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§1. Introduction

In his paper [20], H. Toda introduced the elements B, I<s<p—1, in the
p-primary component of the stable homotopy of spheres for an odd prime p, and
L. Smith [18] extended them to an infinite family {f},>, in case p=5. Later,
with the development and plentiful knowledge of the Adams-Novikov spectral
sequence based on the Brown-Peterson homology BP such as [5], it is clarified
that these p-elements are detected in Ext}p,5p(BPy, BP,), the second line of the
E,-term of the spectral sequence, which consists of an extensive family of elements
Bsr,; With suitable triple indices including f,=f,/,,; (cf. (4.1)). The construction
of the homotopy elements S, is immediate from the one of the 4-cell complex
called V(1) and appropriate stable self-maps of V(1) [18], and in this way, L.
Smith [19], R. Zahler [23] and the first author [9], [11], [12] constructed homo-
topy elements which correspond with the generalized §’s in Ext? including

Bsp/r (Sg 1’ lé r<p)’ ﬁsp/p (ng)a ﬁspzlp,Z (ng) s

where Bg,.1 = Bpr and some of these were called &’s and p’s in earlier literatures
(see (2.4), (2.5)).

The purpose of this paper is to study the products ff,,, with r<p and
BsBip2p,2 in T3, the stable homotopy ring of spheres, in case p=5. In particular,
we shall study whether they are trivial or not. In this direction, H. Toda [21]
obtained a formula of S8, extending the earlier work of N. Yamamoto [22]
and including the relation fB,,=0 which is the case r=1 of ours.

THEOREM A. Let p be a prime =5, and r, s, t be positive integers with
r<pand r<p—1ift=1. Then the element Bp,,, in n§ is trivial, if one of the
following holds:

(i) r=p-2.
(i) r=p—-1 and s# —1 modp.
(iii) r=p—1,p and t=0 modp.

The next cases we have to investigate are (iv) r=p—1, s= —1 mod p and
t#0mod p; and (v) r=p and t#0mod p. For the case (iv), we obtain a weak
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result that the products are trivial in the E,-term Ext* (§6). In contrast with
these cases, the products are shown to be nontrivial for the case (v) with a minor
restriction of s, by investigating their images in the cohomology of the Morava
stabilizer algebra, in a similar method as in [17].

THEOREM B. Let p be a prime =5. If s#0, 1 mod p and t#0mod p with
t22, then the elements BBy, and BB,y in n5 are nontrivial.

In §2, we prepare some lemmas by using the relations in the track groups
[M, M], and [V(1), V(1)]4, where M is the mod p Moore spectrum and V(1)
is the spectrum constructed in [18], and we prove Theorem A in §3. We give
in §4 the representation of the f-elements in the E,-term of the Adams-Novikov
spectral sequence, and prove Theorem B in §5 by computing the restriction of
them in the cohomology of the Morava stabilizer algebra. Finally in §6, we give
some relations concerning the products of two f-elements in the E,-term of the
spectral sequence.

The authors would like to thank Professor W. S. Wilson who advices them
the method to show Theorem B, and Professor M. Sugawara for his suggestion
of combination of the authors and encouragement during the preparation of this

paper.

§2. The B-elements and some lemmas

Throughout this paper, let p be a prime =5 and g=2(p—1).
Let S be the sphere spectrum, and define the mod p Moore spectrum M
and the spectra X(r) for r=1 (X(1)=V(1) in [18]) by the cofiber sequences

2.1 S-2,5_1, M %, 58S, where p is the map of degree p,
(2.2) IraM S M, X(r) T ZratiM (g = 2(p—1)),

where a: 2IM—-M is the map with nai=a,, the element of Hopf invariant 1,
(cf. [9]). Then we have the maps
(2.3) 2iX(r) -4 X(r+1) -2, X(r)  (r21) with

Ai, =i,.,0, ®, =mn,.,4, i,=Bi,,, and 7B =oam,,.
Furthermore, consider the maps
B(=¥ in [18]): Zr+Dax(1) — X(1),
24 R(r): Zrr+DaX(r) — X(r) (1=r<p) with R(1) = >,
R(p)®: Zee*DaX(p) —> X(p)  (s22),



