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1. Introduction

Tn this paper we consider the fourth order Emden-Fowler type equation

(1) J>(4)

where α>l is a constant and p(t) is a positive continuous function on [f0, oo),
t0 >0. We are concerned with oscillatory and nonoscillatory properties of proper
solutions of (1). A nontrivial real-valued solution y(t) of (1) is called proper if
it exists on some half-line [Ty, oo)c:[f0, oo). A proper solution is called oscil-
latory if it has arbitrarily large zeros; otherwise it is called nonoscillatory.

We denote by &* the set of all proper solutions of (1). From the viewpoint
of oscillatory and nonoscillatory properties, <? can be decomposed into a disjoint

union

•'& = Θ U ΛΛ

where Θ (resp. ,/Γ) is the set of all oscillatory (resp. nonoscillatory) solutions of
(1). Moreover rf can be decomposed into a disjoint union

where ./Γ0, */Γ2

 anc* ̂ 4 denote the sets of nonoscillatory solutions y(t) satisfying,

X0/(0 < 0, y(i)y"(i) > 0, y(f)y'"(i) < 0,

X0/(0 > o, χo/'(0 > o, xorw < o
and

X0/(0 > 0, XO^ίO > 0, X0/"(0 > 0

respectively, for all sufficiently large t. The following results are known:

THEOREM A (Kiguradze [3]). Λ^^

THEOREM B (Kitamura [6]). ./r2 = 0 if and only if

(2)
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THEOREM C (Kiguradze [2]). (i) ^Γ4 = 0 if

(3) Iiminf f _ > 0 0 ί 1 +

(ii) Λ^0 if

\ t3*p(t)dt < oo.
Jίo

THEOREM D (Kiguradze [5]). 0^0 if p(i) is locally absolutely continuous
on [ί0> oo) and satisfies the condition (2).

It seems to be unknown when 0 = 0 holds for (1). The purpose of this paper
is to establish conditions under which 0 = 0 or 0^0. In Section 2 we give con-
ditions for (1) to have no oscillatory solution. In Section 3 we prove the existence
of oscillatory solutions of (1) without the above condition (2). That our results
are sharp is illustrated by an example. Finally we mention the paper [7] in which
conditions are presented for the nonexistence of oscillatory solutions for third
order Emden-Fowler type equations. The reader is referred to the survey article
of Kiguradze [4] for typical results concerning the qualitative theory of solutions
of n-th order Emden-Fowler type equations.

2. Nonoscillation criteria

In this section we find conditions under which equation (1) has no oscillatory
solution (0 = 0).

THEOREM 1 . Let (d/dt)p(t) < 0 for t > t0 an d

(4) t^«p(t)dt< oo.
Jfo

Then every proper solution o f ( l ) is nonoscillatory.

PROOF. Suppose to the contrary that there exists an oscillatory solution
y(t) of (1) on [Γ, oo), T>f 0. Let {tn}™=1 be an increasing sequence of zeros of
y"(f) such that lim,,.̂  ίn=oo. Choose, for each π, sne(tn9tn+1) such that
\y"(sn)\ =max {|/'(OI : tn< t < tn+ ί}. Consider the function

v(t) = /'W« - y (y"(W2 - -j^XOIX/)!1^.

Since /"(srt) = 0, we have vω=-(^{sll))2/2-Xsll)|Xsll)|1+-/(l+α). On the
other hand, from our assumption,
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for t > T. Therefore there exists M > 0 such that \y"(sn)\ < M for all n. From the
choice of sn, it follows that |/'(f)| <M, t > t^ Consequently, |X*)| <Mf2, t > T1?

provided T1>t1 is sufficiently large. This together with (4) implies that

(5) Γ f
JTΊ

< oo.

Now y(t) can be considered as an oscillatory solution of the linear equation

(6) z«>

and, as is well-known, (5) is a sufficient condition for (6) to have no oscillatory
solution. This contradiction completes the proof.

THEOREM 2. Suppose that there exist positive constants ε and K such
that p(t)t^*+5+εV2>K and

(7) Aj [>(0'(3α+5+ε)/2] < 0

for t>t0. Then every proper solution o/(l) is nonoscillatory.

