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§ 1. Introduction

Let X and A be a topological space and its subspace. Then a fibre bundle
ζ over A is said to be extendίble to X, if there is a fibre bundle α over X whose
restriction ot\A to A is equivalent to ζ.

R. L. E. Schwarzenberger ([9; Appendix I], [21]) and several authors studied
the extendibility of vector bundles over the complex (resp. real) projective n-
space CPn (resp. RPn) to CPm (ΐesp.RP"1) for m>n (cf., e.g., the references of
[24]).

For an integer g^2, let Ln

q denote the standard lens space mod q or its n-
skeleton :

L2

q

ί+ί = L*(q) = S2i+i/Zq or L2i = π(S2i)(π: S2ί+1 - > L2i+ί is the projection),

where L2 = RPn. The purpose of this paper is to study the extendibility of com-
plex (or real) vector bundles over Ln

q to L™ for m > n, as a continuation of the
previous papers [18], [14] and [15].

Let η be the canonical complex line bundle over Lj, i.e., the induced bundle
π*τ/ of the one η over CPi by the natural projection π: L2i+ί-+CPi or its re-
striction π*η \L2ί. Then the main results on complex bundles are stated as
follows :

THEOREM 1.1. Let ζ be a complex t-plane bundle over Lq. Then ζ is stably
equivalent to a complex ί'(=Σ?=ι b^-plane bundle ζf=Σ^llbiη

ί over Lq for
some integers b^O. Furthermore, we have the following (i) and (ii):

(i) //ί^[n/2], then ζ is extendible to L2

q

t+l. If t ̂  [(n + 1)/2] and ί^ί',
then ζ is extendible to L™ for any m^.n.

(ii) Take a prime factor p of q with /?^[n/2]-}-l, and put a = [n/2(p — lj]

and

pa, for l^k^p-

If there is an integer m satisfying

t<m<p° and Σ,1+...+J P-,=mΠ£
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then 2m>n and ζ is not extendible to L2m.
When q is even, if c = c1 for p = 2 satisfies t<c, then ζ is not extendible to

L*N

9 where iV = min{j + v2(( C. ))|ί< j^c}(v2(b) is the exponent of 2 in the prime

power decomposition of a positive integer b).

In case of real bundles, we have the real restriction r(η*) of ηl over Ln

q, and

the non-trivial real line bundle p over Ln

q when q is even. Furthermore, when q
is odd and n = 1 mod 8, we have the induced bundle βn of the stably non-trivial
real n-plane bundle over Sn by the projection L^L^/L^~ί = Sn.

THEOREM 1.2. Let ζ be a real t-plane bundle over L\. Then ζ is stably
equivalent to a real t'-plane bundle ζ' over L\ such that

t' = εn + f? + 2ΣS'=ι bt (u = l(q-

for some non-negative integers ε, b and bi with ε = 0, 1, where εβn (resp. bp)
appears only when q is odd and n = l mod 8 (resp. q is even).

Ifε = 1, then ζ is not extendible to Ljj+1. Furthermore we have the following
(i) and (ii) under the assumption that ε = 0 or εβn does not appear.

(i) 7/ί^n, then ζ is extendible to L*q. If q and nare odd and t>n, then ζ

is extendible to L^"^""1^. If t>n and t^t', then ζ is extendible to L™ for any

(ii) Take an odd prime factor p of q with p^[n/2] + l, and put

α = [n/2Cp-l)]βmί

and Q^dk<p" for l£ fc£t , = (p-

// there is an even integer m satisfying

t<m<2p* and ΣJί+...+Jv=m,2 Πϊ=ι ( ̂  )^k Φ 0 mod A

then 2m>n and ζ is not extendible to L2^1.

When q is even, put

d' = b' + 2Σιb2l+ί mod 2*^ and

where b' = b if q/2 is odd and b' = Q otherwise, and φ(n) is the number of integers
s with 0<s^n and 5 = 0, 1, 2, 4 mod 8. // t<d', then ζ is not extendible

toL%', where N/ = min{min{m| ψ(m)^7+v2(f . )), t<j ^ d'}9 min{j | t < j^d',

Theorem 1.1 is proved in Lemma 3.5, Theorems 3.13 and 3.23, and Theorem
1.2 is proved in Lemma 5.4, Theorem 5.7 and Corollary 5.17, where trie non-
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extendibility is shown by studying the γ-operations in K- and J^O-theory and the

Stiefel- Whitney classes.
As an application of these results, we study the extendibility of the higher order

tangent bundle over Ln

q to L™, and in particular, we obtain the following theorem,
where ra(Q denotes the maximum integer of m such that a bundle ζ over RPn

is extendible to RPm.

THEOREM 1.3. Let τk(RPn) (fc^l) be the k-th order tangent bundle over
the real projective space RP" (τ1(JRPn) is the tangent bundle of RPn) and cτk(RPn)
be its complexification. Then

2C(n, k)-\ otherwise,

i f k is even or C(n, k)^

otherwise',

ifk is even or C(n, /c)^

where C(n, fc) =

This theorem is proved in Theorem 6.10, and a result for the lens space
Ln(q) is proved in Theorems 6.16 and 6.17.

In §2, we study some conditions that a bundle over an n-skeleton X" of a
finite CFP-complex X is extendible to an m-skeleton Xm. In § 3, we prove Theorem
1.1. §4 is devoted to apply the results obtained in §§2-3 to the complexification
of the tangent (or normal) bundle of Ln(q) and to complex bundles over the
complex projective space CP", and as a corollary, we obtain Schwarzenberger's
result [9 p. 166] that the complex tangent bundle over CP" (n ̂  2) is not extendible
to CPΠ+1 . In § 5, we prove Theorem 1.2 by using the KO-theory. By using these
results, we study the higher tangent bundle of the lens space in §6.

The author wishes to express his hearty thanks to Professors M. Sugawara,
T. Kobayashi and T. Yoshida for their useful advises and stimulating discussions
during the preparation of this paper and also to Professor K. Fujii for his kind
advises.

§ 2. Vector bundles over an n-skeleton

In this paper, let F denote the real field R or the complex field C, and set
/=dim jRF = l or 2 according to F = R or C. We denote simply by b the
fe-dimensional trivial F-vector bundle.

In this section, we consider a finite CW-complex X, and study some con-
ditions that a given F-vector bundle ζ over the n-skeleton Xn of X is extendible
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to an m-skeleton Xm^>Xn for

We notice the following (cf. [10; p. 100, Th. 1.5]):

(2.1) If t- and t' -dimensional F-vector bundles ζ and ζ' over Xn are stably

equivalent, i.e., ζ0s = C'0s' (equivalent) for some non-negative integers s and

s'9 and ift^t1 and f^[(n + !)//], then ζ^ζ'®(t-t'\

THEOREM 2.2. Let ζ be a t-dimensional F-vector bundle over Xn, and assume

that ί^[(n + !)//]. Then ζ is extendible to Xm (m>n) if and only if there exists
a t' -dimensional F-vector bundle ζ' over Xn such that

(1) ζ is stably equivalent to ζ', and
(2) ζ' is extendible to a bundle α' over Xm with Span(α'0/c)§rί' — t + kfor

some /c^O. (Spanα denotes the maximum number of linearly independent
cross-sections of an F-vector bundle α.)

PROOF. The necessity is seen by taking ζ' = ζ. We prove the sufficiency.
If t^t', then (1) implies that ζ^ζ'@(t-t') by (2.1), and hence (2) implies

that ζ is extendible to a bundle α'0(f — t') over Xm.
If ί'>ί, then (1) implies that ζ'^ζ@(t'-t) by (2.1), and (2) implies that

that α'0/c^α0(ί' — t + k) for some α over Xm with dimα = ί. Thus

ζ © (f'-f + fc) £ ζ' Θ k ̂  (<x'\Xn) © k ̂  (QL\XΛ) Θ (ί'-f + fc),

which implies that ζ ̂  α | Xn by (2.1). q. e. d.

COROLLARY 2.3. Let ζ (resp. ζ') be a t (resp. t')-dimensional F-vector bundle

over Xn, and assume that ζ is stably equivalent to ζ' and that ζ' is extendible to
Xm (m>n). Then ζ is also extendible to Xm, if

(1) t*t' and t^Rn + !)//], or (2) t* [m//] .

PROOF. When (1) holds, then the result is clear by the above theorem.

