are given by [8; Th. 0.1] for n<(p2 + 3p + l)g — 6. In particular, we have the
following (2.14), where

(2.13) fc = (p2 + p + 2)q - 2, / = (p2 + 2p)q - 2 (we use these notations in

the rest of this section).

(2.14) Put Ci = C(p-i, i + l)(ϊ = l, 2, 3) and Bi = B(p-i9 3)(ί = l, 2). T/zβn

, C2δ}, I

, β(p+ί)δ},

The images of the elements in Lemma 2.10 by α* in (2.12) are given as follows :

(2.15) α^QV, 5) = 0, κ*δC(r, s) = 0, a*(δB(r, s)) = C(r, s) .

This follows immediately from the definitions and the relations

(2.16) ([22; Th. II]) α2(5 = (2α(5-<5α)α, αβ(s) = 0 (s^ 1) .

Now we have the following

LEMMA 2.17. The homotopy group [M, X(lJ]n is the Fp-υector space gene-
rated by

(i) β'r-wpi^ β'p-iβWi^ β'p-tδoβWii atn = k,

(ii) β'f-^'β2^, β'p-zδ^'β3^ atn=k+l,
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(iii) no base at n =
(iv) β'r-Wβ^δ atn =
(v) β'P-Wβ^, β'P^βWi^ β'P-iδoβWi! atn =
(vi) β'p-^δ^i,,

where δ0 = iίδπl9 δί = ίίπl and k = (p2 + p + 2)q — 2 is the integer in (2.13).

PROOF. Consider the sequence (2.12) for n — k\

1 Jϊώ-> ιk.q -«*> ιk

By (2.14) and Lemma 2.10, /»-,_! =(π1)»{j8^"1αTi1, β'^βVί,} and /,_,=

(πι)*{^'rα'^Szι} Thus both (πj^'s in the above sequence are epimorphic and
hence (ίj)* is monomorphic. Further Ik = {δπ^βfp~2β3oίffil} by (2.14) and Lemma
2.10, and (il),,(δπίβ'P-2β3aΊ1) = βfp-2δ0β

3θLffi1 by the relation δ0β' = β'δ0 in (2.11)
for £ = <50. Therefore (i) follows from the above sequence.

(ii)-(vi) follow similarly from (2.12), (2.14), (2.15) and Lemma 2.10. q. e. d.

We consider the exact sequence

(2.18) ---- > [M, X(l)]rt+1 -ί22U [M, X(l)]

[X(r), X(1)]B

 («ί> [M,

associated to the cofiber sequence (2.2).

LEMMA 2.19. \_X(p— 1), ̂ (1)]̂  ϊ's the Fp-vector space generated by

PROOF. Consider the exact sequence (2.18) for r = p-l and n = k:

[M, X(l)]fc+1 ̂ ^ [M, X(l)]4+(p.1)€+1 ̂ -^>

-^^ [M,

By Lemma 2.17(i) and ir=5/Γ+1 in (2.3), [M,
Furthermore (αP-1)* = ObyLemma2.17(ii)andi1α = 0 in (2.2). Therefore (πp_i)*

[M, Λr(l)]fc+(p-1)β+1 = {ξ4, £5} by Lemma 2.17(vi). Thus the lemma holds.
q.e.d.

LEMMA 2.20. The elements

βp+lδ0 = βδQβP and β'P^δ^δ, in [X(l), X(l)]z (I = (p2 + 2p}q-Ί)
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are nontrivίal. Furthermore these are linearly independent.

PROOF. We notice that the homomorphisms

SώL> [M,

are monomorphic. In fact, α .̂ = 0: //+1->/ ί+β+1 in (2.12) for n = / + g + l by

(2.14) and (2.16), and hence (ίj)* is monomorphic. (ϊΊ)*: J/+1->[M,
in (2.12) for n = /+l is epimorphic by (2.14). Thus α* = 0: [M,
[M, JT(l)]/+β+1 in (2.18) for r=l and n = / by (2.14) and β(p+1)α = 0, and hence
(πj)* is monomorphic.