On Products of the -Elements 613

given in [21], [9], [11], respectively. Then the f-elements in the stable
homotopy n§ are defined as follows:

(2:5) By = mm Boiyi (s21), By = 7m R (1Sr<p, s21),
Bspip = TT,R(D)®iyi (522),

where B, =P, We notice that these elements are denoted by Y, in [18],
Ps.p—r in [9], pg o in [11], respectively.
To study these elements, we use the following elements:

(2.6) 0 =in, P =mnpsi, (s21),
Bspiny = MR, (1=r<p,sz1) with B,1,=Pp, and
Bspiy=m,R(P)®i, (s22) in [M, Mly;
Q.71([21]) o =0y Alyyy B =PBiAlxy), and
o with o"i; =a'i;6 in [X(1), X(1)]4.
Then we see immediately that
(2.8) Bory = Bapip-12?" 1" (121, 1=r<p),
Bapmy = Buapiy®®™" (122, 1=r=p),
by (2.3) and the relations
(29)([9; Th. C], [11; Th. CII]) AR(r) = R(r+1)A4, BR(r+1) = R(r)B
(Isr<p-1), AR(p—-1)=R(p)V4 (122).
LEmMMA 2.10. For integers r=0 and s=1, consider the elements
B(r, s) = (B1y0Y By, C(r,s) = adB(r,s) in [M, M],.
Then

(i) B(r,s)=mn,ppsi, if s# —1 mod p. @) C(r,s)=—mn,p""a psi;.
(i) 6C(r, s)= —m, 0" ;. @iv) C(r, s)0=—m p"psa"i,.

Proor. The following relations are given in [21; Cor. 2.5, Lemma 3.1,
(3.8), (3.9), (3.11), Th. 5.1, and (5.6)]:

(2.11) (B0 +6Baymy=mf', idad=—a"iy, adéfy=Pdx (s=1),
admy = —ma’, Sadmy=—ma’, 6*°=0; P)B=0 if r+s#0 mod p;
and p'é=¢pB’ for any &e[X(1), X(1)]4.
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Then we have
(B1y0Y Bsy=(B1)0+Bcxyymyfiy=m, 7%, if 1+s#0 modp, and
ad(B1)0) Bsy=20(B (10 + 6B 1)) 7 Bsiy = oy B Psiy = —m B Boiy.

Thus (i) and (ii) are proved. (iii) and (iv) follow from (ii) and (2.11). g.e.d.

Let A, be the subring of [M, M], generated by é and a, and I, be the two
sided ideal of [M, M], generated by all indecomposable elements other than ¢ and
o. Then by the structure of 4, which is given in [22; Th. III] (cf. [8; Th. 4.1]),
we see that [M, M],=A,®I, and ay: Ay—>Ay,, is an isomorphism in non-
negative dimensions. Hence we obtain the exact sequence

(212) o — L, o 1, O TM, x(1)], S0 L, s (n2g 4 1)

from the exact sequence - —[M, M],_, % [M, M], 2% [M, X(1)],
()% [M, M],_ 4-1—> -+ associated to the cofiber sequence (2.2). The structures of
I, are given by [8; Th. 0.1] for n<(p*+3p+1)g—6. In particular, we have the
following (2.14), where

(2.13) k=(p?>+p+2)q—2, I=(p?>+2p)g—2 (we use these notations in
the rest of this section).

(2.14) Put C;=C(p—i, i+1)(i=1,2,3) and B;=B(p—i, 3)(i=1,2). Then
Li_goi= {6Cy, Cy03, I_,= {Ci}, Ik—-q+ 1=1{6B,5}, Ik—q+2 ={0B,, B,6};
I,={6C,0}, I+, ={0C;, C,0}, I;+,={C,}; Ik+q+1 =0, Ik+q+2={5C35};
Iz—q=0§ Il={5ﬁ(p+ 1)» ﬂ(p+ 1)5}, I, ={ﬁ(p+ 1)};

14 g={a6Bp+1) 6By, B16}, Iivgs1={By}.
The images of the elements in Lemma 2.10 by oy in (2.12) are given as follows:

(2.15) 0 C(r, 5) =0, a,0C(r,s) =0, au(6B(r,s)) = C(r,s).