Assume that (2) holds. If f^ f , then (1) holds. If ί'>ί, then ί'>[m//]
and an extension a' of ζ' over Xm satisfies a' = β®(t' — [.m/f]) for some β by

[10; p. 99, Th. 1.2], and the condition Span α; ̂  t' - 1 in (2) of the above theorem
holds. Thus we see the corollary by the above theorem. q. e. d.

As typical examples of extendible bundles, we have the following

PROPOSITION 2.4. // n^3, then any oriented real 2-plane bundle and any

complex line bundle over Xn are extendible to Xm for each m(^.ή).

PROOF. Let Θ be a complex line bundle over X", and /: Xn-+BU(ϊ) be its
classifying map. Then the obstructions for extending / to Xm are contained in
the cohomology groups Hr+1(Xm, Xn\ πr(BU(l))) for ngr<m, which are 0
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since π£BU(ΐ))^πr-ί(Sί) = Q for r^3. Thus/has an extension /': Xm-+BU(i)
and hence Θ is extendible to Xm. The result for an oriented real 2-plane bundle is
proved similarly in [14, Lemma 5.2] by considering BSO(2) instead of BU(Ϊ).

q.e.d.

COROLLARY 2.5. Assume that n^3, and a real (resp. complex) t-plane bun-
dle ζ over Xn is stably equivalent to a sum of s oriented real 2-plane bundles
(resp. s complex line bundles), where t and s are assumed to be t^.n-\-\ and

t ̂  2s (rest, ί ̂  [(n + 1)/2] and t^s). Then ζ is extendible to Xm for each m( ̂  n).

PROOF. By the assumptions and (2.1), we have

ζ = ̂ ©...0^0^ d = t-2s (resp. t-s),

where Θi (l^ί^s) are oriented real 2-plane bundles (resp. complex line bundles).
Thus the corollary follows immediately from Proposition 2.4. q. e. d.

§ 3. Complex bundles over the lens spaces

In this paper, we shall denote the standard lens space mod q by

(3.1) L2i+i - V(q) = S2ί+1/Z, for a fixed integer q ̂  2,

where S2i+ί = {(z0,.. , z,)eCί+1 1 |z0|
2 + ••• + |z,|2 = 1} is the (2i + l)-sphere,

Z€ = {zeC|z β = l} is the cyclic subgroup of order q of the circle group S1 =
{zeC\\z\ = 1}, and the action is given by z(z0,..., zt-) = (zz0,..., zzt ). We consider
L2

qJ
+1c:L2ί+1 for ;</ by identifying [z0,..., z;]eL^+1 with [z0,..., zy, 0,..., 0] 6

L2ί+1, and set

(3.2) L2/ = Ll

0(q) = {[z0,..., zj eL2/+1 1 zf is a non-negative real number} .

Then Ln

q — Ln

q~
l is an open n-cell and we have a CFF-decomposition of L^ whose

n-skeleton is L\ for Q^n^N.

If # = 2, then L^ is the real projective space RPn.
Let ^2ί+ι be the canonical complex line bundle over L^ί+1, i.e., the induced

bundle of the one over the complex projective space CPi by the projection

L2

q

ί+1=S2ί+l/Zq-^S2i+1/Sί = CPi. Then the restriction η2i+ι\L2

qJ
+1 for j<i

is n2j+ι> an<i we denote η2i+ι and its restriction n2i = n2i+i\L2

q

i by η simply.
If q = 2, then η is the complexification of the canonical real line bundle ξ

over RPn.
To study the extendibility of a complex bundle over L\ to L£ (m ̂  n), we use

the following results on the K-ring of the lens space.

(3.3) (cf. [12; Prop. 2.6]) The reduced K-rίng £(£,") is generated by
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σ = η — l and contains exactly g[n/2] elements. Furthermore (l + σ)q — 1 =
ηq — l=0 = σ[/l/2]+1, and the order o/σ["/2] is βgwα/ to q.

(3.4) (J. F. Adams [1 Th. 7.3], T. Kambe [11 Th. 1]) // q is a prime, then

£(£,;) = φf-lZr i<σ*> (direct sum), /-, = ^ι+C(C»/2]-θ/(β-D],

w/zere Zr<α> denotes the cyclic group of order r generated by α.

LEMMA 3.5. (i) Any complex t-plane bundle ζ over Ln

q is stably equivalent
to a complex t '-plane bundle ζf over Ln

q, where

(3.6) ζ' = Σ?=i btf and tf = Σ?=ι bt for some integers fe^O.

(ii) bt in (3.6) can be reduced to the residue modulo ql"/2i or, more pre-

cisely, modulo the order ofη1 — ! in K(Lty.
(iiϊ) If q is a prime, then bt in (3.6) can be reduced to the residue modulo

r — gl+[([ιι/2]-l)/( f l-l)]φ

(iv) Let q be a prime p. If [n/2]^p-l and if Σ?=ι btf and Σ?=ι W
over L^ are stably equivalent, then

bt ΞΞ b'i modp", a = [n/2Q?-l)](^l), for l^i^p-1.

PROOF, (i), (ii) C-fe£(L») is equal to Σf=ι Wl = Σ1=ι W^-l) for
some fl, and 0^bt<qM2^ by (3.3). Thus ζ is stably equivalent to £'= Σ?=l M'-

(iii) If g is a prime, then the order of ^<-l=(l + σ)ί-l = Σ5

is equal to r1 for l^ί<^f by (3.4). Thus we have (iii) by (ii).
(iv) Since η = σ + 1 , we have

0 = Σf-ί (6,-4',)Oi'-l) = Σ?=}Σ« (6,-ft',)^ in

by assumption, and hence

-fe;) = 0modr y for

by (3.4). Since r f is a power of p and rf | rt _ 1? this implies that

&,-&; Ξ O m o d Γ p . j for l^i^p-1 (rp_! = pa)

by the induction on p — i. q. e. d.

We now study the extendibility of a complex ί-plane bundle ζ over LJJ to
L£ for m ̂  n, by using the notation

(3.7) m(C) = max {m \ ζ is extendible to L™ (m^
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where m(ζ)= oo means that ζ is extendible to L™ for any m^n.

THEOREM 3.8. Let ζ be a complex t-plane bundle over L^ and assume that

ζ is stably equivalent to a t'-plane bundle ζ' in (3.6) by Lemma 3.5 (i).

(i) 7/ί^[n/2], then m(ζ)^2ί+l.
(ii) 7/f^[(n + l)/2] and f^ί', then m(ζ)=oo.

(iii) 7/f^[(n + l)/2] and f^(g-l)(g[II/2]-l), ίften m(ζ)=oo.
(iv) 7/g is a prime and t^.(q — l)(r1 — l) where r t is f/ie integer in Lemma

3.5 (iii), ί/iβn m(£) = oo.

PROOF, (i) By definition, m(η) = co and hence m(C') = °o by (3.6). Thus
Corollary 2.3 (2) implies (i).

(ii) Corollary 2.3(1) implies (ii) in the same way as above.

(iii) By Lemma 3.5(ii), (iii) is a special case of (ii).
(iv) If n = 1 , then (iv) is a special case of (iii). If q = 2 and t = 1 , then ζ is η

or 1 since complex line bundles are classified by their first Chern classes. Thus
m(ζ)=oo. Assume that q is a prime, n^2 and ί^2 if q = 2. Then f' can be

taken so that (q — l)(r j — l)^ί' by Lemma 3.5 (iii), and we see easily that
if 4^2 or n ̂ 3. Thus we have (iv) by (ii). q.e.d.

To study the upper bound of m(ζ)9 we use the y-operation in
For a given integer q ̂  2 and integers bt ̂  0 (1 ̂  i ̂  # — 1), we have

(3.9) Π?={{l+((σ+lV-l)ί}^ = Σ^o{Σ^oΛ(foι,.-^-ι

for some coefficients Ak(b^..., bq.1ι 7), where

(3.10)

LEMMA 3.11. Assume that a complex t-plane bundle ζ over Ln

q is stably

equivalent to a ί'(=Σ?=ι biplane bundle ζ' = Σϊ=\ bfl^b^O) in (3.6), and
that

(3.12) yj(ζ — t) = Q in K(L^)for some positive integer j^[n/2] ,

where yj denotes the y-operation. Then we have the following (i)-(iii) for

A1ίbl9...9bq^1ιj)in(3.ίΰ):
(i) AQ(bi9...9bq.1ιj) = 0 modq.
(ii) If q is an odd prime andj<[n/2] in (3.12), then AL(bl9...9 b^^j)^^

moάq.

