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1. Introduction

Let Q be a bounded domain in R* with smooth boundary S, and consider an
n-dimensional linear elastic solid occupying Q in its non-deformed state. Let us
denote by u(x, t)={us(x, )};<;<, the displacement vector from x={x;};<;<, at
the time ¢t of the material particle which lies at x in the non-deformed state. If
the temperature of the medium is not taken into consideration, then u(x, t)
(1 £i<n) satisfy the system of equations

(1.1)  p(x)(0%u;/0t?) (x, 1) = X%y 00;;/0x; + gix, 1) in Q x (0, c0),

where p(x), 0;;(1=i, j<n) and g(x, t)={g«(x, 1)}, <i<, denote the density, the
stress tensors and the external force respectively. By Hook’s law, there exists
the linear dependence

0i; = 2hi=1Giutaw), 150, j=n
between the stress tensors o;; and the linearized strain tensors
g;;(u) = (Ouy/0x;+0u;/0x)[2, 1=1i,j = n.

Here a;;, are, in general, functions in ¢ and x, but independent of the strain tensors.
The functions a;;,; are called the coefficients of elasticity.

The problem of controlling the deformation of the medium by applying
traction forces f(x, t)={fi(x, )}, <i<, On the boundary as

(1.2) Zi=1vi(x)a;; = fi(x, ) on S x (0, 00),

where v(x)={vi(X)}; <i<, is the outward unit normal vector at x on S, was con-
sidered by Clarke [1] and the author [15]. They obtained approximate
controllability of the control system (1.1) with (1.2) when a;;,, are independent of
time ¢.

If the coefficients of elasticity are constants and further do not depend on the
rotation of the coordinate axes, that is, if the elastic properties of the medium are
the same in all directions, then the medium is said to be isotropic. In this case,
a;jy; are given by

(1.3) Qiji = A6;01 + H(Oudj + 6ubjn),
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where {4;;} is the Kronecker tensor and 4 and u are constants called Lame coeffi-
cients. The free energy of the deformed isotropic medium is given by

(1.4) F(u) = /12?,1=1 {Sij(u) - (1/")5” k=1 &alu)}?
+ (A2+p/n) (Xi=1 &au))>.

The non-deformed state u =0 must be a minimal point of the free energy F when
no exterior forces are applied on the medium. Hence the restrictions

(1.5) u>0, A+2un>0

must be satisfied. When a;;, are given by (1.3) and the density p(x) is equal to
a constant p,, the system of the equations (1.1) can be written as

(1.6) po(0?uf0t?)(x, t) = pdu(x, t) + (A+ ) grad div u(x, t) + g(x, t)
in Q x (0, o),

where grad ¢={0¢/0x;};<;<, for a scalar function ¢(x), divu= 37, du;/0x;
for a vector function u(x)={u(x)};<;<, and 4=3 ", 0?/0x?. The author [16]
considered control problems for the control system (1.6) with (1.2) and obtained
the exact controllability by proving the “feedback stabilizability’’ along the lines
of Russell [17], and also obtained the admissible controllability with boundary
controls constrained in some prescribed sets.

The exact controllability for the control systems described by the wave
equation was obtained by Russell [17], Graham and Russell [5] and Lagnese [9].
The admissible controllability for the control systems governed by partial differ-
ential equations has not yet been considered so much.

Under the assumption that the temperature of the medium is the same at all
points and does not change during deformation, the influence of the temperature
on deformation can be ignored. In reality, however, a deformation is followed by
a variation in temperature and, conversely, a variation in temperature is followed
by a deformation of the medium due to thermal expansion. Thus whenever one
wishes to precisely describe the state of the medium, deformations produced by
variations in temperature must be taken into account. It seems to be meaningful
to consider the thermoelastic system as a continuation of [16], since it arises
as often in mechanics as the isotropic elastodynamics (1.6).

Assume that when the medium is at rest, no exterior forces are applied to it
and its absolute temperature is J,. Let us denote by J(x, f) the absolute tempera-
ture at the time ¢ of the point x +u(x, t) and by 6(x, ) the increment J(x, t)—J,.
Then the free energy F(u) of the thermoelastic medium is given by

F(u) = —ab X1y e5(u) + F(u),
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where a is a constant determined below and F is the free energy (1.4) for the

non-thermoelastic medium. Therefore the stress tensors o;; in this case are given
by

) gi; = aF/ab'ij = Zﬁ,l:l aijklakl(u) - “051',',

where a;;,; are the coefficients of elasticity (1.3). Thus, when there exists a volume
source of heat g(x, ), u(x, t) and O(x, t) satisfy the system of thermoelastic
equations

po(0?ulot?) (x, t) = pdu(x, t) + (A+up) grad div u(x, t)
(1.8) — agrad 0(x, t) + g(x, t)

(00/31) (x, t) + B div(du/dt)(x, t) = k40(x, t) + q(x, t)
in 2x(0, c0), where
(1.9 a=(A+2u/n)y >0, B=(c,—c,)lyc, >0, x=K[c,>0.

Here y, c,, ¢, and i mean the coefficient of linear heat expansion, the heat capacity
at constant pressure, the heat capacity at constant volume and the heat conduction
coefficient, respectively.

If we apply traction forces f(x, t) on the boundary and deformations of the
boundary cause forces proportional to the strain, then the boundary condition is
given by

(1.10) (X110 1si<n + TXu(x, 1) = f(x,1) on S x (0, 00),

where I'(x) is an nx n symmetric positive matrix with smooth components and
{Xr-1v0:;}1<is and u(x, t) are taken as column vectors. On the other hand if
the deformations of the boundary are given by f(x, t), then the boundary condition
is

(1.11) u(x, 1) =f(x,t) on S x (0, ).

In this paper, we consider the thermoelastic system (1.8) under (1.5), (1.9)
with boundary conditions (1.10) or (1.11), and

(1.12) 0(x,)=0 on S x (0, ).
By (1.3), (1.7) and (1.12), we have

21 vioi = Av; 20 g;;(u) + 2u Y-y v;e;(u) on S.
Thus the boundary condition (1.10) turns into

{Av; 201 6;;(w) + 2u XF-1 vie(W} i <isn + T(Xu(x, ) = f(x, 1)
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on Sx(0, ). The problems which we consider are whether it is possible to
control the deformation of the medium, disregarding the values of temperature,
by applying boundary forces or by giving boundary deformations f(f) and further
what sort of deformations can be controlled by controls constrained in some
prescribed set; that is, exact controllability and admissible controllability for the
control system (1.8) with (1.10) or (1.11), and (1.12).

As for mathematical treatment of thermoelastic systems, see e.g. Duvaut
and Lions [2], Kupradze [8] and Landau and Lifshitz [10].

Throughout this paper, we denote by H5(Q2) and H5(S) the Sobolev spaces of
order s in  and S respectively and by H5(Q2) and H*(S) the product spaces H5(2)"
and H5(S)". Further we denote by H{(Q2) the closure of CP(Q) in H(Q).
For an element u(x) in H(Q2) or HXS), u(x) (1=i<n) denotes the i-th com-
ponent of u(x). For n-dimensional vectors x={x;};<;<, and y={y;}1<i<n W€
denote by <x, y) the Euclidean inner product > %., x;y;. For real numbers r
and s, || -ll,, |- ll¢s) @and &), denote the norms of H"(Q), H'(Q)x H¥(Q) and
H'(S) respectively. Further for simplicity let ( , ) and || - || denote the usual inner
product and the norm in L%(Q) or in L%(Q). For a Banach space X and a non-
negative integer k, by &¥0, T, X) and W*1(0, T; X) we denote the Banach
spaces of k-times continuously differentiable X-valued functions on [0, T] with
the usual uniform norm

2}=08Upo<i<r (A u/dt) (D] x
and X-valued functions whose j-times weak derivatives with respect to ¢ are in
LY(0, T; X) for 0<j<k with the norm
T . .
beo |, I@/ujat) O]

respectively. For an element u(f) in %0, T; X) or W*1(0, T; X), we put u'=
u,=duldt, v’ =u,=d?u/dt?> and uV)(t)=dlu/dt/ (1<j<k).

2. Exact controllability

In this section we consider the exact controllability of deformations under
the restrictions

u>0,442u/n>0.
For simplicity, let p, be normalized as 1 and let us put
Au = pdu + (A+p) graddivu in Q,
Oulovy = {Av; 27=1 0u;[0x; + p 27=; v;(0u;/0x; + 0u;[0x)} 1 <i<ns
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Bpu=u and Byu=0u/dv,+I'(x)u on S. The control systems (1.6) with (1.2),
and (1.8) with (1.10) or (1.11) and (1.12), are written respectively as follows:

U, =Au +g in Q x (0, )

[E, g, B]:
Bu =f on SX(O, OO),

U, =Au —agradd + g

) in Q x (0, o)
0, + Bdivu, — k40 = g

[TE, g, g, B]:
Bu=f
on S x (0, 0),

0=0

where B=Bj, or Br. In the sequel we do not distinguish between column vectors
[u, v], *[u, v, ] and line vectors [u, v], [u, v, 6], when it causes no confusions.

The problem of controlling the deformations, disregarding the values of
temperature, is formulated as follows:

For a given set [uq, vy, 0] of initial state of deformation and an increment
of temperature and a given final state of deformation [u,, v,], are there at all
a control f(¢) and a time T, for which there exists a solution [u(t), 6(t)] of [TE, g,
q, B] satisfying [u(0), u(0), 6(0)]=[uo, v, 0o] and [u(To), udTo)]=[uy, v41?

When there exists such an f(f), we say that the control f(t) steers [, vo, 0]
to [uy, vy] or to [u,, vy, 0,1 (6, =6(T,)) at T, and a solution [u(?), 6(¢)] is often
called a trajectory which connects [u,, vy, 6] and [u,, v,] or [u,, vy, 8,]. We
consider trajectories and controls which have the appropriate regularity naturally
determined by initial and final states. Namely, when initial and final states are
in H™(Q) x H™1(Q) x H"(Q) with m=2, or in H'(Q)x L*(Q) x L2(Q) (the case
m=1), we take the trajectory in

M=o &1(0, T; H"~1(Q))
Enl0, T1 = { x {N\122 &1(0, T; H™ 1 (Q))NEM (0, T; L2A(RQ))} (m = 2)
Nj=0 €10, T; H'7I(Q)) x &7 (0, T; LX(Q)) (m=1),

which are called the trajectory spaces. Further, according to the regularity of
initial and final states described above, we take the spaces N7] i, T,
Hm=i-1%(S)) (m21) in case B=B, and N7z} &0, T; H™i73/%(S)) (m=2)
in case B= B as the control spaces and denote them by #%[0, T] and F%[0, T]
respectively. :

REMARK 2.1. For the control system [E, g, B], all states [uq, v] in H™(Q) X
H™1(Q) are controllable, that is, the space H™(Q) x H™ 1(Q) is exactly control-
lable. See [16]. But for the control system [TE, g, q, B], not all states [ug,
Vg, 0o] in H™(Q)x H™ () x H"(Q) can be controlled when m=2. In fact,
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if there exists a solution [u(t), 8(¢)] in &,[0, T] with the initial state [uq, vy, 0o],

then the following compatibility conditions (2.1) and (2.2) must be satisfied:
Bu;=fW0), 05j<m-2, on §

2.1) and further

Bu,_, =f™10) on S when B= B,
and

6, H"i(Q) n HYQ), 0<j<m—2,
2.2
Bm— 1€ LZ(Q) ’
where u;, 0; are defined inductively as follows:
Uy =vg, u; = Auj_, —oagradd;_, + guv=2(0), 2=sj=m-—1,
0; = —Bdivu; + x40;_, + qU™00), 1Zj<m- 1
It is possible to choose a control f(¢) so that the compatibility conditions (2.1)
are satisfied, while (2.2) must be satisfied a priori, since they are the conditions on

the given functions u, vy, 0, g(f) and g(?).
Thus we put

wm (Q) = {[uo, vo, 0p] € H™(Q) x H™1(Q) x H™(Q) | [uo, vo, 0] satisfies (2.2)}
for m 2 2 and W} (Q) (=WY(Q)) = HY(Q) x L¥(Q) x LXQ).
Now we define weak solutions of [TE, g, q, B].

DerFINITION 2.1.  For [ug, vy, 0o] € H'(Q) x L¥(Q) x L2(Q), f(H) e L2(0, T;
L2(S)), g(t)e L2(0, T; L*(Q)) and q(t)e L*0, T; H '(Q)), a function [u(t),
0()]=[u(x, 1), 0(x, t)] is called a weak solution of [TE, g, q, Br] with the initial
state [ug, vg, 0o] if

u(t)e &0, T; H'(Q) n €30, T; LX(Q),
2.3)

0() e 90, T; LX(2)) n L*(0, T; HY()),
and

T T T
Q4 - SO (u,, ®,)dt — (g, B(0)) + So Ss (T'u, ®YSdt + SO a(u, B)dt
+a S: (grad 6, )dt — gz 6, ®)dt — (8o, $(0)) — B(div ug, $(0))
T T
y SO (divu, ¢)dt + x SO (grad 0, grad ¢)dt

T
0

_ S:(g, ®)dt + S Ss (S, ®ydSdt + S:(q, #dt,
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for all smooth n-dimensional vector functions ®(f)=®(x, t) and smooth scalar
functions ¢(t)= @(x, t) which satisfy

HT)=0,§T)=0 in @ and =0 on S x(0,T).

