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§1. Introduction

Let X and A be a topological space and its subspace. Then a fibre bundle
{ over A is said to be extendible to X, if there is a fibre bundle o over X whose
restriction |4 to A is equivalent to (.

R. L. E. Schwarzenberger ([9; Appendix I], [21]) and several authors studied
the extendibility of vector bundles over the complex (resp. real) projective n-
space CP" (resp. RP") to CP™ (resp. RP™) for m>n (cf., e.g., the references of
[24D).

For an integer g=2, let L} denote the standard lens space mod g or its n-
skeleton:

L2+ = Li(g) = §2*1/Z, or L% = n(S?)(n: S?*+! — L2i*1 is the projection),

where Li=RP". The purpose of this paper is to study the extendibility of com-
plex (or real) vector bundles over L to L7 for m>n, as a continuation of the
previous papers [18], [14] and [15].

Let 5 be the canonical complex line bundle over L2, i.e., the induced bundle
n*n of the one # over CP* by the natural projection n: L2i*!—CP! or its re-
striction m*n|L2!. Then the main results on complex bundles are stated as
follows:

THEOREM 1.1. Let { be a complex t-plane bundle over L3. Then { is stably
equivalent to a complex t'(=3 11 b))-plane bundle {'=3 =1 by over L% for
some integers b;=0. Furthermore, we have the following (i) and (ii):

(i) If t=[n/2], then ( is extendible to L2'*'. If t=[(n+1)/2] and t=1',
then ( is extendible to L for any m=n.

(ii) Take a prime factor p of q with p<[n/2]+1, and put a=[n/2(p—1)]
and

& = 2y by mod p?, 05, <p?,  for 1sk<p-1.

If there is an integer m satisfying

t<m<p® and % jornsporen (G )% # 0 mod p,
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then 2m>n and { is not extendible to L™,
When q is even, if c=c, for p=2 satisfies t<c, then { is not extendible to
L2V, where N =min {j+v2(< 5 >)lt<j§c}(v2(b) is the exponent of 2 in the prime

power decomposition of a positive integer b).

In case of real bundles, we have the real restriction r(n*) of n* over L%, and
the non-trivial real line bundle p over L? when g is even. Furthermore, when ¢
is odd and n=1 mod 8, we have the induced bundle 3, of the stably non-trivial
real n-plane bundle over S” by the projection LZ—L%/L2~1=S§",

THEOREM 1.2. Let { be a real t-plane bundle over L:. Then ( is stably
equivalent to a real t'-plane bundle (' over L% such that

{'=eB,@bp@X -y br(n') and ' =en+b+2% i b; (u=[(¢—1)/2])

for some non-negative integers ¢, b and b; with ¢=0, 1, where &, (resp. bp)
appears only when q is odd and n=1 mod 8 (resp. q is even).

Ife=1, then { is not extendible to L3**. Furthermore we have the following
(i) and (ii) under the assumption that ¢=0 or &, does not appear.

(i) Iftzn, then ( is extendibleto L',. If q and nare odd and t>n, then {
is extendible to L2'~CV', If t>n and t2t', then ( is extendible to L7 for any
mzn.

(ii) Take an odd prime factor p of q with p<[n/2]+1, and put
a=[n/2(p—1)] and

dy =2 (bipsitbipsp-p)mod p* and 0=d,<p® for 1sksv=(p—1)/2.

If there is an even integer m satisfying
t<m<2p* and 3 st jyemya Tlies (% ) K295 2 0 mod p,
k

then 2m>n and { is not extendible to L2™.
When q is even, put

d' =b +2Y,bys; mod 29 and 0<d' <29m,

where b’ =b if q/2 is odd and b’ =0 otherwise, and ¢(n) is the number of integers
s with 0<s<n and s=0,1,2,4mod8. If t<d’, then { is not extendible

to LY', where N'=min{min{m | ¢(m)= j +v2(< )), t<j<d}, min{jlt<j<d,
v(4 )=0y.

Theorem 1.1 is proved in Lemma 3.5, Theorems 3.13 and 3.23, and Theorem
1.2 is proved in Lemma 5.4, Theorem 5.7 and Corollary 5.17, where the non-
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extendibility is shown by studying the y-operations in K- and KO-theory and the
Stiefel-Whitney classes.

As an application of these results, we study the extendibility of the higher order
tangent bundle over L} to L7, and in particular, we obtain the following theorem,
where m({) denotes the maximum integer of m such that a bundle { over RP"
is extendible to RP™.

THEOREM 1.3. Let t1(RP") (k=1) be the k-th order tangent bundle over
the real projective space RP" (t,(RP") is the tangent bundle of RP") and ct,(RP")
be its complexification. Then

0 if k is even or C(n, k)=2%™,
m(t(RP") =

C(n, k)—1 otherwise,
oo if k is even or C(n, k)=2t"/21,

m(ct (RP")) = [
2C(n, k)—1 otherwise,

where C(n, k) =<n -Ilc_ k).

This theorem is proved in Theorem 6.10, and a result for the lens space
L"(q) is proved in Theorems 6.16 and 6.17.

In §2, we study some conditions that a bundle over an n-skeleton X" of a
finite CW-complex X is extendible to an m-skeleton X™. In §3, we prove Theorem
1.1.  §4 is devoted to apply the results obtained in §§2-3 to the complexification
of the tangent (or normal) bundle of L*(q) and to complex bundles over the
complex projective space CP", and as a corollary, we obtain Schwarzenberger’s
result [9; p. 166] that the complex tangent bundle over CP” (n =2) is not extendible
to CP"*1, 1In §5, we prove Theorem 1.2 by using the KO-theory. By using these
results, we study the higher tangent bundle of the lens space in §6.

The author wishes to express his hearty thanks to Professors M. Sugawara,
T. Kobayashi and T. Yoshida for their useful advises and stimulating discussions
during the preparation of this paper and also to Professor K. Fujii for his kind
advises.

§2. Vector bundles over an n-skeleton

In this paper, let F denote the real field R or the complex field C, and set
f=dimg F=1 or 2 according to F=R or C. We denote simply by b the
b-dimensional trivial F-vector bundle.

In this section, we consider a finite CW-complex X, and study some con-
ditions that a given F-vector bundle { over the n-skeleton X" of X is extendible
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to an m-skeleton X™> X" for m=n.
We notice the following (cf. [10; p. 100, Th. 1.5]):

(2.1) If t- and t'-dimensional F-vector bundles { and {' over X" are stably
equivalent, i.e., {@sx={' ®s’ (equivalent) for some non-negative integers s and
s’y and if t=t" and t=[(n+1)/f], then (= ®D(—1).

THEOREM 2.2. Let { be a t-dimensional F-vector bundle over X", and assume
that t=2[(n+1)[f]. Then { is extendible to X™ (m>n) if and only if there exists
a t'-dimensional F-vector bundle {' over X" such that

(1) ¢ is stably equivalent to (', and

(2) (' is extendible to a bundle o' over X™ with Span (o' ®k)=t'—t+k for
some k=0. (Spana denotes the maximum number of linearly independent
cross-sections of an F-vector bundle o.)

ProOF. The necessity is seen by taking {'={. We prove the sufficiency.

If t=¢, then (1) implies that {~{'®(t—1t') by (2.1), and hence (2) implies
that ( is extendible to a bundle o’ ®(t—1t") over X™.

If ¢'>1, then (1) implies that {'=~{@®( —1) by (2.1), and (2) implies that
that o’ @k=a@®(t’' —t+k) for some a over X™ with dima=¢. Thus

(@ —t+k) 2l @k (@ | XNk (a|X")@® (' —t+k),
which implies that {~a| X" by (2.1). g.e.d.

COROLLARY 2.3. Let { (resp. (') be a t (resp. t')-dimensional F-vector bundle
over X", and assume that { is stably equivalent to {' and that {' is extendible to
X™ (m>n). Then { is also extendible to X™, if

(1) 1zt and t2[(n+D[f], or (2) tz[m/f].

Proor. When (1) holds, then the result is clear by the above theorem.