The following lemma (cf. Bellman [1, p 155]) is needed in proving Theorem 2.

LEMMA!. Let y'(t) be bounded on [T, oo) and Xί)eL2[T, oo). Then

PROOF OF THEOREM 2. If ε>α— 1, then, as easily verified, p(t) satisfies the
assumptions of Theorem 1. Therefore it suffices to consider the case 0<ε<α — 1.
We make the change of variables

(8) x = logf,

where λ = 3/2 + ε/2(α— 1), which transforms (1) into

(9) vv(4) + aΛw + a2w + a$w + a4w — /(x)|w|α sgn w = 0,

where - =d/dx, ^=4/1-6, α2 = 6A2-18λ-Hll, α3 = 4>l3-18/l2 + 22/l-6, a4 =

A(A-l)(A-2)(A-3) and/(x) = Jp(ί)ί(3α+5+δ)/2. Suppose that (1) has an oscil-
latory solution XO on [T, oo), T>t0. Then the function w(x) defined by (8) is

also an oscillatory solution of (9) on [x0, oo), xQ = \og T. Let {xn}*=ι be an in-
creasing sequence of zeros of w(x) such that limn^00 xn=oo. Choose, for each

n, sne(xn, xn+ί) such that |w(sn)| = max {|w(x)|: xn<x<xn+i}. Consider the
function
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F(x) = w(x)w(x) - ~(w(*))2

- a, (w(s))2ds + a, (w(s))2ds
J XQ

Then it follows from (7) that F(x)= -f(x)\w(x)\l+*l(l + α)>0, x>x0, so that

F(x) is nondecreasing. Since w(s,,) = 0, we have

F(sn) = - -y (*(*-))2 -
—(10)

We wish to show that

(11) HmJc^00wU) = 0.

We consider the case where 0<ε<α — 1. Then we obtain 3/2 < λ<2 and

(12) al > 0, α3 < 0, a4 > 0.

Since

\at(w(sn))*--^f(sn)\w(s^ kίOI

it follows from the choice of sn that w(x) is bounded. Therefore, letting Π-+CQ

in (10) and using (12), we have

(13) ( °° (w(s))2ds < oo, Γ (w(s))2rfs < oo.
J XO JXQ

Transforming back to the original variables, we see from the boundedness of

\v(r) that y(t) = O(tλ) as f->oo, so that, by (1) and (7), y(4>(t) = O(tλ~4) as /->oo.

Since XO is oscillatory, we obtain ym(t) = O(tλ~3)9 y"(t) = O(tλ~2) and y'(t} = O(tλ~l)

as ί-^-oo. Since

(14) w(x) - - λ*rλy(t) + (3λ2-3λ + ί)t1'λyf(t) + 3(1 -

w(x) is bounded. Applying Lemma 1 yields

(15) liniχ->oo ^W = l™Λ-*oo ^W = O

Consider the function
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V(x) = w(jc)w(*) - (w(x))2+aίw(x)w(x)+ α2(vv(;c))2

Then by (7) and (12) we see that

V(x) = fl,(w(x))2 - a3(w(x))2 - i-/(χ)|w(x)|i+« > 0, x > x0.

It follows from (15) that Hm^^ F(x) = 0, so that lim^^ F(x) = 0, which implies
from (1.5) and the boυndedness of w(x) that

(16) \imx^a4(w (x))2 - - — /(Λ)|w(Λ)|i+ = 0.

Suppose that lim sup,.^ |w(x)|>(5>0, where δ is a constant. Since w(x) is
oscillatory, there exists a sequence {zn}^=1 such that lim,,.̂  zw = oo and |w(zπ)| =JV,
where ΛΓ = min{(5/2, [α4(l + α)/2L]1^α~1)/2} and L is a positive constant such
that /(x) < L, x > x0. We have for all n,

> 0,

which contradicts (16). Hence (11) is valid. It remains to consider the case
where ε = α — 1. In this case we remark that λ = 2 and

ai > 0, a3 < 0, α4 = 0.