This follows immediately from the definitions and the relations

(2.16) ([22; Th. I1]) %6 = (206 — o), af =0 (s=1).

Now we have the following

LemMma 2.17.  The homotopy group [M, X(1)], is the F -vector space gene-
rated by

(l) ﬂ/p—lauﬁzil, ﬁ'P'lﬁza”il, ﬁ'p"zéoﬂ%t"il atn=k,
(i) prla'Biy, BP26,a"B3 at n=k+1,
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(iii) no base atn=k+2,

@iv) p'P~2a"B3i,6 atn=k+q+1,

(v) p'r2a"B3i,, PP 2B3«"i;, PP 36,p%"i;, atn=k+q+2,

(vi) p'»~16,83%,, pr+lid atn=k+(p—1)q+1,

where 6,=1i,0m,, 6, =i,m, and k=(p*+p+2)q—2 is the integer in (2.13).
ProoF. Consider the sequence (2.12) for n=k:
[M, X(1)Diry <205 1y 255 1, B [, X (1)1, s 1.

By (2.14) and Lemma 2.10, Ik,q_l=(n1)*{ﬂ’P"loz”/32i1, pP1p%a"is} and I,_,=
(m)s{B'o’B%i,}. Thus both (m,),’s in the above sequence are epimorphic and
hence (i), is monomorphic. Further I, ={dn,8'P~2p3«"i,} by (2.14) and Lemma
2.10, and (i;)4(67,B'P~2B3"i,)=p'?=26,B%"i, by the relation §,f = 'S, in (2.11)
for £=0,. Therefore (i) follows from the above sequence.

(ii)—(vi) follow similarly from (2.12), (2.14), (2.15) and Lemma 2.10. q.e.d.

We consider the exact sequence
(2.18) o TM, X (DD~ [M, XD 4rg 2
[X(), X1, &5 M, X1, —
associated to the cofiber sequence (2.2).
LemMa 2.19. [X(p—1), X(1)], is the F,-vector space generated by
&y =pPa"B2Br 2, £, =p'P7 2" BP2, {3 =p'P726,p% " BP2,
Ea=P'P16, B30, y, Es=PPH1i 0T, ;.
Proor. Consider the exact sequence (2.18) for r=p—1 and n=k:
[M, X(DJes 1 E05 [M, XDk p-1g1 E2255
[X(p—1), X(D], 2= [M, X(D],
By Lemma 2.17(0) and i,=Bi,.; in (2.3), [M, X(1)]=(,-1)*{¢s, 25 &5}
Furthermore (xP~!)*=0by Lemma 2.17(ii) and i;«=0 in (2.2). Therefore (7,_,)*

M, X(D)Jk+p-1)g+1=1%s> &5} by Lemma 2.17(vi). Thus the lemma holds.
q.e.d.

LEMMA 2.20. The elements

pr+1do = BSoBP and B'P716,46, in [X(1), X()],  (I=(p*+2p)g—2)
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are nontrivial. Furthermore these are linearly independent.

PrOOF. We notice that the homomorphisms
Lsqrs =82 [M, X(1)]14 g0y ~E05 [X(1), XD,

are monomorphic. In fact, a,=0:1,,,-1,,,; in (2.12) for n=I+q+1 by
(2.14) and (2.16), and hence (i), is monomorphic. (iy)s: [;+1—>[M, X(1)],+1
in (2.12) for n=I1+1 is epimorphic by (2.14). Thus o*=0:[M, X(1)];+,—
[M, X(1)];44+1 in (2.18) for r=1 and n=1 by (2.14) and B, y*=0, and hence
(m,)* is monomorphic.

Since B'P=16,630, =(n)*(i)x(B(p—1, 3)) by Lemma 2.10 and (2.11), it is
nontirivial by the above notice and (2.14).