(iii) 7/^ = 2, then
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PROOF, (i) By the first assumption and the fundamental properties of the
y-operation (cf. [3]), we see that

W-i)) = U1=l

This equality and (3.9) show that

yj(t- 0 = Σ^o AOV+k (Ak(j) = Ak(bί9..., Vi 7)) -

Therefore the assumption (3.12) implies that A0(j)σtnM = γJ(ζ-t)σ* nM-J = Q
and A0(j) = Q mod q by (3.3). Thus we have (i).

(ii) In the same way, we see that ^40(j)σ[/I/2]~1H-yl1(j)σCn/2:l = 0 since
;<[tt/2], and that Ai(j) = Q modg by (i) and the relation ^σ[/l/2]~1=0 (cf. [12;

Th. 1.1]).

(iii) When q = 2, ζ' = trη(tf = bj and γJ(ζ - 1) = ί *'. V by the first equality

in the proof of (i). Thus we see (iii) by (3.4) and the equality σ2 = — 2σ. q. e. d.

By the above lemma, we have the following non-extendibility theorem.

THEOREM 3.13. Assume that a complex t-plane bundle ζ over Ln

q is stably

equivalent to Γ = Σ?=ι bfl1 (b^O) by Lemma 3.5 (i). Furthermore,

(3.14) take a prime factor p of q with p^[n/2] + l, and let a, ck (1^/c^p— 1)

and c be the integers given by

β and Ogck<pβ, c = Σ£=ί ck.

(i) Assume that t+l<pa and there is an integer m satisfying

(3.15) t < m < pa and

(3.16) A0(cl9...9 cp-l;m)( = Σjί+...+jp-ί=mΠ£lι ( C Vk) Φ Omod/7.

Then 2m>n and m(ζ)<2m9 i.e., ζ is not extendible to L2m.
(ii) (cf. [15; Th. 1.1]) // the integer c in (3.14) satisfies t<c<pa, then

(iii) If t + l<pa and m = ί+l satisfies (3.16), e.g., if c = t+l<pa, then

(iv) Assume that p in (3.14) is odd, and that there is an integer m satisfying

(3.15) and

A^(cl9...9 Cp-ii ni) (the integers given in (3.10))^0 mod p.

Then n^m(0<2m + 2.

PROOF (i) In general, we see easily that
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' / c 4- na\ f c \(3.17) ( v J Ξ Ξ ( . J mod p for any integers c and j with O^j

where p is a prime. Therefore, by the definition of AQ9 we have the following

(3.18) I f b k = ckmoάpa (l^fc^p-1) and i/ m<pa, then

A0(bί9...9 bp-.ii m) = A0(cl,...,cp_1i m)moάp.

In the first place, we prove (i) by assuming

(*) q — p in addition.

Since ζ is a ί-plane bundle and t<m by (3.15), we have ym(ζ — 0 = 0 in

Therefore, if 2m^n, then AQ(bί9...9 fop_ι; ra) = 0 mod p by Lemma 3.11(i). This
shows that (3.16) does not hold by (3.18), since m<pa by (3.15) and bk = ck mod pa

(l = fc^p-l) by (3.14) with q = p. Thus 2m>n.

To prove m(Q<2m, suppose contrariwise that ra(C)^2m, i.e., ζ has an

extension α over L2m. Then α is stably equivalent to α' = Σfc=ι V72m over ^4™
for some integers 5fc^0 by Lemma 3.5(i). Since α is a ί-plane bundle and t<m

by (3.15), ym(α-0 = 0 in K(L*m) and hence Lemma 3.11(i) implies that

(**) ΛoCsiv , v_ι» m) = 0 modp.

On the other hand, ζ( = α | L^) is stably equivalent to a' | L^= ΣfcΞ} sfc?/k and also
to Σ f c Ξ j bkη

k by assumption. Hence

sk = bk = ck moάpa for

by Lemma 3.5 (iv) and (3.14) with q = p. Therefore

40(c,,..., c p _i; m) = A0(sl9..., Sp.^ m) = 0 modp

by (3.15), (3.18) and (**), which contradicts (3.16). Thus m(ζ)<2m and we have
proved (i) when q = p.

In general, p is a factor of q and we have the natural map

(3.19) π: Lj - » L^ induced by the inclusion Zp<^Zq,

which is the projection L*i+1 = S2i+1/Zp-+S2i+iIZq = L2

q

i+l or its restriction

L2ί-+L2i. Then π*η^η is clear by definition. Therefore, by the assumption

that C is stably equivalent to Σ?=ι btf and by the equality η*- 1 =0 in X(L£) of
(3.3), we see that

(3.20) the induced bundle π*£ over L£ is stably equivalent to

Σpk=\b'kη
k, where b'k = Σt
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On the other hand, if ζ has an extension α over L™, then π*α over L™ is an extension
of π*£. Thus

(3.21) m(Q^m(π*0.

For π*ζ over Ln

p in (3.20), we have n:gm(π*0<2m by (i) with q = p. Therefore

n^m(Q<2m in general by (3.21).

(ii) Take m = c=Σk=lck *n 0) Then we have ^0(c1?..., cp^{ι c) =
Πίί i kCkφO mod p, since /? is a prime. Thus (ii) is a special case of (i).

(iii) (i) shows that n ̂  m(C) < 2t + 2 and hence t ;> [n/2] . Thus m(0 ̂  2ί + 1
by Theorem 3.8 (i), and we see (iii).

(iv) In the same way as the proof of (i), we can prove (iv) by using Lemma
3.11 (ii) instead of Lemma 3.11 (i). q. e. d.

If q is even, then we can take p = 2 in the above theorem. In this case, (i)
of the above theorem can be sharpened by the following theorem, where

(3.22) v2(a) denotes the exponent of 2 in the prime power decomposition
of a positive integer a, and

for t<c.

THEOREM 3.23. Let q be even, and assume that a complex t-plane bundle ζ

over Ln

q (n^2) is stably equivalent to ζ/ = Σf=i^i^/ ί (b^ty by Lemma 3.5(i),
and consider the integer c in (3. 14) for p = 2, which is given by

(3.24) c = cί==Σιb2ι+ίmod2W2ϊ and 0^

( i ) Ift<c, then n ̂  m(0 < 2N(t, c).
/ r \

(ii) Especially, if t<c and ί , J is odd, then ί^[n/2] and m(Q =

PROOF, (i) We prove (i) by assuming q = 2. Then (i) can be proved in
general, in the same way as the latter half of the proof of Theorem 3.13(i) by
taking p = 2.

Assume that q = 29 i.e., Lk

q = RPk. Suppose that m(ζ)^2N(t, c)(>/ι), i.e.,
ζ has an extension α over RP2m, where

(*) m = j + v2(α), a = ( c. j, for somej with

by the definition (3.22) of N(t, c). Then, in the same way as the first half of the
proof of Theorem 3.13(i) and by using Lemma 3.11(iii) instead of Lemma 3.11(i),

we see that y f(α-f) = 0 in K(RP2m) where j^m, and that

(**) = 0 mod 2ί+m~j for some integer s^O with s = c mo4 2^2\
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On theΌther hand, we see easily that (cf. [6; Lemma 4.8])

V2(ft!) = 6-μ2(&) and v2(( * )) = μ2(j) + μ2(b -j) - μ2(b) ,

where μ2(
α) denotes the number of Γs in the dyadic expansion of a. Therefore

(3.25) s ΞΞ c mod 2k and Q£j<*c< 2k imply that v2(( s. \ = v2(ί c. \ .

Thus (**) and (*) lead a contradiction v2(0)^l + w — j = l + v2(a)', and m(ζ)<
2N(t9 c) is proved. (If 2N(t, c)^n, then we can take an integer m in (*) with
2m gn, and we have a contradiction in the same way as the above proof by
taking α = ζ.)

(ii) We see (ii) by (i) and Theorem 3.8(i) or by Theorem 3.13 (iii). q.e.d.

By the above theorem, we have the following corollary which gives some

necessary conditions that there exists a complex f-plane bundle ζ over jRPM being
stably equivalent to t'η.

COROLLARY 3.26. Assume that a complex t-plane bundle ζ over the real
projective space RPn is stably equivalent to ζ' = t'η with 0^ί'<2t/l/2] by Lemma

3.5(ϋ).
( i ) Ift<t'9 then n<2N(t, t') for N(t, t') in (3.22). Especially

ί '>[n/2] and t + v2()>lnl2] if t < t' .