Assume that (2) holds. If t=¢, then (1) holds. If ¢'>t, then t'>[m/f]
and an extension a' of {’ over X™ satisfies o' P (t'—[m/f]) for some S by
[10; p. 99, Th. 1.2], and the condition Span«’ =t —t¢ in (2) of the above theorem
holds. Thus we see the corollary by the above theorem. q.e.d.

As typical examples of extendible bundles, we have the following

PROPOSITION 2.4. If n=3, then any oriented real 2-plane bundle and any
complex line bundle over X" are extendible to X™ for each m(=n).

PrOOF. Let 0 be a complex line bundle over X", and f: X"—>BU(1) be its
classifying map. Then the obstructions for extending f to X™ are contained in
the cohomology groups H™*1(X™, X"; n{BU(1))) for n<r<m, which are 0



On the Extendibility of Vector Bundles 5

since n(BU(1))=~n,_(SY)=0 for r=3. Thus f has an extension f’: X"—BU(1)
and hence 0 is extendible to X™. The result for an oriented real 2-plane bundle is
proved similarly in [14, Lemma 5.2] by considering BSO(2) instead of BU(1).

q.e.d.

COROLLARY 2.5. Assume that n=3, and a real (resp. complex) t-plane bun-
dle { over X" is stably equivalent to a sum of s oriented real 2-plane bundles
(resp. s complex line bundles), where t and s are assumed to be t=n+1 and
t=2s (rest. t=[(n+1)/2] and t=s). Then { is extendible to X™ for each m(=n).

PrOOF. By the assumptions and (2.1), we have
(=0,®--®OD6, 6 =1t—2s(resp.t—5s),

where 6; (1 <i<s) are oriented real 2-plane bundles (resp. complex line bundles).
Thus the corollary follows immediately from Proposition 2.4. q.e.d.

§3. Complex bundles over the lens spaces

In this paper, we shall denote the standard lens space mod g by
3.1 L2+t = Li(q) = S**YZ, for a fixed integer ¢q = 2,

where S?it! = {(z,,..., z;) € C**1||zo|2 + -+ |z;]2 =1} is the (2i + 1)-sphere,
Z,={zeC|z%=1} is the cyclic subgroup of order g of the circle group S!'=
{ze C||z|=1}, and the action is given by z(z,,..., z;,)=(2zz,..., zz;). We consider
LZi*1 < L2i*! for j<i by identifying [z,,..., z;]€ L2/*! with [z,,..., z;, 0,...,0] €
L2i+1, and set

3.2) L% = Li(q) = {[z¢»..., ;] € L1 | z; is a non-negative real number} .
q 0 0 i q i

Then Lz— L2~ is an open n-cell and we have a CW-decomposition of L] whose
n-skeleton is L% for 0Sn<N.

If g=2, then L} is the real projective space RP".

Let 7,4, be the canonical complex line bundle over L2i*!, i.e., the induced
bundle of the one over the complex projective space CP! by the projection
L2i*1=82i*1)7 —S2i*1/S1=CP! Then the restriction #,;,,|L2/*! for j<i
is 7,;4,, and we denote #,;,; and its restriction #,;=#,;4|L%* by n simply.

If g=2, then # is the complexification of the canonical real line bundle ¢
over RP".

To study the extendibility of a complex bundle over L} to L7 (m =n), we use
the following results on the K-ring of the lens space.

(3.3) (cf. [12; Prop. 2.6]) The reduced K-ring K(L{;) is generated by
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oc=n—1 and contains exactly q'"?! elements. Furthermore (1+0)1—1=
n1—1=0=0l"21*1_ and the order of 6l"/?1 is equal to q.

(3.4) (J.F. Adams [1; Th. 7.3], T. Kambe [11; Th.1]) If q is a prime, then
R(Ly) = @921Z,.(c%) (direct sum), r; = q'+I{n/21=Hi(a=1)],
where Z {a) denotes the cyclic group of order r generated by a.

LeMMA 3.5. (i) Any complex t-plane bundle { over L} is stably equivalent
to a complex t'-plane bundle {' over L}, where

(3.6) {'=X%ibn' and t =X %Z1b; for some integers b;=0.

(ii) b; in (3.6) can be reduced to the residue modulo qt"'?} or, more pre-
cisely, modulo the order of ni—1 in K(L2).

(iii) If q is a prime, then b; in (3.6) can be reduced to the residue modulo
r1=q1+[([n/2]—1)/(q"l)].

(iv) Let q be a prime p. If [n/2]1=Zp—1 and if 32=} by' and 2=l by}
over L are stably equivalent, then

b;=b; modp®, a=[n2(p—D1(21), for 1=5isp-—1.

Proor. (i), (i) (—teR(L?) is equal to Y !zlawi=39z1b(ni—1) for
some a; and 0<b;<¢!"21 by (3.3). Thus { is stably equivalent to {'= Y 1} by’

(iii) If g is a prime, then the order of ni—1=(1+0)—1= ;=1(;> ie
K(L;) is equal to r; for 1<i<gq by (3.4). Thus we have (iii) by (ii).

(iv) Since n=0+1, we have
0= Tt =6l —1) = 24t (2= (1) 6= 89 )o? in R(Lp)
by assumption, and hence

';;;.(]‘.')(b,.~b;) =0modr, for 1<j<p—I

by (3.4). Since r; is a power of p and r;|r;_,, this implies that
b;—b;=0modr,_, for 1sisp—-1 (rp-;=p%
by the induction on p—i. g.e.d.

We now study the extendibility of a complex t-plane bundle { over L! to
L7 for mzn, by using the notation

3.7 m({) = max {m|{ is extendible to L} (m2n)},
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where m({)=co means that { is extendible to LY for any m=n.

THEOREM 3.8. Let { be a complex t-plane bundle over L% and assume that
{ is stably equivalent to a t'-plane bundle {' in (3.6) by Lemma 3.5 (i).

(i) Ift=[n/2], then m({)=2t+1.

(i) Iftz[(n+1)/2] and t=t', then m({)= 0.

(i) Ift=[(n+1)/2] and t=(g—1)(q!"/*1—1), then m({)= co.

(iv) Ifqis a prime and t=(q—1)(r, —1) where r, is the integer in Lemma
3.5 (iii), then m({)= 0.

ProOF. (i) By definition, m(y)=o0 and hence m({")=co by (3.6). Thus
Corollary 2.3 (2) implies (i).

(ii) Corollary 2.3(1) implies (ii) in the same way as above.

(iii)) By Lemma 3.5(ii), (iii) is a special case of (ii).

(iv) If n=1, then (iv) is a special case of (iii). If g=2 and t=1, then {is 5
or 1 since complex line bundles are classified by their first Chern classes. Thus
m({)=o00. Assume that g is a prime, n=2 and t=2 if g=2. Then t' can be
taken so that (g—1)(r;—1)=t" by Lemma 3.5 (iii), and we see easily that
(g=D(r;=D=[(n+1)/2] if g#2 or n#3. Thus we have (iv) by (ii). q.e.d.

To study the upper bound of m({), we use the y-operation in K(L2).
For a given integer g =2 and integers ;=0 (1<i<q—1), we have

(3.9) [Tz {1+ 0+ Di=Dt3bi=3 15 o{ X k0 Aubyser by 13 oitE}E]

for some coefficients Ay(b,,..., b,_;; j), where

: 1 b\,
AO(bls"-a bq—l;]) = Zj1+~~+jq_1=j :1=%<J: )lha

(3.10)
A1Brseens byeii ) = v gormy T ( 1 JPZIL GG D 12

LemMA 3.11.  Assume that a complex t-plane bundle { over L} is stably
equivalent to a t'(=Y %z} b,)-plane bundle {'=Y {Z} by'(b;=20) in (3.6), and
that

(3.12) y(—1)=0in K(Lg) for some positive integer j<[n/2],

where y/ denotes the y-operation. Then we have the following (i)-(iii) for
Aby,..., by ys ) in (3.10):
(i) Ao(byseees bymy3)) =0 modg.
(ii) If q is an odd prime and j<[n/2] in (3.12), then A,(by,..., b,_¢; j)=0
mod q.
Gii) If g=2, then (‘J >=A0(b1; 7)=0 mod 21+Im21-i (¢ =b,).