Letting n-^ oo in (10), we have (13). Since /(sn)>K>0, w(x) is bounded and
y(t) = O(t2) as f->oo. Similarly as above we have y<4)(0 = 0(r2) and y"(ί) = O(r1)
as ί-> oo . On the other hand, since p'(ί) < 0, t > r0, by (7), the proof of Theorem 1
shows that y"(t) is bounded. Thus, y"(f) = 0(l) and /(ί) = 0(ί) as ί-»oo. Pro-
ceeding with the same argument as in the case where 0<ε<α — 1, we conclude
that (16) holds. Consequently, (11) is valid. Transforming back to the original
variables, we see that y(t) = o(tλ), so that from (7)

(17) ^XOIXOI*"1 = KOί(3α+5+ε)/2^(l) = o(l) as ί - > oo.

Now y(t) can be considered as an oscillatory solution of the linear equation

(18) z«>

From the Leighton-Nehari's nonoscillation theorem [8, Theorem 6.2], (17) is
sufficient for (18) to have no oscillatory solution. This is a contradiction and the
proof is complete.

As an example, we consider the equation
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(19) yM = t»\y\ sgn y, t > 1,

where β is a real number and α > 1. Theorem 2 implies that every proper solution
of (19) is nonoscillatory if β + (3α + 5)/2<0.

3. Existence of oscillatory solutions

In this section we establish conditions guaranteeing the existence of oscil-
latory solutions of equation (1)

THEOREM 3. Suppose that p(f) is positive and locally absolutely continuous

on [f0> oo ) and let

(20) -^L [/?(/)/(3α+5>/2] >0

for t>t0. Then equation (1) has an oscillatory solution.
To prove Theorem 3, the following Lemma 3 will be needed. Lemma 3

will be proved by using Lemma 2. The proof of Lemma 3 was suggested by
Y. Kitamura.

LEMMA 2 (Kiguradze [5, Lemma 2.6]). Let p(f) be positive and locally
absolutely continuous on [ί0, oo) and let [ίl5 t2), tQ<t^ <t2<co9 be a right
maximal interval of existence for a solution y(t) o/(l). Then y(i) satisfies the
following inequalities in a certain left neighborhood of t2

jX^OXO >0 (ΐ = 0, 1,2,3).

LEMMA 3. Suppose that p(t) is positive and locally absolutely continuous
on [ί0, oo). Then for any ce(— oo, +00) there exists a solution y(t) of (1)
which is defined on [ί0, oo) and satisfies the following:

(21) Xί0) = y'(t0) = 0, y'0o) = c;

(22) liming |/"(/)| =0.

PROOF OF LEMMA 3. It suffices to assume that c is positive. Let c be fixed
We denote by y(t, d) the solution of (1) satisfying the initial conditions

/Oo) = .0, /'(ί0) = c, y'"(t0) = d.

It is clear that in the common interval of existence of y(t, rf,) and y(t, d2)

(23) /')(ί, dΛ) < /'>(/, d2) (i = 0, 1, 2, 3) if d, < d2 and «0 ± t.

Define the sets A* and A" by
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A+ = {d: yM(t, d) > 0 (i = 0, 1, 2, 3) for some ί > ί0}

and

A- = {d: χ'>(ί, d) < 0 (/ = 0, 1, 2, 3) for some t > ί0}.

From (23) and the continuity of solutions of (1) with respect to initial values,
it follows that A+ and A~ are open intervals. It is clear that A+ n A~ =0 and
QeA+. On the other hand, there exists a positive constant ε such that Xί, 0)
is defined on [ί0, ί0-h2ε]. Choose dί <0 such that

ε Γ~ f'o+ε ~Ί
c + -=- di H- }>α(f0 + ε, 0)\ p(f)dt < 0.

j ) *«-* I— •/ f 0 --'

We show that dj^^l + . Assume that d t e A + . By (23), then, Xί, d^ is defined

on [ίθJ *o + 2ε]. Noticing that Xί, 0)>3 ?(ί, d^ and Xί, 0)>0 on (ί0,
we have

ι)lαsgn v(ί,
,0

- l - - (/, 0)Λ
2 6 6

< ~ ε2 c + y d, +y«(l0 + B, 0) W Λ < 0.

Similarly as above, we have

β ? ί / 1 )<o (i = 0,1,2,3).