Next consider the exact sequence

I, -5 1, =07, [x(1), M1y,

which is obtained in the same way as (2.12) by using the isomorphism o*: 4,—
Ay 14 instead of ay. Then (2.14) implies that 7,716, =(7,)*(B(p+1y0)#0. On
the other hand, =,f'?7716,35,=0 by (2.11) and (2.2). Thus prtij, and
B'P=16,p33, are linearly independent. The relation f7*18,=6,8? follows from
[21; Prop. 4.7(iii)]. g.e.d.

REMARK. We can show that [X(1), X(1)],={p?*16y, BPOof, BP~100p?,
p'pe, B'P=15,$39,} by more computations. But we do not use here this stronger

form.
LemMA 2.21. Put ¢=Pion,_R(p—1)e[X(p—1), X(1)]x. Then
E=¢ +xé+ & forsome xeF,

PrOOF. By Lemma 2.19, we may put £{=335_; x,&, (x,€F,). We recall
the relation

(2.22)([8; Prop. 6.9]) B(1)0e = —3C(p—1, 2), where & = B,/,-1)([9D.

Then n&i,_;=-0C(p—1,2)€l;_,_;. On the other hand, =i, =
—0C(p—1, 2) and n,&5i,_;=—C(p—1, 2)0 by Lemma 2.10. Also we see that
71, 1=0 (n=3, 4, 5) by the relations 7,6y =n,_;i,—; =0 in (2.2). Therefore
x;=1, x,=0 by (2.14).

Now ¢A4P~2=f5,67 by (2.9) and (2.3). On the other hand, &,4P~2=0
(n=1, 2, 3) since BP"247"2=0 by [9; Lemma 1.5]. Furthermore, &,4P 2=
p'P=16,635, and EsAP~2=pr+15, by (2.3). Thus we have x,=0 and xs=1 by
Lemma 2.20. g.e.d.
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We see easily the following lemma by using Lemma 2.17, the exact sequence
(2.18) for r=1 and n=k or k+1, and the relation i;0=0 in (2.2).

LEMMA 2.23. [X(1), X(DTo={A; =B7'0"p?, A,=p'»~1p2,
A3=B'P725,p%", Ay=PB'""2a" B3},

XD, XD ks 1 ={p=B7"1a'B? py=p"r"25,0"p}@Ker(i,)*

Ker(i))*={us=B'720"$30;, psa=pr2pa"s;, ps=pr35,f%"5,}.

LEMMA 2.24.  (Bpp—1 A ly)B= =281 (B’ =’ BB in [X(1), X(1)];-

PrROOF. By Lemma 2.23, we put (B,/,-1A lxq)B=23=1 V. By noting
that B,,,—,=¢; (cf. [8; (5.17)]), we have

(2.25)([8; (6.2), (3.3), Prop. 6.9]) B,/p-1 A 1y=86+0¢,
85ﬁ(1)=C(P"1’ 2)é, eﬁ(s)= —C(p—1,s+1) (s=1).

Further we see that 7,(8,,,- 1 A Lx1y) =(Bpp—1A 1a)my by [21; Th. 2.4, Cor. 2.5].
Thus

T (Bpp-1A 1xayBiy = C(p—1, 2)6 — 6C(p—1, 2).

On the other hand, n,4,i;=—6C(p—1, 2) and n,4,i;=—C(p—1, 2)6 by Lemma
2.10, and m A3i;=m;A4i;=0 by (2.2). Therefore y;=1 and y,=-1, ie.
Boip-1 A lx)B=21— A2+ Y3A3+ Yads.

To study y; and y,, recall the homomorphism 6:[X, Y],—[X, Y],+,
defined in [21] and the following

(2.26)([21; Th. 4.1, Th. 2.2])  0(8o)= —d;, 0(a") =0, O(1x¢1,)=0(B)=0(p")=0;
0(yy)=0()y" +(—=1)2e790(y"), O(y Ay )=(—1)4e"pAB(y") for any y and 9’

Also recall
(2.27)([21; (3.9), (4.3), (4.4)]) Po’ = a'B, o'dg = 4"6;, doot’ = 60",

Then 0((B,/,-1 A 1x1y)B)=0 by (2.26). By (2.26), (2.27) and the definitions of
A, and p,, we have 0(A, —A,)=0, 0(A3)=p,— f'7725,53%" and 6(1,)= — p3+ u,.
Here (i)*(f'726,%¢")=0 by (2.11) and (2.2). Thus 6(1;) and 6(4,) are linearly
independent by Lemma 2.23, and we have y;=y,=0.

