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Let F be a formally real field and P a preordering of F. In his paper [7],
M. Marshall introduced an equivalence relation in the space X(F/P) of orderings
by making use of fans of index 8, and the notion of connected components of
X(F/P) by an equivalence class of the relation.

The main purpose of this paper is to show that the number of connected
components of X(F/P) coincides with the dimension of Z,-vector space H(P)/P
for a subgroup H(P), which is defined in §2. We also show, in §3, that if K=
F(\/—E) is a quadratic extension of F with a an element of Kaplansky’s radical,
then the number of connected components of X(K/P’) equals twice that of X(F/P),
where P’ is the preordering ZP-K2 of K. We should note that the groups
H(P) and H(P') are connected by an important relation N~{(H(P))=F - H(P’),
where N is the norm map of K to F.

For a subset A4 in a set B, the cardinality of A will be denoted by |A4| and the
complementary subset of 4 in B by B— A or A°.

§1. Preorderings and fans

Throughout this paper, a field F always means a formally real field. We
denote by F the multiplicative group of F. For a multiplicative subgroup P of
F, P is said to be a preordering of F if P is additively closed and F2cP. We
denote by X(F) the space of all orderings o of F and by X(F/P) the subspace of
all orderings o with P(c)2 P, where P(0) is the positive cone of . For a subset
Y of X(F), we denote by Y the preordering N P(c¢), 6€ Y. Conversely for any
preordering P, there exists a subset Y < X(F) such that P=Y!. Thus we have
P=X(F/P)! and in particular X(F)t=Dp(c0)=2F2. We put ¢+=F for con-
venience. The topological structure of X(F) is determined by Harrison sets
H(a)={o € X(F); a e P(0)} as its subbasis, where a ranges over F. An arbitrary
open set in X(F) is thus a union of sets of the form H(a,,..., a,)=H(a,)Nn---N
H(a,). For a preordering P of F, we write H(ay,..., a,/P)=H(a,..., a,) N
X(F/P) where a;€ F.

For two forms f and g over F, we write f ~g(mod P) if for any o € X(F/P),
sgn,(f)=sgn,(g) where sgn,(f) and sgn,(g) are the signatures at ¢ of f and g,
respectively. If f~g(mod P) and dimf=dimg, we write f=~g(mod P). For
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a form f=<a,,..., a,) and b eF, if there exist p;,..., p,€ P U {0} such that a,p, +
---+a,p,=b and (py,..., p,) =(0,..., 0), then we say that the form f represents b
over P. We put D(f/P)={be F; f represents b over P}. We say that f is P-
isotropic or fis isotropic over P if f represents 0 and P-anisotropic or antisotropic
over P otherwise.

Proofs for the following lemmas can be found in [2].

LemMA 1.1. ([2], Satz 3, Lemma 4, Satz 7). Let P be a preordering of a field
F and ¢, Y be forms over F. Then the following statements hold.

(1) o is P-isotropic if and only if D(¢/P)=F.

(2) If p=y(mod P), then D(¢/P)=D(¢/P).

LemMma 1.2. ([2], Satz 15). Let P be a preordering of a field F and a, b be
elements of F. If the form {a, b, ab) represents 1 over P, then there exists
ce F such that {a, by =1, c)(mod P).

LEMMA 1.3. Let P be a preordering of a field F and a, b be elements of F.
If sgn,({a, b))=0 for any o€ X(F|P), then the form {l, a, b) is P-isotropic.

Proor. We have {1, a, b)={l, —1, —ab)(mod P) by the assumption.
Then the assertion follows from Lemma 1.1. Q.E.D.

LEMMA 1.4. Let P be a preordering of a field F and a,,..., a, be elements
of F. Then D(ay,..., a,y/P)=H(a,,..., a,/P)*.

Proor. If D({ay,..., a,y/P)= F, then P'=D({ay,..., a,y/P) is a preordering
and it is clear that P'<H(a,,..., a,/P)*. Conversely the fact X(F/P')< H(a,,
..., a,/P) implies P'=X(F/P')*=2H(a,,..., a,/P)*. If D({ay,..., a,y/P)=F, then
the form a,,..., a,» is P-isotropic and H(a,,..., a,/P)=¢. In this case we have
also D({ay,..., a,y/P)=H(ay,..., a,/P)* since we put ¢+=F. Q.E.D.

