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On positive solutions of second order elliptic
partial differential equations
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The paper studies necessary and sufficient conditions for the existence of

positive solutions for the equation — Au + pu=Q on a domain G in terms of the
existence of a solution of a related Riccati inequality. Certain results from
ordinary differential equations are extended to this setting providing sufficient
conditions for positive solutions.

1. Introduction

The purposes of this paper are to extend known results on the existence of
positive solutions, on disconjugacy and nonoscillation of the ordinary differential
equation (o.d.e.)

(1.1) ιι"(f) + p(t)u(t) = 0

on a nontrivial interval /, which is possibly unbounded, to an analogous p.d.e.

(1.2) - Au(x, y) + p(x, y)u(x, y) = 0

on a nontrivial domain, i.e., a connected open set in R2, or possibly on its closure.
The coefficient function p in (1.1) is assumed to be continuous, while in (1.2) we
assume a local Holder continuity.

The results readily extend from equations (1.2) in JR2 to those in Rn, n>2;
and where the second order Laplacian term — Au is replaced by a more general

second term — V (r Fw), where n > 1 and r is an n x n symmetric real matrix
valued function which is in C1, and which is uniformly positive definite.

The reason for the minus in (1.2), which is not present in (1.1), is the currently

available literature in o.d.e.'s and in p.d.e.'s where these respective forms pre-

dominate.

The results to be presented in this paper are obtained by extending the

following theorem of M. Bόcher [3] to p.d.e.'s.

THEOREM 1.1 (Bόcher). Equation (1.1) has a positive solution on a non-
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trivial interval I if and only ifthrere is a C1 solution w, on I, of

(1.3) w'(f) + w2(0 + p(f) < 0.

A. Wintner [15] used

Π ί r*-4, 0<ί<l/2,
(1.4) w(t) =^ p(s)ds + \

under the assumption of

(1.5) 0 < Γ χs)ds < 4, 0 < t < 1,

to show that w satisfies (1.3) on / = (0, 1), and with a modification he concluded
(1.3) has a solution on [0, 1] and, hence, (1.1) has a positive solution on [0, 1].
Condition (1.5) relates to a well-known result of Lyapunov, cf. P. Hartman [7],
where (1.5) is replaced by

(1.6) (b-a)(bp+(s)ds<4,
J a

when the interval [0, 1] is replaced by a more general interval [α, b~] where

Wintner also showed that if P(t)~ \ p(s)ds converges on / = (α, oo) and if
Jί

(1.7) P\t) < XO/4

holds on / then w(ί) = 2P(ί) satisfies (1.3) on /. Actually as anticipated, if not in
fact known, by Wintner, if P(t) is any antiderivative of —p(t) on / satisfying (1.7)
then w(ί) = 2P(0 still satisfies (1.3) on / and, hence, (1.1) is disconjugate and,
hence, nonoscillatory on /.

The concept of nonoscillation on / = (α, oo) for (1.1) is equivalent to eventual
disconjugacy on / in the Calculus of Variations sense which is equivalent to the
existence of an eventually strictly positive solution on /, cf. W. T. Reid [12].

The results above as well as others due to A. Wintner [15], P. Hartman [7],
and Z. Opial [10] will be extended by first extending the theorem of M. Bόcher
to a p.d.e. setting. In our p.d.e. setting, (1.3) will be replaced by

(1.8) - div W(x, 30 - W(x, y) - W(x, y) + p(x, y)>0

where Wis an exact C1 vector field, i.e.,

(1.9) dWJdy = dW2/dx,

Finally we mention that one of our first applications will be to establish that
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the existence of positive solutions, u( , y), of the family of o.d.e.'s

- uxx(χ, y) + p(χ, y)u(x, y) = 0,

indexed by y, on horizontal cross-sections of a domain in R2 proves a sufficient
condition for the existence of a positive solution of (1.2) on that domain.

2. Bόcher's theorem extended

The following theorem is a special case of the main theorem of W. Moss and

J. Piepenbrink [9] which relates as well to work of W. Allegretto [1]. In what

follows,

L[φ] = - Δφ + pφ,

and Ω^R2 is a domain, i.e., connected open set, on which p is locally Holder

continuous.