By [21; Th. 4.3], «"f?—p?o"= —2(Ba" —a"B)B. Therefore (B,,,—; A 1x1))B
=, —A,=—=28'P"1(Bo" — " B)B. g.e.d.
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§3. On the triviality

In this section we prove Theorem A by the following Propositions 3.1, 3.4
and 3.9.

ProposiTION 3.1.  Bf,,,=0 for s=1,t=1and 1Sr=<p-2.

ProOF. Assume that t>1 (resp.t=2) if 1<r<p-—3 (resp.r=p—2), and
put b=, p—1) (tesp. fppy) and u=p—1—r (resp. p—r). Then

(3-2)  BBipjr=PBipBs=mba"6B i (by (2.6) and (2.8))=0 (by (2.16)).
To study the product f,,,-,, we recall the relation
3.3) adf = — (0 A 1L)Bs)

which is shown by using [21; Th.2.4,(3.8)] and (2.16). Now Bf,,-2=
TBp/p—1)%0P )i by (2.6) and (2.8). Thus, by (3.3), (2.25), Lemma 2.10 and =0,
we see that BB, ,=a}p} 1B, =0. ‘ g.e.d.

PROPOSITION 3.4. For positive integers s and t,

0 if s#—1 modp or t=0 modp,
ﬁsﬂtp/p—l =

tBs+ - 1)pPpip-1 otherwise.

ProOOF. Notice that f,,,-1=nm,f 1 ER(p—1)""1i,_,i where ¢ is the ele-
ment in Lemma 2.21. Put k,=nnf"1E,R(p—1)""ti,_,i. Then Bf,p-1=
K1+xk3+Ks by Lemma 2.21.

Now we have the relations

(3.5) a’p=1p = B=Dpy”
by using [21; Prop. 4.7(ii)], and
3.6) o"i;i=0 and nma’ =0

by (2.11) and (2.1). Hence kz=nn,f5 17 25,3"f¢~V?i,i (by (2.3) and
BR(r+1)=R(r)Bin (2.9))=0 (by (3.5) and (3.6)). By definition, k5=, B~ 1)pp
where Bo,,—; =0 when t=1. Therefore

(37) ﬁsﬂtp/p—l =Ky + Bs+pﬁ(t—1)p/p—l WIth ﬁO/p—l = 0
To study « in case s — 1 mod p, we notice that

(3.8) (S+ l)ﬁs—la”ﬁ(t—l)p+2 = (S —_ I)a”ﬂ(t~1)p+s+1 +2ﬂ(£—l)p+s+la”’
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which is shown by using [21; Prop. 4.7(ii))]. By (2.3) and (2.9), we have
Ky =7 51 1g" - DP*2 i whichis 0 by (3.8)and (3.6). Thusx,=0in (3.7)
and we have Bf,,,,-1=0 by the repeated use of (3.7).

By Lemma 2.24 and (3.6), we see that B,,,_;8,= —2nn; '7~!fa”B"i,i for any
positive integer n.  Furthermore nw,fs lo"fU~DP+t2=(s—1)nrm, o[- 1IPFs
by [21; Prop. 4.7(ii)] and (3.6). Therefore we obtain x;=—((s—1)/2)B,/p-1"
B@-1)p+s- Thus by (3.7),

ﬁs.Btp/p—l = ﬁ(l—l)p+sﬁp/p—1 + Bs+pﬁ(t—-l)p/p—l when s=—1 mod p.

By the repeated use of this equality, we see the equality

Bsﬂtp/p—l = tﬁs+(l—1)pﬁp/p—1 when =~—1 mod D,

which is zero if t=0 mod p. q.e.d.