Since ^"^^^^(^^(i^CBOp-l, 3)) by Lemma 2.10 and (2.11), it is
nontirivial by the above notice and (2.14).

Next consider the exact sequence

which is obtained in the same way as (2.12) by using the isomorphism α*: A# ^>
A*+q instead of α*. Then (2.14) implies that π1^

+1(50 = (π1)*(jβ(p+1)5)^0. On
the other hand, πiβ

fp-ίδ1β
3δ1=0 by (2.11) and (2.2). Thus βp+1δ0 and

β/p~1δίβ
3δ1 are linearly independent. The relation βp+1δ0=βδ0β

p follows from
[21; Prop. 4.7(iii)]. q.e.d.

REMARK. We can show that [Z(l), Z(l)]z = {^+1<50, β*δQβ, βp~lδQβ2,
β'βp, β'p~1δίβ

3δί} by more computations. But we do not use here this stronger
form.

LEMMA 2.21. Put ξ=βiίδπp.1R(p-l)e[X(p-\), -Xχi)]k. Then

ξ = ξι+ xξ3 + ζ5 for some xeFp.

PROOF. By Lemma 2.19, we may put ξ = Σ5=ι^»ί« (*nεFp) We recall
the relation

(2.22) ([8; Prop. 6.9]) βwδε = -δC(p-l, 2), where β = ̂ /p-υ([9]).

Then πίξip_l= — δC(p— 1, 2)e/ J k _ e _ 1 . On the other hand, nίξίip-ί =

— δC(p — l, 2) and π1ξ2^-ι= — C(p — 1? 2)δ by Lemma 2.10. Also we see that
π 1ξwi J 7_ 1=0 (n = 3, 4, 5) by the relations π150 = π p _ 1 i p _ 1 =0 in (2.2). Therefore

Xl = l, χ2 = 0by(2.14).

Now ξAp-2 = βδ0β
p by (2.9) and (2.3). On the other hand, ξnAP~2 = 0

(n = l, 2, 3) since Bp-2Ap~2 = Q by [9; Lemma 1.5]. Furthermore, £44*-2 =
βfp~lδίβ

3δί and ξ5A
p-2 = βp+ίδ0 by (2.3). Thus we have x4 = 0 and x5 = l by

Lemma 2.20. q. e. d.
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We see easily the following lemma by using Lemma 2.17, the exact sequence
(2.18) for r=l and n = k or fe+1, and the relation 1^=0 in (2.2).

LEMMA 2.23.

LEMMA 2.24. (βp/p-1ΛlX(1))β=-2β'r-1(β«"-a"β)β in Γϊ(l),

PROOF. By Lemma 2.23, we put (ft,/J7-ιΛ lx(1))j?=Σ2=ι yA By noting
that ft,,,-! =βi (cf. [8; (5.17)]), we have

(2.25) ([8; (6.2)', (3.3), Prop. 6.9]) ft,/,-! Λ lM=

εδβ(1) = C(p-l,2)δ, βjS ( f )=-CCp-l,s+l) (s^

Further we see that ^(ft,,,̂  Λ lx(i)) = (ft,/P-ι Λ Ij,)^ by [21; Th. 2.4, Cor. 2.5].
Thus

πι(!»,/,-ιΛ !*(!,)/»! = C(p-l, 2)5 - 5C(p-l, 2).

On the other hand, π1λ1ί1 =— δC(p— 1, 2) and π1A2z'1 = — C(p — 1, 2)5 by Lemma
2.10, and π1A3i1 = π1A4.i1=0 by (2.2). Therefore JΊ = 1 and y2= — ί, i.e.

To study y3 and ^4, recall the homomorphism θ: [X, F]n-»[X, Y~\n+ι
defined in [21] and the following

(2.26)([21; Th. 4.1, Th. 2.2]) θ(<50)= -δίt θ(α") = α', θ(lxw)
for any γ and

Also recall

(2.27)([21; (3.9), (4.3), (4.4)]) βaf = α'ft α'50 = α"5l5 <50«' = .5 "̂.