Further [u(t), 8(1)] is called a weak solution of [TE, g, q, Bp] with the initial
state [ugq, vo, 0o] if it satisfies (2.3) and

T T T
2.5) —go (u,, ®)dt — (v, B(0)) — SO (u, AB)dt + a SO (grad 0, ®)dt
=10, 9t = O, 9(O)) — B(@ivuo, $(O) - B (divu, )i
+ K S: (grad 0, grad ¢)dt

- SZ(g, o)t — S: SS (S, (0®)av,)>dSdt + S: (@, ),

for all smooth functions () = &(x, t) and ¢(f)= P(x, t) on Q x [0, T] which satisfy
Pd(t)=0 on Sx(0,T), &(T)=0 in Q
and
¢(®) =0 on Sx (0, T),dT)=0 in Q.
Here (q, ¢) appearing in (2.4) and (2.5) means the duality between H~!(2) and
H¥(®2) and a(, ) is a bilinear form defined on H'(Q) as
a(u, v) = 27 ;x1=1 (@), &;(v))

for any u, ve H'(Q). We note that if u e H*(Q) and ve H(Q), then
(Au, ) = —a(u, v) — SS (Tu, v5dS +S (Byu, v>dS.
S

It is easily verified that, when g(t), q(t) and f(¢) are sufficiently smooth, a classical
solution is a weak solution and conversely, a smooth weak solution is a classical
solution. The uniqueness of the weak solution can be proved in the usual way.
See e.g. Duvaut and Lions [2, p.p. 130].

Putting

(@B/x)(1+x~m=D) when m=1,2,3

o, B, K) = [
(af/r)(1+x2(m=1)) when m = 4,

we have the following
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THEOREM 2.1. Let m>2, B=By (resp. B=By), g(f) e "z} ¢4(0, oo;
H™17i(Q)), q(t) e N\1=4 €4(0, co; H™1=i(Q)) and let T, be the time appearing
in Theorem A stated below. If w,(a, B, ) is smaller than a positive number
d,., depending only on m, A, and Q, then for the control system [TE, g, q, B]
and for any [ug, vy, 0g]€ W™ () and [u,, v,] € H™(Q)x H™1(Q) there exists
a control f(t) in FE[0, Ty] (resp. FT[0, Ty]) which steers the initial state [u,
vo, 00] to the final state [u,, v,] at the time T,.

Further if g(t) e £90, co; LX(RQ)), q(t) € £%0, co; L2(Q)), then the statement
is also valid for m=1 and B= By, with weak solutions as the trajectories.

REMARK 2.2. If the speed of heat conduction is so small in comparison with
the propagation speed of vibration that the thermal expansion can be ignored,
then the heat conduction coeflicient « is regarded to be equal to zero. In this case,
the system of equations (1.8) with an initial state [u(0), u0), 8(0)]="[ug, v, 0]
turns into the equations

po(0%ul0t?) (x, t) = pdu(x, t) + (1 +pu+apf) grad div u(x, 1)
+ g(x, t) — agrad 0,(x) — af grad div uy(x)
—a S; grad q(x, 7)dt
and

0(x, ) = 0y(x) — Bdivu(x, ) + Bdiv ug(x) + S; a(x, Ddr.

Hence this control system is equal to the system [E, g,45, B] with Lame coeffi-
cients

:uad'_:ﬂs)'ad:l'*'aﬁ
and the external force

Galx, ) = g(x, 1) — a grad o(x) — aff grad div ue(x)
—a S' grad g(x, t)dr.
[

By [16], for the control system [E, g,4, B], the space H™(Q) x H™1(Q) is exactly
controllable in #3[0, T] when B=B;, and in #%[0, T] when B=B,. Hence
we obtain the results in Theorem 2.1 in this case, although the hypotheses are not
satisfied. But for the thermoelastic system [TE, g, q, B] with a small nonzero
K, we do not know whether the exact controllability holds or not.

Before the proof of Theorem 2.1, we recall some results obtained in [16].
Although the results in [16] are given for the control system [E, 0, B] with
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I'=0, we easily obtain the same results for [E, 0, B,] and [E, 0, B;]. Namely
we have

THEOREM A. Let m=2 and B=B| (resp. B=B;). Then for the control
system [E, 0, B], there exists a positive time T, such that the space H™(Q)x
H™Y(Q) is exactly controllable in F7[0, T,] (resp. #%[0, Ty]); namely, for
any [ug, vo] and [u,, v,] in H™(Q)x H" Y(Q), there exists a control f(t) in
FB[0, To] (resp. F{[0, Tol) for which the system has a solution u(f) in N7,
&1(0, To; H™I(Q)) satisfying [u(0), u(0)]=[uo, vo] and [u(T,), u(To)]=
[ug, v1].

Further if we consider weak solutions as trajectories, then the statement
is also valid for m=1 and [E, 0, Bp].

Further from the way of construction of the control in the proof of Theorem
A, we see

COROLLARY B. Under the same assumptions as in Theorem A, there exist
bounded linear operators K, from H™(Q)x H™(Q) to F3[0, T,] (resp. K
from H™(Q) x H"Y(Q) to [0, Ty]) and L from H™(Q) x H™1(Q) to N7, &4(0,
To; H™J(Q)) such that, for each [u,, v,] € H™(Q)x H" (Q), Kp[u,, v{] (resp.
K [u,, vi]) is the control which steers [0, 0] to [u,, v;] for the control system
[E, O, Bp] (resp.[E, O, B;]) and L[u,,v,] is the trajectory for the control
Kpluy, v1] (resp. Kr[uy, v4]).

In the proof of Theorem A, the following lemma, which is Lemma 2.2 in
[16], plays an essential part.

LEMMA 2.1. Let m be a nonnegative integer and B a bounded open ball
in R™ which contains QU S. Then there exist bounded linear operators E,
and F,, from H™(Q) to H"(R") which satisfy the following (1)~(4) for any ue
H™(Q):
(1) Eu+F,u=u in Q;
(2) divE,u=0;
(3) there exists a function ¢ in H"*'(R") such that F,u=grad ¢;
(4) the supports of E,u and F,u are contained in B.

An outline of the proof of Lemma 2.1 was given in [16], but the bounded-
ness of the operators E,, and F,, were not proved there. Hence we give here
afresh a proof of Lemma 2.1 in detail.

PrROOF OF LEMMA 2.1. Let G be a simply connected domain in R” such that
Qc=GcG<B. Then there exists a bounded linear operator P, from H™(Q) to
H™(G) such tht P,u=u in Q for all ue H™(Q). (See Lions and Magenes [11,
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p.p. 75-76].) Since G is simply connected, H™(G) is decomposed into the direct
sum of two closed subspaces: H™(G)=X"(G)+ Y™(G), where

X™(G) = {ow|we #"*(G), Sw-v=0 on S},
Y"(G) = {dp|pe H"" ' (G)}.

Here elements in H™(G) and s#™*!(G) are regarded as 1-forms and 2-forms in
H™(G) and H™*!(G) respectively. The operator d is the exterior differentiation
and ¢ is its formal adjoint. Thus, in case n=3, dw=rotw and d¢=grad ¢.
For details see [12]. Put

#m(G) = {we#™N(G)|dw-v=0 on S}.

Then for any u € H™(Q), there exsits a 2-form w in #™*1(G) and a function ¢ in
Hm*1(G) such that P,,u=w+d¢. We define a closed subspace N of s#™+1(G) as
N={xe#m*(G)|éw=0}and let Q,,,, be the orthogonal projection of #m+(G)
onto the orthogonal complement N+ of N. Let P,,, ; be a bounded linear exten-
sion operator from #™*1(G) to s#™+1(R") such that the support of P, v is
contained in B for each v e #™*!(G), and we define an operator E,, as

Eu=06P,, 0, ,w for P,u=3d&w+ do.

If Pu=06w,+dp,=0w,+dd, (w;e #"*(G), ¢,€ H"(G), i=1, 2), then
Qn+1W; =0, 1w2. Thus the operator E,, is well defined. It is clear that the
operator E,, is linear and the support of E,u is contained in B for any ue H™(Q).
We show the boundedness of E,. Since d is a differential operator of order 1,
it is bounded from Nt to X™(G). By the definitions of X™(G) and N4, it is
bijective. Hence, by the closed graph theorem, it is a homeomorphism from
N+ to X™(G). Thus we have, for any u e H™(Q) with P,u=0w+d¢,

IEpttllp = I10P s 1 Qs 1wl S const. || Py 1 Qs 1Wilins 1 S cONSE. | Qe 1 Wl 1
< ConSt “5Qm+]W“m = COHSt “P u“m < const. “u”m’

where const. are independent of u. Hence E,, is a bounded operator from H™(Q)
to Hm™(R™). Similarly we can construct a bounded operator F,, satisfying the
properties (1), (3) and (4).

In order to prove Theorem 2.1, we give some lemmas.
We define closed operators &/ on H!(Q)x L*(Q) and %, on H () x
L%(Q)x L¥(Q) as

rlu, v] = [v, Aul, 2() = {[u, vJe HX(Q) x H'(Q)|B;ju=0 on S}

and
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Prlu, v, 0] = [v, Au — agrad 0, —fdivv + k40],
2(%r) = {[u, v, 0] e H¥(Q) x H(Q) x H*(Q) |Bfu =0
and 6 =0 on S}

The closed operators &, and %), associated to the boundary conditions (1.11)
and (1.12), are defined on the Hilbert spaces H}(Q2) x L%(Q2) and H}(Q) x L*(Q) x
L2(Q) in the same manner.

Now we have

LEMMA 2.2. The closed operator %y, (resp. ) generates a C, semigroup on
H(Q) x L(Q) x L?(Q) (resp. H'(RQ) x L2(Q) x L¥(Q)).

PrROOF. We consider the bilinear form a(, ) on HY(Q) defined in Defini-
tion 2.1. By the assumption (1.5), we have

a(u, u) = 2p Z?,j:l ||3ij(“)“2 when 420

and

a(u, u) 2 (nd + 2p) Ty lex@)® + 21 Tl llew)|? when 1 <0

for any u e H'(Q2). Hence there exists a constant ¢, >0 such that the inequality
26) a(u, u) 2 ¢ 4oy |10u)0x;|2

holds for any u € H(R2), since as is well known (see e.g. Gobert [4]) Korn’s in-
equality

Z:",,-=1 ||a“i/5xj"2 < const. {2?,j=1 "aui/axj + auj/axillz}

holds for any ue H'(2). Let o be the space H'(Q)x L%(Q)x L*(Q) with the
inner product

(Ui Ul = alug, ) + (g, 1) + (o1, 02) + 01, 05) + [Ty, updds

and the corresponding norm || U, || 5 =(U,, U)¥? for U,=[u;, v, 0,] e #(i=1,2).
Then by the inequalities (2.6) and

0= Ss {Tu, uydS < const. {u)3 < const. |u||? for any ue HY(Q),
the norm is equivalent to the standard one in H(Q) x L?(Q) x L*(Q).

For any U=[u, v, 0] € 2(%,) and positive number &,, integrating by parts
and applying arithmetic-geometric mean inequality, we have
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(Zr—<o)U, U)e = a(v—Eou, u) + (v—Eou, u) + Ss KI(v—Eou), updS

+ (Au—agrad 0—¢go, v) + (—pdive + k40 — 40, 0)

— Eoalu, u) + (0, w) — Lollul? = & | <Tu, uddS — ofgrad 6, 0)

—&ollvl? + (v, grad ) — «|grad 0]1> — &[0]1>

IIA

— Eoalu, w) = Go= 1Dl = | _<Tu, udds
— (6o = 1/2 = @+ FfiHlol* — (2] grad O] = Eol6l2

since u and 6 satisfy the boundary conditions du/dv,+I'(x)u=0 and 6=0 on
S. Thus if €,>1/2+ (a2 + p?)/k, then we have

((Zr — &)U, D)y =0 forany Ue2(Zy).

This means that the closed operator .Z —&, is dissipative on s#. Next we show
that % —¢, is maximal. To show this, it is sufficient to prove that, for some
E=¢&,, the operator Z—¢& is surjective. Let F=[f, g, h] be any element in
s and consider the equation

2.7) (Zr—OU =F.
If U=[u, v, 6], then this equation is equivalent to

v—C¢u=f, Au —agrad — v =g and —Bdivo + x40 — &0 = h.
By substituting the first equation into the second and the third equations, we have

(2.8) Au —agrad — u =g + ¢f  and
—¢Bdivu + k40 — 0 = h + Bdivf in Q.

By (2.6), there exists a constant ¢, >0 such that
aw, w) + [wl*> 2 c;|wll}  for any we H'(Q).

Let us take € so large that £ > 2, a?/k2 < c,/(nB?E) and choose ¢ such that a?/ké2 <
e<c,/(nf?E). We define a bilinear form B on H'(Q) x H(Q) as

B([wy, ¢,], [w2, ¢2]) = a(wy, wy) + a(grad ¢y, w;) + E3(wy, w))
+ gs {T'wy, wyHdS

+ e{x (grad ¢,, grad ¢,) + LB (divw,, ¢,) + &(y, ¢2)}
for [w;, ¢;1e H{(Q)x H{(R2) (i=1, 2). Then it is easy to see that
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B([wys @11, [wa, ¢21) = const. ([lwy ]|y + I19:111) (Iwzlls + d210),

where const. depends on £. By Schwarz’s inequality and arithmetic-geometric
mean inequality, we have

B([w, ¢1, [w, ¢1) = a(w, w) + «(grad ¢, w) + &2[|w|? + Ss KT'w, w)dS
+ &{x|| grad || + EB (div w, @) + £l ¢]|%}
Z calwli — (@2/28%)]| grad ¢12 — (E2/2)Iwll* + (&% — Dw|?