(ii) // T(^f) satisfies m(ζ)*>2N(t, s)(e.g.9 n^2N(t, s)) for any s with
T<s<2W2\ then t'^T.

(iii) // T'(<ί') satisfies m(ζ)^2N(Γ, t')(e.g., n^2N(Γ, t'))9 then t>Γ.

(iv) // m(0 ̂  2t»/23+1 - 2 (e.g., n ̂  3), then t' ̂  t.

PROOF, (i) In this case, c in the above theorem is t'. Thus

(*) n £ m(ζ) < 2N(t, t') if t < /'.

(i) is an immediate consequence of (*) and the definition (3.22) of N(t9 t').

(ii) If t'^t, then there is nothing to prove. If t<t'9 then m(ζ)<2N(t, t')
by (*) and hence N(t, s)<N(t, t'} for any s with T<5<2["/2] by assumption.

Thusί^T.

(iii) If ί'gί, then there is nothing to prove. If t<t', then m(ζ)<2N(t, t')

by (*) and hence JV(T', t')<N(t, t'). Thus t>T by the definition (3.22).
(iv) If t<t', then m(0<2N(ί, t')^2t'^y-"M+i-2 by (*), since tf <2^'2\

If ng3, then y n™+1 -2^n<*m(ζ). Thus we see (iv). q.e.d,
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REMARK 3.27. For example, we have the following under the assumption of
the above corollary:

( i ) If n is even and tr = 2s — 1 ̂  n/2 for some s ̂  1 , then t ̂  n/2

m(ζ) = oo w/zen t^tf.

(ii) Ifn = 8andt' = 8, then t^2 and

m(ζ) 5Ξ 9 w/zew ί = 2, 3, 2ί+l ^ m(ζ) ̂  15 when 4^ί^7, m(0 = °° wAen ί>7.

In fact, t^.n/2 in (i) and ί^2 in (ii) follow from Corollary 3.26 (iii), since

N(Γ, t')=T' + \ (f' = 2 s-l)and JV(1, 8) = 4.

§4. The complexification of the tangent bundle of the lens space and com-
plex bundles over the complex projective space

As applications of the results obtained in the previous sections, we have the
following theorems on the complexification of the tangent bundle of the lens space.

THEOREM 4.1. Let τ(RPn) be the tangent bundle of the real projective space
RPn, and cτ(RPn) be its complexification.

(i) cτ(RPn) is extendible to RP2n+i and is not to RP2n+2 if n = 6 or n^8.

(ii) cτ(RPn) is extendible to RPm for any m^n if n^5 or n = l.

PROOF. Put τ = τGRP"). Then it is well known that

(4.2) τ®l^(n + ϊ)ξ where ξ is the canonical real line bundle over RP",
and that cξ = η. Therefore

(*) cτ is stably equivalent to ζ' = (n + l)η.

Assume that n = 6 or n^8, which is equivalent to n + l<2["/2]. Then

Theorem 3.13(iii) for C = cτ, t = n, ζ' in (*) and c = n + l shows that w(cτ) = 2n + l.
Assume that n = 7 or n^5, i.e., n + 1^2[π/2]. Then m(cτ)=oo by Theorem

3.8(iii). q.e.d.

THEROEM 4.3. Assume that q^3 and n = 2n' + l is odd, and let τ = τ(Ln'(q))
be the tangent bundle of the lens space L% = Ln'(q).

(i) Then the complexification cτ of τ is extendible to L2n+1=Lπ(g).
(ii) Let p be the least prime factor of q, and assume that n'^2(p—l) when

p^5, and nf^.2p when p = 2, 3.
Then cτ is not extendible to L*n+2.

PROOF, (i) Since cτ is a complex n-plane bundle and n^[n/2], (ί) is an
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immediate consequence of Theorem 3.8(i).
(ii) It is known that ([25; Cor. 3.2])

(4.4) τ©l =(n' + ί)rη where rη is the real restriction of η.

Since cr=l + t (t denotes the conjugation) and ηq — 1=0 in K(L^) by (3.3), this
shows that

(*) cτ is stably equivalent to ζ' = (ri + l)(η@ηq~i).

By assumption, we see that

p g n ' + l = [n/2] + l and n + 1 = 2(n' + l) < pa where a = [n/2(p-l)] .

Therefore, the integer cfc(l = /c = p— 1) and c in (3.14) for ζ = cτ and ζ' in (*) are

given by c1 = cp_ 1 = n / + l, cfc = 0 (fe^l, p — 1) and c = n + l when p = 3, and by
cί = c = n + l when p = 2. Thus ra(cτ) < 2c = 2n + 2 as desired by Theorem 3.13(ii).

q.e.d.

REMARK 4.5. In the above theorem, we see that cτ is extendible to L™ for

any w _ rc if q is an odd prime and n' = q — 1 .
In fact, cτ is stably trivial by (*) in the above proof and by Lemma 3.5(iii)

since rί = q = n' + l. Thus m(cτ) = oo by Theorem 3.8(ii).

Now, assume that

(4.6) LI = Ln'(q) when q^3 and n = 2n' + l, or Ln

q = RP" when q = 2,

can be (diίferentiably) immersed in the Euclidean space #"+ί(ίΞ>l), e.g.,

(4.7) t ^ n- 1, or t ^ 2[n/4] + 1 when q is an odd prime ([22; Th. C(i)]).

Then we can consider

(4.8) the normal bundle v(/) over Ln

q of an immersion f:Ln

q<^ Rn+t (t^l).

PROPOSITION 4.9. (i) The complexification cv(/) over L\ of v(/) in (4.8)
is extendible to L2

q

t+1 if ί = [n/2].
(ii) Assume that an integer m and a prime factor p of q satisfy the con-

ditions that p^[n/Z] + l and t<m<pa (α = [n/2(p-l)]) and that

m is even and(^~^Q ~ ̂ 0 mod p if p is odd, orί~^~ ̂ 0 mod2 if p = 2.

Then cv(/) is not extendible to L2

q

m.

(iii) Especially, if we can take m = t+l in (ii), then ί = [n/2] and cv(f) is

extendible to L2

q

t+1 and not to L\t+2

PROOF, (i) Since cv(/) is a ί-plane bundle, we see (i) by Theorem 3.8(i).
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(ii) It is well known that v(/)©τ(L£) = n + f. Thus we have

(4.10) v(/)Θ(n' + l)π/£n + f + l and cv(/)0(n'

by (4.4) (and (4.2) where 2ξ^rη when g = 2). This equivalence and (3.3) imply

that the f-plane bundle ( = cv(/) is stably equivalent to ζ' = bίη®bq-.ίη
q~ί, where

bl = bq.l = -n'-l modqWV and bί9 ί^-^O.

Therefore the integers ck (l^fc^p— 1) in (3.14) for these bundles are given by

cι = cp-ι = —n' — \ mod pa, Q^ck<pa and cfc = 0 if fe ̂  1, p— 1, when p^3;

<*! ΞE -2n'-2 = -n-1 mod pα and Ogc1<pα, when p = 2.

Thus the integer A0(ci9..., cp,l m) in (3.16) satisfies that

^o(cι; m) =

since (3.17) is also valid when c<0. Hence (ii) follows from Theorem 3.13(i).
(iii) n^m(cv(/))<2ί + 2 by (ii), which shows ί^[w/2]. Thus m(cv(/)) =

2ί+l. q.e.d.

In the rest of this section, we consider complex bundles over the complex

projective space CP". The canonical complex line bundle over CP" = S2n+ί/Sl

is also denoted by η, which is the restriction η \ CPn of the one η over CPm for

any m^n.

THEOREM 4.1 1. Let ζ be a complex t-plane bundle over CPn.

(i) Then ζ-t=Σt=ι bk(ηk-l) in K(CPn) for some integers bk.
(ii) //fc f c^>0 (l^fegπ) in (i) and t^n, then ζ is extendible to CP1.

ί^Σ2=ι bk in addition, then ζ is extendible to CPm for any m^.n.

(iii) Take a prime p^n + l and put

Ci=Σιblp+i modp*' and 0^c,<pβ/ (l^i^p-1), c = Σ?=ί ci9

where bk's are the integers in (i) and a' = [n/(p— 1)]. // fήere is an integer m
satisfying t<m<pa' and (3.16), then m>n and ζ is not extendible to CPm.