Then 0((j8,/p-1ΛlX(1))^)=0 by (2.26). By (2.26), (2.27) and the definitions of
λa and μΛ, we have θ(A1-A2)=0, θ(A3)=μ2-)S'P-251J?3α" and θ(A4)= -Aί3+μ4.
Here (i1)*(jβ'"-2δ1jβ

3α")=0 by (2.11) and (2.2). Thus Θ(λ3) and 0(14) are linearly
independent by Lemma 2.23, and we have };3=)'4=0.

By [21; Th. 4.3], «"β2-β2a"= -2(βa"-«"β)β. Therefore (ft,/,-! Λ lx(1))j?
a"β)β. q.e.d.
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§3. On the triviality

In this section we prove Theorem A by the following Propositions 3.1, 3.4

and 3.9.

PROPOSITION 3.1. βsβtp/r = Qfor s^l, t^l and l^r^p-2.

PROOF. Assume that ί^l (resp. f^ 2) if l^r^p-3 (resp. r = p-2), and

put b = β(tp/p-1} (resp. β(tp/p}) and u = p-l-r (resp. p-r). Then

(3.2) βsβtp/r = βtp/rβs = πbκ«δβ(s)i (by (2.6) and (2.8)) = 0 (by (2.16)).

To study the product βsβp/p-2, we recall the relation

(3.3) α^(s)= -foΛl^/ta

which is shown by using [21; Th. 2.4, (3. 8)] and (2.16). Now βsβp/p-2 =

πβ(P/P-ιpδβ(S)i by (2.6) and (2.8). Thus, by (3.3), (2.25), Lemma 2.10 and α? = 0,

we see that βsβp/p-2 = «2

1β
p

ί-
lβs+ι=V. q.e.d.

PROPOSITION 3.4. For positive integers s and t,

{ 0 if sφ—1 modp or f Ξ = 0 modp,

tβs+(t- i)pβp/p- 1 otherwise.

PROOF. Notice that βsβtp/p_1=ππίβ
s-ίξR(p-iy-1ip_1ί where ξ is the ele-

ment in Lemma 2.21. Put κn = ππίβ
s-ίξnR(p-l)t-lip-ίi. Then βsβtp/P-ι =

κί+xκ3 + κ5 by Lemma 2.21.
Now we have the relations

(3.5) oι''β<*-»p = 0<ί-

by using [21; Prop. 4.7(ii)], and

(3.6) <*"ili = Q and

by (2.11) and (2.1). Hence fc3 = ππ1j8
s-1^-2δ0)83α//j8<ί-1^ϊ1ϊ (by (2.3) and

BR(r+ l) = R(r)B in (2.9)) = 0 (by (3.5) and (3.6)). By definition, κ5=βs+pβ(t.l)pfp

where β0/p _ i = 0 when ί = 1 . Therefore

(3.7) βsβtp/P-ι = Kι+ βs+Pβ(t-i)P/P-ι with £ 0 /p-ι=0.

To study K! in case s^ — 1 mod p9 we notice that

(3.8)
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which is shown by using [21; Prop. 4.7(ϋ)]. By (2.3) and (2.9), we have
κί=ππ1β

s-1β'p-1θL"β(t-Vp+2ίίi, whichisO by (3.8) and (3.6). Thusκ .̂ 0 in (3.7)

and we have βsβtp/p-ί=Q by the repeated use of (3.7).
By Lemma 2.24 and (3.6), we see that βplp-^βn = -2ππίβ'p-1βa"βniίi for any

positive integer n. Furthermore ππίβ
s-la"β(t-Vp+2 = (s-ϊ)ππιβκ"β(t-VP+s

by [21 Prop. 4.7(ii)] and (3.6). Therefore we obtain κ± = - ((s - l)/2)βp/p_ 1 -

β(t-ί)p+s. Thus by (3.7),

P-1 when 5 Ξ~

By the repeated use of this equality, we see the equality

βsβtp/p- 1 = tβs+(t-i)pβp/P- 1 when s = - 1 mod p,

which is zero if t = 0 mod p. q. e. d.