8 Haruo MAk1

PrOOF. (i) By the first assumption and the fundamental properties of the
y-operation (cf. [3]), we see that

=1 =9 =) =2(ZiZ1 bi(n' = 1) = [Tzt {1+ (A +0)' = Di}Pe.
This equality and (3.9) show that
Y= = Zizo AN (AL)) = Ailbys..., by—13 )

Therefore the assumption (3.12) implies that Ag(j)ol™2=yi({—1)al"/21-i=0
and 4,(j)=0 mod g by (3.3). Thus we have (i).

(ii) In the same way, we see that Ay(j)ol"/21=1+ A4 ,(j)el*?1=0 since
j<[n/2], and that A,(j)=0 mod g by (i) and the relation got*/21-1=0 (cf. [12;
Th. 1.1]).

(i) When g=2, {'=¢'n(t' =b,) and pi({ —t)= ( ‘] )m‘ by the first equality
in the proof of (i). Thus we see (iii) by (3.4) and the equality 2= —2¢. q.e.d.

By the above lemma, we have the following non-extendibility theorem.

THEOREM 3.13.  Assume that a complex t-plane bundle { over L% is stably
equivalent to {'=Y.9-1 by (b;=0) by Lemma 3.5 (i). Furthermore,

(3.14) take a prime factor p of q with p<[n/2]+1, and let a, ¢, 1Zk=<p—1)
and ¢ be the integers given by

a=[n/2(p—1D1(21), ¢ = X;bpmodp® and 0=c¢,<p®, c= 2zl
(i) Assume that t+1<p® and there is an integer m satisfying

(315 t<m<p® and

(.16)  Ao(Crrer €y M)(= X sty yom TTEE (jf; )ei®) # 0 mod .

Then 2m>n and m({)<2m, i.e., { is not extendible to L2™.

(ii) (cf. [15; Th. 1.1]) If the integer c¢ in (3.14) satisfies t<c<p®, then
n=m({)<2c.

(iii) If t+1<p® and m=t+1 satisfies (3.16), e.g., if c=t+1<p® then
m({)=2t+1=n.

(iv) Assume that p in (3.14) is odd, and that there is an integer m satisfying
(3.15) and

As(cy,..., ¢y ; m) (the integers given in (3.10)) #0 mod p.
Then n<m({)<2m+2.

PROOF (i) In general, we see easily that
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3.17) ' (C _;p ) ( ) mod p for any integers ¢ and j with 0= j<p9,

where p is a prime. Therefore, by the definition of A,, we have the following
(3.18) Ifb,=c,modp® (1=k=<p—1) andif m<p°, then
Ag(by,..., by_y; m) = Ag(cy,..., ¢p—1; m) mod p.
In the first place, we prove (i) by assuming
(%) q = p in addition.

Since { is a t-plane bundle and t<m by (3.15), we have y"({—1)=0 in K~(L”)
Therefore, if 2m <n, then Ay(b;,..., b,_,; m)=0 mod p by Lemma 3.11(i). This
shows that (3.16) does not hold by (3.18), since m < p? by (3.15) and b, =¢, mod p°
(1=sk=p-1) by (3.14) with g=p. Thus 2m>n.

To prove m({)<2m, suppose contrariwise that m({)=2m, i.e., { has an
extension a over L2™. Then a is stably equivalent to o'= X[z} s;n%, over LZm
for some integers 5,=0 by Lemma 3.5(i). Since « is a t-plane bundle and t<m
by (3.15), y"(e—1)=0 in K(Lg"‘) and hence Lemma 3.11(i) implies that

(%) Ao(S15--0» Sp—1; m) =0 mod p.

On the other hand, {(=a|L}) is stably equivalent to o' | Lz=37=1 s;n* and also
to Y. Pz1 byy* by assumption. Hence

S =b,=¢, modp* for 15k=Zp-—1,
by Lemma 3.5 (iv) and (3.14) with g=p. Therefore
Ag(cyyeny cpoy; m) = Ag(Sy,..., Sp—13m) =0 mod p

by (3.15), (3.18) and (**), which contradicts (3.16). Thus m({)<2m and we have
proved (i) when g=p.
In general, p is a factor of ¢ and we have the natural map

(3.19) n: LL — L} induced by the inclusion Z,=Z,,

which is the projection L2i*1=S82i*1/7 S§2i*1/7 =[2i*1 or its restriction
LZi->L2. Then n*n=n is clear by definition. Therefore, by the assumption
that { is stably equivalent to > 4-{ by’ and by the equality #n?—1=0in K(L?) of
(3.3), we see that

(3.20) the induced bundle n*({ over L% is stably equivalent to

k=1 bin*, where bi = 3, b4 (1Sksp-1).
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On the other hand, if { has an extension « over L7, then n*« over L} is an extension
of #*{. Thus

(3.21) m({) = m(n*0).

For n*{ over L} in (3.20), we have n<m(n*{)<2m by (i) with g=p. Therefore
n<m({)<2m in general by (3.21).

(ii) Take m=c=3fzlc, in (i). Then we have Agy(cy,...,cpy; 0)=
[12=1 k°+#0 mod p, since p is a prime. Thus (ii) is a special case of (i).

(iii) (i) shows that n<m({)<2¢+2 and hence t=[n/2]. Thus m({)=2t+1
by Theorem 3.8 (i), and we see (iii).

(iv) In the same way as the proof of (i), we can prove (iv) by using Lemma
3.11 (ii) instead of Lemma 3.11 (i). q.e.d.

If g is even, then we can take p=2 in the above theorem. In this case, (i)
of the above theorem can be sharpened by the following theorem, where

(3.22) v,(a) denotes the exponent of 2 in the prime power decomposition
of a positive integer a, and

N(t, c)=min {j+v2(<; >)|t+1§j<c} for t<ec.

THEOREM 3.23. Let q be even, and assume that a complex t-plane bundle {
over L% (n=2) is stably equivalent to {'=Y %=1 bn' (b;=0) by Lemma 3.5(i),
and consider the integer ¢ in (3.14) for p=2, which is given by

(3.24) c=c¢y = 2, by mod2"21 gnd 0= e<207/2),

(i) Ift<c, then n<m({)<2N(t, ¢).
(i) Especially, if t<c and (1i t) is odd, then t=[n/2] and m({)=2t+1.

ProOF. (i) We prove (i) by assuming g=2. Then (i) can be proved in
general, in the same way as the latter half of the proof of Theorem 3.13(i) by
taking p=2.

Assume that g=2, i.e.,, Ls=RP*. Suppose that m({)=Z2N(t, ¢)(>n), i.e.,
{ has an extension « over RP?™, where

(%) m=j+ vy(a),a = <j>, for some j with t<j=<c,

by the definition (3.22) of N(t, ¢). Then, in the same way as the first half of the
proof of Theorem 3.13(i) and by using Lemma 3.11(iii) instead of Lemma 3.11(i),
we see that y/(a—t)=0 in K(RP?™) where j<m, and that

(%%) (; ) = 0 mod 2!*m~J for some integer s=0 with s = ¢ mod 2[#/2],
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On the other hand, we see easily that (cf. [6; Lemma 4.8])

b . .
vabh = =) and vy(( 8 ) = ) + ma—) - a®),
where p,(a) denotes the number of I’s in the dyadic expansion of a. Therefore

(3.25) s=cmod2* and 0<j<c<2* imply that v2(( ’ )) - v2(< ¢ )).
Thus (#%) and (x) lead a contradiction v,(a)=1+m—j=1+v,(a); and m({)<
2N(t, c) is proved. (If 2N(t, ¢)<n, then we can take an integer m in (*) with
2m<=n, and we have a contradiction in the same way as the above proof by
taking a={.)

(ii) We see (ii) by (i) and Theorem 3.8(i) or by Theorem 3.13 (iii). q.e.d.

By the above theorem, we have the following corollary which gives some
necessary conditions that there exists a complex ¢-plane bundle { over RP" being
stably equivalent to t'.