(iv) If the integer c in (iii) satisfies t<c<pa>, then ζ is not extendible to

CPC.
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(v)' Take p = 2 in (iv). Then ( is not extendible to CPN(t>c) for N(t, c)

in (3.22).

PROOF, (i) It is known (cf. [1 Th. 7.2]) that the J^-ring K(CPn) is the
truncated polynomial ring Z[σ]/(σπ+1) with one generator σ = η — \. Thus we

see (i).
(ii) Since bk^Q, ζ is stably equivalent to the bundle Σίί=ι bkη

k by (i), which
is extendible to CPm for any wgrn. Thus (ii) follows immediately from Corollary
2.3.

(iii)-(v) Consider the natural projection π: L*n+ί = S2n+1/Zp-+S2n+1/Sί =
CP". Then π*η is the canonical complex line bundle η over Lpn+1 by definition,
and we see that

(*) π*C is stably equivalent to Σ?=i b'tf where b\ = Σι bιp+imodpn and έ>ί^0,

by (i) and (3.3). Furthermore, if ζ is extendible to CPm, then so is π*ζ to L2m+l.
Thus (iii)-(v) follow immediately from the non-extendibility of π*( in (*), which

is shown by Theorems 3.13(i), (ii) and 3.23(i). q.e.d.

COROLLARY 4.12. Assume that a complex t-plane bundle ζ over CPn satisfies
ζ — t = b(ηk — l) in K(CPn) for some integers k and b with 1^/c^n.

(i) Assume that there are a prime p and an integer m satisfying

/ c
kφQmodp, t<m<pa> (α/ = [n/(jp-l)]) and (

where c^b mod pa' and Q^c<pa' . Then m>n and ζ is not extendible to CPm.
(ii) In case that t^n, /c^O modp and n<b<p^n/(p~1)^ for some prime p,

ζ is extendible to CPm for any m^b if and only if b^t.

PROOF, (i) is an immediate consequence of Theorem 4.11(iii).
(ii) The sufficiency is seen by Theorem 4.1.1 (ii). If b>t, then (i) shows

that ζ is not extendible to CPb. q. e. d.

COROLLARY 4.13 (cf. [9; p. 166]). The complex tangent bundle τc(CPn)

over CPn with rcΞ>2 is not extendible to CP"+1, and τ^CP1) is extendible to

CPm for any m^l.

PROOF. It is known that τc(CPn)®l^(n + l)η (cf. [17]). Thus we see the

desired result for rc^2 by Corollary 4.12(i) for ζ = τc(CPn)9 t = n, k = l,b = c = n + \,

p = 2 and m = w + l, since n + l<2" if n^2. The result for n=l is proved in

[15; Remark 5.3] by the same proof as that of Proposition 2.4 and by noticing

that Hr+1(CPm, CP1 πr(jBl/(l))) = 0 for r^2. q.e.d.

REMARK 4.14. The extendibility of a complex bundle over CPn to CPm is
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investigated by several authors (cf. e.g., the references of [24]). Especially, A.
Thomas [26; Prop. 3.5] determined a necessary and sufficient condition for a

complex n-plane bundle over CPn to be extendible to CPn+i.

§ 5. Real bundles over the lens spaces

In this section, we consider real vector bundles over Ln

q of (3.1-2).

When q is even, let ρ = ρn be the non-trivial real line bundle over L j(n^l),

i.e., the one whose first Stiefel- Whitney class w1(p)e//1(Lj; Z2) = Z2 is non-zero.

If q = 2, then p is the canonical real line bundle ξ over RPn.

Consider the additive homomorphism

(5.1) r: K(Lnq) - » KO(Lζ) given by the real restriction r

between the reduced K- and XO-rings. Then we have the following

LEMMA 5.2. (i) (cf. [12; Prop. 2.11, Th. l.l(ii)]) When q is odd,

^ ίr(£(L«)) ifnφί mod 8,
&0(L») = ~ -

[ r(K(Lp) ® Z2, Z2 ^ KO(Sn), otherwise,

where the last isomorphism is induced by the projection Lq^Lq/Lq~
1=Sn, and

r(K(L£)) is the subring of KO(L^) generated by rσ(σ = η — l is the one in (3.3))
and contains exactly qin>^ elements. Furthermore, if q is an odd prime p,

then the order of rσ is equal to r2 = p1+C(Cn/23~2)/(p~"1)]

 an^ hence r2α = 0/or any

^(ii) Ifq is even, then KO(L^)/r(K(L^))^Z2 and the element

κ = p-leKO(L»)

does not belong to r(K(L$), and cp ̂  ηq>2, 2ρ ̂  r(η^2) over Ln

q, and2κ = r(η«/2 - 1).

(iii) For any q, r(ηi-η^i) = 0 in KO(L$.

PROOF, (i) is proved in [12]. (iii) follows from rt = r (t is the conjugation)

and ηq - 1 = 0 in (3.3). We prove (ii).
The last equalities in (ii) follow from [16; Prop. 3.3]. Let q = 2rqf where

rgr l and q' is odd. Then we have the natural projections or their restrictions

π: Lgr->Lj and π' ' : Ln

q>-+Ln

q, induced by the inclusions Z2r<^Zq and

and the commutative diagram

**+π/* > K(L2r)

^KO(L») π*+π'* ) KO(L»2r) ® r(K(L»q,)) ,
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where the two π* + π'* are isomorphic and

π*(σ) = σ, π'*(σ) = σ, π*(/c) = /c, π'*(τc) = 0.

In fact, these equalities are clear by definition and hence we see that the upper
π* + π'* is isomorphic by (3.3). The lower one is so by [8; Prop. 2.2] and (i).

Now consider the ring KO(L%r). Then this is generated by K and rσ = r(η — 1),
and κ2= -2ιc, (rσ)f and κ(rσY (i^l) are contained in r(X(L^)) by [7; Prop. 1.1]
and [6; Lemma 2.12]. Furthermore κφr(K(L^J) since w^p^O. Therefore
we see (ii) by the above diagram. q. e. d.

In case that q = 2 and Ln

q = RPn, we have the following

(5.3) (J. F. Adams [1 Th. 7.4]) KO(RPn) is a cyclic group of order 2*<">
generated by κ = p—\ (p = ξ), where φ(n) is the number of integers s with Q<s^n
and 5 = 0, 1, 2, 4 mod 8.

When n = 1 mod 8, let βn be the real n-plane bundle over the sphere Sn such

that the stable class βn — neKO(Sn) = Z2 is non-zero, and denote by the same
letter βn the induced bundle of βn by the projection L^L^/Ln

q~
1 = Sn. Then we

have immediately the following lemma by Lemmas 5.2, 3.5 and (5.3), in the same
way as Lemma 3.5(i)-(iii).

LEMMA 5.4. (i) Any real t-plane bundle ζ over Lq is stably equivalent to
a real t'-plane bundle ζ' over Ln

q such that

(5.5) C' = βA,Θ&pΘΣ?-ι VO/0 and ί' = εn + ί> + 2Σ?=1 bt (« = [(«-

for some non-negative integers ε, b and bt with ε = 0, 1, where εβn (res p. bp)
appears only when q is odd and n = \ mod 8 (resp. q is even).

(ii) b (resp. b^ in (5.5) can be reduced to the residue modulo the order of

κ = p — \ (resp.r(rf — \)) in KO(Lp and, especially, to the one modulo 2ΦW
(resp. r2 = pl+ί(ίn/2i-2V(p-1K) when q = 2 (resp. q is an odd prime p).

We now study the extendibility of a real f-plane bundle ζ over Ln

q to L™ for
m ̂  n by using the same notation

(5.6) m(ζ) = max {m \ ζ = α | Ln

q for some real bundle α over L™ (m ̂  n)}

as (3.7) for complex bundles.

THEOREM 5.7. Let ζ be a real t-plane bundle over Lq and assume that ζ
is stably equivalent to a real t'-plane bundle ζ' over Ln

q in (5.5) by Lemma 5.4.
(i) When q is odd and n = \ mod 8, if

ε = l, i.e., Γ = βn® Σf=ι Vfo1) in (5.5),
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then ζ is not extendible to L£+1, i.e., m(ζ) = n.

(ii) Assume that ζ' = bρ®Σϊ=ι V0?0 in (5 5) τhen

(a) m(ζ)^tift^n.
(b) m(C) = oo ϊ/ί>n and t^t'.
(c) ([14; Th. 4.2]) m(0^2ί-(-l)' if q is odd (bp does not appear), n is

odd and t>n.