+ SS {Tw, w)dS + &{x| grad ¢2 — (£B2/2)[ div w2 + (£/2) 10112}
2 (c2/D|wlf + (o3/282)] grad o1 + (Le/2)] 1|7

for any [w, ¢]e H'(2)x H{(R). Thus we can take a constant §>0 such that
B([w, 61, [w, $128(Iwl3+14]2) holds for any [w, ¢]e H'(Q)x HY®). For
any given F=[f, g, hles#, the functional Lg[w, ¢]=—(g+<&f, w)y—e(h+
pdivf, ¢) is bounded linear on H(Q)x H}(Q2). Hence, by Lax-Milgram’s
theorem, there exists a unique element {u, 6] in H'(Q) x H}(Q) satisfying B([u, 6],
[w, ¢1)=Lg[w, ¢] for any [w, ¢]e H(Q)x H{(RQ). In particular, taking we
C2(Q)", =0 and w=0, ¢ € C3(Q), we see that the two equalities (2.8) hold in
the weak sense. Further by taking we C®(Q)", ¢=0 and w=0, ¢ e C*(Q),
we see that u and 0 satisfy the boundary conditions Byu=0 and §=0 on S in the
weak sense. By the general regularity theorem for the elliptic boundary value
problems, u and 6 belong to H?(Q) and H?(Q) respectively (see e.g. Fichera [3]).

Putting v =f+ £u, we have a solution U= [u, v, 0] € 2(%r) of (2.7). Thus
the closed operator #—¢&, is maximal dissipative on . A closed operator
with a dense domain is the generator of a contractive C, semigroup if and only
if it is maximal dissipative (see e.g. Tanabe [22, Chap. 3]). Therefore ¥ —¢&,
generates a C, semigroup in 5#, and hence % is the generator of a C, semi-
group on 5. Since the norm | .| 4 is equivalent to the standard one in
HY(Q) x L¥(Q) x L*(2), the closed operator ., generates a C, semigroup on
H'(Q) x L¥(Q) x L%(Q).

The proof for the operator %, is similar.

ReEMARK 2.3. If [u(?), 6(¢)] is the trajectory in &,[0, T] of the control
system [TE, g, q, Bp] (resp. [TE, g, q, Br]) for a control f(t), then by the usual
trace theorem f(t) belongs to #3[0, T] (resp. #%[0, T]) and further the compati-
bility conditions (2.1) and (2.2) are satisfied at t=0. Conversely, we may ask the
question whether for given f(f) in FE[0, T] (resp. #%[0, T]) and an initial state
[ug, vo, 6o] in H™(Q) x H™1(Q) x H™(Q) satisfying the compatibility conditions
(2.1) and (2.2) with B=B,, (resp. B=B;), there exists a trajectory [u(t), 8(¢)] in
é,[0, T] of the control system [TE, g, q, B,] (resp. [TE, g, q, Br]) with the
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control f(f) and [u(0), u,(0), 6(0)]1=1[uy, vy, 89]. For the initial boundary value
problem of the wave equation

un(x, 1) — du(x, ) = g(x, t) in Q x (0, T)
with Dirichlet boundary condition (resp. Neumann boundary condition), that is,

u(x, t) = f(x, t) (resp. (Ou/ov)(x, t) = f(x, 1)) on S x (0, T),
Sakamoto [20], Miyatake [13], [14] obtained the energy inequality
(2.9 lu)NZ + luDl2-y < const. {|u(0)|2 + llu0)]|2-,

+ X758 S;(Hg‘f (ON2-1-; + LfO(DD7-)de}
(resp.
(2.10) lu()IZ + lu®Dlz-1 < const. {|u(0)|2 + |u(0)]|%-,

+ 2758 L 1091 + <IPOYie 1 ).

They also obtained the energy inequalities for various other boundary conditions.
It seems to us that the energy inequalities (2.9) and (2.10) are best possible.
Further the results of Graham and Russell [5], when the domain Q is a unit ball,
make us to conjecture that the corresponding question for the wave equation is
negatively answered (see Remark 3.2 in [16]). Hence it seems to us that for the
control system [TE, g, q, B] the answer to the above question is negative.

In spite of Remark 2.3, for the special controls the answer to this question
is affirmative.

LEMMA 2.3. Let m=1 and B=By, (resp. m>2 and B=B;). Assume that,

for a control f(t) in F[O0, T] (resp. FR[O0, T]), there exists a solution v(t) in

m_o £1(0, T; H"(Q)) of the control system [E, 0, B] with the initial state
[v(0), v(0)]=[0, 0].

Then there exists a solution [u(t), 0(t)] in &,[0, T] of the control system

[TE, 0, 0, B] with the control f(t) and the null initial state [u(0), u,(0), 8(0)]=

[0, 0, 0].
Further we have the energy inequality
(2.11) 12 {Iw* D@12 + a(w® (1), w®(®) + (/)19 ()]12}

+ (kB — ) S; | grad 6®)(z)|2dz

< @49) || o0 @)de
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(resp.
2.12) @A) {Iw* D@12 + a(w™ (@), wA(1)) + (¢/B)10®(D)]|?

+ gs {Iw(t), w(t)>dS} + (ka/B—9) S; | grad 0%k)(1)|2dz
< @49) || Il

for 0Zt<T,0=<k<m-—1 and a constant § with 0<dé <o/, where w(t)=u(t)—

v(?).

Proor. We prove the case B=B,. Given u(f), consider the equations

(2.13)

w, — Aw + agrad 6 =0
in Qx(0,7T)

0, + Bdivw, — k40 = — B div,

with the homogeneous boundary conditions Byw=0 and §=0 on S x (0, T) and
the null initial state [w(0), w(0), 6(0)]=[0, 0, 0]. By Lemma 2.2, the operator
Zr generates a C, semigroup on H!(Q)x L3(Q)x L*(Q), which we denote by
Sr(®). Since v,(t) belongs to &7 1(0, T; L3(Q2)) and satisfies the initial conditions
v™(0)=0 (0<k=<m), we can take ¢(t)=d¢/(x, )e CF(Qx(0, T, I=1, 2,...,
such that {¢,(#)} converges to v(t) in &7 1(0, T; L?*(Q)) as l»>00. Let us define
[wi(®), 6(1)] by
D0, wi0, 001 = (' $:a-0)10, 0, — p div (o).

Since [0, 0, div ¢(1)] e N, 2(£}) for each 1, [w(1), 6,()] is smooth in ¢ and
x and [w{k)(1), 8{(1)] (0< k< m—1) satisfy the equation (2.13) and the boundary
conditions with B= B (see Tanabe [22]) and [w{¥(0), 6{¥(0)] = [0, 0]. Multiply
the first equation of (2.13) with [w(t), 8(1)]=[w{¥(1), 8¥(1)], by wik+*1(1) and

the second equation by 6{¥(r) and integrate over 2x(0, f). Integrating by
parts, we have

/D IwE PO +a(wO0), wi ()

+ [ crwip@, wi@yash - o' @), divwro@)ar =0,
WDOPOI? + x| 1grad 09 () |2az

+8( o), divwpro@)ar

= {61, grad 0 ().
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Multiplying the second equation by /B and summing up, we have
@14) (12 {1 + awP@), W) + @B P12
+ [ <TwP@, wiPwyas} + (calp) | lgrad 00()) 2de
= o} (9P(), grad 60 (1) ae
< 6! lgrad 60 (o) 2+ (2/40) (| 190 () 12ae

for any positive 6. Let us take & with 0<d<ka/B. By considering {w{k(f)—
wi(H)} and {0{V(£)—0F(¢)} in place of {w{¥)(f)} and {A{¥(f)}, the inequality
(2.14) implies that the sequences {w{¥(¢)} and {6{¥)(£)} (0Sk<m—1) are Cauchy
sequences in &£1(0, T; L*(Q))n &%0, T; H(Q)) and &20, T; LA(RQ)) n L*O, T;
H'(Q)), since {¢,(t)} converges in &7 (0, T; L*>(Q)). Here we use the fact that
the norm defined by the bilinear form

a(u, v) + (u, v) (u, ve HY(Q))

is equivalent to the usual one in H(Q) and the inequality
t
w1 < 1w + [ wld.

Thus there exist w,(f) and 8,(¢) such that
wik() — W)  in &0, T; H(RQ)) n X0, T; LA(RQ))
0f)(2) — Bi(1) in &0, T; L*(2)) n L*0, T; H'(Q))

as [»>oo foreachOSk<m—1. Itis easy to see that W, (1)=w*(¢) and 9,(t) =
0§)(t) for 0<k<m—1. Furthermore, [u(t), 0(t)]=[w(t), 0,(t)] satisfies (2.4)
with f(#)=0, g(¢)=0 and q(t)= — B div ¢,(t). Letting I—oc0, we see that [w(?),
B,(9)] is a weak solution of (2.13) with boundary conditions Byw=0 and 6 =0 on
S x (0, T) and initial state [0, 0, 0] in the sense of Definition 2.1. Since wWi'(¢) e
&%0, T; H'(Q)) n &40, T; L*(RQ)) and 8 (t) e £90, T; LX(RQ)) n L0, T; HY(Q))
(0£k=m—1), we see that, by the ellipticity of 4 and 4 with the boundary
conditions Byw=0 and 0=0, the function [Wy(t), Oo(t)] belongs to &,[0, T]
and satisfies the equation (2.13). Passage to the limit as /—co in (2.14) gives the
energy inequality (2.12) for [wo(t), Oo(1)]. Putting u(t)=v(t)+wy(t) and 0(t)=
0,(?), we obtain the results for the case when B=B;.
The proof for the case when B= By, is similar.

LEMMA 2.4. Let m, g(t), q(t) be as in Theorem 2.1 and B=By, (resp. B=By).
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Then for any T>0 and [uy, vy, 0] € W™ (), there exists a function f(t) in
Fnl0, T] (resp. #%[0, T]) such that there exists a trajectory [u(), 0()] in
&,[0, T] of the control system [TE, g, q, B] with the control f(t) and the initial
state [u(0), u0), 6(0)1=[uq, vy, 6o].

ProoF. Let E be a bounded linear extension operator from H*¥(Q) to H*¥(R")
(0<k=<m) and let R be the restriction operator from H¥R") to H¥(Q). Now we
consider the system of equations

,— Al + agrad EQ = Eg in R* x (0, T)
(2.15)
0. + BRdivii, — k40 = q in @ x (0, T)

with the boundary condition =0 on S x (0, T) and the initial state [(0), ,(0),
0(0)]=[Eu,, Evy, 0,]. Here the differential operator 4 is thought to be defined
over R” in the same way asin Q. Let us define the closed operator . on H'(R") x
L2(R") x L*(Q) similarly to .#p,, that is,

2[a, 3, 0] = [0, Aii — agrad EO, —BRdiv D + x46],

2(£) = HX(R") x H'(R") x {H*(Q) n HYQ)}.

Further let ## be the space H'(R")x L?(R")x L%(Q) with the inner product
(O, O)# = a(iay, 4,) + (iiy, @)gn + By, 52)rn + (01, 02)

and the resulting norm ||U, || z=(U,, U,) Y2 for U,=[i, 5; 0,1 # (i=1, 2),
where d(, ) denotes the bilinear form on H!(R") defined by A similarly to a(, )
and (, )g» means the L2(R")-inner product. Since E is a bounded operator from
HY(Q) to H!(R") and =0 on S, the inequalities

l(grad E6, D)gn| = const. [|6]1[|5]|
and

I(R div 3, 0)] = |(R®, grad 0)] < const. [|0]|[|5]| g~

hold for any 5 HY(R"), 0 e H{(R2). From these inequalities, it follows that
£ —¢ is a maximal dissipative operator for some ¢>0, and hence .# generates
a C, semigroup, which we denote by 5(z). Then, by the general semigroup theory,
if U, is in 2(&) and F(1) is in £1(0, T; #), then the mild solution

00 = 500, + So S(t — ) F()ds

is in £1(0, T; #) and is the strong solution of the equation (d/d)U(f)=.2 U(f) +
F(t). Further if F(¢) is in &7 1(0, T; #) and
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2.16) U, U, + F0), 220,+ ZF0) + F(0),...,
Zm20y + Zm3F(0) + Sm*F(0) ++-+ F=3(0)e 2(2),

then U(7) belongs to &m~1(0, T; /). If we put F(t)=[0, Eg(1), q(t)] and U, =
[Eu,, Evo, 0,1, then it is easily verified that F(t) belongs to &m~1(0, T; /) and
the compatibility conditions (2.2) imply (2.16). Hence the mild solution U(t)
is in &m 10, T; #) and if we put U()=[da(P), ii(f), 6(r)], then [d(r), 6(¢)]
satisfies the equation (2.15). Since [Eg(¢), q(1)] is in N\"2§ (0, T; H™ I ~1(R"))
x A\m24 &40, T; H"-Y(Q)) when m22 and in Nl &{(0, T; H'7I(R")
x &90, T; L*(RQ)) when m=1, [a(r), 0(t)] is in N7 &40, T; H™I(R")
x N7Z4 £1(0, T; H"~(Q)) when m=2 and in N\l_, &§(0, T; H'~J(R") x £9(0, T;
L2(Q)) when m=1. Letting u(t)=Rii(t) and f(¢)=Bii(t), we see that [u(t), 6(?)]
belongs to &,[0, T] and is a trajectory of [TE, g, q, B] for the control f(t)
with the initial state [1(0), u,(0), 6(0)]=[u,, vy, 0o] and further, by the general
trace theorem, f(¢) belongs to #%[0, T] when B=B,, and to £#3[0, T] when
B=B,. By the uniqueness of solution, [u(?), 6(t)] and f(¢) are the required
functions.