COROLLARY 3.26. Assume that a complex t-plane bundle { over the real
projective space RP" is stably equivalent to {'=t'n with 0<t' <221 by Lemma
3.5(ii).

(1) Ift<t, then n<2N(t, t') for N(t, t') in (3.22). Especially

¢ > [n/2] and t+vz(<t_|t_ll ))g[n/zj if t<t.

(ii) If T(=t) satisfies m({)=2N(t, s)(e.g., n=2N(t, s)) for any s with
T<s<2tn/2) then ' <T.

(iii) If T'(<t) satisfies m({)=2N(T’, t')(e.g., n22N(T', t')), then t>T".

@(iv) If m({)=2t"/21*1 -2 (e.g., n<3), then t' <t.

Proor. (i) In this case, ¢ in the above theorem is /. Thus
(%) n<ml) <2N@ ) if t<t.

(i) is an immediate consequence of (%) and the definition (3.22) of N(t, t').

(ii) If ¢'<t, then there is nothing to prove. If t<?’, then m({)<2N(t,t)
by (x) and hence N(t, s)<N(t, t') for any s with T<s<2["/2] by assumption.
Thus t'<T.

(iii) If #'<t, then there is nothing to prove. If t<t’, then m({)<2N(t, t')
by (*) and hence N(T', t')<N(t, t'). Thus t>T' by the definition (3.22).

@iv) If t<t', then m({)<2N(t, t')<2¢' L27/21+1 2 by (%), since t' <207/2],
If n<3, then 207211 2 <n<m({). Thus we see (iv). g.e.d.
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ReMARK 3.27. For example, we have the following under the assumption of
the above corollary:
(i) Ifniseven and t'=25—12=n/2 for some s=1, then t=n/2 and

m({) = 2t+1 when t<t’, m({) = co when t=t'.
(i) If n=8 and t'=8, then t=2 and
m() £9 when t=2,3, 2t+1 < m({) £ 15 when 4<t<7, m({) = oo when t>7.

In fact, t=n/2 in (i) and t=2 in (ii) follow from Corollary 3.26 (iii), since
N(T', t)=T'+1 (¢'=25—1) and N(1, 8)=4.

§4. The complexification of the tangent bundle of the lens space and com-
plex bundles over the complex projective space

As applications of the results obtained in the previous sections, we have the
following theorems on the complexification of the tangent bundle of the lens space.

THEOREM 4.1. Let ©(RP") be the tangent bundle of the real projective space
RP", and ct(RP") be its complexification.
(i) ct(RP") is extendible to RP?"*! gnd is not to RP?"*2 if n=6 or n=8.

(i) ct(RP™) is extendible to RP™ for any m=n if n<5 or n=7.
ProOF. Put t=7(RP"). Then it is well known that

4.2) T®1=(n+1)¢ where ¢ is the canonical real line bundle over RP",
and that c¢£~#n. Therefore

(*) ct is stably equivalent to {' = (n+ 1)n.

Assume that n=6 or n=8, which is equivalent to n+1<2[*/2l, Then
Theorem 3.13(iii) for {=ct, t=n, {’ in (%) and c=n+1 shows that m(ct)=2n+1.
Assume that n=7 or n<5, i.e., n+1=2[%21, Then m(ct)=oc0 by Theorem
3.8(iii). g.e.d.

THEROEM 4.3. Assume that =3 and n=2n"+1 is odd, and let t=1(L"(q))
be the tangent bundle of the lens space L:=L"(q).

(i) Then the complexification ct of © is extendible to L2"*'=L"(q).

(ii) Let p be the least prime factor of q, and assume that n’ 22(p—1) when
p=5, and n' 22p when p=2, 3.
Then ct is not extendible to L2"+2,

PrROOF. (i) Since ct is a complex n-plane bundle and n=[n/2], (i) is an
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immediate consequence of Theorem 3.8(i).
(i) Itis known that ([25; Cor. 3.2])
(4.4) T®1=(n'+1)rn where ry is the real restriction of #.

Since cr=1+1 (¢t denotes the conjugation) and #7—1=0 in K(L;) by (3.3), this
shows that

(%) ct is stably equivalent to {' = (n'+1)(n@n?™1).
By assumption, we see that
psn'+1=[n/2]+1 and n+1=2n+1)<p* where a=[n/2(p—1)].

Therefore, the integer ¢, (1=<k=<p—1) and c in (3.14) for {=ct and {' in (%) are
given by ¢;=c,_;=n"+1,¢,=0 (k#1, p—1) and c=n+1 when p=3, and by
c;=c=n+1when p=2. Thus m(ct)<2c¢=2n+2 as desired by Theorem 3.13(ii).

q.e.d.

ReEMARK 4.5. In the above theorem, we see that ct is extendible to L™ for
any m=n if q is an odd prime and n'=q— 1.

In fact, ct is stably trivial by () in the above proof and by Lemma 3.5(iii)
since r;=g=n"+1. Thus m(ct)=00 by Theorem 3.8(ii).

Now, assume that
(4.6) L= L"(q) when g=3 and n = 2n’+1, or L? = RP" when =2,
can be (differentiably) immersed in the Euclidean space R***(t=1), e.g.,
4.7) t=n-—1,ort=2[n/4]+1 when q is an odd prime ([22; Th. C(i)]).
Then we can consider
(4.8) the normal bundle v(f) over L} of an immersion f: LIS R"™" (t=1).,

ProPOSITION 4.9. (i) The complexification cv(f) over L} of v(f) in (4.8)
is extendible to L2'*! if t=[n/2].

(ii) Assume that an integer m and a prime factor p of q satisfy the con-
ditions that p<[n/2]+1 and t<m<p® (a=[n/2(p—1)]) and that

m is even and <_ [nm//22] - 1)*:50 mod p if p is odd, or <_Z{' 1)50 mod 2 if p=2.
Then cv(f) is not extendible to L2™.
(iii) Especially, if we can take m=t+1 in (ii), then t=[n/2] and cv(f) is

extendible to L2'*! and not to L2+2

Proor. (i) Since cv(f) is a t-plane bundle, we see (i) by Theorem 3.8(i).
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(ii) It is well known that v(f)@t(L;)=n+t. Thus we have
4.10) v(NH@®(r' +Drpzn+t+1 and (@M +1) B H=n+t+1,

by (4.4) (and (4.2) where 2£~rn when g=2). This equivalence and (3.3) imply
that the t-plane bundle {=cv(f) is stably equivalent to {'=b,n@®b,_n9"1, where

by =b,-y = —n'—1mod ¢g*?1 and by, b,_,20.
Therefore the integers ¢, (1<k<p—1) in (3.14) for these bundles are given by
c;=c,y=—n"—1mod p? 0=c,<p?and ¢, =0if k = 1, p—1, when p=3;
¢; = —2n"—2= —n—1mod p® and 0=c, <p? when p=2.

Thus the integer Ay(cy,. m) in (3.16) satisfies that

pl’

Aofrsevs Cpmni ) = (_])( =17 = T, )5 )= 1

= (—=1)m/? < /1 > = (- 1)'"/2< /2 ) mod p, when p=3 and m is even;

Ao(ey; m) = <fnl> = <—nm— l) mod p, when p=2,

since (3.17) is also valid when ¢<0. Hence (ii) follows from Theorem 3.13(i).
(iii) n=m(cv(f))<2t+2 by (ii), which shows t=[n/2]. Thus m(cv(f))=
2t+1. q.e.d.

In the rest of this section, we consider complex bundles over the complex
projective space CP". The canonical complex line bundle over CP"=S§2?"+1/S!
is also denoted by #, which is the restriction | CP" of the one 5 over CP™ for
any mz=n.

THEOREM 4.11. Let { be a complex t-plane bundle over CP™.
(i) Then {—t=31_, b(n*—1) in R(CP") for some integers b,.
(i) Ifby=0(1<kz=n)in (i) and t=n, then { is extendible to CP".