If F is not a SAP (Strong Approximation Property) field, then there exist
distinct orderings {0, 0,, 03, 6,} such that 6,=0,0,0; (a fan of index 8) by [4],
Satz 3.20.

Let P be a preordering of a field F and ¢=(1, a, b, —ab) be a quadratic
form over F which is P-anisotropic. By Zorn’s Lemma, there exists a maximal
preordering P'2 P over which ¢ is anisotropic. In this section, we shall show
that P’ is a fan of index 8, namely X(F/P')={0, 03, 03, 04}, 04, =0,0,03.

LEMMA 1.5. Let P be a preordering of a field F and a, b be elements of F
such that the form {1, a, b, —ab) is P-isotropic. Then there exists c € F which
satisfies the following conditions (1) and (2).

(1) D(K—a, —bY/P)=D(—cH/P).

(2) D(Ka)/P)n D(KbY/P)=D(LcH[P).
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Proor. From the assumption, we can find a non-trivial relation p, +ap, +
bp;—abp,=0 with p;e PU {0}, i=1, 2, 3, 4. If p, =0, then the form {(—a, —b,
aby=~ —(a, b, —ab) is P-isotropic and D({—a, —b, aby/P)=F. If p,+0,
then we have a relation 1= —ap,p7!—bp;p7l+abp,p7' and this shows that the
form {(—a, —b, ab) represents 1 over P. Anyway the form {—a, —b, ab),
which is the pure part of the 2-fold Pfister form { —a, — b}, represents 1 over P.
By Lemma 1.2, there exists ce F such that { —a, —b) =1, —c)(mod P), and
we have D({ —a, —bY/P)=D({1, —c)/P)=D({ —cY|P).

As for the condition (2), we have D({a)/P) n D({bY/P)=H(a/P)* n H(b/P)*
=(H(a/P) U H(b/P))* and therefore D({a)/P)n D({bY/P)=(H(—a, —b/P)°)L.
It now follows from Lemma 1.4 that H(—a, —b/P)=H(—c/P). Therefore, again
by using Lemma 1.4, we have (H(—a, —b/P)*)*=(H(—c¢/P)*)*=D({c)y/P) from
which the condition (2) follows.

Irmma 1.6. Let P be a preordering of a field F and {1, a, b, —ab) be a
P-an ¢ form. Then the following statements hold.

(1) H(a, b/P)= ¢.

(2) P=D(La)/P)n D({bY|P) is a preordering and the form {1, a, b, —ab)
is P-anisotropic.

ProoOF. Suppose, on the contrary, that H(a, b/P)=¢. Then for any
o€ X(F/P), sgn,({a, b»)=0. By Lemma 1.3, the form {1, a, b) is P-isotropic
and this contradicts the assumption that the form {1, a, b, —ab) is P-anisotropic.
So we have (1). As for the statement (2), since the form {1, a, b, —ab) is P-
anisotropic, we have aec — Pand b= — P. Then it is clear that P is a preordering.
Suppose that the form (1, a, b, —ab) is P-isotropic. Then there is a non-trivial
relation p, +ap,+bp;—abp,=0 with p,e PU {0}, i=1, 2, 3, 4. Here p,=0; in
fact, by considering p; and p, as elements of D({a)/P) and p; as an element of
D({bY/P), the relation p; +ap,+bp;=0 would imply that the form <1, a, b) is
P-isotropic. Thus we may assume that p,=1 without loss of generality, and this
implies that the form {1, a, b) represents ab over P. This is a contradiction.

Q.E.D.

Lemma 1.7. Let {1, a, b, —ab) be a form over F and P be a maximal
preordering such that {1, a, b, —ab) is P-anisotropic. Then we have

D({a, —b}/P) n D({—a, b)/P) n D({—a, —b}/P) = P.