LEMMA 2.5. Given [u,, v,] in H™(Q)x H"1(Q), let w(t) be the function
stated in Lemma 2.3 with B=Bj, f(t)=Kp[u,, v,1(t) and v(t)=L[u,, v,](?),
where K; and L are the bounded linear operators stated in Corollary B. If
oafi/k <1, then there exists a constant c,,>0 depending only on m, A and Q such
that

(2.17) IW(T)I7 + IwTo)llz-1 + (/PIO(To)I3

= (2, By ) Toll LI Tu sy 03 Emm-1) -
ProoF. Putting 6 =xka/f and t=T, in (2.11), we have
(2.18) (/) {IW*N(To) > + a(w®(To), wh(To)) + (o BIIOX(To)12}
< @40 {7 oo |2dr.
By the well known Poincaré’s inequality
lull> = const. 37 =y [0u;/0x;11>  (u e HY()
and (2.6), (2.17) imply

1w (To), wkD(To)1I1E,0) + (/BIOM(To)|1
= co(@B[1)To supo <<, [0** V(@I for 0<k=m—1,

where ¢, is a constant depending only on m, 4 and Q. Since Lis a bounded
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linear operator from H™(Q)x H™ (Q) to N", &1(0, Ty; H™i(Q)),

SUPo<s <1 IV V(D)2 = LI 1> 01100, m-1)

for any [u,, v,] e H™(Q) x H"(Q), where || L|| denotes the operator norm of L.
Thus we have

(2.19)  [IW(To), w*X(To)1liE, 0 + (/B)IOM(To) (12
= co(@B/R) Toll LI uys 0] m-1y  for 0Sk=m—1.

Now, we show, by induction on j,
(2.20) wm=iXT)||7 + [wim=i+ID(To)l|2-, + (/B)O™=I(Ty)[|2-4
< cu(eB/)(L+x 20T LI [u gy 0411 Fmm— 1)

for 1<j<m if af/k <1, where ¢, is a constant depending only on m, 4 and Q.
The inequality (2.19) for k=m—1 implies (2.20) for j=1. For simplicity let us
put

ej = (/) 1+ k"2 D)T L2 [y, 0110 m,m-1)-

Let us assume that (2.20) holds for 1<j<I(1=<I<m—1). By the regularity
theorem for elliptic systems, if

Aw=ginQ, w=0onS and 40 =hinQ, 6 =0o0nS,
then
IWles2 £ Culiglle  and  [[0llirz = Cullhllk

for ge H(Q) and he HY(Q) (k=-1,0, 1,..., m—2). Here and hereafter C,
denote constants depending only on m, 4 and 2. Noting that w(t) and 6(¢) satisfy
the equation (2.13) and the homogeneous boundary conditions, we have

(2.21) Iwm=1=D(T) 171 £ Cll AWH"D(To) 13-4
= Cpllwm*D(To) +a grad 00"~ D(T) | 7-,
= Culllwm= B D(To) 7=y + (017D (To) |17},
and
(2.22) 2|0 D(To) |7 £ Cpo? | 40~1"1D(To) [12-,
= Cp(2?/6?) [k 40=1=D(To) 17—,
= Cu(@?/x2) {10 D(To)lIF-1 + B2ldiv wm=D(To)lI2-,
+ B?|div ot N(To) 125}
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Note that the inequalities
Kkke < 2e4;, 0SS k2,
hold. Hence, by (2.20) for 1<j<1, we have
[wrm=HD(To)|2-1 < cmer < 2¢mep4 4

and '

(@?/x2){10"=D(To) -y + B2lldiv w=D(To) |14

+ BAdiv v (To)|17-2}

= cn(@®/x?)(Blo + np?)e; + n(a®f?[x?)[[v0"=D(To)[17-4

= Chepyy.
In the last inequality we have used the assumption that «f/x <1 and the inequalities

To
0

[>T < || v nwar |
S T supo<i<t, [0 V@221 = Toll L2 (1,011 1 Em,m-1)
when Ty <1, and
lo™=D(To)lIF-1 < v D(To)IF = NLIZNLu1, 0111 Emm-1)
= TollLN1Tuss v111Em,m-1)
when To>1. Thus, by (2.21) and (2.22), we have
(2.23) Iwr=t=D(To)l41 < Crerss-
Further, by the assumption of induction, (2.22) and the above estimate, we have
(2.24)  wmD(To)lI? £ cper = 2¢per41 and  (a/B)0"NT)IES Crers s

By (2.23) and (2.24), the inequality (2.20) holds for j=I+1. Hence (2.20) is
valid for each 1<j<m. Taking j=m, we have (2.17) for m=4. Calculating
directly, we have (2.17) when m=1, 2 and 3.

Now, we give the proof of Theorem 2.1.

PrOOF OF THEOREM 2.1. Let R be the linear operator on H™(Q2) x H™1(Q)
which maps [u;, v;] to [W(Ty), wlTo)]=[u(Ty)—u,, u(Ty)—v,], where w(t)
and u(t) are the functions stated in Lemmas 2.3 and 2.5. Then the inequality
(2.17) means that
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(2.25) IRI? = cpn(e, B, ©)TolI L2

if af/k <1, where [|R]| is the operator norm of R. Since [u(?), 6(¢)] is the solution
obtained in Lemma 2.3, the null state is steered to [u,, v,]+R[u,, v,] at T, by
the control f(t)=Kp[u,, v,](¢) in F3[0, T,] for the control system [TE, 0, 0,
Bp]. If we put d,,=(c,Tol|L||?)~?! for ¢, in (2.25), then

(2.26) Oua, B, k) < d,,

implies ||R||<1. Hence if (2.26) is satisfied, then the operator I+R is onto,
so that for any [u, v] in H™(Q) x H"1(Q), there exist a control f(f) e F3[0, T,]
and an increment of temperature 6 e H"(Q)N\ H}§(Q) such that f(¢) steers [0, 0, 0]
to [u, v, 0] for the control system [TE, 0, 0, By].

By Lemma 2.4, for any [ug, vy, 0o] € W7 (), there exists a function f(t)
in #13[0, T,] which steers [ugy, vy, 0y] to some state [uq, v,, 0,] at T, for the
control system [TE, g, q, Bp]. For any [u, v], let us take a control f,(¢) in
F3[0, T,] and 0 such that f,(¢) steers [0, 0, 0] to [u—u,, v—v,, 0] at T, for the
control system [TE, 0, 0, B,]. Putting f(t)=f,(¢) +1,(f), we see that the control
Sf(¥) steers [ug, vg, 0o] to [u, v, 6+6,] at T, for the given control system. This
completes the proof of the theorem for [TE, g, g, Bp].

The above controllability implies that, given [u,, vy, 8p] in W7 (Q) and
[ug, v1] in H™(Q)x H*1(Q), there exists a solution [u(f), 8(f)] of (1.8) in
&[0, Ty] satisfying (1.12), [u(0), u,0), 6(0)]=[uo, vy, o] and [u(Ty), ulT)]=
[uy, v;]. If we put f(t)=Bu(t) on S for this u, then, by the general trace theorem
and the uniqueness of solution, we see that f(¢) is in #F%[0, T, ] and steers [ug, v,
0o] to [uy, vy, 0,] for the control system [TE, g, q, Br].

COROLLARY 2.1. Let m, T, be as in Theorem2.1. If w,(a, B, K)<d,,
then there exist bounded linear operators K, (resp. K;) and L from H™(Q)x
H™ Q) to F3[0, Ty] (resp. #FR[0, Ty]) and to &,[0, Ty] such that, for [u, v]e
H"(Q) x H"1(Q), Kp[u, v] (resp. K [u, v]) is the control which steers the null
state [0, 0, 0] to [u, v] at T, and L[u, v] is the trajectory [u(t), 6(t)] for the
control Kp[u, v] (resp. K [u, v]) for the control system [TE, 0,0, Bp] (resp.
[TE, 0, 0, B/]).

PROOF. Let M be the operator which maps ve N7, &/(0, To; H"I(Q))
to [v+w, 0]€6,[0, To], where w is the solution of (2.13) with homogeneous
boundary conditions and null initial state. It can be shown as in the above proof
that M is a bounded operator. Then, K,=Kp(I+R)™!, L=ML(I+R)™! and
K =B,L are the required operators.

In Theorem 2.1, we assume that w,(a, B, k) is sufficiently small. But if
g(t)=0 and g(¢)=0, then the subspace X™(Q) x X™~1(Q) is controlled by controls
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in #1[0, T,] when B= B, and in #[0, T,] when B=B r without this assumption,
which is seen in the following theorem. Here, for nonnegative integer k, X*(Q)=
{ue HYQ)| F,u=0}.

THEOREM 2.2. Let m=2. Then, there exists a constant C>0 such that,
for any [uy, vo] and [uy, v,] in Xm(Q)x XmY(Q), there exist a control f(t) in
F1[0, Ty] (resp. R0, Ty]) which steers [ug, vy, 0] to [uy, v,] for the control
system [TE, 0, 0, Bp] (resp.[TE, 0, 0, Br]) at T, and a trajectory [u(t), 0] for
the control f(¢) satisfying the inequalities

(2.27)  supg<i<to KSOPm-1/2 = CUIlUos Vol mm-1y + 115 011l omym—1))
(resp.  supg<i<1o Kf(ODm-3/2 = ClI[uo, volllmm-1y + Ilu1s v mm-1y)

(2.28)  [[[u(®), Ol 410,701 = ClILt0s Vo]l mm-1) + ILtt1s 01 mm—1)) -

ProOOF. The proof is similar to that of Theorem 2.1 in [16], but slightly
different. We consider the operator E, constructed in Lemma 2.1. Then, for
any u € H*(Q), there exists a 2-form p in s#*+*1(R") such that E;u=3Jp. Hence
for given [ug, vo] and [u,, v,] in X™(Q)x X™~1(Q), there exist 2-forms p; in
H#m™1(R") and g¢; in s#™(R") such that E,u;=dp; and E, _,v;=0dq; (i=0, 1).
Since the restrictions of p; and g; to Q belong to s#™+1(Q) and s#™(Q) respectively,
by Russell [17], there exists a 2-form solution p(t) in N4 &(0, To; H™179(Q))
of the wave equation

(2.29) Pu(t) — pdp(t) = 0 in Q x (0, Tp)

with the initial state [p(0), p(0)]1=[po, 90]lo (=the restriction of [py, go] to Q)
and the final state [p(Ty), p(To)l=[p1, 411le- Then u(t)=0p(t) also satisfies
(2.29) and [u(0), u(0)]=[0po, 6901l o="[uo, vol, [(To), u(To)]=[u,, v;], since
F,u;=0 and F,_,v;=0 (i=0, 1). Further divu(t)= —ou(t)=—32p(t)=0, since
62=0. Thus u(?) satisfies the equation

(2.30) U (f) — Au(t) = 0 in Qx (0, T).

If we put 6(1)=0, then [u(1), 6(t)] € 6,[0, Ty] satisfies the equation (1.8) with
9(0=0, q()=0 and [u(0), u/(0), 6(0)]="[uo; vo, 01, [u(Ty), u(To), O(To)]= [uy,v,,
0]. Let us take f(£)=Bpu(f) on S (resp. f(f)=Bru(t) on S). Then the control
f(®) steers [ug, vg, 0] to [uy, vy, 0] at Ty,

Next we show the existence of a control and the corresponding trajectory
which satisfy the estimates (2.27) and (2.28). Let us denote by S™(0, T) the
space of all u(f) in N7, &4(0, Ty; H™ I (Q)) which satisfy the equation (2.30),
divu(f)=0 for all te[0, T,], [u(0), u,(0)]1=[0,0] and [u(Ty), u(To)] € X™(Q) x
Xm-1(Q). Noting that X*(Q) is a closed subspace in H*(Q), we easily see that
S™(0, Ty) is a closed subspace in N7, &{(0, To; H™ (). Hence it is a Banach
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space. Let F be the operator which maps u(¢) to [u(T,), u(T,)]. Then it is easy
to see that F is a bounded linear operator from S™(0, T,) to Xm(Q)x Xm~1(Q).
We have shown that, for any [u,, v,] € X™(Q) x Xm~1(Q), there exists u(f) € S™(0,
T,) such that [u(Ty), u(T,)]=[u,, v,]. Hence the operator F is surjective.
Therefore, by the open mapping theorem, F is an open map. This means that
there exists a constant C>0 such that, for any [u,, v,]€ X™(Q) x Xm~1(Q), there
exists u(t) e S™(0, Tp) satisfying [u(Ty), u(Ty)] (= F(u(t)))=[u,, v;] and

270 8UPg<r<1o U D = Clilur, 011l mm-1y-

Putting f,(¢) = Bpu(t) (resp. f1(t)= Bru(t)), we have the estimates (2.27) and (2.28)
when [u,, vo]=[0, 0]. Similarly we have a control f,(¢) and the corresponding
trajectory #(t) such that [#(0), &i(0)]=[uq, vo] and [i(Ty), ii(T,)]=[0, 0] which
satisfy the estimates (2.27) and (2.28) when [u,, v;]=[0, 0]. By putting f()=
f1(®)+f,(1), we have the required results.