If t= 32, by in addition, then ( is extendible to CP™ for any m=n.
(iii) Take a prime p<n+1 and put
¢; = 2ibpe; modp® and 0=c;<p* (1sisp-1), c=ZXiigc,

where b,’s are the integers in (i) and a’=[n/(p—1)]. If there is an integer m
satisfying t<m<p® and (3.16), then m>n and { is not extendible to CP™.

(iv) If the integer c in (iii) satisfies t<c<p®, then { is not extendible to
CPe.
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(v)' Take p=2 in (iv). Then { is not extendible to CPN":¢) for N(t, c)
in (3.22).

Proor. (i) It is known (cf. [1; Th. 7.2]) that the K-ring K(CP”) is the
truncated polynomial ring Z[6]/(¢"*!) with one generator 6=#—1. Thus we
see (1).

(ii) Since b, =0, { is stably equivalent to the bundle > ?_, bn* by (i), which
is extendible to CP™ for any m=n. Thus (ii) follows immediately from Corollary
2.3.

(iii)«(v) Consider the natural projection n: L2"*!=S2"*1/7 —§2n+1/S§1=
CPr. Then n*y is the canonical complex line bundle # over L2**! by definition,
and we see that

(¥) m*{ is stably equivalent to 3> 7=} bin‘ where b;=3, b;,.; mod p" and b; =0,

by (i) and (3.3). Furthermore, if { is extendible to CP™, then so is n*{ to LZm*1.
Thus (iii)~(v) follow immediately from the non-extendibility of n*{ in (x), which
is shown by Theorems 3.13(i), (ii) and 3.23(i). g.e.d.

COROLLARY 4.12. Assume that a complex t-plane bundle { over CP" satisfies
{—t=>b(n*—1) in K(CP") for some integers k and b with 1 <k<n.
(i) Assume that there are a prime p and an integer m satisfying

k#0modp, t<m<p? (a'=[n/(p—1)]) and <;1).,=é0modp,

where c=b mod p* and 0<c<p®. Then m>n and { is not extendible to CP™.
(ii) In case that t=n, k0 mod p and n<b<pt"/(P=V] for some prime p,
{ is extendible to CP™ for any m=b if and only if b<t.

ProoF. (i) is an immediate consequence of Theorem 4.11(iii).
(ii) The sufficiency is seen by Theorem 4.11(ii). If b>t, then (i) shows
that { is not extendible to CP®?. q.e.d.

COROLLARY 4.13 (cf. [9; p. 166]). The complex tangent bundle T (CP")
over CP™ with n=2 is not extendible to CP"*', and t . (CP") is extendible to
CP™ for any mz1.

PrOOF. It is known that 7, (CP")@®12(n+ 1)y (cf. [17]). Thus we see the
desired result for n =2 by Corollary 4.12(i) for { =t ,(CP"),t=n,k=1,b=c=n+1,
p=2 and m=n+1, since n+1<2" if n=2. The result for n=1 is proved in
[15; Remark 5.3] by the same proof as that of Proposition 2.4 and by noticing
that H*1(CP™, CP'; n(BU(1)))=0 for r=2. g.e.d.

REMARK 4.14. The extendibility of a complex bundle over CP" to CP™ is
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investigated by several authors (cf. e.g., the references of [24]). Especially, A.
Thomas [26; Prop. 3.5] determined a necessary and sufficient condition for a
complex n-plane bundle over CP” to be extendible to CP"*1.

§5. Real bundles over the lens spaces

In this section, we consider real vector bundles over L} of (3.1-2).

When ¢ is even, let p=p, be the non-trivial real line bundle over Lj(n=1),
i.e., the one whose first Stiefel-Whitney class w,(p) e H'(L}; Z,)=Z, is non-zero.
If g=2, then p is the canonical real line bundle & over RP".

Consider the additive homomorphism

(5.1) r: K(L;) — K’\é(L;) given by the real restriction r
between the reduced K- and KO-rings. Then we have the following
LemMA 5.2. (i) (cf. [12; Prop. 2.11, Th. 1.1(ii)]) When q is odd,

~ r(R(L2) ifns#1 mod38,
KO(Ly) = -
rR(LD)) ® Z,, Z, = KO(S"),  otherwise,
where the last isomorphism is induced by the projection Lj—L}3/L7~'=S", and
r(K(Lg)) is the subring of @(Lg) generated by ra(c=n—1 is the one in (3.3))
and contains exactly q'"'*1 elements. Furthermore, if q is an odd prime p,
then the order of ro is equal to ry=pl*LU»/21=2)/(p=D] gnd hence r,a=0 for any
e r(K~(L;',)).

(i) If q is even, then KO(L)/H(R(LD)) = Z, and the element

K = p—1eKO(LY)

does not belong to r(R(L?)), and cp=n?/2, 2p = r(n4/?) over L}, and 2k =r(n9/?—1).
(iiiy For any q, r(n'—n1"")=0 in KO(L2).

PrOOF. (i) is proved in [12]. (iii) follows from rt=r (¢ is the conjugation)
and #n7—1=01in (3.3). We prove (ii).

The last equalities in (ii) follow from [16; Prop. 3.3]. Let g=2"q’ where
r=1 and ¢’ is odd. Then we have the natural projections or their restrictions
n: Ly—L% and n': L} —Lj, induced by the inclusions Z,,<Z, and Z,<Z,
and the commutative diagram

Ry =+, R(13) @ R(L1)

rl 1r@r

n¥4m’*

KO(Lp) =X, KO(Ly) @ r(R(L2))
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where the two n* +7'* are isomorphic and
n*(o) = 0, ©'*o) =0, n*kK)=k, n*kx)=0.

In fact, these equalities are clear by definition and hence we see that the upper
n*+n'* is isomorphic by (3.3). The lower one is so by [8; Prop. 2.2] and (i).

Now consider the ring KF\O'(Lgr). Then this is generated by k and re=r(n—1),
and k2= —2x, (ro)! and x(ro)i (i=1) are contained in #(K(L%.)) by [7; Prop. 1.1]
and [6; Lemma 2.12]. Furthermore x¢r(K(L%)) since w,(p)#0. Therefore
we see (ii) by the above diagram. q.e.d.

In case that g=2 and L}=RP", we have the following

(5.3) (J. F. Adams [1; Th. 7.4]) KO(RP") is a cyclic group of order 2¢(m
generated by k=p—1(p=¢), where ¢(n) is the number of integers s with 0<s<n
and s=0, 1, 2, 4 mod 8.

When n=1 mod 8, let S, be the real n-plane bundle over the sphere S” such
that the stable class ﬁn—neI?O(S")=Z2 is non-zero, and denote by the same
letter 8, the induced bundle of §, by the projection Lj—L}/L;~*=S". Then we
have immediately the following lemma by Lemmas 5.2, 3.5 and (5.3), in the same
way as Lemma 3.5(i)-(iii).

LEMMA 5.4. (i) Any real t-plane bundle { over L} is stably equivalent to
a real t'-plane bundle {' over L% such that

(5.5) (' =¢B,@bp® iy br(n’) and t'=en+b+23 1, b (u=[(q—1)/2])

for some non-negative integers e, b and b; with ¢=0, 1, where ¢f, (resp. bp)
appears only when q is odd and n=1 mod 8 (resp. q is even).

(i) b (resp. b;) in (5.5) can be reduced to the residue modulo the order of
k=p—1 (resp.r(n*—1)) in I&VO(L;) and, especially, to the one modulo 2%
(resp. r,=p*UIn121=D/(r=DI) when q=2 (resp. q is an odd prime p).

We now study the extendibility of a real t-plane bundle { over L to L7 for
m=n by using the same notation

(5.6) m({)=max {m|{=«| L% for some real bundle « over L? (m=n)}
as (3.7) for complex bundles.

THEOREM 5.7. Let { be a real t-plane bundle over L} and assume that {
is stably equivalent to a real t'-plane bundle (' over L% in (5.5) by Lemma 5.4.
(i) When q is odd and n=1 mod 8, if

&= 15 i-e') CI = ﬁn@ Z'i‘=1 bi"(ﬂi) in (5‘5)5
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then ( is not extendible to L3*, i.e., m({)=n.