Before proving Theorem A in case r = p and ί = 0modp,we have to remark
the definition of the homotopy element βtp2/p. In general, there would be various
β-elements in π| which correspond with a given β-element in Ext2 of the same
name, and, precisely speaking, Theorem A should be stated with appropriate
choice of the jS-elements in πj although the definition (2.5) would be canonical
in the sense that it determines the elements uniquely in case r ̂  p — 1 [9 Remark
on p. 105]. To have Theorem A in caser = jp and t = Qmodp, however, we have

to adopt other definitions of βtp2/p already known. The element βtp2/p may be

defined from the element R'(p) in [9; Th. C] in a similar way to (2.5), and this
element might be different from the one defined in (2.5). Unfortunately we could
not make a discussion on their difference as in [9; Remark on p. 105], because
it needs precise information on the stable homotopy of spheres beyond the known
limit of computation. In case ί^2, there would be one more definition of βtp2/p,

that is, βίp2/p=jpjSίp2/p}2, where βtp^ιP,2 is tne element in [12]. This might be
different from the one in (2.5) as well. Then we have

PROPOSITION 3.9. For the element βtp2/p defined in either way of above,
βsβtp2/p = 0for sΞ>l and ί^l (ί^2 in the latter definition).

PROOF. In case of the first new definition, the proof is similar to that of

Proposition 3.1, by taking b = ρ'(tp) and u = p-2 in (3.2). In case of the second

new definition, it is obvious because pβs = Q. q. e. d.

§ 4. The ^-elements in the E2-term of the Adams-Novikov spectral sequence

Let BP be the Brown-Peterson spectrum at a prime p^5. Then 5PϊK =

£(P)l>ι^2> ] and BP*BP=BP*[_ti9 f2, ], where degu f = deg ^ = 2(^-1) for



620 Shichirό OKA and Katsumi SHIMOMURA

ί^l. The E2-tQτm of the Adams-No vikov spectral sequence converging to the

stable homotopy π£ is the cohomology Ext^P+BP (BP*, BP*) of the Hopf algebroid

(BP*, BP* BP), (cf. [1], [2], [4], [7], [13]).

Now we recall the definition of the β-elements in this E2-tQτm given in [5

§2]:

(4.1) βspn/r,i+ ! = δδ'(x lp*+iυϋ 6 ExtJ p* Bp (BP*, BP*),

Pspnjr = βspn/r,l> Pspn = PspM/l»

where n^O, sΞ^l, r_ l and ι^0 are integers with

H^i, p/fs, r^p" if 5 = 1, and /?' | r^an-t (a0 = l, ak = pk+pk~1

Let xt e t j^P* (ϊ^O) be the elements defined in [5; (2.4)]. Then

x lpt+1υl e Ext °>*G4, X/(p«, i f )) (A = BP^, Γ =

and we obtain the elements in (4.1) by the boundary homomorphisms

Ext?'* (A, A/(p™, t>f)) -*-+ Extf * (A,

For the BP-homology of the spectra M in (2.1) and X(r) in (2.2), we see the

following by definition :

BP*(M) = BPJ(p), BP*(X(r» = BPJ(p, υ&

where α, ,̂ Λ(r) and R(p)(s^ are the maps in (2.4). Therefore, by using the

Geometric Boundary Theorem [3], we see the following

(4.2) The elements βs (s^l) and βsp/r (s^lfor l^r<p, and s^2for r = p)
in (4.1) converge to the elements βs and βsp/r in (2.5), respectively, (cf. [5; §2]).

Furthermore,

(4.3) The elements βtp2/p)2 (f= 2) converge to the elements βtp2/p>2 given in
[12; Def. 5.1].