Proor. Since —ab{l, a, b, —ab)={1l, —a, —b, —ab) is P-anisotropic,
Lemma 1.6 says that the form {1, —a, —b, —ab) is anisotropic over P =D({ —a))/
P)n D({—bY/P). Thus {1, a, b, —ab) is P-anisotropic and we have P=FP by
the maximality of P. On the other hand, we have H(a, —b/P)* N H(—a, —b/P)*
=(H(a, —b/P)u H(—a, —b/P))*=H(—b/P)* and this implies D({a, —bY/P)n



218 Daiji KumMA and Mieo NisHI

D({—a, —bY)/P)=D({—bY/P) by Lemma 1.4. Similarly D({ —a, bY/P)n
D({—a, —b)/P)=D({—a)/P), and so we have D({a, —b)/P) n D({ —a, b)|P)
N D({—a, —bY/P)=D({—bY/P)n D({ —a)|/P)=P. Q.E.D.

THEOREM 1.8. Let 1, a, b, —ab) be a form over F and P be a maximal
preordering such that {1, a, b, —ab) is P-anisotropic. Then P is a fan of index
8.

Proor. By [1], Corollary 3.4, P is a preordering of finite index. In general,
let P be a preordering of finite index of a field F and Y be a subset of X(F/P) such
that Yt =P. Then we can find a basis of X(F/P) which is a subset of Y. Lemma
1.7 shows that (H(a, —b/P)U H(—a, b/P)U H(—a, —b/P))*=P; thus there
exists a basis B={0y;, 03;, 04; i€l,jeJ, ke K} of X(F/P) where o,€
H(a, —b/P), 03;€ H(—a, b/P) and 6, € H(—a, —b/P). There exists an ordering
o,€H(a, b/P) by Lemma 1.6 (1). Then we can write o, by using the basis B as

01=Ho-2i'H0'3j'Ho-4k (iGI',jGJ', kGK') """"" (A)

where I' =1, J'=J and K’ K. We shall show that each subset I’, J’ or K’ is not
empty. Suppose I'’=¢. Then by calculating the signature of —a at the both
sides of (4), —a is negative at ¢; and positive at Ilo,;-Ilo;; - oy =1lo5;-
Io,,. This is a contradiction and we have I'x¢. By taking elements —b for
J’' and —ab for K’, we can similarly show that J’ and K’ are not empty. We now
put B={0,,, 03, 641, i€l’, jeJ’, keK'} and P=B'. Suppose that the form
{1, a, b, —ab) is P-isotropic. Then by Lemma 1.5, there exists ce F which
satisfies the following conditions (1) and (2):

(1) D(—a, —=by[P) = D(~cH[P)
(2) D(Kay/P) n D(KbY/P) = D(KcH/P).

Then it follows from (1) and (2) that ¢ is negative at o, k€ K’ and positive at
04, 055, 03; (i€l’, jeJ'). So the equation (A) says that |K’| is even. Therefore
—ab is negative at o, and positive at Ilo,;-Ilos;-Iloy, i€l’, jeJ', ke K'.
This contradiction shows that the form (1, a, b, —ab) is P-anisotropic. By the
maximality of P, we have P=P. Since B is a basis of X(F/P), the fact P=P
means I=I', J=J' and K=K’'. This shows that o, is a unique element of
H(a, b/P), namely H(a, b/P)={0,}. Similarly, by considering the forms
{1, a, —b, aby)=~a{l, a, b, —ab), 1, —a, b, aby)=~b{1, a, b, —ab) and {1,
—a, —b, —aby=~ —ab{l, a, b, —ab) instead of <1,a, b, —ab), we have
|H(a, —b/P)|=1, |H(—a, b/P)|=1 and |H(—a, —b/P)|=1. Hence |X(F/P)|=4
and the equation (A4) shows that P is a fan of index 8. Q.E.D.
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§2. Connected components and H(P)

Let P be a preordering over F. We shall say that two orderings o, t € X(F/P)
are connected in X(F/P) if =1 or there exists a fan of index 8 which contains ¢
and 7, and we denote the relation by o ~t. Marshall ([7], Theorem 4.7) showed
that the relation ~ is an equivalence relation in X(F/P). An equivalence class
of this relation is called a connected component of X(F/P), and a union of some
connected components is called full (cf. [3]).