(i) Assume that {'=bp ® X%, b;r(#?) in (5.5). Then

(a) m@Q=ztiftzn.

(b) m({)=w ift>nand t=t'.

(c) ([14; Th.4.2]) m()=2t—(—1) if q is odd (bp does not appear), n is
odd and t>n.

Proor. (i) Suppose that { is extendible to a real bundle « over Lj*!. Then
o is stably equivalent to a'=Y %, ¢;r(ni4,) for some ¢;=0 by the above lemma.
Thus o | L= >%_; ¢;r(n") is stably equivalent to { and hence to &f,® > ¥ b;r(n)
in (5.5). Therefore their stable classes in K’\O’(L;) are equal to each other, and we
see that e=0 by the direct sum decomposition of Lemma 5.2(i) and the definition
of B,. Hence m({)<n if e=1.

(i) By definition, m(p)=oco=m(r(n*)) and hence m({’)=oo0. Thus (a)
and (b) follow immediately from Corollary 2.3. If t=¢', then (c) holds by (b).
If t<?, then (c) is proved in [14; Th. 4.2]. q.e.d.

To study the non-extendibility, we use the y-operation in KO-theory (cf. [4]).

LEMMA 5.8. Let q be odd and assume that a real t-plane bundle { over L}
is stably equivalent to {'=Y % b;r(n*) with b;=0 (u=(q—1)/2). If

y2({—t) =0 in IE\(/)(L;‘) for some positive integer j<[n/4],

where y2J is the y-operation in KO-theory, then

(590 Bolbises b4 ) = jpuverjum; Tl ( 71)i% = 0mod g,

PrOOF. By assumption and by [13; Prop. 3.2], we see that
7:({—8) =y (i1 bir(n' = 1))
= DS prsnem T (5) i @952 Jeornsd eoyte—ey,
where 6=#—1. By taking the coefficient of #2/, we have
P2i((—1) = Xyz0 B(ro)/** for some coefficients B,,
where (—1)/B, is By(by,..., b,; j) in (5.9). On the other hand, we see that
(5.10) (ro)t7/41+1 = Q and the order of (ro)*/#1is q in K/\é(L;‘),

by using [12; Prop. 2.11 and 2.6]. Therefore the assumption y2/({—¢)=0 im-
plies that By(ra)l#/41=y2i({ — 1) (ro)l"/41-i =0 and B,=0 mod g. ' g.e.d.
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In the same way as the proof of Theorem 3.13 by using Lemma 5.8 instead
of Lemma 3.11(i), we can prove the following

THEOREM 5.11. Let q be odd and assume that a real t-plane bundle {
over LI is stably equivalent to ("=, br(n') with b;Z0(u=(q—1)/2).
Furthermore

(5.12) take a prime factor p of q with p<[n/2]+1, and let d,(1LkZv=
(p—1)/2) and d be the integers given by

di = 2i(bipsxt+bipyp-i) mod p* and 0=d,<p®, d =23}, d,,

where a=[n/2(p—1)].
(1) Assume that there is an even integer m satisfying

(5.13) t<m<2p® and

(5:14)  Boldusres ds MID(= Ty ot jymmya Tier (%

Jk
Then 2m>n and m({)<2m, i.e., { is not extendible to L2™.
(ii) (cf.[14; Th.1.1]) If d in (5.12) satisfies t<d <2p®, then n<m({)<2d.
(iii) When n is odd and n<t, if t is odd<2p®—1 and m=t+1 satisfies
(5.14), e.q., if t+1=d <2p?, then m({)=2t+1.

)km) £ 0 mod p.

PROOF. (i) Assume that g=p (u=v) in addition.

Suppose that m({)=2m(>n), i.e., { has an extension « over L2™. Then « is
stably equivalent to o'=> %, s#(n%,) for some 5,20 by Lemma 5.4. Since
t<m by (5.13), y"(a—t)=0 in I&)(Lf,"‘) and Lemma 5.8 shows that

(%) By(S15--- Sp; m[2) = 0 mod p (m is even).

On the other hand, {(=a|L?) is stably equivalent to {' = >¢_; b,r(#*) and to
o | Li=3"¢-; ser(n*). Therefore c{'=3> -, b(n*®nr*) is so to co'|Ll=
2 p=1 8(n*®nP~%). Hence Lemma 3.5(iv) and the definition of dj in (5.12) for
q=p imply that

S = b, =d; mod p°® for 1=k=v.
Since m/2 < p? by (5.13), this and the definition of B, imply that
By(S1,.-.5 Sp; m[2) = By(dy,..., d,; m/2) mod p,

in the same way as the proof of (3.18). Thus (%) contradicts (5.14). (If 2m<n,
then we have a contradiction in the same way as the above proof by taking a=(.)
Therefore (i) is proved when g=p.

In general, consider the natural map n: L;—L} in (3.19). Then the as-
sumption, #?—1=0 in K(L;) and r(n*—nP~%)=0 in I&)(L;’,) of Lemma 5.2(iii)
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show that the induced bundle n*{ over L is stably equivalent to
Li=1 bir(n*) where by = 3 (biprrt+bips p—i) for ISk=v.

Thus n=m(n*{)<2m by the above proof, and we see (i) in general since m({)<
m(n*() in (3.21) is also valid for a real bundle (.

(ii) By taking m=d=2 >¢_, d, in (i), we have (ii).

(iii) follows immediately from (i) and Theorem 5.7(ii) (c). g.e.d.

In case that =2 and L2=RP", we have the following theorem by using the
y-operation in the same way as Theorem 3.23 and by using the Stiefel-Whitney
class, where

N ,(t, 5) = min {m|¢(m) > j+v2(< : )) for some 1< j<s},
(5.15)
N,(t,s) =min{j|t<j<s and v2(< : )) -0},
N'(t, s) = min {N(t, s), N,(t, s)}
for t<s, (¢(m) and v,(a) are the integers given in (5.3) and (3.22) respectively).

THEOREM 5.16. Assume that a real t-plane bundle { over the real projective
space RP" is stably equivalent to {'=1t'p with 0=t'<2¢™ by Lemma 5.4.

(i) Ift<t, then n=m({)<N'(t, t') and especially n<m({)<t'.
(i) Ift<t' and <1 fH) is odd, then t=n and m({)=1.

(iii) If T(=t) satisfies that m({))=N'(t, s) (e.g., n=N'(t, 5)) for any s with
T<s<2%™ then t' <T.

@iv) If T'(<t') satisfies m({)=N'(T', t') (e.g., n=N'(T', t')), then t>T'.

) ([14; Th. 6.5]) If m({)=2¢™® —1, then t=>t'.

PrOOF. (i) Suppose that m({)=N,(¢, t')(>n), i.e., { has an extension «
over RP/ for some integer j with

(*)  t<j=t and vy(a)=0(.e,a#0mod2) where a= (3)

Then « is stably equivalent to s’p over RP/ for some integers s’ with 0<s' <2¢()
by Lemma 5.4. Therefore

(j ) =0mod?2, i e, v2(< i >) £0,

because 0=wj(a)=wj(s'p)=(§. )yf in H*(RPJ; Z,). On the other hand, { is
stably equivalent to ¢'p and also to s'p| RP"=s"p, and we see that
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(+%) #'=s mod 24 by (5.3), and v2(a)=v2(<tjl. >)=v2(< i >) by (3.25).

These show that v,(a)#0 which contradicts (*). (If N,(¢, t')<n, then we have
also a contradiction by taking a={ and j in (%) with j<n in the above proof.)
Thus n=m({) < N,(t, t).

Now suppose that m({)=N,(t, t')(>n), i.e., { has an extension a over RP™
for some integer m with

(#x) o(m) =z j+v,(a), a = (i), for some j with t<j=<t.