THEOREM 2.1 (Moss and Piepenbrink). If G is a subdomain of Ω and if for

every bounded subdomain D of G, with D^G, condition

(D) inf^ _ φLW]dxyD φ2dxdy > 0

(A = {φeC$(D):\\ φ2dxdy^Q}) holds, then there exists a positive solution

G.

REMARK 2.2. The results of Moss and Piepenbrink also allow G in Theorem

2.1 to be replaced by its closure G^Ω, provided its boundary is smooth. In the

case where G is bounded and smooth this is handled by their Lemma 2.3 where

the solution v e C2(G). The argument they present for the proof of their Theorem

2.1 shows how this can be extended if G is unbounded and smooth. Results from

the literature allow the boundary of G to be piecewise smooth also, in which case

v G C2(G) n C°(G). We further remark that in the theorem above, no assumptions

are made concerning the regularity of the boundary of G. Also when G is un-
bounded it need not be an "exterior domain," i.e., contain the complement of

some closed ball, such as frequently considered in the literature, cf., e.g., W.

Allegretto [1].

From the above the following fundamental result will follow.

THEOREM 2.3. L[t;]>0 has a positive C2(G) solution v on a subdomain G

of Ω if and only z/L[w]=0 has one. Furthermore, in the preceding sentence if

G^Ω is smooth, we may replace G by G, while if G<=ί2 is piecewise smooth we
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may replace G by G, but we change C2(G) to C2(G) n C°(G).

PROOF. Clearly L[u] = 0 implies L[u] > 0, so one direction of the equivalence

is trivial.
On the other hand, suppose L[u] > 0 has a positive solution v e C2(G) on

G^Ω. The conclusion will follow from Theorem 2.1 provided we establish

condition (D).
Assume then that D is a bounded subdomain of G and that F is some bounded

smooth subdomain satisfying D^F^F^G.
Now for φeC^(D), let h = φ/vεC2(F). We apply the "Picone" identity

|| Pφ\\2 + pφ2 = \\vFh\\2 + h2υL[Ό] + Γ-

and the Divergence Theorem of Gauss to obtain

φL[φ]dxdy=(( φ\\2+pφ2dxdy = (( v2\\Γh\\2dxdy + (( h2ΌL[υ]dxdy

φ
2
dxdy = κ(( φ

2
dxdy,

for some K>0, where C is the smallest positive eigenvalue of —A on F. Thus
condition (D) of Theorem 2.1 holds, so there is a positive solution weC2(G) of

L[w]=0on G.
Remark 2.2 may be used to establish the rest of the reuslt.

COROLLARY 2.4. L[V|>0 has a positive C2(G) solution on a domain G^Ω
if and only if condition (D) of Theorem 2.1 holds for each bounded subdomain
DofG.

We now indicate how disconjugacy of a family of ordinary differential
equations may be used as a sufficient condition for a positive solution of (1.2).

Let J^R be an open interval and J its closure. Suppose α, b: J->JR are
two C1 functions with a(y)<b(y) for all ye J. Let G = {(x, y): yeJ and a(y)<
x<b(y)} and G be its closure. Clearly the boundary of G is piecewise smooth.

THEOREM 2.5. Suppose p is locally Holder continuous on G, as defined
above. Suppose that for each yeJ the ordinary differential equation

(2.1) - uxx(x, y) + p(x, y)u(x, y) = 0

has a positive solution on Iy=\_a(y), b(y)~\.

Then (1.2) has a positive solution u e C2(G) n C°(G) on G.

REMARK 2.6. Protter [11] uses a similar method of cross-sections in es-



Second Order Elliptic Partial Differential Equations 473

tablishing lower bounds on the first eigenvalue of an elliptic equation. We note

also that we are making no assumptions of the continuity of the family of solutions

u( - , y) as y varies in (2.1).

PROOF. By applying results from W. T. Reid [12], in particular Exercise 5

of Chapter V9 together with continuity of solutions of o.d.e.'s with respect to initial

conditions and parameters, for any y0 e J there is a δ>0 and a X3,0>0such that

for each y e J with \y — y0\ < δ it follows that

ηϊ(χ, y) + fa, y>ι2(χ, y)dχ > κyo

holds for any function η e CQ (G).

This may be used to establish condition (D) of Theorem 2.1.

Let D be any bounded subdomain of G. Let J0 be any compact subinterval

of J so that D^F={(x9 y): yeJ0 and a(y)<x<b(y)}^G.