PROOF, (i) Suppose that ζ is extendible to a real bundle α over LJ+1. Then

α is stably equivalent to α' = Σ"=ι cΐK*7«+ι) f°r some c£^0 by the above lemma.

Thus a' I Ln

q = ΣJ=I C rOf) is stably equivalent to ζ and hence to ε/?B0Σ"=ι VfaO

in (5,5). Therefore their stable classes in KO(L£) are equal to each other, and we
see that ε = 0 by the direct sum decomposition of Lemma 5.2(i) and the definition

of βn. Hence m(Q = n if ε = 1.
(ii) By definition, m(ρ) = oo = m(r(^0) and hence m(ζ') = oo. Thus (a)

and (b) follow immediately from Corollary 2.3. If t^t', then (c) holds by (b).
If t < ί', then (c) is proved in [14; Th. 4.2]. q. e. d.

To study the non-extendibility, we use the y-operation in XO-theory (cf. [4]).

LEMMA 5.8. Let q be odd and assume that a real t-plane bundle ζ over L\

is stably equivalent to ζ' = Σ"=ι VO/O wiίΛ fe^O (u = (q-l)/2). If

72j(C —0 = 0 in KO(Lq) for some positive in

where y2j is the y-operatίon in KO-theory, then

(5.9) B0(bίt..., bu;j) = Σj,H-...+ju.yΠr.

PROOF. By assumption and by [13; Prop. 3.2], we see that

J^JV-I πr-ι ; (Σί-ι (//
where σ = η — l. By taking the coefficient of t2j\ we have

y2J(ζ-t) = Σfc^o Bk(rσ)j+k f°r some coefficients Bk,

where ( — 1)AB0 is 50(bl5..., fett; 7) in (5.9). On the other hand, we see that

(5.10) (rσ)">/4i+1 = 0 and the order of (rσJ-nW is q in X0(L;),

by using [12; Prop. 2.11 and 2.6]. Therefore the assumption y2J(ζ — t) = Q im-
plies that jB0(rσ)Cn/4] = 72^(C-0(^σ)Cn/4]-^ = 0 and 50 = 0 mod q. ' q.e.d.
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In th'e same way as the proof of Theorem 3.13 by using Lemma 5.8 instead
of Lemma 3.11(i), we can prove the following

THEOREM 5.11. Let q be odd and assume that a real t-plane bundle ζ

over L"q is stably equivalent to Γ = Σ"=ιV(^0 ^itn & j ^ O (
Furthermore

(5.12) take a prime factor p of q with p^[ft/2] + l, and let
(p—1)/2) and d be the integers given by

^+p-fc)modp e and 0£

where a = [n/2(p — 1)].
( i ) Assume that there is an even integer m satisfying

(5.13) t < m < 2pa and

(5.14) BQ(dl9...9 dv; m/2)(=Σjl+^jv=m/2Uv

k=ί(
d

1

k V'Ό Φ 0 mod p.
\ Jk /

Then 2m>n and m(ζ)<2m, i.e., ζ is not extendable to L2m.
(ii) (cf. [14; Th. 1.1]) If d in (5.12) satisfies t<d<2pa,then n^m(ζ)<2d.
(iii) When n is odd and n<t, if t is odd<2pa — l and m = ί+l satisfies

(5.14), e.q., ift+l = d<2pa, then m(ζ) = 2ί+l.

PROOF, (i) Assume that q = p (u = v) in addition.
Suppose that m(ζ)^2m(>n), i.e., ζ has an extension α over L2

p

m. Then α is

stably equivalent to α' = Σit=ι skr(η%m) for some s fc^0 by Lemma 5.4. Since

t<m by (5.13), ym(α-f) = 0 in KO(L2

p

m) and Lemma 5.8 shows that

(*) 50(s!,..., svι m/2) = 0 modp (m is even).

On the other hand, £(^α|Lj) is stably equivalent to £'= Σίί=ι bkr(ηk} and to

αΊ^=Σ2-ιSfcK^) Therefore cC'^Σ^i bk(ηk®ηP~k) is so to cα x |L^ =
Σϊ=ι sk(ηk@ηP~k). Hence Lemma 3.5(iv) and the definition of dk in (5.12) for
q = p imply that

sk = bk = dk mod pa for 1 ̂  /c ̂  v.

Since m/2<pa by (5.13), this and the definition of B0 imply that

^ofo,..., s,,; m/2) = BΌ(dl9...9dυ 9 m/2) modp,

in the same way as the proof of (3.18). Thus (*) contradicts (5.14). (If 2m rgπ,

then we have a contradiction in the same way as the above proof by taking α = ζ.)
Therefore (i) is proved when q = p.

In general, consider the natural map π: Lj,->Lj in (3.19). Then the as-

sumption, f^-l=0 in K(Lnp) and r(ηk-ηP~k) = Q in KO(L^) of Lemma 5.2(iii)
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show that the induced bundle π*C over Ln

p is stably equivalent to

ΣίUi b'ίr(ηk) where 6J = Σι(bιp+k + blp+p.J for

Thus n^m(π*C)<2m by the above proof, and we see (i) in general since w(()?g
m(π*Q in (3.21) is also valid for a real bundle ζ.

(ii) By taking m = d = 2 Σ*=ι <4 in (i)> we have (ii).
(iii) follows immediately from (i) and Theorem 5.7(ii) (c). q. e. d.

In case that q = 2 and L% = RPn, we have the following theorem by using the
y-operation in the same way as Theorem 3.23 and by using the Stiefel- Whitney
class, where

/ s \Nί(t9 s) = min {m\φ(m) ^ j + v2(ί . J) for some t<j^s}9

(5.15)

N2(t9s) = roin{j\t<j£s and v2(Q )) = 0},

N'(t, s) = min {N&, s), #2(f, s)}

for ί<5, (0(m) and v2(a) are the integers given in (5.3) and (3.22) respectively).

THEOREM 5.16. Assume that a real t-plane bundle ζ over the real projectίve
space RPn is stably equivalent to ζ' = t'p with 0^f'<2^ ( n ) by Lemma 5.4.

(i) I f t < t f , then n£m(ζ)<N'(t9 t') and especially n^m(ζ)<t'.

(ii) Ift<t' and(* f _ Λ is odd, then t^n and m(ζ) = t.

(iii) // T(^ί) satisfies that m(ζ)^N'(t, s) (e.g., n^N'(t, s)) for any s with
T<s<2^n\ then t'^T.

(iv) // Γ'(<ί') satisfies m(ζ)^N'(T'9 t') (e.g., n^N'(T', t')\ then t>T.
(v) ([14; Th. 6.5]) //m(0^2*<»>-l, then t^t'.

PROOF, (i) Suppose that m(ζ)^N2(t, i')(>n), i.e., ζ has an extension α
over RPJ for some integer j with

(*) t<j^t' and v2(α) = 0 (i.e., a φ 0 mod 2) where α = (*. J .

Then α is stably equivalent to s'p over RPj for some integers s' with 0^s'
by Lemma 5.4. Therefore

i. e., v2( *' ) * 0,

because 0 = w/α) = w/s'p) = '̂ in H*(RPJ; Z2). On the other hand, ζ is

stably equivalent to t'p and also to s'p | .RP" = srp, and we see that
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(**) f=V mod2*<»> by (5.3), and v2(α) = v2(( *'. )) = v2(( *' )) by (3.25).

These show that v2(α)/0 which contradicts (*). (If N2(t, t')^n, then we have
also a contradiction by taking α = ζ and j in (*) with j^n in the above proof.)
Thus n^m(ζ)<N2(t, t').

Now suppose that m(ζ)^Nl(t9 t')(>ri)9 i.e., ζ has an extension α over RPm

for some integer m with

(***) φ(ra) ^ j + v2(α), a = ( . j, for some j with t < j ^ tf .

Then α is stably equivalent to s'p over .RPm for some s'^0 by Lemma 5.4.
Therefore

0 = γJ(ot-t) = γJ(s'κ) = ( *' V' = (-2)^ ί s' V in KO(RPm) (K =p- 1)

in the same way as the proof of Lemma 3.11(iii). Thus

= 0 mod 2^>, i.e., v2(

by (5.3). Thus v2(a)^φ(m) — j + 1 by (**), which contradicts (***). (If
N^(t9 t'}^n, then we have also a contradiction by taking α = £ and m in (***)
with m^n.) Hence m(ζ)<Nl(t, t') and (i) is proved.