Then « is stably equivalent to s’p over RP™ for some s'=0 by Lemma 5.4.
Therefore

= pila—1t) = pi(s'k) = <‘;/ )Kf = (—2)f‘1<‘;., )x in I&?)(RP’") (k=p-1)
in the same way as the proof of Lemma 3.11(iii). Thus
2/1 ( 5}’ > = 0 mod 2¢™, i.e., v2(< ‘;., )) = ¢(m)—j+1,

by (5.3). Thus v,(a)=¢(m)—j+1 by (#x), which contradicts (x*x). (If
N,(t, t')<n, then we have also a contradiction by taking a={ and m in (*%%*)
with m=<n.) Hence m({)<N,(t, t') and (i) is proved.

(i1) N,(t, t")=t+1 by (5.15), since v2(<t:_ 1>)-——0. Thus n<m())<t+1 by
(i), and m({)=t by Theorem 5.7(a). These prove (ii).

(iii))~(v) By using (i), we see (iii)~(v) by the same proof as that of Corollary
3.26(ii)—(iv). q.e.d.

COROLLARY 5.17. Let q be even, and assume that a real t-plane bundle {
over L is stably equivalent to {'=bp® 3 1, bir(n’) for some b=0 and b; =20
(u=q/2—1) by Lemma 5.4.

(1) Then (i) and (ii) of Theorem 5.11 are also valid when p is odd in (5.12).

(i) Let d’ be the integer given by

d=b 42 ,by,, mod2?™ gnd 0Zd <24,
where b'=b if q/2 is odd and b'=0 otherwise. If t<d', then m({)<N'(t, d')

for N'(t, d') in (5.15). In particular, if t<d' and (til) isodd, eq.,ifd =t+1,
then t=n and m({)=t.
Proor. Consider the natural map n: L;—L% of (3.19). Then n*p=p if

p=2 and ¢/2 is odd, and n*p=1 otherwise, by the definition of p, because 7*:
HY(Ly; Z,)-H'(Ly; Z,) is isomorphic or trivial in each cases, Furthermore
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2p=rn over L} (see Lemma 5.2(ii)). Therefore, by using Theorems 5.11(ii) and
5.16(i), we see the corollary in the same way as the last part of the proof of
Theorem 5.11(1). g.e.d.

ReMARK 5.18. We can obtain a theorem similar to Theorem 4.11 on the
extendibility of a real bundle { over the complex projective space CP" whose
stable calss {—t is equal to > 7_, br(n*—1) in K’\OJ(CP"), in the same way as the
above corollary.

§6. The higher order tangent bundles

" Throughout this section, we continue to use the notation m({) in (5.6) or (3.7),
which denotes the maximum integer m such that a bundle { over L is extendible
to L} (m=n).

In the first place, we consider the tangent (or normal) bundle of

(6.1) L7 = L"(q) when g=3 and n=2n"+1, or L} = RP" when g=2.
(6.2) ([14; Th. 5.1, 5.3, 6.6]) For the tangent bundle t©(L%) of L} in (6.1).
00 ifn=1,30r7,

m(z(Ly)) =
n otherwise.

In fact, if n=1, 3 or 7, then L is parallelizable and m(t(L}))=co except
for L] with g=3. L] has a tangent 5-field by [27]. Therefore (L])=f®S5
for some oriented 2-plane bundle f, which implies m(z(L]))=c by Corollary
2.4. Conversely, suppose that t(LZ) has an extension « over Li*!. Then, by
considering the natural projection n: S™— L™, we see that

©(S") = m*t(LY) = n*(«|L]) = (n*a) | S" = i*(n*a),

where the inclusion i: S"< S**! is homotopic to the constant map. Thus ©(S")
is trivial and hence n=1, 3 or 7.

In the same way as the above proof, we can prove the following

(6.3) The real tangent bundle ©(CP") of the complex projective space CP"
is not extendible to CP"*1 if and only if n#0, 1 and 3.

In fact, consider the differentiable fibre bundle n: S?"*1—»CPm™ with fibre S1.
Then, on the tangent bundles of these manifolds, it is well known that

7(S2*1) > g*g(CP") @ a, where « is the bundle along the fibre.

Here o is a line bundle and orientable. Thus ax~1. Therefore, if ©(CP") has an
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extension f over CP"*1, then
(S22 =~ g*t(CPY®1 = n*(fD1)|S?"! =~ 2n+1,

since the inclusion S$2?7*1<S27*3 is homotopic to the constant map. Thus
n=0, 1 or 3. Conversely, the obstructions for extending the classifying map of
7(CP3) to CP#* are contained in the cohomology groups H:*1(S%; ;_,(SO(6)))
for i=6, 7, and these groups are 0 because H’(S®)=0 and 74(SO(6))=0. Thus
7(CP3) is extendible to CP*. 1(CPY)=rt(CP?)is so to CP? by the latter half of
Corollary 4.13.

We now consider the normal bundle v(f) in (4.8).

PROPOSITION 6.4. Let v(f) be the normal bundle over L} in (6.1) of an
immersion f: Ly < R"™" (t=1).

(1) m((f)=tift=n, and m(v(f))=2t—(—1)! if q is odd and t>n.
(i) Assume that q is odd. If there is an even integer m satisfying

(6.5) t<m<2ptn/2(r=11 gpd <— [’;{/2?;' - 1) % 0 mod p for some prime factor
pofyq,

then m(v(f))<2m. Especially, if t is odd>n and m=t+1 satisfies (6.5), then
m(v(f))=2t+1.

(iii) Assume that q is even.

(a) If the integer t', given by t'=t+n+1 mod2%™ and 0t <29,
satisfies t' > t, then m(v(f))<N'(t, t') for N'(t, t') in (5.15).

(b) If there is an integer m satisfying

(6.6) t<m <26 and<’+”m+1>¢0mod2,

then m(v(f))<m. Especially, if (6.6) holds for m=t+1, then t=n and
m(v(f))=t.

ProOF. We see that the t-plane bundle { =v(f) over Lj is stably equivalent to
(*) (' = b,;ry, where by=—n"—1 mod ¢g!"*'and b, = 0 (n=2n"+1),

by (4.10) and Lemma 5.2 (i).

(1) is a consequence of Theorem 5.7(ii).

(i1) We can prove the first half in the same way as the proof of Proposition
4.9(ii) by using Theorem 5.11(i). If t is odd>n, then m(v(f))=2t+1 by (i).
Thus we see the latter half.

(iii) Consider the projection n: RP"=L3—L? (q is even). Then
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m*v(f) ®(n+1)p =% n+t+1 over RP"

by (4.10), since 2p=~rn (p=&) over RP". Further p?=~1 over RP*. Thus

(xx) (n*v(f))®p over RP" is stably equivalent to (n+t+ 1)p and hence to #'p,
by Lemma 5.4(ii), where ¢’ is the integer given in (a). Therefore Theorem 5.16(i)
shows that

m(t*v(f)®p) < N'(1, t') if t<t'.
On the other hand, since p?=~1 over RP", we see easily that

m(() = m@*)) = m((z*H®p)  (C=n/)).

Therefore (a) is proved.
Assume that m satisfies (6.6). Then (3.17) implies that

'\ _[t+n+1 ’
<m>=< m );éOmodZ,andhencet Zm>t.

Thus m(v(f))<N'(t, )<m by (a) and the definition (5.15). Especially, if
m=t+1 satisfies (6.6), then n<m(v(f))<t+1 and hence m(v(f))=t by (i).
Therefore m(v(f))=t and (b) is proved. q.e.d.

In the rest of this section, we study the extendibility of the higher order
tangent bundles over the lens spaces.
For each smooth manifold M, let

6.7) T(M) = \U e (M), for k=1,2,3,..

denote the k-th order tangent bundle over M, where the k-th order tangent space

(M), at x e M is the real vector space spanned by the linear functionals
(090,70, | s 1S j Sk, 150, S <0, S0} (n=dim M)

with respect to the local coordinate (x,, x,,..., x,) of x, (see [20], [5] for the
detailed definition). Thus

(6.8) (M) is a real t(n, k)-plane bundle over M (n=dim M), where
_(n n+1 n+k—1\_ _(n+k)\,
w0 =(1)+("5 )+ (M= con -t oo = ("1F);
and t,(M) is the tangent bundle of M.