REMARK 2.4. It often appears, in mechanics, the case when the boundary
condition (1.12) of the increment of temperature is replaced by

(2.31) Y(x)(08/0v) (x, t) + (1 —p(x))0(x, 1) = 0 on S x (0, )

in the control system [TE, g, q, Bp], where y(x) is a smooth function on S with
0=y(x)<1. We denote this control system by [TE, g, q],. But we do not obtain
the exact controllability for this control system. We can show that the closed
operator ., defined similarly to %, for the boundary conditions (1.11) and (2.31),
generates a C, semigroup on the space H§(Q)x L2(Q)x L*(Q). In the proof
of the estimate of the resolvent, we use the Hilbert space V,(€) which is defined as
the completion of the space of all 6 each of which belongs to C*(Q2) and satisfies
8(x)=0 on the set {xe S|y(x)=0} and |0, <oo with ||, -norm defined by

1017, = 161+ § =)l 6Pds;

cf. Inoue [6], Kaji [7].

But, for this system, we do not obtain the energy inequality of the type (2.11)
appearing in Lemma 2.3. Put Sy={xeS|y(x)=0} and assume A+u=0. By
Russell [18], for the control system [E, g, Bp] when A+ u=0, that is, the control
system governed by the wave equation, the space V™(Q) x V™~1(Q) is exactly con-
trollable at some time T by controls f(z) in N7=4 &4(0, T; H™i~1/2(S)) with
supp f(1) =S, x [0, T] under the assumption that (2, S,)is a “‘star-complemented’’
region. Here V™(Q) is the closure in H™(Q) of the space of all ue C®(Q)"
vanishing in a neighborhood of S—S,. For the definition and examples of
“star-complemented’’ regions and for the proof of exact controllability, see Russell
[18], [19]. For controls f(¢) with supp f(t)= S, x [0, T] and the solutions »(?)
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of the control system [E, 0, B,] for f(¢) with [v(0), v(0)]=[0, 0], we can obtain
the existence of the solutions [u(t), 6(¢)] of the control system [7E, 0, 0], with
[u(0), u0), 6(0)]=[0, 0, 0] for this f(t) and the energy inequality of the type
(2.11). Further Lemma 2.4 holds with controls f(#) satisfying supp f(t) =S, x
[0, T7] if we consider the first equation of (1.8) in R"-Q* with the boundary condi-
tion u=0 on JQ* and the second equation in 2 with 6=0 on S instead of (2.15),
where Q* is a star-shaped domain with 0Q*> S, and Q* n 2=g. Thus, in this
case, we obtain the exact controllability of the space

wm (Q) = {[u, v, 0]e V™(Q) x V™ 1(Q) x HMQ)|

[u, v, 0] satisfies the compatibility conditions}
for the control system [TE, g, q], in the same way.

In Theorem 2.1 we have shown that, when the Lame coefficients and a domain
are fixed, the control system [TE, g, q, B] is exactly controllable if w,(a, B, k)
is sufficiently small. Now let the Lame coefficients A and u and the coefficients
o, B and x are fixed. If the domain Q is small, then the time T,, at which the
control system [E, g, B] is exactly controllable, is also small. But since the
operator norm of the extension operator from Q to R” is not necessarily small,
IL|I? appearing in (2.25), and hence the operator norm ||R|| may not be small.
Thus we do not know whether the control system is exactly controllable or not
under the assumption that the domain Q is small.

Here we consider the case where Q is shrinked in similar figures. For a
domain Q and a real number r with 0<r<1, let us put

Q. =rQ(={rx|xeQ}), S,=0Q, (=the boundary of Q,),

and consider the control system (1.8) in @, with (1.10) or (1.11) and (1.12) on S,.
By putting y=r~'x and t=r"!t, the equation (1.8) in Q, with g(¢)=0, q()=0
and p,=1 is reduced to the equation
i (t) — A,fi(t) + ar grad, O(r) = 0
in @ x (0, 00),
0() + pr! div, i (1) — Kr“Ayé(r) =0

where i(y, ©)=u(ry, rt), 0(y, ©)=0(ry, rt) and A4,, grad,, div, and 4, mean that
A, grad, div and 4 are taken with respect to y respectively. By Theorem 2.1,
if the inequality
r(@Bl){l + (r/x)"1} < d,, when 1 <m <3
o, (ar, Br1, krl) = ‘
r@f/x) {1 + (r/)*™ 1} < d,, when m =4

holds, then each initial state in W™ (&) is controllable to any state in H™(Q) x
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Hm™(Q) at 1=T,. Since w,(ar, fr~!, kr 1)—0 as r—0, we have the following

COROLLARY 2.2. Let A, u satisfying (1.5), a, B and x be given and let Q
be a bounded domain with smooth boundary. Then there exists r,,>0 such that,
if 0<r<r,, then for the control system [TE, g, q, Bp] (resp.[TE, g, q, Br]) in
Q, with the boundary S,, each initial state in W™ (Q,) is steered to any state in
H™(Q)x H"Y(Q,) at rT, by a control f(t) in F3[0, rT,] (resp. F[O0, rT,)).
Here T, is the time stated in Theorem A for the domain Q.

3. Admissible controllability with constrained controls

As is stated in the introduction, we now introduce a constraint set and consider
what sort of deformations can be controlled by controls in this constraint set.

For a subset G in L?(S) and an integer m=1 we define the constraint set
of controls #%(G) as

FHG) = {f(He N7z} &i(0, oo; Hmi-12(S))|f(1)e G for all te[0, o)},
and, for an integer m =2, we define F%(G) as
FUG) = {f()e N1=3 &40, oo; H™I~3%(S))|f(He G for all te[0, c0)}.

DeriNITION 3.1. (1) For the control system [TE, g, q, B] a state [ug, vo,
0ol e Wn (Q) is said to be admissibly controllable to a state [uy, v,] e H™(Q) x
H™1(Q) in the constraint set #%(G), if there exist a positive time T and a control
f(®) in F7(G) such that f(¢) steers [ug, vy, O] to [u,, v;] at the time T, i.e., there
exists a solution [u(t), 6(t)] in &,[0, T] of the control system [TE, g, q, Br]
for the control f(f) which satisfies [u(0), u,(0), 8(0)]=1[uq, vy, 8] and [u(T),
u(T)l=[u,, v,].
(2) A subset D of W7 (Q) is said to be admissibly controllable to a subset R
of H™(Q)x H™ '(Q) in the constraint set F7(G), if any [ug, vy, 0¢] in D is ad-
missibly controllable to any [u,, v;] in R in the constraint set Z7(G).

The admissible controllability in the constraint set #%(G) for the control
system [TE, g, q, Bp] is defined similarly.

ReEMARK 3.1. As is in the case of the isotropic elastodynamic system
[E, g, B], if an initial state [ug, vy, 0] is steered to a final state [u,, v, 6;] by a
control f(f) at a time T for the control system [TE, g, q, B], then u, and u, have
to satisfy the compatibility conditions

Bug =f(0) and Bu, =f(T) on S.

Thus if a subset D is admissibly controllable in #3(G) (resp. F7(G)), then D is
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contained in the set {[u, v, 0]e W7 (Q)| Bue G}, where B=B), (resp. B=B).
Now we put

B5(G) = {[u, v, 0]1e W} ()| Bpu € G}
and
MHG) = {[u, v, 0]e W (Q)| BrueG}.

First we consider the control system [TE, g, q, Br]. We begin with the
following

LEMMA 3.1. Let m=2 or 3, G be an open and connected subset of H™3/%(S)
containing 0. Then, for any [uq, vg, 0o] in A(G), there exist an element
[ug, vy, 0,1 in 2(£™%1) and a control f(t) in FTG) such that f(t) steers [uo,
vo, 0o] to [u,, vy, 0,] at the time T, given in Theorem A, for the control system
[TE, 0, 0, B.].

PrOOF. By Lemma 2.4, for [uo, vg, 09] € Wg o(R2), there exist a function
f(H) in #F7[0, T,] and a solution [i(t), 8(f)] € &,[0, Tp] of the control system
[TE, 0, 0, B;] for the control f(f) with the initial state [#(0), #,(0), 6(0)]=
[4g, v, 0] Then, by Theorem A, there exists a function f(f) in F7[0, To]
for which there exists a solution v(f) in N7y &%(0, To; H™#(2)) of the control
system [E, 0, B,] for the control f(t) with [v(0), v (0)]=[0, 0] and [(Tp), v,(T,)]
= —[i(Ty), ii(Ty)]. For this control f(t), by Lemma 2.3, there exists a solution
[a(e), 8(t)] in &,[0, T,] of the control system [TE, 0, 0, B;] with the initial state
[4(0), ii,0), 6(0)]=[0, 0, 0]. Since G is open and connected and since f(0)+
f(0)=Bi#(0)+B(0)=Bruge G and f(Ty)+f(To) = Brii(To) + Br(T,) =0¢€G,
there exists a function f(f) in [C®(S x [0, T,])]* which satisfies

FUN0) =FfUNTy) =0, 0<j<m,

and f(t) +f()+f()eG for all te[0, Ty]. Since f(t) is smooth, there exists a
solution [4(z), 8(t)] in &,[0, T,] of the control system [TE, 0, O, B;] for the
control f(f) with the null initial state. Putting u(¢f)=u(t)+d(t) + a(z), 6(t)=
0(1)+0(t) +0(1) and f(&) = f()+F (1) +7(t), we see that [u(r), 6(¢)] is the trajectory
of the control system [TE, 0, 0, B] for the control f(¢) with the initial state
[u(0), u,(0), 6(0)]=[ug, vy, 65]. For this [u(z), 6(t)], we have

Bru(Ty) =f(T,) =0 when m=2,3,
Bru(Ty) = f{To) = JATo) + J(To) = Brii(To) + Brv(T,) =0
when m=3 and
0(T,) =0 on S when m=2,3,
— Bdivu, (T,) + k40(T,) = 0(T,) =0 on S when m =3,
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since 8(1)=0 on S. This means that [u(T;), u,(Ty), 0(T,)] belongs to 2(L71).
Thus [u,, vg, 0o] is steered to [u(Ty), u(Ty,), (T,)] in 2(Z%~1) by the control
F@O=F()+F(®)+7(t) in the constraint set F(G).

We define the energy semi-norm E,, on 2(£7%) as
Eolu, 0, 0] = a(u, w) + ol + | <Tu, ubdS + @p)I61?
E,[u,v,0] = Y7o Eo[£4[u, v, 0]]
and a finite dimensional subspace %, of H™(Q2) as
A = (e C@r|a(d, §) + | <o, p>ds =0},
Then we have

LeMMA 3.2. Let m=2 or 3. Then there exists a constant ®,(0<®,,=d,./4),
depending only on m, A, I' and Q, for which the following holds:

If w,(a, B, k) is smaller than &,, then for any g, n>0 and [uy, vy, 0p] €
(L), there exist a positive time T, a control f(t) in F[0, T] with supg<,<t
LfOPm-32<n and [uy, vy, 0,1€ 2(LP1) such that E,,_[u,, vy, 0,]<e and
[ () steers [uq, vo, 00] to [u,, vy, 6,1 at T for the control system [TE, 0, 0, Br].

Proor. First we define a semi-norm || - ||, on 2(/) as
I, o3l = {atu, w) + fol? + §_<Tu, ubds
+a(o,0) + [aul® + | <ro, vyasyre.
By Duvaut and Lions [2, Théoréme 3.4], the bilinear form
a(u, v) + SS (Tu, v>dS  for u, ve H'(Q)
induces canonically a norm on H'(Q)/#,, which is equivalent to the standard
quotient norm of H'(Q)/%,. Namely, there exists a constant y,>0 such that the
inequality
(€RY) o' {a(u, u) + SS (Tu, updS} < infy 5, [u + @I}
< yo{a(u, u) + Ss {Tu, u)dS}

holds for any ue H'(Q). Since 2, x {0} 2(o/) and A¢p=0 for e, it
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follows that || -||, induces cannonically a norm on 2(&/)/(%r x {0}) which is
equivalent to the standard quotient norm of 2(«/)/(Z, % {0}). Here 2(«f}) is
thought to be a Banach space endowed with the graph norm. Namely, there
exists a constant y, >0 such that the inequality

Yitlu, vl = infyezp Ilu + @, 01l 2,1y = v1lllus v]lle

holds for any [u, v]e 2(«), since the graph norm of 2(s7;) is equivalent to

I 2,1y
By Corollary B, if w,(a, 8, k)<d,,, then there exists a positive constant J,

such that, for any [u, v] € H™(Q) x H™1(Q) with |[[t, v]||(mm-1)= 0o, there exists
a control f(#) in F{[0, To] with supo<,<1, K f(#)Ym-3/2<n which steers [0, 0, 0]
to [u, v] at T, for the control system [TE, 0, O, B;]. Now let m=2 and let e<
min {1/3, y718,}. Given [u,, v, 8] € 2(ZL;), Let [ii(t), (t)] be the trajectory
in &,[0, o) of the control system [TE, 0, 0, B] for the null control f(¥)=0
with the initial state [#(0), #,(0), #(0)]=[u,, v, 0,]. Then we have the following
energy equality in the same way as in the proof of (2.14):

(3.2  A/){av*>(T)? + a(@V(T), 49(T))

+ SS KLad(T), a9)(T)>dS + («/ B)I09(T) |12}

T
+ (cafp) [ lgrad 002 0) |21
= (ID{FIDO)|2 + a(@D(©), 7))
+{ raw ), #00)ds + @ HIIVOI2,

j=0, 1, for any T>0. Thus we have

(xofp) {{” grad do12ar + { 1grad O,y 1}
0 (0]
< (1/2)E,[uo, vo, 0] -
By Poincaré’s inequality, we have
[~ 080Nz + 180171t = const. E,[uo, v, 06].
Now assume that { >0 satisfies
2022 + 2a/B)C? < &f3.