(ii) N2(t, t') = t+\ by (5.15), since v2(^1))-0. Thus n^m(ζ)<t+l by

(i), and m(ζ)^t by Theorem 5.7(a). These prove (ii).
(iii)-(v) By using (i), we see (iii)-(v) by the same proof as that of Corollary

3.26(ii)-(iv). q.e.d.

COROLLARY 5.17. Let q be even, and assume that a real t-plane bundle ζ
over Lq is stably equivalent to ζf = bp@'Σ^=:1bir(ηi) for some fr^O and b^Q
(u = q/2—l) by Lemma 5.4.

(i) Then (i) and (ii) of Theorem 5.1 1 are also valid when p is odd in (5.12).
(ii) Let df be the integer given by

d' = b' + 2Σ/ &2i+ι m°d 2Φ(/0

where b' = b if q/2 is odd and 6r = 0 otherwise. If t<d'9 then m(ζ)<N'(t, d1)

forN'(t, d') in (5.15). In particular, ift<d'and Λ ^'Λ is odd, e.q., ifd' = t+\9

then t^n and m(ζ) = t.

PROOF. Consider the natural map π: Ln

p-+Ln

q of (3.19). Then π*p^p if
p = 2 and q/2 is odd, and π*p^l otherwise, by the definition of p, because π*:
Hl(Ln

q\ Z2)~>ίί1(L^; Z2) is isomorphic or trivial in each cases, Furthermore
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2ρ^rη over L\ (see Lemma 5.2(ii)). Therefore, by using Theorems 5.11(ii) and

5.16(i), we see the corollary in the same way as the last part of the proof of

Theorem 5.11(i). q.e.d.

REMARK 5.18. We can obtain a theorem similar to Theorem 4.11 on the

extendibility of a real bundle ζ over the complex projective space CPn whose

stable calss ζ — t is equal to Σ2=ι bkr(ηk — l) in KO(CPn), in the same way as the

above corollary.

§ 6. The higher order tangent bundles

Throughout this section, we continue to use the notation m(Q in (5.6) or (3.7),

which denotes the maximum integer m such that a bundle ζ over Ln

q is extendible

to L™ (m^n).

In the first place, we consider the tangent (or normal) bundle of

(6.1) LI = Ln'(q) when gΞ>3 and n = 2ri + l, or Ln

q = RPn when q = 2.

(6.2) ([14; Th. 5.1, 5.3, 6.6]) For the tangent bundle τ(Lj) of L» in (6.1).

{ oo if n = 1, 3 or 7,

n otherwise.

In fact, if n = 1, 3 or 7, then Ln

q is parallelizable and m(τ(L£)) = oo except

for L\ with q^l. L7

q has a tangent 5-field by [27]. Therefore τ(LΊ

q)^β®5

for some oriented 2-plane bundle /?, which implies m(τ(L£))==oo by Corollary

2.4. Conversely, suppose that τ(L£) has an extension α over L£+1. Then, by

considering the natural projection π: Sm-»L™, we see that

τ(Sn) ^ π*τ(L;) £ π*(α|Lj) ^ (π*α) | S" ^ ί*(π*α),

where the inclusion / : SrtcSM+1 is homotopic to the constant map. Thus τ(Sn)

is trivial and hence n = 1, 3 or 7.

In the same way as the above proof, we can prove the following

(6.3) The real tangent bundle τ(CPn) of the complex projective space CP"

is not extendible to CPn+1 if and only z/n^O, 1 and 3.

In fact, consider the differentiate fibre bundle π: S2m+1-+CPm with fibre S1.

Then, on the tangent bundles of these manifolds, it is well known that

τ(S2n+1) ̂  π*τ(CPn) 0 α, where α is the bundle along the fibre.

Here α is a line bundle and orientable. Thus α^ 1. Therefore, if τ(CPn) has an
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extension β over CPn+1, then

τ(S2"+1) ^ π*τ(CP")01 ^ π*(^01)|52M+1 £ 2n + l,

since the inclusion S2n+la S2n+3 is homotopic to the constant map. Thus

n = 0, 1 or 3. Conversely, the obstructions for extending the classifying map of
τ(CP3) to CP4 are contained in the cohomology groups Hi+1(S8; π^^SOCό)))

for ΐ = 6, 7, and these groups are 0 because H7(S8) = 0 and π6(SO(6)) = 0. Thus
τ(CP3) is extendible to CP4. τ(CPΐ) = rτc(CP1} is so to CP2 by the latter half of
Corollary 4.13.

We now consider the normal bundle v(/) in (4.8).

PROPOSITION 6.4. Let v(/) be the normal bundle over Ln

q in (6.1) of an
immersion f ': Ljc£»+' (ί^l).

(i) m(v(/))^ί ί/ί^n, and w(v(/))^2ί-(-l)ί */<? is odd and t>n.
(ii) Assume that q is odd. If there is an even integer m satisfying

(6.5) ί<m<2pc"/2^-1> ] and ~~ " φ 0 mod p /or some prime factor

then m(v(/))<2m. Especially, if t is odd>n and m = t+l satisfies (6.5), then

(iii) Assume that q is even.
(a) // ίfte ίnίegfer tf, given by t' = t + n + \ mod2^(") and

satisfies t'>t, then m(v(/))<JV'(ί, t') for N'(t, t'} in (5.15).
(b) // there is an integer m satisfying

(6.6) t<m<2<t>w and Φ 0 mod 2,

m(v(/))<m. Especially, if (6.6) /ιo/ds /or m = ί+l,

PROOF. We see that the ί-plane bundle ζ = v(/) over Ln

q is stably equivalent to

(*) ζ' = ftlΓ^ where fr^-n'-l mod^"/4^ and fct ̂  0(n = 2n' + l),

by (4.10) and Lemma 5.2 (i).
( i ) is a consequence of Theorem 5.7(ii).

(ii) We can prove the first half in the same way as the proof of Proposition

4.9(ii) by using Theorem 5.11 (i). If t is odd>n, then m(v(/))^2ί+l by (i).
Thus we see the latter half.

(iii) Consider the projection π: RPn = L%-+Lΐ

q (q is even). Then
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π*v(/) Θ (n + l)p ^ n +1 +1 over RP"

by (4.10), since 2p^ πy (ps 0 over £P". Further p2 ̂  1 over RP". Thus

(**) (π*v(/))(χ)p over .RP" is stably equivalent to (n + f+l)p and hence to ί'p>
by Lemma 5.4(ii), where t' is the integer given in (a). Therefore Theorem 5.16(i)

shows that

m(π*v(/)®p) < N'(l, t') if Kt'.

On the other hand, since p2= 1 over RPn, we see easily that

m(ζ) ^ m(π*ζ) = m((π*0®p) (f = v

Therefore (a) is proved.
Assume that m satisfies (6.6). Then (3.17) implies that

m \ m W o mod 2, and hence t' ̂

Thus m(v(f))<N'(t,t')^m by (a) and the definition (5.15). Especially, if
w = f + l satisfies (6.6), then n ̂  m(v(/)) < f + 1 and hence m(v(/))^ί by (i).
Therefore m(v(/)) = ί and (b) is proved. q. e. d.

In the rest of this section, we study the extendibility of the higher order
tangent bundles over the lens spaces.

For each smooth manifold M, let

(6.7) τk(M) = \JxeM τk(M)x for fc = 1 ,2, 3, . . .

denote the /c-th order tangent bundle over M, where the /c-th order tangent space

τk(M)x at x 6 M is the real vector space spanned by the linear functionals

{dJIdx^ d x t j l v 1^7^/c, l^ ϊΊg ^i/^n} (n = dimM)

with respect to the local coordinate (x1? x2» ?

Λ;/ι) of x, (see [20], [5] for the
detailed definition). Thus

(6.8) τΛ(M) is a real t(n, k)-plane bundle over M (n = dimM), where

and τ^M) is the tangent bundle of M.

For the real projective space .RP" (n ̂  1), we have the following

LEMMA 6.9. τk(RPn) is stably equivalent to f'p, where f ; = 0 // k is even,

ί' = C(n, fc) ϊ / fc
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PRO'OF. H. Suzuki [23; p. 274] proved that

τk(RP") - t(n, k) = C(/ι, k) (pk - 1) in KO(RPn) .