Before proving Theorem A in case r=p and t=0mod p, we have to remark
the definition of the homotopy element f,,2,,. In general, there would be various
B-elements in 7§ which correspond with a given f-element in Ext? of the same
name, and, precisely speaking, Theorem A should be stated with appropriate
choice of the f-elements in 7§ although the definition (2.5) would be canonical
in the sense that it determines the elements uniquely in case r<p—1 [9; Remark
on p. 105]. To have Theorem A in case r=p and t=0mod p, however, we have
to adopt other definitions of B,,,, already known. The element f,,.,, may be
defined from the element R’(p) in [9; Th. C'] in a similar way to (2.5), and this
element might be different from the one defined in (2.5). Unfortunately we could
not make a discussion on their difference as in [9; Remark on p. 105], because
it needs precise information on the stable homotopy of spheres beyond the known
limit of computation. In case =2, there would be one more definition of B,,2/,,
that is, B,,2/,=DPBip2/p,2» Where Py, is the element in [12]. This might be
different from the one in (2.5) as well. Then we have

PROPOSITION 3.9. For the element B,,, defined in either way of above,
BsBip2/p=0 for s=1 and t=1 (t=2 in the latter definition).

PrOOF. In case of the first new definition, the proof is similar to that of
Proposition 3.1, by taking b=p’(tp) and u=p—2 in (3.2). In case of the second
new definition, it is obvious because pf,=0. g.e.d.

§4. The B-elements in the E -term of the Adams-Novikov spectral sequence

Let BP be the Brown-Peterson spectrum at a prime p=5. Then BP,=
Z [vy, v3,--] and BP,BP=BP,[t,, t,,---], where degv;=degt;=2(p'—1) for
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i=z1. The E,-term of the Adams-Novikov spectral sequence converging to the
stable homotopy 7§ is the cohomology Ext¥p,zp (BPy, BP,) of the Hopf algebroid

(BP4, BP, BP), (cf. [1], [2], [4], [7], [13D.
Now we recall the definition of the f-elements in this E,-term given in [5;

§2]:
4.1) Bspnjri+1 = 00'(x5[p**1v]) € Exthgipp (BPy, BPy),
Bsp"/r = ﬂsp”/r,l! ﬁsp" = ﬂsp“/ls
where n=0, s=1, r=1 and i =0 are integers with
n2i, pks, r<p" if s=1, and p'|r<a,_; (ag=1, ay=p*+p*1—1(k=1)).

Let x; € v;1BP, (i=0) be the elements defined in [5; (2.4)]. Then

x3/pitiv; e Ext $*(4, A/(p®, vT)) (A = BP,, I' = BP,BP),
and we obtain the elements in (4.1) by the boundary homomorphisms

ExtQ* (4, 4/(p, v7?)) -2 Exth* (4, A/(p)) -2 Exty* (4, A).

For the BP-homology of the spectra M in (2.1) and X(r) in (2.2), we see the
following by definition:

BPy(M) = BP,/(p), BP4«(X(r)) = BP4/(p, v});
Uy = Uy, Py =05 R(r)y =15 (R(p)®)y = 0¥,

where o, B, R(r) and R(p)® are the maps in (2.4). Therefore, by using the
Geometric Boundary Theorem [3], we see the following

(4.2) The elements f; (s=1) and B, (s21 for 1<r<p, and s22 for r=p)
in (4.1) converge to the elements B and B, in (2.5), respectively, (cf. [5; §2]).

Furthermore,

(4.3) The elements B, , (t=2) converge to the elements B, , given in
[12; Def. 5.1].

The E,-term Ext}p zp(BP,, BP,) is the homology of the cobar complex
(Q*BP,, d) (cf. [4]). We can represent the elements of (4.1) in the cobar complex
by the following

LEMMA 4.4. The elements of (4.1) can be expressed in the cobar complex
Q?BP,=BP,BP® gp,BP,BP as follows:
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(1) Boprip2a=— 5082, @t + 505" 2, @ (1, — 15+1) — 50" 11, @5+ -
s(s—1)v52,R85+ ( ;) 0572, 13
—3i S (D )orthent e (k=0),

— sv3P72L, @t + svP 72 @ (8, —18HY)
—svPT 1 @+ (k=1),

(11) ﬂsp"/ak =

—soFP VP @+ - (k22).
_ SU%P'1t1®t1+-" (k—_—l),
(111) ﬁspk/ak—l = { 2SU§‘P'1)”k_lt1®t1+"' (ng).