Now the boundary of F is piecewise smooth and F is compact. By (2.2) and

a compactness argument there is a K>Q such that

C f & ( y ) C C b ( y )
(2.3) \ \ η* + η*+pη*dxdy > K\ \ η^dxdy

JyeJoJa(y) JyeJoJa(y)

holds for any ηeC$(F). Since CjftD) c cg>(F), we have established condition

(D) Theorem 2.1, as before the left side of (2.3) may be replaced by the same

integral of ηL\_η\. Remark 2.2 is used to reach our conclusion.

A simple corollary now follows from an application of the inequality of

Lyapunov, recall (1.6). Here we have p~(x9 j) = max {0, — p(x9 y)}.

COROLLARY 2.7. Let G, α, b9 p and J be as in the theorem except assume

(2.4)

holds for all yεJ. Then L[ι/]=0 has a positive solution on G.

Also9 if rather than (2.4) we assume J is unbounded above and

(b(y)
(2.5) lim sup [b(y)-a(yy] \ p~(x, y)dx < 4 as y - > oo,

J«(y)

then L[w] = 0 has an "eventually positive" solution as j->oo, i.e., a positive

solution on G n (R x [jθ5 oo))/or some y0 e J.

Since the Laplacian operator is invariant under rotation of axes in the domain

space of solutions of (1.2), if G is a piecewise-smooth compact convex set then

cross-sections of G parallel to a fixed line are closed line segments. Let
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{^f,α}ίΞ??(ίj denote a one parameter family of such line segments having angle of
inclination α relative to the positive X axis, and which cover G as t varies from

^(α) to ί2(
α) By Corollary 2.7, we have a second corollary.

COROLLARY 2.8. Let G be a pίecewίse-smooth compact convex set and

{ βt>tx} be as just described with L(^α) = length of ΰt>aL. If

θ5π] maxf6[fl(α)ff2(α)]

holds, then L[w]=0 has a positive solution on G.

We note that (2.6) implicitly bounds the lengths of linear crossections of G
in some direction. We may thus interpret Corollary 2.8 as saying that if a
piecewise-smooth compact convex set G is sufficiently narrow then (1.2) has a

positive solution in it.
A slight modification in the proof of Theorem 2.5 allows us to expand G

from a strip to a sector or half space.

Assume now J is an open interval which is at least unbounded above, and
possibly below. Assume a: J-*R is continuous and let H = {(x, y): yeJ and

<*(y)<χ}

COROLLARY 2.9. Suppose that p is locally Holder continuous on H and

that for each yeJ (2.1) has a positive solution on Iy = (a(y), oo).
Then (1.2) has a positive solution u e C2(H) on H.

PROOF. As in the proof of the theorem, we establish condition (D) of

Theorem 2.1. Since the modifications here are slight we omit the proof.

As corollaries of this result conditions such as (1.7) of Wintner or a host of
other disconjugacy results may be employed, cf. D. Willett [14] and references
therein. For one example, we provide the following, related to Wintner's result.

COROLLARY 2.10. Let H, a, p, J and Iy be as in Corollary 2.9 except assume

(2.7) (J00 XT, y~)dτj < - p(x, y)/49 for each x e /,,

holds for each y in J. Then L[w] = 0 has a positive solution on H.

A change of variable allows us to compare Corollary 2.7 with a result of
Glazman [5, p. 158], see also Swanson [13, p. 279], where rather than cross-
sectional integrals as in (2.4) and (2.5), cross-sectional infima of p are considered.

Under x = ep cos θ, y = ep sin θ it follows that

(2.8) (x2 + y2)(-uxx-uyy + pu) = -upp -ύθθ + e2?p(p, 0)β
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holds, where ύ(ρ9 θ) = u(epcosθ, ep smθ) = u(x, y) and, likewise, p(p, θ) = p(x, y).

Thus, (2.8) transforms (1.2) into a similar equation with the new coefficient e2pp.

This transformation associates unbounded circular sectors centered at (0, 0),

such as those considered by Allegretto [2], with unbounded horizontal strips in

the (p, θ) plane having width being the angle measure, less than 2π.