This shows the lemma since p2 — 1 =0 in KO(RPn). q. e. d.

THEOREM 6.10. For the k-th order tangent bundle τk(RPn) and its com-
plexification cτk(RPn) over RP", we have the following

ί oo ifk is even, or C(n, k) ;> 2φ(n\
(i) m(τk(RP»))=\

( C(n, k) — 1 otherwise,

where C(n, k) = (n , J and φ(h) is the integer given in (5.3).

ί oo ifk is even, or C(n, k) ^ 2^/2^ ,
(ii) m(cτk(RP»}) = \

[ 2C(n, k) — 1 otherwise.

In case that fc=l, i.e., that τ^RP") is the tangent bunle τ(RPn), (i) of this
theorem is contained in (6.2) for q = 2 and (ii) is Theorem 4.1.

PROOF OF THEOREM 6.10 (i) Assume fe^ 2. Then ί(n, k) = C(n, k) - 1 > n
in (6.8). Thus, by (6.8) and Lemma 6.9, the result for even k follows immediately
from Theorem 5.7(ii) (b), and the one for odd k with C(n, /c)<2^(M) from Theorem
5.16(ii). If k is odd and C(n, k)^2^n\ then τk(RPn) is stably equivalent to
t"p9 where ί" = C(w, k)-2^n^t(n, fe), by (5.3). Thus the result follows from
Theorem 5.7(ii) (b).

(ii) By Lemma 6.9, cτk(RP") is stably equivalent to t'cp^t'η. Therefore
(ii) is proved in the same way as the above proof, by using Theorems 3.8(ii),
3.13(iii) and (3.3). q.e.d.

Now, we consider the /c-th order tangent bundle τk(Ln'(q)) of the lens space
L"'(q) = L"q (n = 2n'+\). The extendibility of the tangent bundle τ(Ln'(q)) =
τι(Ln'(q)) or its complexification is given in (6.2) or Theorem 4.3.

To study the case that k ̂  2, we use the following

LEMMA 6.1.1. τk(L"'(q)) is stably equivalent to

ζ' = 2bu+ίp®Σtί=ιbir(ηi) if q is even, = Σ?=ι VO/0 if <2 is odd(u =

), where

(6.12) bt = b&n', k', q) = ΣjeDί C(n', j)C(n', k-j) (C(a, b) =

Dt = O'|0^2j<fe, k-2j = ±i modq} for l^i^

PROOF. H. Oike [19; Th. 2.8] proved that



26 Haruo MAKI

τk(L"'(q)) - t(n, k) = Σoέ2j<kC(n'J)C(n', k-j)Ψk-2J(rσ) in KO(L»'(q)),

where σ — η—\ and Ψl denotes the Adams operation on KO(Ln'(qJ). Since

Ψl(rσ) = rΨl

c(η-l) = r(ηl-l) in KO(Ln'(q)} ([2; Lemma A2]) and ιy«-l=0 in

K(Ln'(q)), the above equality implies the lemma by Lemma 5.2(ii) and (iii).

q.e. d.

LEMMA 6.13. The bundle ζ' in Lemma 6.11 is a real t'-plane bundle, where

(6. 14) f = ('(n', k;q)= Σξi',2] ̂  = 2 Σ./.D C(n', j)C(n', k-j) ,

£> = £>! U ••• U DIί/2] = {j 1 0^2j<fc, k-2j φQ mod 9}

and ί'(n', /c; q) satisfies the following properties (n = 2n' + l):

ί'(n', k; q) ^ t(n, k)( = C(n, k)— 1) ι/fc /s even or q is odd 5Ξ k,
(6.15)

^(X, k; q) = t(n, k) + l otherwise.

PROOF. (6.14) is clear by (6.12). By comparing the coefficients of xk in the

both sides of (l-x)-"-1=(l-x)~M'~10 -x)~II/~1(n = 2n/ + l) and by (6.14), we
see that

C(n, /c) = Σ5=o C(n', j)C(π', fc-» = ί'(n', /c;

where d0 = d0(n', /c; ί)=Σj6DoC(π/,7)C(π', fc-j)(i>o = OΊ0^2/<fc, fc-2/sO
mod g}) and

d = (C(nx, fc/2))2 if fc is even, =0 if k is odd.

Therefore

t'(ri, /c; 4) = C(n, /c) if d = d0 = 0, ί'(n', /c; q} < C(n, k) otherwise;

and d = 0 if and only if k is odd, and d0 = 0 if and only if D0 = 0. When k is odd,

we see easily that D0^0 if and only if q is odd^/c. Thus (6.15) holds.

q.e.d.

THEOREM 6.16. Let τk = τk(Ln'(q)) (fc^2) be ίfte fe-ίΛ order tangent bundle of
the lens space Ln'(q) = L%(q^3, n = 2n' + l).

( i ) m(τfe) = oo if one of the following (l)-(4) holds:
(1) k is even. (2) q is odd ^k.

(3) bι in (6.12) is not smaller than the order of r(^-l) in KO(L») for
some i with 1 ̂ /^[g/2].

(4) q is an odd prime and 6.^^1+[(»'-2)/(«-1)] for some i with l^i^lq/2].

(ii) m(τk) ̂  C(n, fe) - 1 and

m(τfc) = C(n, /c)-l i/ fe is odd^3, q is even and C(n, k)<2^n\φ(ή)
is the integer given in (5.3)).
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(iif) ra(τfe)^2C(n, fc) — 1 if k is odd>3 and q is odd>k; and
m(τk) = 2C(n, fc)-l if p>k and C(n, k) < 2pί »'/(β- ni /or some prime

factor p of q, in addition.

PROOF. We notice that t(n, fc) = C(π, fc)- 1 > n in (6.8) since fc^2.
(i) If (1) or (2) holds, then ί'(n', fc; g)^r(n, fc) by (6.15). Thus m(τfc) = oo

by (6.8), Lemmas 6.11, 6.13 and Theorem 5.7(ii) (b). If (3) or (4) holds, then
τk is stably equivalent to ζ" which is obtained from ζ' in Lemma 6.11 by reducing

bt to the residue modulo the order of r(tf — 1) in KO(L$) by Lemma 5.4(ii), and ζ"
is a ί"-plane bundle with t"<^t'(n', fc; q)-l^t(n, fc) by (6.15). Thus m(τk)=oo
in the same way as above.

(ii) m(τk) ^ C(n, fc) — 1 is a consequence of Theorem 5.7(ii) (a). If fc is
odd^3 and q is even, then D2l = 0 and b2ι = Q in (6.12), and d' in Corollary 5.17
(ii) for ζ = τk and ζ7 in Lemma 6.1 1 is equal to

2Σι&2H ι = t'(n', fc; q) = C(n, fc) = t(n, fc)+l

by (6.14-15). Thus m(τk)<C(n, fc) if C(n, fc)<2*<"> in addition, by Corollary

(iii) If fc is odd ̂ 3 and q is odd>fc, then t(n, k) = C(n, fc)— 1 is odd and
m(τfe)^2C(n, fc)— 1 by Theorem 5.7(ii)(c). If there is a prime factor p of q with
p>k, then Dpl = 0 and bpl = Q in (6.12), and d in (5.12) for ζ = τfc and ζ' in Lemma

6.11 is equal to t'(n'9 k; q) = C(n, k) = t(n, k)+l by (6.14-15). Thus m(τfc)<
2C(n, fc) if C(n, fc)<2p["'/^-1)] in addition, by Theorem 5.11(ii). q.e.d.

THEOREM 6.17. For the complexiβcatίon cτk of τk in Theorem 6.16, we
have the following

(i) m(cτfc)^m(τfc) for m(τk) in the above theorem, and hence
m(cτk) = co if m(τΛ) = oo, e.g., if fc is even or q is odd^k.

(ii) m(cτk)^.2C(n, fc)— 1 if k is odd, and q is odd>k or q is even', and
m(cτk} = 2C(n, fc)— 1 if p>k and C(n, fc)<p[w'/(p~1)] for some prime factor

p of q, in addition.

PROOF, (i) If τk is extendible to L™, then so is cτk. Thus

(ii) cτk is a complex t(n, fc)-plane bundle and is stably equivalent to Σi^i2"1 &r
(ηtξ&η9'1) where b/s are the integers given in (6.12), by Lemma 6.11. Thus we

see (ii) in the same way as the proof of Theorem 6.16(iii), by using Theorems

3.8(i)and 3.13(ii). q.e.d.
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