DEFINITION 2.1.  Let P be a preordering of a field F. For xe F, we denote
the multiplicative subgroup D({x)/P)-D({ —x)/P) by J(x/P), and the set
{xe F; J(x/P)=F} by H(P).

LEMMA 2.2. Let P be a preordering of a field F. Then, for elements x and
y of F, the following conditions are equivalent.

(1) xeJ(y/P).

2 ,y, —x, xy) is P-isotropic.

(3) (1, x, —y, xy) is P-isotropic.

4 yeJ(x/P).

Proor. (1)=>(2). Since xeJ(y/P)=D(y»/P)-D({—yY|P), x=af for
some o€ D({yY/P) and fe D({—yY/P). Thus we have af2—xB=0 and it fol-
lows from the facts af?eD({y»/P) and —xBeD(—x, xy)/P) that {l, y,
—Xx, xy» is P-isotropic.

(2)=(1). From the assumption, there exists a non-trivial relation p, + yp, —
xps+xyp,=0with p,e PU {0}, i=1,2,3,4. If p,+yp,=x(p;—yps)=0, then at
least one of the forms {y)» and {—y) is P-isotropic and we have J(y/P)=
D(KyY/P)-D({ —y»/P)=F. If py+yp,=x(p3—yps)*0, then x(p;—yps)?=
(p1 +yp2)(p3—yps) € D(KYY/P)- D(K —y»/P). Therefore in any case we have
x e J(y/P).

The equivalence of the conditions (2) and (3) is clear from xy{l1, y, —x, xy) =
L x, =y, xy>. Q.E.D.

REMARK 2.3. (1). X(F/P) satisfies SAP if and only if <1, x, y, —xy) is
P-isotropic for any x, ye F. By Lemma 2.2, these are equivalent to the condi-
tion that J(y/P)=F for every y e F, namely H(P)=F.

(2). Since H(P)={xe F; J(x/P)> y for any y e F}, it follows from Lemma
2.2 that H(P)={xe F; xe J(y/P) for every ye F}= nJ(y/P), ye F. Thus H(P)
is a multiplicative subgroup of F which contains P, and H(P)/P has a Z,-vector
space structure and we denote its dimension by dim H(P)/P.

PROPOSITION 2.4. Let P be a preordering of F which is of finite index.
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Then for a subset Y = X(F/P), the following conditions are equivalent.
(1) Yis full
(2) Y=H(a/P) for some a € H(P).

Proor. First we assume that Y is full. Then for any fan W of index 8,
[WnY|=0 or 4. So by [8], Theorem 7.2, we have Y=H(a/P) for some ac F.
Suppose ae= H(P). Then J(a/P)=D({a)/P)- D({ —a)/P)S F and so we can take
an element be F—J(a/P). By Lemma 2.2, {1, a, b, —ab) is P-anisotropic and
this implies that there exists a preordering P= P such that P is a fan of index 8
and {1, a, b, —ab) is P-anisotropic by Theorem 1.8. Hence we have |H(a/P) n
X(F/P)|=|Y n X(F/P)| =2, which contradicts the assumption that Y is full.

Conversely suppose that Y is not full. Then there exists a fan W={o,, 0,,
74, To} Of index 8 such that YN W=x¢ and Y°n W=¢. By [8], Theorem 7.2
|Y n W|=2, so we may assume ¢4, 6,€ Y and 1,, 1,€ Y. We let A, ={beF;
sgn, (b)-sgn, (b)=1} and A4,={beF; sgn,(b)-sgn,(b)=1}. It is clear that
A, and A, are multiplicative subgroups of F. Moreover, since 7, 7, € Y, we have
Yt=D({ay/P)= A, and similarly (Y*)t=D({—a)/P)= A,. Now W={ag,, 0,,
71, 7o} is a fan of index 8 and ¢,0,=1,7,, and so A, =A4,. It follows from the as-
sumption a € H(P), namely D({a)/P)-D({ —a)/P)=F, that A, =A,=F, which
leads to a contradiction ¢, =0,, T, =1,. Q.E.D.

THEOREM 2.5. Let P be a preordering of F which is of finite index. Then
the number of connected components of X(F|P) equals dim H(P)/P.