(iv) The other B-elements belong to (p, v{)Q2?BP,.

Herel, =03, +v5P(t5 — t5**P) —v37~1v;tf € v;1BP,BP, and --- denotes an element
in (p, v,)Q%BP,.

ProoF. By the congruences in [5; Lemma 6.8] and the one ngxi;=
nrxiP mod (pitl, v3*ex) in [5; p. 499] (1 is the right unit), and by using the fact
that if dx=y mod (p, a), then

dxs?' = spixsP'~1y mod (pi*l, p'a, pi~la?,..., a?'),
we have easily the following equality in the cobar complex Q!BP,/(p®):
(45) & (xloalp™o8'm) = dtyulp™ 07 = dxp?! [ top'm
sotetlp + (§) o5 20,620p + 01X]p (=k=0),
svgpt T lpRmEim(t + vy (031, — 81 — () /p
+ Lo v @ pimy [pltt (0ZiZk=1),
SUPt DR papim(2r, — v, (27 Jp

+ They ol @re0snx,pit (k22,0S15K),

where 1 <p‘m<a, and X and X, are suitable elements in BP,BP.

Let Ve BP, and Te Z,)[t,, t,,...] be any elements. Then by the definition
of the differential,

(4.6) d(VT) = nx(V)® T— VAT + VT®1 in Q2BP,,

where 4: BP,BP—>BP,BP® 3p ,BP,BP is the diagonal map. Therefore, for any
1, r=0 with p'| r, we see that

4.7) S VT/p+1)=p1=1tin(V) ® T mod (p, v,)2*BP,+Imd in Q*BP,,

by using the equality ngv, =v,+ pt;. Further we notice that
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(4.8) ([5; Lemma 3.19]) (% is homologous to {,.

(i)—(iii) are obtained by (4.5—8) and the equalities nzv, =v; + pt;, nrv, =
v, + pt, mod (p?, v,) and At,=t,®1+1®¢, (cf. [5; §1]), and (iv) follows from
4.5-7). q.e.d.

§5. Reduction to the Morava stabilizer algebra

We make F, into a BP,-module by sending v; (=0, i#2; vo=p) to 0 and v,
to 1, and define S(2),,=F,® pp,BP«BP® pp,F, whose dual is called the Morava
stabilizer algebra (cf. [15]).

Consider the reduction map

r: (BPy, BP,BP) — (F,, S(2)x)
of Hopf algebroids. Then we have the ring map
(5.1) r*: Ext§p,pp (BPy, BPy) — Ext},), (F), F)),
where the second ring is given as follows:

(5.2) ([16; Th. 3.2]) For p=S5, Ext}.), (F, F,) is the tensor product of
E({,) with the subalgebra with basis {1, hyq, hy 1, 9o, 91> Gohy,1} Where g;=
Chygs Byigs By > (the Massey product); and hy o9, =gohy,1, h1,090="1,191=0,
hyohy,1=h}0=h3},=0 and g}=go9,=0.

By the definition of the Massey product, we see the following

(5.3) In the cobar complex for the Hopf algebra (F,, S(2)y), the generators
in (5.2) are expressed as follows: hyo={t:}, hy 1 ={t]}, {,={t, +15—1]*1},
go={t; ®15+1,®1} and g, ={t] @1, + 5 @1]}.

LEMMA 5.4. The images of the B-elements in (4.1) by the map r* in (5.1)
are given as follows:

(i) r™Bsp2p2 = —590-

N [ N G T

(ll) r*Bw"/ﬂk = — 590 (k=1)s
SCzhl,o (kz2).

(iii) 7*Bspijriv1 = O for the other f-elements in (4.1).