The £2-term Ext%PittBp (BP#, BP*) is the homology of the cobar complex
(β*BPϊK, d) (cf. [4]). We can represent the elements of (4.1) in the cobar complex

by the following

LEMMA 4.4. The elements of (4.1) can be expressed in the cobar complex

βP*BP as follows:
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( i ) βsp^ipί2=-

p*/ak

s(s-i)vs

2

2t2®tl +

(*=0),

(iii) βspk/ak-ι =

(iv) The other β-elements belong to (p, v1)Ω2BP^ί.

= v2

lt2 + v2

p(t2-tp

1

2+p)-v2

p-1v3tfev2

iBP*BP,and ••• denotes an element

in (p9 v

PROOF. By the congruences in [5; Lemma 6.8] and the one ηRxs

k+i =
ηRxίpi mod(pί+1, t??+βk) in [5; p. 499] (ηR is the right unit), and by using the fact
that if dx = y mod (p, a), then

dx8*1 ΞΞ j/i'jc^1-^ mod Oί+1, pla, ̂ 'V,..., Λ^*),

we have easily the following equality in the cobar complex ΩίBP*/(pcc):

(4.5) δf

(i = k= 0) ,

Σί=o

\ * 2—* 1=1 ^i ** ιlP \'t ^-Ί ** = ^ = *c) j

where l^^ra^Λfc and Z and Zf are suitable elements in BP^BP.

Let VeBP* and T6Z(p)[ίl5 ί2,...] be any elements. Then by the definition
of the differential,

(4.6) d(VT) = ηR(V)®T-VAT+VT®l in

where zl : BP*BP^>BP*BP®BPβP*BP is the diagonal map. Therefore, for any
/, r^O with pl\ r, we see that

(4.7) δ(

by using the equality

® T mod(p, i ̂ Ω^P^ + Imd in

Further we notice that
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(4.8) ([5; Lemma 3.19]) ζ2 is homologous to ζ2.

(i)-(iii) are obtained by (4.5 — 8) and the equalities ηRvί=υί + ptί9ηRυ2 =

v2 + pt2mod(p2, Vi) and Atί = tί®l + l®tl (cf. [5; §1]), and (iv) follows from

(4.5-7). q.e.d.

§ 5. Reduction to the Morava stabilizer algebra

We make Fp into a BP^-module by sending υt (ί^O, zV2; v0 = p) to 0 and v2

to 1, and define S(2)* = Fp®BPiltBP*BP<S)BPtFp whose dual is called the Morava
stabilizer algebra (cf. [15]).

Consider the reduction map

of Hopf algebroids. Then we have the ring map

(5.1) r* : Ext*BP.BP

where the second ring is given as follows :

(5.2) ([16; Th. 3.2]) For p^5, ExtJ(2), (Fp, Fp) is the tensor product of

E(ζ2) with the subalgebra with basis {1, ft1)0, hlfl9 gQ, gi9 ^0^1,1) where gt =
<hι,i, hίίί+i, hί}iy (the Massey product); and hlt0g1=g0hlti9 h1)0g() = hίίlgί=09

Λι fo
fcι,ι = Λι,o = 'lι,ι=0 and 92i=

By the definition of the Massey product, we see the following

(5.3) In the cobar complex for the Hopf algebra (Fp9 5(2)*), the generators
in (5.2) are expressed as follows: hίt0 = {tί}9 hl)1 = {tp

1}9 ζ2 = {t2 + t2-tp

i

+ί}y

LEMMA 5.4. The images of the β-elements in (4.1) by the map r* in (5.1)

are given as follows:

( i ) r*βsp2/p)2 = -s00.

(ii) r*βspk/ak =

(iii) r*βspk/rti+ί = 0 for the other β-elements in (4.1).