ProOF. Let S be the set of full sets of X(F/P) and ¢: H(P)/P—S be the map
defined by ¢@(a)=H(a/P) where a means the canonical image of ae H(P). If
abe P, then H(a/P)=H(b/P). From this fact and Proposition 2.4, we can see
that ¢ is well-defined and surjective. We have to show that ¢ is injective. Sup-
pose @(@)=q@(b), namely H(a/P)=H(b/P). Then ab is positive at every
o€ X(F/P), and so abe X(F/P)L!=P. This means a=b and ¢ is injective. Let
n be the number of connected components and m be dim H(P)/P. Since
|H(P)/P|=2m, |S|=2" and ¢ is bijective, we have 2"=2" and m=n. Q.E.D.

COROLLARY 2.6. Let P be a preordering of F of index 2". Then the number
of connected components of X(F|/P) is not n—1.

ProoF. It suffices to show that dim H(P)/P=xn—1. To do this, we have to
see that if H(P)x F, then dim H(P)/P<n—2 by Theorem 2.5. Let be F—H(P).
Since beJ(b/P)—H(P), J(b/P) contains H(P) properly. Moreover the fact
be& H(P) implies J(b/P)x F. Therefore we see that dim F/H(P)=2 and dim
H(P)/P=n-2. Q.E.D.

COROLLARY 2.7. Let P be a preordering of F of finite index and Y4,..., Y,
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be connected components of X(F/P). We write P;=Y;* i=1,...,n. Then the
canonical map f: F/P—IIF|P; (i=1,..., n) is isomorphic and the map g: H(P)|
P—ITH(P)/P; (i=1,..., n) is isomorphic, where g is the restriction of f to H(P)/P.

Proofr. By Proposition 2.4, for any i=1,..., n, there exists a;e H(P) such
that Y;=H(a;/P). Then we have P;=D({a;)/P) and D({—a)/P)=(Y$)*=
NP, jxi. Since D(Ka;)/P)-D({—a;y/P)=F, P;-(nPy)=F, j=i. Then we
can readily see that the canonical injection f is surjective. As for g, it is clear that
H(P)< H(P)) for any i=1,..., n, and therefore g is well-defined. Clearly g is
injective and it follows from Theorem 2.5 that dim H(P)/P=n and dim H(P;)/
P;=1 for any i=1,..., n. Hence dim H(P)/P=dim ITH(P;)/P; and this implies
that g is an isomorphism. Q.E.D.

§3. Quadratic extensions

Let P be a preordering of F and K=F(,/a) be a quadratic extension of F
with ae F—(—PU F?). Since a¢s —P, H(a/P) is not an empty set and every
ordering o € H(a/P) can be extended to an ordering of K. Let 7 be an extension
of o € H(a/P) such that \/a is positive at t. Then the positive cone P(t) of 7 is the
set of x+y./a e K, where (x, y) satisfies one of the following conditions (1), (2),
3):

(1) x, yeP(o).

(2) x, —yeP(o) and x2—ay?eP(o).

(3) —x,yeP(e) and —(x2—ay?)eP(o).

This is easily shown by using x2—ay?=(x—y./a)(x+y/a). This observation
implies the uniqueness of 7. Thus for any o € H(a/P), there exist exactly two ex-
tensions ¢, 0, € X(K) of ¢ such that /a is positive at ¢, and \/a is negative at
o,. Put P’=XPK? and X'={re X(K); the restriction of t to F belongs to
H(a/P)}. Tt is clear that P’ is a preordering of K which is contained in P(t) for
anyte X',

LemMA 3.1.  The following statements hold.
(1) PP=X)* (2 P nF=DgLa)y/P).

Proor. (1). Since P’'< P(7) for any 1€ X', we have P’<(X’)L. Conversely,
Dp({La)/P)= P’ by the definition of P’, which implies X(K/P')c X’'. Thus
P'=X(K/P)*=2(X")*.

(2). In (1), we have shown that Dg({a)/P)< P’. For the reverse inclusion,
we take be F—Dg({a)/P); then there exists o€ H(a/P) such that b is negative
at 0. Let 7 be an extension of ¢ in K. The fact that b is negative at 7 implies
be&(X)+=P'. This shows P' N F< Dg({a)/P). Q.E.D.
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PROPOSITION 3.2. Let N: K—F be the norm map. Then N~(P)=F.P'.