For the real projective space RP" (n=1), we have the following

LEMMA 6.9. 1, (RP") is stably equivalent to t'p, where t'=0 if k is even,
t'=C(n, k) if k is odd.
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Proor. H. Suzuki [23; p. 274] proved that
7(RP") — t(n, k) = C(n, k)(p*—1) in KO(RP").
This shows the lemma since p2—1=0 in Kf\O'(RP"). g.e.d.

THEOREM 6.10. For the k-th order tangent bundle t,(RP") and its com-
plexification ct (RP") over RP", we have the following

0 if k is even, or C(n, k) = 2¢(m,

(i) m(z(RP") = [
C(n, k) — 1 otherwise,

where C(n, k)=<n_)c_k> and ¢(n) is the integer given in (5.3).

0 if k is even, or C(n, k) = 2[7/21
(i) m(ct(RP")) =
2C(n, k) — 1 otherwise.
In case that k=1, i.e., that 7,(RP") is the tangent bunle 7(RP"), (i) of this
theorem is contained in (6.2) for g=2 and (ii) is Theorem 4.1.

PrOOF OF THEOREM 6.10 (i) Assume k=2. Then t(n, k)=C(n, k)—1>n
in (6.8). Thus, by (6.8) and Lemma 6.9, the result for even k follows immediately
from Theorem 5.7(ii) (b), and the one for odd k with C(n, k)<2¢™ from Theorem
5.16(i1). If k is odd and C(n, k)=2¢™, then 7,(RP") is stably equivalent to
t"p, where t"=C(n, k)—2%™ <t(n, k), by (5.3). Thus the result follows from
Theorem 5.7(ii) (b).

(ii) By Lemma 6.9, ct,(RP") is stably equivalent to t'cp~t'n. Therefore
(ii) is proved in the same way as the above proof, by using Theorems 3.8(ii),
3.13(iii) and (3.3). q.e.d.

Now, we consider the k-th order tangent bundle 7,(L" (q)) of the lens space
L"(q)=L3 (n=2n"+1). The extendibility of the tangent bundle t(L"(q))=
7,(L" (g)) or its complexification is given in (6.2) or Theorem 4.3.

To study the case that k=2, we use the following

LEMMA 6.11.  1,(L"(q)) is stably equivalent to

(' =2b,1p@Tiy bir(n)) if q is even, = i, br(n') if q is odd(u=
[(g—1)/2]), where

(6.12) b = b, ki 9) = X jep, C', HC's k=) (C(a, b) = (932,
D, = {jl0=2j<k, k—2j= +i modgq} for 1=i<[q/2].

Proor. H. Oike [19; Th. 2.8] proved that
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(L7 (@) = 11, k) = Tosaj< (', )C(', k—)¥*2i(ra) in  KO(L"(9)),

where 6=n—1 and ¥' denotes the Adams operation on I&Y)(L”'(q)). Since

Yiro)=rPi(n—1)=r(n*—1) in KO(L"(q)) ([2; Lemma A2]) and #2—1=0 in

R(L" (¢)), the above equality implies the lemma by Lemma 5.2(ii) and (iii).
g.e.d.

LEMMA 6.13. The bundle {' in Lemma 6.11 is a real t'-plane bundle, where

(6.14) =10, k; q) = TP 2b, =23 ,0p C(n', HNC(n', k—J),
D=D; U--U Dy =1{jl0=2j<k, k — 2j # 0 mod g} ;
and t'(n', k; q) satisfies the following properties (n=2n'+1):

tv'(n', k; q) < t(n, k(=C(n, k)—1) if k is even or q is odd < k,
(6.15)
t'(n', k; q) = t(n, k)+1 otherwise.

PROOF. (6.14) is clear by (6.12). By comparing the coefficients of x* in the
both sides of (1—x)"""'=(1—x)"""1(1—x)"""Y(n=2n"+1) and by (6.14), we
see that

Cn, k) = 350 C(n', C(n', k—j) = 1'(n', k; q)+2do+d,

where do=do(n', k; 9)=2 jep, C(', IC(n', k—j)(Do={j|0=2j<k, k—2j=0
mod g}) and

d = (C(n', k/2))? if k is even, =0 if k is odd.
Therefore

t(n', k; q)=Cn, k)ifd=d, =0, t'(n, k; q) < C(n, k) otherwise;

and d=0 if and only if k is odd, and d,=0 if and only if Do=¢g. When k is odd,
we see easily that Dy #¢ if and only if g is odd<k. Thus (6.15) holds.
q.e.d.

THEOREM 6.16. Let 7,=1,(L" (q)) (k=2) be the k-th order tangent bundle of
the lens space L™ (q)=Li(q=3, n=2n"+1).

(i) m(t)=o0 if one of the following (1)~(4) holds:

(1) kis even. (2) qisoddgk.

(3) b; in (6.12) is not smaller than the order of r(ni—1) in I’(\b(L;') for
some i with 1<i<[q/2].

(4) q is an odd prime and b;= gL =2~V for some i with 1=<i<[q/2].

(ii) m(zp)=C(n, k)—1; and

m(t)=C(n, k)—1 if k is odd=3, q is even and C(n, k)<2¢(¢p(n)
is the integer given in (5.3)).
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(iii) m(t,)=2C(n, k)y—1 if k is odd>3 and q is odd>k; and
m(t,)=2C(n, k)—1 if p>k and C(n, k)<2pt®/(@=D1 for some prime
factor p of q, in addition.

ProOOF. We notice that t(n, k)=C(n, k)— 1> n in (6.8) since k=2.

(i) If (1) or (2) holds, then ¢'(n’, k; g)<t(n, k) by (6.15). Thus m(t,)=o00
by (6.8), Lemmas 6.11, 6.13 and Theorem 5.7(ii) (b). If (3) or (4) holds, then
1, 18 stably equivalent to {” which is obtained from {’ in Lemma 6.11 by reducing
b; to the residue modulo the order of r(ni—1) in K’\é(L;) by Lemma 5.4(ii), and {”
is a t"-plane bundle with t"<t'(n’, k; q)—1=t(n, k) by (6.15). Thus m(r)= 0
in the same way as above.

(i) m(t)=C(n, k)—1 is a consequence of Theorem 5.7(ii) (a). If k is
odd=3 and q is even, then D,,=¢ and b,;=0 in (6.12), and d’ in Corollary 5.17
(ii) for {=1, and {' in Lemma 6.11 is equal to

22 by =1(n', k; q) = C(n, k) = Un, k)+1

by (6.14-15). Thus m(t,)<C(n, k) if C(n, k)<2%™ in addition, by Corollary
5.17(ii).

(iii) If k is odd=3 and q is odd >k, then t(n, k)=C(n, k)—1 is odd and
m(t,) =22C(n, k)—1 by Theorem 5.7(ii)(c). If there is a prime factor p of g with
p>k, then D,;=¢ and b,,=0in (6.12), and d in (5.12) for {=1, and {’ in Lemma
6.11 is equal to t'(n', k; q)=C(n, k)=t(n, k)+1 by (6.14-15). Thus m(r)<
2C(n, k) if C(n, k)y<2pt®/p=D1 in addition, by Theorem 5.11(ii). q.e.d.

THEOREM 6.17. For the complexification ct, of t, in Theorem 6.16, we
have the following
(i) m(ct) =m(r,) for m(ty) in the above theorem, and hence
m(ct)=00 if m(t)=o0, e.g., if k is even or q is odd=<k.
(i) m(et)=2C(n, k)—1 if k is odd, and q is odd>k or q is even; and
m(ct,)=2C(n, k)—1 if p>k and C(n, k)< p»/»=DI for some prime factor
p of q, in addition.

PrOOF. (i) If 7, is extendible to L7, then so is ct,. Thus m(ct)=m(ty).
(ii) ¢, is a complex #(n, k)-plane bundle and is stably equivalent to 3221 b,.
(m*@n9~%) where b;’s are the integers given in (6.12), by Lemma 6.11. Thus we
see (i) in the same way as the proof of Theorem 6.16(iii), by using Theorems
3.8(i) and 3.13(ii). g.e.d.
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