Allegretto considers, after a suitable rotation, that Cα = {(x, y)εR2 : x>

α^ + y2)1/2} for some α, 0<α<l. With p*(p) = infX2+y2=e2P p(x9 y), Theorem 1
of Allegretto [2] states that if

(2.9) lim inf,^ e2pp*(p)> - 1/(1 -α)

then (1.2) is nonoscillatory on Cα, i.e., there is a p0>0 such that (1.2) has no

nodal subdomain on x2 + y2 > e2po, or equivalently condition (D) of Theorem 1.2

holds there, which by Corollary 2.4 is equivalent to the existence of a positive

solution there.

Condition (2.9) above in turn improves the previously mentioned result of

Glazman.

We note that the radian measure, 2β, of the angle of the cone Cα, 0<α<l

in R2 is

(2.10) 2β = 2 arctan (1 -α2)1/2^

Condition (2.4) of Corollary 2.7 states that if

(2.11) lim sup^ 2β (β e2pp-(p, θ)dθ < 4

then (1.2) is nonoscillatory on Cα.

In the special case where p(ρ, θ) = p*(p)<0 is independent of θ for — β<

θ<β, then (2.11) is not as sharp as (2.9), though clearly (2.11) applies to a much

broader class of coefficient functions. In this special case (2.11) reduces to

(2.12) lim inf^ e2Pp*(p) > - β~2.

Now β2>sin2jβ = l-α 2>l-α holds for all 0<α<l, so -β~2> -(1-αΓ1 and

(2.12) is more restrictive than (2.9); however, since β2<tan2 β = (l — α2)/α2, we see

\<β2(l-u)-l<(\+a)vί-2 holds, so for small β, i.e., α near 1, e.g., for 2/3 <α<l

the quotient is bounded above by 4.

In closing this section we note that a simply connected compact set G spiraling

around the origin in R2 may be considered as a vertical type strip G in (p, θ). An

illustration of a spiraling nodal subdomain associated with the n-th gigenvalue of

L[u~\= —Au under zero boundary conditions is shown on p. 456 of Courant and

Hubert [4]. They point out there how higher eigenvalues may still have as few

few as two nodal subdomains for corresponding eigenf unctions.
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3. Riccati inequalities

Riccati inequalities and corresponding equations related to the linear operator

(3.1) L\u] (x, y) = - Au(x, y) + p(x, y)u(x, y)

are not new to the literature. Indeed, e.g., P. K. Wong [16, 17] considers both.
He also has extensive bibliographies indicating previous occurrences in the
literature. While Wong even considers systems of such inequalities, he does not
appear to link the concepts of the equivalence as we have in Theorem 2.3, and as
we shall in the corresponding Theorem 3.1.

As before we let Ω^R2 be a domain on which p is locally Holder continuous.
Let G^Ω be a subdomain. Suppose u e C2(G) and u^0 on G.

Let w(x, y) = log\u(x, y)\, so that \u(x9 y)\ = ew<* y) holds. Let W(x9 y) =
Pw(x9 y)= Pu(x9 y)/u(x9 y)9 so that Fu = uW holds. We then have Au=V
(u ru) = u(r W+ W W\ so that with

(3.2) K[W] ΞΞ -r- W-W W+ p = K\_W\ p],

it follows that Wisa &(G) vector field and both

(3.3) L\u] (x, y) = u(x, y}K\_W] (x, y)

and the exactness condition

(3.4) dWfc, y)/dy = dW2(x, y)/dx

hold on G.
The process just indicated may also be reversed, where if we start with an

exact Cl(G) vector field W then there always is a C1(G) scalar function w with
Fw=Wand w = expw defines a nonzero C2(G) function for which (3.3) holds.

As a trivia] consequence of Theorem 2.3 we have our first result.

THEOREM 3.1. K[JF]>0 has an exact C\G) vector field solution W on a
subdomain G^Ω if and only ι/X[F]=0 has one; and this holds if and only if
L[w] = 0 has a positive C2(G) solution on G.

In what follows we always use capital letters,

(3.5) PΞΞdiv- 1 ^

to signify that P is an exact C1 vector field and that Γ P = p. Such P exists on
any domain G on which Poisson's equation, Ap = p9 is solvable, and P=Γp
provides such functions P, which are unique to within the gradient of any harmonic
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function h, i.e., P = F(j? + /ι) In Section 4 of this paper we indicate a method for
computing a specific inverse divergence.

LEMMA 3.2. K[W]>0 has a C1 exact vector field solution W on a domain
if and only if

(3.6) J7.F>(F-P) (F-P) = ||F-P||2

has one.