PrOOF. Let S be the set of all Pfister forms {p,,..., p,» where p;e P. By
[5], Norm Principle 2.13, N-Y(D(p))= F-Dx(pg) for any peS, where px=p®K.
Hence N™Y(U Dy(p))= U (N~} (Dg(p)))= U (F-Dx(pk)), peS. Then the facts P=
U Dg(p) and P'= U Dg(pg)) imply the assertion. Q.E.D.

COROLLARY 3.3. Let ¢: F-»K be the canonical injection. Then the
sequence

| — F/Dy({ay/P) - K/P' N, E/P
is exact, where & and N are induced maps of ¢ and N respectively.

ProOF. Lemma 3.1 (2) shows that & is well-defined and injective. Pro-
position 3.2 shows that N is well-defined and Ker N=1Im &. Q.E.D.

In [6], we called a quadratic extension K=F(,/ a) a radical extension if
a e R(F)— F2, where R(F) is Kaplansky’s radical of F.

LEMMA 3.4. Let K=F(,/a) be a radical extension of F. Let ¢ and t be
arbitrary orderings of F and o;, 1; (i=1, 2) be the extensions in K of o, T re-
spectively. Then {a,, 0,, T, T,} is not a fan of index 8.

Proor. Put P=P(c)N P(t). The norm map N: K—F is surjective since
a € R(F) and by Corollary 3.3, we have the exact sequence

1— FIPS, KPP N, Fip 1

where P'={o,, 0,, 7;, T,}. Since dim F/P=2, we have dim K/P’'=4, which
implies that {g,, 6,, 7,, T,} is linearly independent. Q.E.D.

Let P be a preordering of a field F, K =F(,/a) be a quadratic extension of F
with ae F—(—PU F?). Let P, X' be the preordering of K and the set of
orderings defined in Lemma 3.1. We denote by bar the Galois map of K over F
and for a subset A of K, we put A={X; xe A}. For a ordering t of K, we denote
by 7 the ordering of K with the positive cone P(t)~. For a subset B X', we also
write B={7; e B}. It is clear that P’=P’, X'=X' and 6,=0, where ¢, and
o, are the extensions of o € H(a/P).

COROLLARY 3.5. Let P be a preordering of F and K=F(,/a) be a radical
extension of F. Then for any connected component Y of X'=X(K/P"), Y n Y=¢.

PROOF. Suppose Y N Y ¢. Then there exists ¢ € X(F/P) such that ¢, ~0,
where o, and o, are the extensions of 6. Let {0, 0,, 7, T,} be a fan of index 8
and 7}, 75 be the restriction of t,, t, to F respectively. Since ¢,0,7,7,=1, we
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have 1} =15, which is a contradiction by Lemma 3.4. Q.E.D.

LEMMA 3.6. Let K=F(\/a) be a radical extension of F. Then for any
xe F, N"1(Jp(x/P))= F - J(x/P").

ProoF. If xeP or xe —P, then Jp(x/P)=F, Jy(x/P')=K and the assertion
follows immediately in this case. We now proceed to the case when xe&=P
and —x&P. Then D({x)/P) is a preordering of F and N~} (Dp({x)/P)=F-Dy
({xY/P") by Proposition 3.2. Similarly N-Y(Dp({ —x)/P)=F-Dy({ —x)/P").
Therefore we see that N=1(Jp(x/P))2 F-D({x)/P)- D({ = xY/P)=F-J(x/P").
We note that N(F- Dx({x))/P"))=Dp({x)/P), N(F-Dg({ = x)/P"))=D({ —x)/P)
since K =F(\/a) is a radical extension of F.

To show the reverse inclusion, we take aff € Jp(x/P), where ae Dp({x)/P)
and BeDp({—x)/P). There exist f,, f,€F, b, eD({x)/P) and b,e Dy
(€ =x)»/P’) such that N(f;b;)=a and N(f,b,)=f. Then for any ze N~'(af),
N(f1b, f2b,2)=(af)? € F2 and this implies f,b, f,b,z € F- K2 by Hilbert Theorem
90. Hence zef,f,b;b,F-K2S F-Dy({x)/P")-D({ —x)/P’) and we see that
N1 (J(x/P))S F - J(x|P"). Q.E.D.