Since (1) e £9(0, co; HX(RQ)) NEX0, oo; LX(RQ)), there exists a time T, =T,
such that
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(3.3) 16T <& 16Tl <¢ and | grad &(Ty)| < ¢
Put [i(T)), 4Ty, 6(T,)1=[ii,, 5,, ,]. Then by (3.2), we have
(34) E[d;, 7y, 91] < E[uo, vo, 0]

If

ILdy, 5,712 < &3,

then we have
E[i,, By, 6,1 = a(d,, ) + |5, + SS (Tily, dy>dS + (2/B)116,11?

+ a(By, B,) + |Ad, — agrad 6,2 + Ss (T, 5,5dS

+ (o/B)ll — Bdivd, + k4,2
< 2|[dy, 8,012 + 202 grad 8,112 + (/B {116,112 + 10TII?}
< 2¢/3 + 20202 + 2(o/B)? < e.

Next we consider the case when |[#,, §,]1|2>¢/3. Put ||[d,, §;].=r. Since
0<e<1/3, r>e. Let O0<d<e. For (0/r)[di, D,], there exists a function ¢, in
A satisfying
(3.5) (6@, /r + o, 001 /r1ll 2,1y < 210/ [Ey, D]l = 746
Put [, 5]=[dd,/r + ¢o, 00,/r]. Then, since

0, 81ll2,1) S 716 < 718 < o,

the null state [0, 0, 0] can be steered to —[i#, 5] at T, by a control fy(t) in
F1[0, Ty] with supg<,<1, {fo()»1/2<n. Further, by Lemma 2.5 and the proof
of Theorem 2.1, we can take f,(t) so that

(PN I(To)|2-1 £ co05(a B, KT LI [y, 041112, 1)

with [u,, v;]={ +R)"![u, 7]. Hence,

(3.6) (PO (T)}-1 = ca02(e, B, )T LN +R) 2 (&, 8122, 1
S cowy(o, B, Tl LI~ [IRID2ITE, 711E, 1)
£ aj(1—ay)?||[@, 81134

for j=1,2 where a,={w,(a, B, k)d31}/2 (£1/2). Let us put f;(1)=0 on
[0, T, - Tol, fi®)=fo(t+ To—T,) on [T, —T,, T;]. Then f,(¢) steers [0,0,0] to
—[u, v, 8] at T, with some e H¥(Q)n HY(Q). If we denote by [u(t), (¢)] the
corresponding trajectory, then we have, by (3.6)
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(B.7) @B UNOTIIF + 0TI} £ a3(1—a,)2|[F, 8]l2,4)
§ wZ(“’ ﬂ, K)?%(Sz

provided that w,(a, B, k)<d,/4. It is easy to see that the control f,(f) steers
(g, Vg, o] to [ii, —it, ¥, —b, 8, —0] at T, for the control system [TE,O, 0, B.].
Since # =ddi,/r+ ¢, and 0 =07, /r, we have

El[al - _a 51 - 59 gl - 6]
— alii,—@, i, — @) + |5, — BJ2 + SS (I, — @), iy —i>dS
+ (/B)I6; — 0112 +a(B,— v, 5, —b) + | A(fi, — @) — « grad (§,—0)|?

+{ <r@i-o), 5, - wyas + @PIOAT) - BT

= a(ily, @) + 5] + SS (Tily, #,5dS + @P)0,12 + a@y, 5y)
+ | Ail, — agrad 8,2 + gs (Toy, 5,5dS + @/ BIB(T)|?
—26)r—82Ird) {a(ily, ily) + 5,12 + SS (Tily, #,)dS

+ a@y, 5 + [Ady |2 + | (T5,, 5,5dS)

+ 20(1—38/r) (Al ,, grad 0) + (¢/B)[|0]|> + o2|| grad 8|2
+ (@/BNOTHI? + 2(60/r) (Adi,, grad §,) — 202(grad §,, grad 0)
~ (20/B){(6;, 0) + (B(T,), 6(Ty))}
= E[d,, ;, 0,1 — 26/r—6*/r¥)|| [i1;, 5,112
+ 20(1—6/r)(Aii,, grad §) + H, + H,.
Here
H, = (¢/p)l8]* + o2| grad 8] + (¢/BIIOLTYII?,
H, = 2(6a/r)(Ad,, grad §,) — 2a%(grad §,, grad 0)
— (2a/B){(61, 0) + (9(Ty), B(T1))} -
By the well-known L2-estimate, (3.5) and (3.7), we have
(3.8)  a?| grad 9| < Co?|| 48] = C(e?/k) {|I0(Ty)|1> + B2||div #(Ty)||*}

= C(@?/x®) {(Blw)wy(a, B, k)y16* + np?||v]13}
< C(+n) (282 (1 +1/K)202 = C(1 +n)w,(a, B, k)262
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with a constant C>0 depending only on Q. Then by (3.7) and (3.8), we have
|H,| = {C(1+n) + y}o,(x, B, )52
and noting that |44, || < |[#,, 7,1].=r, by (3.3), (3.7) and (3.8), we have
(3.9) |H,| £ 20{ad + CV2(1+n)*2aw,(a, B, k)0 + 2(a/B)2wy(at, B, k)1/2y,0}
< 20r{a + CY2(14n)'2a + 2(x/B)*/?y,}
=2{rJ(> B),

where
I ) = o+ CUA(1+n) e + 2a/B) /2y,

Since
rt= [, 51]”%

= aiiy, @) + 512 + |_<ra, @,yds
+a@y, 8) + [4i, |12 + | <r5,, 5,5ds
< aliiy, @) + 15,02 + | (P, @,5dS + a@,, 5,)

+ 2)|Aii, — agrad |2 + SS (I5y, 5,5dS + 202| grad §, |12
< 2E[uy, vy, 0,] + 202 grad 4,2
< 2E,[ug, vo, 0] + 202|| grad 6,2,
we have by (3.9)
|H,| £ 20J(a, B) {2E[uo, vo, 0] + 2a2|| grad f,||2}1/2
< 40J(a, BY{E [ug, vo, o] + a2{2}112.
Further we have by (3.8)
12(1—6/r)(4iiy, « grad B)| < 2(1—0/r)||[i;, B;] [l grad B
< 2(1-96/r)rCY2(1 4+ n)12w,(a, B, k)0
= 2C12(1+n)2w,(a, B, k) (réd —52).

Hence, if {C(1+n)+7y3}w,(a, B, k) <1/2 and CY2(1 + n)12w,(a, B, k) < 1/4,
then we have
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E,[d, —u, — b, 0, —0]

< Eq[iiy, By, 6,1 — (2r6 — 6%) + {C(1+n) + y}}wa(x, B, )62
+ CY2(1+n)2wy(a, B, k) (rd — 62)
+ 4LJ(a, B {E [uo, vo, Bo] + a2(2}!/2

< Eq[dy, 81, 6,1 — r8)2 + 4LJ(at, B){E;[uo, vo, 06] + a2(2}112.

Therefore, if 6 =¢/2 and {>0 has been so chosen that

40J(a, B){E1[uo, vo, 8o] + a2{2}1/2 < €2/8,
then
E\[d, — @, B, — 0,0, — 0] < E,[d,, ¥, 0,] — /8
< E [uo, vo, 60] — €2/8.

Further, clearly, [ii,—i, #; —, 8, —0] belongs to 2(#;). Let us put &,=
min {d,/4, (1/2) {C(1+n)+y3}~1, (1/4)C~1/2(1+n)~1/2} and assume w,(a, B, k)<
@,. Then we have seen that, under the assumption ||[#,, 7,]||2<¢/3, we can take
[uy, vy, 6,] in 2(%) such that

E [uy, vy, 6,] < E [uq, vy, 0o] — £%/8

and [ug, vy, 0y] can be steered to [u,, v,, 0,] at T, by some control f;(f) in
F %[0, T,] with supo<,<1, Kf1(DD1,2<n-

Next we start with the initial state [u,, v;, 6,] at t=T,. In the sequel we
say that a control f(t) steers a state [u, v, 0] at t=T to a state [#, 5] or [#, ¥, ]
at t=T (>T) and [u(?), ()] is a trajectory which connects [u, v, ] at T and
[d, 3, 8] at T for the control system [TE, g, q, B;], if there exists a solution
[u(t), 6(t)] of [TE, g, q, B;] for the control f(¢) such that [u(T), u(T), 6(T)]=
[u, v, 01, [u(T), u(T), O(T)]=[ii, #, ). Further we define ZF7[T, T] and
&,[T, T] similarly to #7[0, T] and &,[0, T]. Let [4(¢), 8(1)] denote the
trajectory in &,[T;, o) of the control system [TE, 0, 0, B;] for the null control
£(£)=0 with the initial state [4(T}), 2(T}), 8(T,)]1=[uy, vy, 6,]. Then the equality
(3.2) for 4(¢) and T, in the place of # and 0 holds, and hence there exists a time
T,>T, such that (3.3) holds for A(T,), 8(T,) and grad 6(T,). Put [ii,, #,]=
[#(T,), 4(T,)]. Then, by the same arguments as above, we see that, if ||[4,,
7,]]12>¢/3, then there exist [u,, v,, 0,] in 2(%}) satisfying

E [u,, v;, 0,] < E,[uy, vy, 6,]—¢2/8.

and a control f,(f) in FE[T;, T,] with supy, <,<1, {f2(t))1,2<n which steers
[u, vy, 0,1 at Ty to [u,, v,5, 6,] at T, for the control system [TE, 0, 0, Br].
Repeating this procedure, there is an integer N =1 such that we can take [4,, 7,] €
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H*(Q) x H'(Q), [uy, vy, 0,1€ 2(Zy), T,> T, and f (e FR[T,-,, T,] with
Supr, _,<r<1, [ 1,2<n, for which the null control steers [u,_;, v,_;, 0,-1]
at T;l—l to [am 511] at T;n’fn(t) steers [un—la Un—1> on—l] at T;l—l to [um Uns en] at
T, and the inequalities

El[um Ups Gn] é El[un—l, Up-1, 0n—1] - 82/8

hold for 1=n <N, and either the inequality
iy, 3n112 < ¢/3 or E[uy, vy, Oy] <e
holds.
Putting f(1)=f(t), T,_<t<T,, n=1,2,..,N—1, and
0 when [|[uy, va]l2 < /3
f@® =

Ix@® when E,[uy, vy, Oy] <&,

Ty -1 =t< Ty, we obtain the required control in the case of m=2.
In case m=3, we consider the energy E,[u, v, 8] and the semi-norm

ITu, v1lle = {li[u, v]IZ + [ 4v]?
+ Ss {I'(Au—(af/x) grad [4~1 (divv)]), Au — («f/k) grad [4~* (div v)])>dS
+ a(Au — (af/x) grad [4~! (divv)], Au — (af/x) grad [4~ (div v)])}1/?

instead of the energy E,[u, v, 0] and the semi-norm ||[«, v]|, respectively. Here
we denote by 4! Green’s operator related to Dirichlet’s homogeneous problem
for 4, i.e., if fe L*(Q), then 4~1f is defined as the solution u of the problem

ue HY(Q) n H¥(Q), du=f in Q.

It is well known that 4~1 is a bounded linear operator from L2(Q) to H}(2)n
H?(Q) and from HY{(Q) to HL(Q)n H3(Q). If [ug, vy, 05] belongs to 2(L3),
then for {>0, we can take a positive time 7T such that, in addition to (3.3), the
inequalities

llgrad 0D < 0T <¢
and

lgrad 4710(T)l; = [47*0LT)||> < const. |6(T)|| < ¢

hold for the trajectory [u(f), 6(¢)] of the control system [TE, O, O, B/] for the
null control f(f)=0 with the initial state [u(0), u,0), 6(0)]=[uq, vo, 0o]- Since

Au(T) — agrad (T) = Au(T) — (af/x) grad [4~* (div u(T))]
— (a/x) grad [471(0(T))],
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if aB/x is small, then the semi-norm | - || ; induces canonically the norm on 2(« %)/
(% x {0}) which is equivalent to the standard quotient norm of 2(«/3)/(%r x
{0}); and the norm of 2(«/}) is equivalent to |- ||(3,,). Thus we can prove the
result for the case m=3 by the same procedures as in the case of m =2, although
estimates are much more complicated. We omit the details of the proof.