PROOF. Let V=P-W,W=P-V. Then

(3.7) K[W] = F F-(P-F) (P-F).

As corollaries of the preceding we extend several results mentioned in the
Introduction; recall (1.7) and (2.7).

COROLLARY 3.3. // there exists P = div~1 p satisfying

(3.8) 4P-P< -p

on a domain G, then L[u]=0 has a positive C2 solution on G.

PROOF. Let F= -P, so W=2P is used in (3.7), so that (3.6) and (3.8) are

equivalent in this setting.

COROLLARY 3.4. If for some constant c it follows that

(3.9) ||P(x, y)

holds on a domain G containing the half-space x>x0>0, and contained in the
half-space x>0, then L[w] = 0 has a positive solution on G.

PROOF. Let F(x, j) = (-(4x)~1, -c). Then Fis an exact C1 vector field

on the half-space x>0. Furthermore, F satisfies (3.6), which completes the
proof.

Since rotation and translation of the domain coordinates of solutions does

not affect the Laplacian, the previous corollary extends to other half-spaces.
Also this result extends the o.d.e. result of A. Wintner [15] showing that

- 3/4 < ί(°° p(s)ds < 1/4

or equivalently

ί r ™ p(s)ds + l/4ί <l/2ί
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holding for all tεI = (tQ, oo) implies (1.1) has a positive solution on /. Here it is
clear that p may alternate in sign, which is not allowed in condition (1.7).

The following two results are extensions of those found in P. Hartman [6].
These results follow immediately by appealing to Theorem 3.1.

LEMMA 3.5. // W=2~1V+P, P = div~1 p then

(3.10)

THEOREM 3.6. If K\_V\ -4P P]>0 has an exact C1 vector field solution
on a domain G then so does K[W\ p]>0 and hence, L[w]=0 has a positive C2

solution on G.

The following generalizes a result of Z. Opial [10]. In what follows,

THEOREM 3.7. //

(3.11) 16P P < P P

holds on a domain G then L[w]=0 has a positive C2 solution on G.

PROOF. Condition (3.11) holding implies, by Corollary 3.3, that L[w; -4p]
= 0 has a positive C2 solution on G, so that by (3.3), K\_V\ -4^] = 0 has a C1

vector field solution. From (3.10) and Theorem 3.1 we now have our result.
In the o.d.e. setting, one advantage of OpiaΓs result over Wintner's, here

represented by (3.11) and (3.8), respectively, is that in (3. 8), p must be nonpositive
while in (3.11), p may be allowed to change sign. Of course, in o.d.e. 's the
specific antiderivatives (inverse gradients) are usually expressed in integral form
such as those following Corollary 3.4.

REMARK 3.8. Further potential application of the equivalence in Theorem
3.1 is in the area of oscillation of solutions of (1.2), cf. W. Allegretto [1] for
the concepts, where oscillation on an unbounded domain is equvialent to the
nonexistence of an eventually positive solution exterior to some large ball. The
analog of Theorem 3.1 in o.d.e. theory has proved to be very helpful in this regard,
cf. D. Willett [14]. The shape and structure of the domain will likely be of much
greater significance in these applications than we have presented in this section.

Finally, before we return in the next section to the analog of the result of
Wintner, (1.4) and (1.5) of the Introduction, we note that the actual theorem of
Moss and Piepenbrink [9], given in part by Theorem 2.1, applies equally well to

(3.12) -P (rPu) + pu = 0

and
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(3.13) - F (rFw) - (rPwOr-^rPto) + p > 0

where W = rF w and r is a uniformly positive definite symmetric n x n matrix valued
function whose first partial derivatives are locally Holder continuous on a domain
Ω^R". In this setting P^div"1^, p) signifies that P = r Γ p and 7-P = p, so
that r~lP is exact.

The results of this section extend with little problem to this more general
setting.

4. A specific inverse divergence and applications

In this section it becomes simpler to use the notation x = (x l9 x2)
 and ζ =

(ξl9 ξ 2 ) as elements of a piecewise smooth bounded convex domain G^Ω^R2,
where as previously, Ω is a domain on which p is locally Holder continuous.

By a result of K. Kreith [8] when G is smooth and K(x, ξ) = (2π)~1 log ||x-ξ||
then

(4.1)

provides a solution of Poisson's equation, Δp = p on G. Clearly, by our re-
gularity assumptions of p on Ω, if G is merely piecewise smooth then (4.1) provides
a C2(G) n C°(G) solution of Poisson's equation on G.