LEMMA 3.7. Let K=F(,/a) be a radical extension of F. Then for any
beF, Jg(b/P)n E=J(b/P).

PrOOF. It is clear that Jy(b/P')n F=2Jp(b/P). Conversely, we take an
element xeJy(b/P)NF. By Lemma 2.2, the form {1, b, —x, bx) over K is
P’-isotropic. So by the definition of P’, a form {p,,..., p,y®<1, b, —x, bx)
over K is isotropic for some py,..., p,€ P. If the form {p,,..., p,> ®<1, b, — X,
bx) over F is anisotropic, then there is a subform which is similar to the universal
binary form {1, —a), a contradiction. Therefore the form <{p,,..., p>o®
{1, b, —x, bx> over F is isotropic. So the form {1, b, —x, bx) over F is P-
isotropic and x € Jp(b/P) by Lemma 2.2. Thus we have Ji(b/P’) N F < Jg(b/P).

Q.E.D.

PROPOSITION 3.8. Let K=F(/a) be a radical extention of F. Then Hp(P)=
H(P)nF.

Proor. For any be Hp(P), we have Jp(b/P)=F and this implies K=
N-YF)=N-'(Jp(b/P))=F -J(b/P’) by Lemma 3.6. Since F<Jg(b/P’), we
have K=J(b/P") and so be Hg(P"). Hence H(P)< Hy(P)NnF.

Conversely we take an element be Hy(P')nF. Then Jg(b/P)=K=F and
we have b € H(P) since Jz(b/P)=F by Lemma 3.7. Q.E.D.

ProrosITION 3.9. Let K=F(\/E) be a radical extension of F. Then
N(Hg(P")<= Hg(P).
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PrOOF. It is clear that if Jy(x/P’)=K, then J(X/P')=K by the fact P'=P".
So we have Hy(P')"=Hg(P’). It follows from Proposition 3.8 that, for a € Hy(P’),
N(x)e Hy(P')N F=Hg(P). Thus we have N(Hy(P"))< H(P). Q.E.D.

THEOREM 3.10. Let P be a preordering of F of finite index, and K =F(,/a)
be a radical extension of F. Then the sequence

1 — F/Hy(P) —5» K/Hy(P) - F/HH(P) — 1

is exact. In particular N~\(Hp(P))=F - Hy(P") and the number of connected
components of X(K/|P') is 2n, where n is the number of connected components of
X(F|P).

PrOOF. The map & is well-defined and injective by Proposition 3.8 and N
is well-defined by Proposition 3.9. Since K=F(,/a) is a radical extension of F,
N is surjective and it is clear that Im é< Ker N. We need to show that dim K/
H(P)=2dim F/H(P). Since dim K/H(P')=2 dim F/H(P), we have only to show
that dim K/H(P')<2dim F/H(P). By Corollary 3.3, the sequence

1— FIP5, KPP N FP— 1

is exact, and so dim K/P'=2dim F/P. Thus it suffices to show that dim H(P’)/
P'>2dim H(P)/P by the facts dim K/P’'=dim K/H(P')+dim H(P")/P’' and
dim F/P=dim F/H(P)+dim H(P)/P.

The number n of connected components of X(F/P) equals dim H(P)/P by
Theorem 2.5. Let X4,..., X, be the connected components of X(F/P). By
Proposition 2.4, there exist a;e H(P), i=1,..., n, such that X;=H(a;/P). Let
Y;=H(a;/P')= X', i=1,..., n; then each Y, is full since a;e Hx(P') by Proposition
3.8. Since the restriction of Y; to F is X; for every i, the sets Y;, i=1,..., n, are
disjoint to each other. It is clear that Y;=Y; from the definition of ¥;. So
Corollary 3.5 implies that Y; is not connected for any i. Hence the number of
connected components of X' is at least 2n. Thus, it follows from Theorem 2.5
that dim H(P')/P' Z2n=2 dim H(P)/P. Q.E.D.
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