LemMa 3.3. For any n>0 there exists a constant 6>0 satisfying the
following :

If T>nT, for a positive integer n, then for any ¢€ R, with |¢|,=nd,
there exists a control f(t) e FR[0, T] with supg<;<1 K f(O)Pm-3/2<n which steers
[0, 0, 0] to [¢, O, 0] at the time T for the control system [TE, 0, 0, By].

PROOF. It is easy to see that any element ¢ in £ is represented as ¢=0Jp
with some 2-form p in s#™*1(Q2). Hence, in the same way as in the proof of
Theorem 2.2, we see that there exists a control f(¢) in F%[0, T,] which steers
[0, 0, 0] to [¢, O, 0] at the time T, and, further, satisfies the inequality supg<;<r,
Lf®)Ym-32=const. [@|,. Thus there exists 6>0 such that, for any ¢, in
R with ||@ol,.=<9, the state [0, 0, 0] is steered to [¢o, 0, 0] at T, by a control
fo(®) in FRLO, T,] with supo<,<zo € fo()Pm-3/2<n. Noting that [u(1), ()] =
[bo, 0], 0Zt<T,, is a trajectory of the control system [TE, 0, 0, Br] for the null
control f(t)=0, we see that the state [¢,, 0, 0] is steered to [2¢,, 0, 0] at T, by
the control fy(f). In this way, we see that the null state is steered to [n¢,, 0, 0]
at nT, by the control f(t)=f,(t—kT,), kT, <t=(k+1)T,, k=0, 1,...,n—1. For
any T=nT,, put f(1)=0, 0Zt<T—nT,, f()=f(t—T+T,), T-nTy<t=<T. Then,
clearly this control f(¢) belongs to FH[0, T1], satisfies supo<;<r f(ODDm-3/2<n
and steers the null state to [¢, 0, 0] at T for any ¢ € Z, with ||¢||,,=nd.

LemMA 3.4. Given n>0 there exist e>0 and T>0 such that, for any u(t) e
%0, co; H™(Q)) n €10, co; H™1(Q)) with suPg<i<o l[Ut)| <& and any T> T,
there exists a control f(t) in FR{[0, T] with supo<,<1 f(®)Ym-3/2<n which
steers [0, 0, 0] to [—Pu(T),0,0] at the time T for the control system [TE, 0, 0,
B;]. Here P is the orthogonal projection from L*(Q) to Zy.

PROOF. Let r=supg<,<o, ||u?)]]. Then we have
(n+1)To
I1Pu(T)Il = lu(T)] = llu(O)] +§0 lud)lldz = [u)] + (n+DrT,.

for any Te[nT,, (n+1)T,]. Since the subspace %, is finite dimensional, there
exists a constant y, such that

[dllm < v2lloll forall ¢ey.
Hence

IPu(Dllm = y2lu(O)|| + nry, T, forall Te[nT,, (n+1)To].
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For given >0, let us take 6 >0 stated in Lemma 2.3 and put €=6/2y,T,. Then,
if r <e, then choosing n, so large that

P20u(O)]| + (no+1ry, Ty < ned

we have
(3.10) |Pu(T)|,, < néd for any Te[nT,, (n+1)Ty], n = n,.

Put T=n,T, and let T>T. Then taking an integer n so that nT,< T<(n+1)T,,
by Lemma 3.3, we see that the null state can be steered to —[Pu(T), 0, 0] at T
by a control f(f) in #{[0, T] with supy<,<7 f()Pm-3,2<n for the control
system [TE, 0, 0, B], since (3.10) holds.

LeMMA 3.5. Let m=2 or 3. Then there exist positive constants @, and
d,., depending only on m, A, I’ and Q, such that if w,(«, B, K)<®,, then the
following is satisfied.

For any n>0 and [uy,v,] in 2(7) with ||[ug, 03]l mm-1)S At @, B,
K), there exist a positive time T and a control f(t) in FF[0, T] with supg<,<r
Lf(OYPm-3/2<n which steers [0, 0, 0] to [uy, v,] at T for the control system
[TE, 0, 0, B.].

PrROOF. We define a semi-norms | - ||, on 2(«F) as

[, v]l e = {a(u, u) + |v]|2 + SS {Tu, uydS}i/?

for [u, v]e H(Q)x L¥Q),
ICu, v]lle,, = {Z 70 Il Fu, V1123172 for [u, v]e 2(7).

Then {||[u, v]lI2,+ ul?}!/? defines a norm on 2(«%) which is equivalent to
the graph norm. Let Z,, be the orthogonal complement of % x {0} in the space
2(7) with respect to the inner product defined by the norm {|[u, v]||2 +
lul|2}'/2 and Q,, be the orthogonal projection from 2(«F) to Z, with respect
to this inner product. By (3.1), the inequality

(3.11) [ul? < volatu, w) + {_<Tu, upds)

holds if u e HY(Q) and (u, ¢)=0 for any ¢p € Z. Since (u, ¢)=0 for any [u, v]e
Z,-, and ¢€Zr and the norm {||[u, v]||%, _, + [lu]|?}!/2 is equivalent to
I “ llgm,m—1y bY (2.6), (3.11) implies that |- |, _, is a norm on Z,_, which is equi-
valent to the standard norm induced by || - [|,,,m—1)- Hence there exists a constant

Ym > 0 satisfying

(312 |[u, )lgmm-1) = Vmlllw, v]lle,,.,  forany [u,v]eZ,_,.
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Let V() be the semigroup generated by «/;. Then the energy equality

1V@® Lu, vll,,,.-, = 14, v1le,._,
holds for any [u, v]e 2(«/% 1) and t=0; cf. [15]. For any [u, v]le 2(F1)
and positive integer n, we put [uy, vo]=[u, —v],
[+ 15 Oxs 1] = V(To) g, 0] — (/(n—k)Qp— 1 V(To) [hs v], 0=k =n—1,
G13) ful) = = (U(n=k)K[Qm- V(To) [ty v]1(1), 0=t T,

and f(t)=f(t—kT,), kTo<t<(k+1)T,, 0<k<n-1, where K is the bounded
linear operator stated in Corollary B. Let #(f) be the trajectory of the control
system [E, 0, B;] for the control f(f) with the initial state [ug, vo]. Then we
easily see that

() = PV(t—kTo) [y, v] — (1/(n~K)LLQp- 1 V(To)[us 11D

on [kTy, (k+1)T,], 0£k<n—1, where P[u, v]=u for [u, v]e H"(Q) x H™"1(Q)
and L is the bounded linear operator stated in Corollary B. Since Q2_,=0Q,,_;
and

1Qm-1lu, v1ll,.-, = I[u, v]l,,,.,  forany [u,v]e2(F71),
we have
ITuss vidle,-y = IV (To) [tti— 15 Vx— 1] — (1/(n =k +1)Qp— 1 V(To) Ltty— 1, v4- 11l -,
= (1=1/(n—k+1D) [ Qm-1V(To) (-1, vh-11lle,n-,
=(1-1/(n—k+D) [V(To) [ux-1, V-1 lle,n-,
=1-1n—k+D) [ux-1, x-11lle,n-, =
= (1—k/n)| [uo, volll,.-,, 1=k =n.
Hence, if t € [kT,, (k+1)To] (0=k=n-—1), then

(3.14) KO m-32 = A=) Kl 1V (To) [t 04l gmm- 1)
= /(= DN K @~ 1« V(To) [t vl
= ¢,(1/n) |l [uos voll gnym-1)

and

139D = 1V(E—kTo) [ug, vellle,-,
+ /(= EDULINNCm- 1 V(To) [t villgmm—1)
= (1=k/n) [Luo, vollle,-, + Ym(/MNLI (0> vo]llepn-,
= cul(n—k+1)/n} [[uo, vollle,.,, 0=j=m—1,
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where c,, is a constant depending only on m, 4, I and Q. Put
(3.15) u(t) = (nTy—t) and f(t) = f(nTy~1).
Since

ILw(0), v(0)]lle,,-, = I[E(nTo), —(nTp)1l.,., = O,

v(0)e # and v (0)=0. As in the proof of Lemma 2.3, we see that there exists a
solution [u(?), 68(¢)] in &,[0, nT,] of the control system [TE, O, 0, B;] for the
control f(f) with the initial state [u(0), u(0), 6(0)]=[v(0), 0, 0], and w(f)=
u(t) —uv(?) satisfies the inequalities

1/ {Ilw*D(nTo)|1?> + a(wP(nTy), wil(nTo))

+ Ss IwD(nTy), w(nTo)pdS + (a/ B0 (nTo)|%}

nTo .
< @) | oo dr

< (aplar)er To 2 1=b{(k +2)/n}? || [uo, voll2,.-,
< (@B/4x)ci(n+ DTyl [uos vo1llZnm-1yy O0Sjs=m— 1.

In a way similar to the proof of Lemma 2.5, we have

(3.16) 1@m—1[W(nTo), w(nTo)II%,._, = IIw(nTo), w(nTo)llZ, .

é cmwm(a5 ﬁ, K)nTOH [u05 UO] "(m,m-—l)

with a constant c,, depending only on m, 4, I and . Clearly the operator which
maps [u, v]=[uy, —vo] to v(t) is linear. Thus the operator R, which maps
[u, v] to [w(nT,), w{nTy)] is linear. Further if [u,, —v,]e 2(x/%1), then
[w(nTy), w(nT,)] belongs to 2(a7~1). Putting R,=Q,,_,R,, we see that K,
is a linear operator on Z,_,. Further the inequalities (3.12), (3.16) and the
equality [[[u, v]llnm-1,= {40, Vo]ll(mm- 1, imply the inequality

(3.17) IR < (et B, KINTo

with a constant 7, depending only on m, 4, I and Q. As in the proof of Theorem
2.1, (I+R,) [u, v]=0Q,_ [u(nTy), u(nTy)], where [u(z), 6(t)] is the trajectory of
the control system [TE, 0, 0, B;] for the control f(¢), which is given by (3.13)
and (3.15), with the initial state [1(0), u,0), 8(0)]=[v(0), 0, 0]. Put

B(r) = {[u, 1€ Zpo s | 10t 0 mmes, < 7}

for a positive number r. Then, by (3.14), if [u, v] € B(nn/(2c,,)), then LIfODm-3/2
<n/2 on [0, nT,]. Now assume that
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(3.18) 8w, (o, B, K)¥mTo < 1,
and take a positive integer n, such that
(3.19 {4w,(a, B, K))aTo} ! — 1 < ny £ {4o,(a, B, K)¥,uTo} 1.
Then, by (3.17),
IRuoll < {Fmoom(e, B, )10 To}/? < 1/2.

Hence (I + R, )~! exists and

I +R) il £ (1= IR, )7t £ 2.
Therefore

(I +R,)B(non/(2c,) = B(non/(4c,)) -
By (3.18) and (3.19),

notif4cy, 2 (n/4cy) {4wn(e, B, K)inTo} ™' — 1
2 n/{32¢,0n(®, B, €)¥mTo} -
Putting
@, = 1/(87,T,) and d, = 1/(32¢,7.To),

we have shown that, for any [#, 7] € Z,,_, with ||[#, 7] ||(m,m_1)§3mn/wm(oz, B, x),
there exist some elements [u, v]e (w7 1) with Q,,_[u, v]1=[4, 0], ¢o€Zr,
6 € H"(Q) n HY(2) and a control f(¢) € FR[0, noTo] with sUPg<;<uoro K F(OPm—3/2<
n/2 such that f(¢) steers [@q, 0, 0] to [u, v, 8] at nyT, for the control system [TE,
0, 0, By]. Note that the inequalities

”Qm—l[us v]"(m,m—l) =—<_ '))m”Qm—l[u’ U]”em_l
é c;n'ym“ [ua U] ”(m,m—l)

hold for any [u, v] € 2(«/1~!) with a positive constant c,, depending only on
m, A and Q. Putting d,,=d,/(c.y,), we see that, for any [u, v] € 2(a%1) with
(L, 01l mym—1) S At/ 0@, B, x), there exist functions ¢o, ¢4 € %y, 6 € HM(Q) N
HY(Q) and a control f(t) e FR[0, nyTp] With supg<;<n,ro K ()Y m-3/2<n/2 such
that f(¢) steers [¢g, 0, 0] to [u+¢,, v, 6]. Subtracting ¢, from the trajectory,
we see that f(¢) steers [0, 0, 0] to [u+¢, v, 8] for some ¢ € Z;.

By Lemma 3.3, the null state is steered to [— ¢, 0, 0] at a time T(=nyT,)
by a control f(£) in FR[0, T] with supo<,< <Ff()Pm-3/2<n/2. Putting f(t)=
F(@®), 0Lt T—noTo, f(£) = f(t— T+nyTo) +f(t), T—noTo<t< T, we easily see that
the control f(¢) steers [0, 0, 0] to [u, v] at Tand satisfies supg<;<1 f(OPm-3/2<1-
Thus we obtain the result.
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Put &, =min {®,, @,}, where &®,, @, are constants given in Lemmas 3.2
and 3.5 respectively. Let

B,(r) = {[u, v]e 2(« | [u, )l mm-1y <7}  for r>0.

PROPOSITION 3.1. Let m=2 or 3, G be an open and connected subset of
H™31%(S) containing 0 and g(r)e N\"=4 &1 (0, co; H™I=1(Q)) n Wm=1.1(0, o0}
LX(Q)), q(1) e N\"=¢ &7 (0, c0; H™I71(Q)) n Wm=1:1(0, co; L¥(Q)). Further let us
assume that in case m=2,

lg@®I + lg)|—> 0 as t— oo,
and in case m=3, q(t) € H{(Q) for all t>0 and

lg D1 + gl + lg@ll; + lg®l; — 0 as t—> .