Thus with

(4.2) K(x, ξ) = FxX(x, ξ) = (2πri(x

we have that

(4.3) P(x) Ξ ( K(x9 ξ)p(ξ)dξ = (P,(xl9 x2), P2(x l 5 x2))
JG

provides an exact C1 vector field solution of Γ P = p, i.e., an "inverse divergence"
of p on G (and on G if G is smooth). (Recall (3.5) and the following.)

In what follows, capital letters P will always designate the inverse divergence
of p given by (4.3). By adding the gradients of harmonic functions to P(x) we
obtain the most general inverse divergence of p.

While the inverse divergence (4.3) might appear to be inconsistent with the

antiderivatives

(4.4) (Xp(t)dt or (b-p(t)dt

used in o.d.e. theory, by using Green's functions, g(x, t)= — (b — a) l(b — x)(t
for a<t<x<b and g(x, t)=-(b-a)-\b-t}(x-a) for a<x<t<b, then
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P(x) = {" 9(x, 0X0*. and P(x) = {" gx(x, t)p(ί)dt
Ja Ja

provide solutions of p"(χ) = p(x) and P'(x) = Xx), respectively, corresponding to

(4.1) and (4.3), respectively. Furthermore, we have

(4.5) P(x) = (* (b-aΓl(t-a)p(t}dt - (* (b-a)-\b-t)p(t)dt.
Ja Jx

By adding the constants

(b(b-a)-\b-t)p(i)dt and Γ - (b-ά)-\t-a)p(ϊ)dt

to P(x) in (4.5), respectively, yields the antiderivatives in (4.4). The singularity
of gx(x9 f) is the important part of (4.5) for the o.d.e. setting as is the singularity
for K(x, ξ) given by (4.2) for the p.d.e. setting.

Now the result (1.4) and (1.5) of Wintner has a direct generalization to our
p.d.e. setting; however, the inverse divergence formula (4.3) does not appear to
be well suited for it. Instead, it is better suited to a rearrangement of Wintner's
result. Indeed, if instead of (1.4) and (1.5) we define

r 1/2 ί r1 - 2, o < t < 2-1,
(4.6) w(ί)= p(s)ds + \

J< l( t_l)-ι + 2, 2 - 1 < ί < l ,

and assume

f l / 2
(4.7) 0 < sgn (2-1 - 0 J p(s)ds < 2, 0 < t < 1,

respectively, then w(ί) still satisfies the Riccati inequality (1.3) on (0, 1). This
result, as is the case for (1.5), is sharp in the sense that the constants on the right of
these inequalities may not be increased without violating the conclusion that a
solution of (1.3) exists for some coefficient p. The proof that (4.6) and (4.7) may
replace the assumptions (1.4) and (1.5) of Wintner's result is clear from what we
shall do here for the p.d.e. case.

THEOREM 4.1. In (4.3) let G= [0, 1] x [0, 1]. Let G denote its interior. If

(4.8) 0 < [sgn (2-1 -x^P^x) < 2, for ί = 1, 2,

holds for xeG then (1.2) has a positive solution on G.

PROOF. Let Z be the O(G) vector field whose components are given by
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f x?1 - 2, 0 < x, < 2-ι,
(4.9) Z, (x) = 0 < Xj < 1,

1 (χί-l)-ι + 2, 2-ι <*,<!,

for i = 1, 2, 7 = 1,2 and i ^ 7.

Let PF(x) = P(x) + Z(x) on G. Then Pf is exact and we shall show

(4.10) - F W(x) - W(x) - W(x) + p(x) > 0

holds on G. This will be accomplished by establishing

ί XT2, 0 < xt < 2-1,
(4.11) Wftx) < - dZJdxt = 0 < x, < 1,

1 (x -1)-2, 2-ι <*,<!,

for i = l,2, 7 = 1,2 and i Φ j.
We see now that

(4.12) Wftx) =

For 0<xί<2~1, by (4.8) and (4.9) we have

Pjx) + 2Zf(x) < 2 + 2[x71-2] = 2xΓx - 2,

where the expression on the right is positive.

We multiply the extremes of the last display by Pf(x)>0 and then add Zf(x)

to obtain

Wftx) < 2[2xγl-2] + (xΓ1-^)2 = xγ2

which establishes (4.11) in the case 0<x ί<2~1.