PROOF. By Lemma 4.4(i), (ii) and (5.3).
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r*βsp2/p,2 = {-St2®t1 + stl®(t2-tp

ί

+ί)-stί®ζ2} = -500,

t2-tp

l-stl®2 = -sg0
r*βspκ/ak = I

By Lemma 4.4(iii) and (iv),

r*βsp*/ak-ι = {s'ίι®*ι} = {φ'fί/2)} = 0 (s' = s if fc=l, and s' = 2s if fc^2),
r*βsp*frtι+ι — 0 f°Γ Λe elements in (iv).

We turn now to r*jδs. Using the equality in [16; Th. 1.2], we have

(5.5)

These and Lemma 4.4(ii) imply

r*βs =

s+ί

2

q.e.d.

The next theorem follows immediately from (5.2) and Lemma 5.4.

THEOREM 5.6. Let p be a prime^S and s, t be positive integers. Then
the following (i) and (ii) hold in the E2-term Ext%P^BP(BP^9 BP*) of the Adams-
Novίkoυ spectral sequence:

(i) βsβtp/p^Q ^d βsβtp2/pt2ί=Q ifsφO, 1 modp and tφQ mod p.

(ϋ) βsβtp*/ak * 0 if fc ̂  2, s φ 0, - 1 mod p and t φ 0 mod p.

Now we are ready to prove Theorem B.

PROOF OF THEOREM B. By (4.2), (4.3) and Theorem 5.6(i), βsβtp/p βsβtp*/p,2
for s, ί^2 in the E2-teτm are the nontrivial permanent cycles. Furthermore they
are not bounded because of the sparseness of the Adams-Novikov spectral
sequence. q. e. d.

§ 6. Concluding remarks

In the first place, we give more relations in Ext4. We notice that the β-

elements in (4.1) can be defined also for p = 3 and Lemma 4.4 holds.
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PROPOSITION 6.1. Let p be an odd prime and s, t be positive integers.

Then the following (i)-(ϋi) hold in the E2-term Ext^p^p (BP*, BP*) of the Adams-
Novikov spectral sequence:

(i) &/W = 0/or fc^l and l^r^ak-l, and especially βsβtplp-, = 0.

(ϋ) βaβtp*/p,2 = βs + t(p*-p)βtp/p

(iϋ) βsβtpk [Ok = βs + (f p _ i )(pfc - 1 _ P)

PROOF. Recall the Greek letter map >/ [5], Then by Lemma 4.4(iii),

j8sj8ίpic/αk-ι = s/φj+(ίj>"1)l>le"1ίι®ίι/pϋι), where s' = s if fc=l and s' = 2s if fc^2.
On the other hand, t S+^-^^'^Θ^/pt ̂ O in Ext|P+βp (BP*, BP*l(p™9 t?f ))

since this is bounded by ι;|+^-1^k~1ί?/2pι;1. Therefore βsβtpk/ak-ι=Q'
The other relations follow similarly from Lemma 4.4. q. e. d.

REMARK. By using Lemma 4.4(ii) for /c = 0, we can also prove Toda's
relation ([21 Th. 5.3])

uvβsβt = stβuβv (s + t = u + υ) in Ext4.

If the β-elements in the relations of the above proposition exist in πj, then
the same relations hold in π| modulo F2p+2

9 where Fn is the filtration which
defines the spectral sequence. In particular, since F2p+2 = Q in dimension

(2p2-l)(2p-2)-4 [10], we have

COROLLARY 6.2. βp-ιβp/p-ι=Q in πj for p^5.

Next we notice the following

LEMMA 6.3. β2β2P/p = χ{kι,obίia2} for some x ^0 mod/?, where p^5 and
{k1>0biia2} is the element in [6; p. 324, (20)].

PROOF. By [6; Th. 4.1], we see that the ((2p2 + 3p + 1)4-4) stem of the

stable homotopy π£ is generated by one element {^1,0^11^2}- /?2/?2P/P ^s a^so

nontrivial by Theorem B and belongs to this stem. q.e.d.

By this lemma we can restate the problem in [6; p. 324] as follows:

Is βιβ2β2P/P trivial?
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