Proor. By Lemma 4.4(i), (ii) and (5.3).
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r*Bspzipz = {— 5, @t +5t, ®(t, — 7)) —st,; ®{,} = —59o,
{—st, @t +5t,Q(t, —t7*1) —st, ®L,} = —sg0 (k=1),
r*ﬂsp"/ak =

{=st,®(} = —shyol, (kz2).
By Lemma 4.4(iii) and (iv),

*Boprjae—1 = {8t @t} = {d(s't}/2)} =0 (s'=s if k=1, and s'=2s if k>2),
r*Bspeiri+1 = 0 for the elements in (iv).

We turn now to r*f,. Using the equality in [16; Th. 1.2], we have
(5.5) dtity) = —t, @837 — 26, @ 1] + (50,1 — 91,

- p -
4@ = - g+ S L D ot

These and Lemma 4.4(ii) imply

s

r*B={sG-DE@# + ( ) )t,@t%"— f;f;_(‘;’ )t§®t{-l}
s s+1
=(2)C2h1,1 —( 2 )91-

g.e.d.

The next theorem follows immediately from (5.2) and Lemma 5.4.

THEOREM 5.6. Let p be a prime=5 and s,t be positive integers. Then

the following (i) and (ii) hold in the E,-term Ext}p,gp(BPy, BP,) of the Adams-
Novikov spectral sequence:

(1) BsBip/p#0 and ByPip2)p2#0 if s#0, 1 mod p and t#0 mod p.
(i)  BsBipx/a#0 if k=2, s#0, —1 mod p and t#0 mod p.

Now we are ready to prove Theorem B.

PROOF OF THEOREM B. By (4.2), (4.3) and Theorem 5.6(i), BBip/p BsBip2/p,2
for s, t=2 in the E,-term are the nontrivial permanent cycles. Furthermore they

are not bounded because of the sparseness of the Adams-Novikov spectral

sequence. g.e.d.

§6. Concluding remarks

In the first place, we give more relations in Ext*. We notice that the f-
elements in (4.1) can be defined also for p=3 and Lemma 4.4 holds.
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PROPOSITION 6.1. Let p be an odd prime and s, t be positive integers.
Then the following (i)-(iii) hold in the E,-term Ext}p,gp (BPy, BP,) of the Adams-
Novikov spectral sequence:

(i) BBiprjr = 0 for k21 and 1<r=a,—1, and especially ff,,,—, = 0.
(ii) ﬁsﬁtpzlp,Z = ﬁs+t(p2—p)ﬂtp/p'

(i) BoBepr jar. = Bs+tp- 1)k -1~ p)Pip2/as
= (t/2)ﬁs+(!p— 1)pk-1-(2p- 1)pﬁ2p2/a2, for z, k 2 2.

Proor. Recall the Greek letter map n [5]. Then by Lemma 4.4(iii),
BoBip ja— 1 =8'n(vsT P~ VPt @t [pv,), where s'=s if k=1 and §'=2s if k=2.
On the other hand, v§*P~Dr*'t ®t,/pv; =0 in Ext}p zp (BPys, BP,/(p®, v7))
since this is bounded by v§*(*»=UP*"'12/2pp,. Therefore B,k /g — 1 =0.

The other relations follow similarly from Lemma 4.4. q.e.d.

REMARK. By using Lemma 4.4(ii)) for k=0, we can also prove Toda’s
relation ([21; Th. 5.3])

uvBp, = stp,f, (s+t=u+v) in Ext*.

If the B-elements in the relations of the above proposition exist in #$, then
the same relations hold in n§ modulo F??*2, where F" is the filtration which
defines the spectral sequence. In particular, since F??*2=0 in dimension
2p?—1)(2p—2)—4 [10], we have

COROLLARY 6.2. B,_1f,,-1=0 in ny  for p2=S5.
Next we notice the following

LEMMA 6.3. B,f;,,=x{k; ob;,a;} for some x #£0 mod p, where p=5 and
{ky,0bi1a,} is the element in [6; p. 324, (20)].

PrOOF. By [6; Th. 4.1], we see that the ((2p%>+3p+1)q—4)stem of the
stable homotopy n§ is generated by one element {k; ob;1a,}. B2,y is also
nontrivial by Theorem B and belongs to this stem. q.e.d.

By this lemma we can restate the problem in [6; p. 324] as follows:
Is B1B2B2p), trivial?
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