If w,(a, B, K)<®,, then, for the control system [TE, g, q, Br], the subset
#7(G) is admissibly controllable to the set B,(d,n/2w,(a, B, k) in the constraint
set F(G).

Here n is a positive constant such that the n-neighborhood of the origin in
H™3/%(S) is contained in G and d,, is the constant stated in Lemma 3.5.

Proor. Noting [0, g(t), g(t)] € N\"=§ ¢{(0, co; HY(Q)x L¥(Q)x L¥Q)) and
[0, g(0), g(0)] € 2(#;) when m=3, by the general semigroup theory, we see that
the null control f(t)=0 steers the null state to a state in 2(%%1) at the time T,
for the control system [7TE, g, q, Br]- By Lemma 3.1, any state [uq, vg, 0] in
A7(G) is steered to some state in 2(ZL71) by a control fy(¢) in F7(G) at the time
T, for the control system [TE, 0, 0, B;]. Hence we easily see that f,(¢) steers
[uo, vg, Bp] to some state [ul, vy, 04] in 2(Z7 1) at T, for the control system
[TE 95 9, BI']

We give the proof for m=2. By the assumptions on g(¢) and ¢(¢), for any
&¢>0 we can take T; (= T;) such that

(3:20) lo®l + @B 2la®0] <o for 12T,
and
(321) [" tgoon + @prelgoond <e j=0,1

Put fi()=fo(®), 0=t=T,, f1()=0, T, <t<T,, and let [u,, vy, 6,] be steered to
[u,, vy, 6,] at Ty by f1(£). Since [u,, v,, 0,] is in D(Fy), we see, by Lemma 3.2,
that for any ¢>0, [u,, v,, 0,] at T, is steered to some [us, v;, 0;] € 2(&;) with
E [us, v;, 03]1<e? at T, (= Ty) by a control f,(¢) in & %(G) for the control system
[TE, 0, 0, B;]. Let [u(?), ()] (t=T,) be the trajectory for the null control
f(©=0 with initial state [ua(T)), a(T,), 8(T,)]=[0, 0, 0] for the control system
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[TE, g, q, Br] and Sp(¢) be the semigroup generated by .#,. Putting V()=
[a(t), 1), 8(H)] and F()=[0, g(2), ()], we have

V() = S'T Sy(t—)F(2)dr.

Since F(t)e &1(Ty, oo; HY(Q)x L*(Q) x L2(R)), V(t) belongs to 2(%r) for each
te [Ty, o) and satisfies the equality

V() = — F(t) + Sp(t—T)F(T)) + ST St —)F (v)dx.

The equality (3.4) shows that E,[S;(¢)[u, v, 0]1<E[u, v, 8] for any t=0 and
[u, v, 0]1e H(Q) x L*(Q) x L*(Q). Since E}/? is a semi-norm on H(Q) x
L2(Q) x L*(Q), we have

(322 EY2[u(t), (), 6(1)]
< Ey? BT Sr(t—r)F(‘r)d‘t]
+ Ey? [— F(f) + S;(t—T)F(T,) + S'T Sr(t—r)F,(z)dr:l
< (| EyarF@de + EYLF@] + BYLRT] + | BYPLF(@de
< Ug@1 + ©Ipy gz + 190l + @82 1q(0

+ 1g(THIl + (/B *1¢(T| + g;‘(llyt(f)ll + (/) 2llgd)l)dz

< 4¢

for any t>T,, where the last inequality follows from (3.20) and (3.21). Put
f:(0=£(0), Ty St< T, f5(1)=0,t=T,, and let [4(z), (f)] be the trajectory for the
control f(#) with the initial state [2(T}), 2,(T;), 8(T,)]=[u,, v,, 8,] for the control
system [TE, 9,4, BF] Then [a(t)9 at(t)! g(t)] =S1‘(t— Tl) [u3’ U3, 03] + [ﬁ(t)a
i (t), 8(t)] for t=T,. Hence, by the inequalities (3.4), (3.22) and E!/2[u,, vs, 0,]
<¢, the inequality

E}2[0(), 2,(2), ()] < 5e

holds for any t=T,. By Lemma 3.4, we can take £¢>0 so small that there exists
a control fy(t)e FE[T,, T;] with supr,<,<r, {fo())1,2<n/4 which steers the
null state at T, to [—Pu(T;), 0, 0] at some time T; for the control system
[TE, 0, 0, By], since

a0l < EV2[a), a1), 6] < 5¢ forany t2 T,
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We can take T; as large as we wish. Let us take Tj so large that T3 =T, + Ty,
This implies that the state [A(T5), 4(T5), O(T,)] at T, is steered to [u4, v4,0,]=
[4(Ts)— Pa(T3), 2(Ts), 8(Ty)] at Ty by the control f,(f) for the control system
[TE, g, q, Br]. Since P is the orthogonal projection from L?(Q) to %, we easily
see that [u,, v,]€Z;. Thus, by the inequality (3.12),

ITuas 04T 12,1y = V3l [uas 04112= 2}l [(T3), 2(T3)1112

Noting the inequalities

| grad 8(T3)|12 < const. ||k 40(T5)|?
< const. {|[x40(Ty) — Bdiv a(T3)|> + B2|| div 4(Ty)||12}
< const. E;[4(Ty), 4Ts), 0(T3)],

we have

[[us, vadliZ2, 1y < YIITA(TS), 8(Ty)]I2

< 29HE[(T3), 0(T3), 8(T3)] + o2 grad 8(T3)(%}

< const. E[A(Ts), #1(Ts), (T;)] < const. €2,
where const. may depend on «, § and k. By Corollary 2.1, if ¢ is sufficiently
small then there exist a control f5(t) € £F[0, To] with supg<,<r, Kfs())1,2<n/4
and 8, e HA(Q) n HY(RQ) such that fs(t) steers the null state to [uy, v4, §,] at T,
for the control system [TE, 0, 0, B;]. By Lemma 3.5, for any [u, v] e B,(d,n/
2w,(a, B, k)), there exist a positive time T, (= Ty), a conttol f4(¢) e £[0, T,] with
SUPo<r<1, Kf6(O)D12<n/2 and 6e HA(Q)n H{(RQ) such that the control fy(1)
steers the null state to the state [u, v, 8] at T, for the control system [TE, 0, 0, B].

Taking T; greater than T, + T, and putting

[, 0=tsT,
f(0), T\St=T,
f(0) = fa(0), L=st=T;-T,,
Jl) + f6(t—-T5+T,), T3 —T,St=<T; — T,
Ja@® = fs(—Ts+To) + fs(t—Ts+Ty), T3 —To<t=<Ts,

we see that the control f(t) belongs to #3(G) and steers [ug, vo. 0] to [u, v]
at T;. This completes the proof for the case m=2.
Noting that

Py <g;l‘Sr(t—t)F(r)dt)
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= Z(=F©) + S{OFT) + || S1-0F o)
= — ZrF(t) + Sp()ZrF(Ty) — F(t) + SH(F(Ty) + S; Sr(t—1)F(t)dt

holds under the assumptions on g(¢#) and q(f), we can similarly prove the case
m=3.

As in [21], we give the definition of holdable states.

DEFINITION 3.2. An element u in H™(Q) is said to be a holdable state for
time independent external forces g € H™2%(Q), g€ H"%(Q) and a constraint G,
if u satisfies the following

—Au+agrad0 =g in Q and BrueG
for the solution 8 of

—Kkd40=q in @ and =0 on S.
Now we easily come to the main theorem.‘

THEOREM 3.1. Let m=2 or 3, G be an open and connected subset of
H™3/%(S), go € H*%(Q) and qo€ H"2(Q). Further assume that the functions
g(t)—go and q(t)—q, satisfy the assumptions in Proposition 3.1 in place of g(t)
and q(t) respectively.

If w,(a, B, K,) < @4, then, for any holdable state u, for g, qo and G, the
set M7(G) is admissibly controllable to the set [ugy, 0] + B,,(d,n/20,.(%, B, k))
in the constraint set F3(G).

Here n is a positive constant such that the n-neighborhood of Brug in
Hm™312(S) is contained in G.

Especially the set #'%(G) is admissibly controllable to any holdable state
in the constraint set F7(G).

PrOOF. Applying Proposition 3.1 to the control system [TE, g —go, 4 — 4o,
Br] and to the open set G — Brugy, and then adding [u,, 0, 6,] to the trajectory,
we obtain the results.

For the control system [TE, g, q, Bp], we have similar results in the same
way. We define holdable states for the control system [TE, g, q, Bp] similarly
to Definition 3.2. ' ’

Then we obtain

THEOREM 3.2. Let m=1 or 2, G be an open and connected subset of
H™1%(S) and the hypotheses on g(t) and q(t) in Theorem 2.1 be satisfied.
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Further assume that there exist functions g, € H"%(Q) and qo€ H"%(Q) such
that, in case m=1,

9(t) — goe LY(0, oo; L¥(Q)), q(t) — g0€ LY(0, c0; LX(Q))
and, in case m=2, in addition to the above,

g(t) — g, in L¥Q), q(t)— qo in L¥(Q) as t —> o,
g{t) € LY(0, 005 L*Q)), gq/(t)e L'(0, o; LX(Q)).

Then, if w,(a, f, k)< ®,,, for any holdable state uy for go, 9, and G, the
set MA(G) is admissibly controllable to the set [ug, 0] + B,(d,.n/20.(e, B, k)
in the constraint set F7(G).

Here n is a positive constant such that the n-neighborhood of Bpu, in
H™1/2(S) is contained in G.

REMARK 3.2. For the control system [E, g, Br] (resp. [E, g, Bp]), we obtain
the results corresponding to Proposition 3.1 under the simpler assumptions

(3.23) lgP@®) —0 as t—> 0, 0Zj<m-—1.

In fact, for any £>0 there exists T; such that [|g)(¢)| <e, 0Zj<m—1, for
allt=T;. Hence the difference between the values of trajectories at T, + T for the
external force g(f) and the zero external force with the same initial state at t=T
(= T)) is estimated by c,eT, with a constant c,, depending only on m, 4 and Q.
For any >0, taking ¢ so small that the null state is steered to any state with the
norm estimated by c,eT, at Ty by a control f(t) with supg<;<r, K f(OPm-3/2<n
(resp. SUPg<, <1, K f(DPm—1/2<1n), we see that it is sufficient to consider the case
when g(t)=0. Thus we obtain the results in the same way as in the proof of
Proposition 3.1.

Noting that the control system [E, 0, B;] (resp. [E, 0, Bp]) is invariant under
time reversal, we easily see that the set M7(G) (resp. M(G)) is admissibly control-
lable in the constraint set F(G) (resp. #3(G)) under the assumptions (3.23)
for any open and connected subset G in H™3/2(S) (resp. H™~1/2(S)) containing
0. Here

M%G) = {[u, v]e HM(Q) x H" (Q)| Bru e G}
and
"(G) = {[u, v]e H"(Q) x H" (Q)| Bpue G}.

ReMARK 3.3. For the control system [TE, g, q, Bp], there always exists a
holdable state for any g € H™ (), g € H"2(Q) and G (#9). But, for the control
system [TE, g, q, B;], there does not in general exist a holdable state. In [16],
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the case where the controls are constrained so that small forces are exercised by
means of pushing the boundary was considered. There, we considered the
constraint set #(G, ,) with

|h(x)| = <h(x), h(x)Y1/? < 7
x), h(x)y < —(1+72)~12|h(x)|

for constants #>0 and y, 0<y<1, and showed that, if the absolute values of

G

nY

= [ h e H™=3/%(S)

620 gdx | frg0-xg@dx (1 =i<jsn)

are small in comparison with #, then there exists a holdable state u for g and
G,,,» which is defined as a solution of

—Au=g in Q, 0u/dv,eG,,.

There also exists a holdable state for the control system [TE, g, q, Br] for
g, q and G,, under the same assumptions on g. In fact, it is easy to see that a
necessary and sufficient condition for the existence of the solution of the boundary
value problem

(3.25) —Aw =g —agradf in Q, Bw=hon S

for given functions g, 0 and h, is that the equality
(3.26) SQ (g — agrad 0, p>dx = — Ss Chy $>dS

holds for any function ¢ e 2. By noting that Z,<{¢ € C*(Q)*|a(¢, ¢)=0},
we see, in the same way as in [16], that if the absolute values of (3.24) are small,
then there exists a function h in G, , satisfying the equality

SQ (g, d>dx = — SS Chy 5dS  forany e ;.

For any given function ¢, there exists a solution of the equation
~xkd0=¢q in Q 6=0onS.

For this solution 6 and for any ¢ € #,, we have
gn<—agrad 0, pydx = — ags (v, $>dS + ag <8, div ¢>dx = 0,
2

since' =0 on S and div¢ =0 for any ¢ € Z,. Hence h satisfies (3.26) for ‘any
¢eRr. Thus, for the functions:g, g ‘and h, there exists a solution of (3:25),
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Therefore, for any g such that the absolute values of (3.24) are small, for any
q € H™2(Q) and for any constraint G, ,, a holdable state exists.

By Sobolev’s imbedding theorem, we see that the subset G, is open and
connected in H3/2(S) when n=3. Thus we can apply Theorem 3.1 for m=3 and
n=3, with the constraint set #3(G,,,).
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