An analogous argument holds if 2~1<x ί<l, except here O^P^x)^ —2, so

that by going back to (4.12) we have

Pf(x) + 2Z,(x) > - 2 + 2(xt- 1)-1 + 4 = 2(x,- 1)'1 + 2,

where the expression on the right is negative. By multiplying by Pf(x)<0 and

adding Z?(x) we obtain

Wi(x) < - 2[2(xί-l)-1 + 2] + [(xί-l)-1 + 2]2 = (x^l)'2.

Thus (4.11) holds and, consequently, so does (4.10).

Finally, since p is continuous on G and Zf(x) tends to + oo, — oo (in a uniform

fashion for 0 < Xj < 1, j φ ί) as xt tends to 0 and 1, respectively (from the right and

left, respectively), the inequality (4.10) must be strict in G in a neighborhood of

the boundary. As concluded by Wintner in the o.d.e. case we may here claim

that by redefining W(x) appropriately in that neighborhood of the boundary,
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(4.10) will hold on G. Hence, by applying Theorem 3.1 to (4.10) we have proved

the theorem.

By an appropriate change of variable we have the following result.

CCOROLLARY 4.2. Let G=[al9 a1 + c']x[a2, a2 + c] for some c>0 be used
in (4.3). //

(4.13) 0 < [sgn(αί + 2-1c-xί)]cPί(x) < 2, i = 1, 2,

holds for x e G then (1.2) has a positive solution on G.

PROOF. With a = (a}9 α2) the corollary follows from the theorem. Under
the change of variables

u = c~\x-a), η = c~l(ξ-ά),

y(x) = y(u\ p(x) = p(u),

we have

c2[- JX*) + Xx)Xx)] = - Λy(u) + c2p(u)y(u)

and

c ( K(x, ξ)p(ξ)dξ = ( K(u, η)c2p(η)dη
JG J[0, l]x[0, l]

holding where u varies over [0, 1] x [0, 1].

REMARK 4.3. Theorem 4.1 remains valid if (4.8) is changed to

(4.14) 0 < Pt{x) < 4 for i = 1, 2

for all x in G.

At this time we return to the discussion preceding Theorem 4.1.
In the case when p is a negative constant it follows that Pf(x)>0 holds for

0<x ί<2~1 and Pf(x)<0 holds for 2~1<xi<l, so that condition (4.14) is not
realistic, whereas when this constant is sufficiently close to zero then (4.8) will hold.
Indeed, if p is negative and "pyramid" in shape, symmetric about the lines x1 = 1/2
and x2 = l/2 in G and monotone decreasing in each of the variables xί and x2 on
[0, 1/2] x [0, 1/2] then the first inequality in (4.8) will hold. Again if p is not too
negative the right inequality in (4.8) will also hold. This provides a large class
of coefficient functions to which Theorem 4.1 applies, but of course there is a larger
class, as described by (4.8) itself.

Finally in closing, with G = [0, 1] x [0, 1] and with p(xl9 X2)~Po we note
that for p0> — 2π2, by a comparison, (1.2) has a positive solution on G. Indeed,
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u(xi9 x2) = ̂ inπxl sin πx2 satisfies —Au — 2π2u = 0 on G with u(xl9 x2)
 = 0 on the

boundary. As a comparison, (4.8) shows that if

(4.15) Po> ~ 8π(4arctan2-1 + logS)-1 s -7.255

then (1.2) has a positive solution.
The ratio of the constant on the right in (4.15) to the "best" constant 2π2

here in the p.d.e. setting is essentially the same as corresponding ratio of 4, as
provided by (1.5) to the "best" constant of π2 in the o.d.e. setting but, of course,
(4.8) and (1.5) apply to much broader classes of functions.

The results of Section 2 applied to this example yield

(4.16) PQ > - 4

which, of course, is not as good as (4.15).
This illustrates the difference in the general nature of the results of this section

over those in Section 2. There we show that if a domain is inside a sufficiently
narrow strip then equation (1.2) has a positive solution on it. Here we show that
if it is inside a sufficiently small square, which need not be as narrow as the strip,
then (1.2) has a positive solution on it.

When we consider solutions having domains in Rn, n>2, we may consider
various subdimensional cross-sections with results analogous to those of both
Sections 2 and 4 being used.
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