This implies that dleA~ and that dίeA+ Γ\ A~9 which contradicts A+ ft A~ =0.
Therefore dί^A + . By (23) and this, the set A+ is bounded below. Hence
there exists d0 = inf {d: de A + }. Since A+ is open, d0<£A + . Suppose that

Xί, d0) cannot be extended to +00. It follows from Lemma 2 that d0eA~.
However, since A~ is open, A~ contains a certain neighborhood of d0, which
contradicts the definition of d0 and A+{]A~=0. Therefore Xί, d0) can be
extended to + oo and d0<£ A+ U A~ . Suppose that Xί, d0) does not satisfy (22).

Then

liminf^l/"^, d 0 ) l>0.

In this case there exists t>t0 such that y( ί)(f, d0)Xί, d0)>0 (ί' = 0, 1, 2, 3). Hence
d0eA+ \JA~. From this contradiction, we conclude that Xί, d0) is a proper

solution of (1) satisfying (21) and (22).

PROOF OF THEOREM 3. We define the constants K, L and the function P(ί) by
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K = 27α2, L= X1/<«-1>P(ί0)-1/<β-1>, P(f) =

We choose c so that

(24) c2>

For this c, Lemma 3 guarantees that there exists a proper solution y(t) of (1)
satisfying (21) and (22). In the following we shall prove that y(t) is oscillatory.
Assume to the contrary that y(i) is nonoscillatory. We may assume that X*)>0
for all sufficiently large t. From (21) and (22), there exists T> t0 such that

(25) /(0>0, /'(*)> 0, /"(ί)<0

for ί > T, i.e., y(t)G^2

 BY (22) and (25)> we have

(26) 0 < y''(<x>) = lim,^ /(ί) < oo, /"(oo) = lim,^ ̂ (ί) = 0.

Hence integrating (1), yields for t> T,

(27) v(ί) = XT) + y'(T)(t- T) + /'(oo)(ί- T)2

ft r ίi roo roo
\ \

JT JT Jt2 Jt3

Using (20) and (25), we have

G t Γs \ /Γ0 0 Γ°
rfτrfϊ)(\

r J r /\}t Js

Therefore, we have

XO > /C'

for all sufficiently large t, say, t>Tί>T. Consequently,

(28) y(t) < AΓ»/(«-»)7>(/)-ί/(«-»)/3/2, / > T!.

By (1) and (28), we obtain

y<*>(t) < K n -vpφ-w-vr*'2, i > Γj.

Integrating the above over [ί, oo), ί > Γ1; and using (20) and (26), we obtain
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It follows from (20), (26), (27) and (28) that y"(oo) = 0. Hence we have, as above,

and

y"(f) <

c0 + J-

for ί> 7\, where c0 = /(T,). From (20), we have the following estimates

X/) <

y'(t) <

(29)

/'(*) < y KLΓ1'2,

-y'"(t) < jKLΓ3'2

for ί^Ti- We make the change of variables x = logf, w(x)=f~3/2χι), which
transforms (1) into

(30) w^ - Y w +~^w -f(x)\w\x sgn w = 0,

where = djdx and /(x) = P(t). Since

w(x) = Γ 3 / 2 y ( ί ) ,

w(χ) = - \Γ3l2y(t) + Γl'2y'(t),

(31)

w(je) = 1. r3/2v(/) - 2/-'/2.v'(ί) +tί/2y"(t),

using (28) and (29), we obtain the following estimates:

f(x)\w(x)\ί+* < KL2,

\w(x)\ < L,

(32) |w(*)| < L +
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for x > X j , xl — log Tj . Consider the function

(33) F(x) = w(x)w(x) - (w(

Then by (20),

l1+α < 0, x > x0, x0 = log ί0.

Hence by (32), we see that F(x) is bounded and that

(34) lim*-^ F(x) <

From (21), (31), (32) and (34), it follows that

1fff Y Λ — _— f f*2ι **^ lim Ft v i
j. \ ^θy ~~~ ^ *Ό £— x~*oo V /

L

which contradicts (24). From this contradiction, we conclude that y(t) is an
oscillatory solution of (1). This completes the proof.

The proof of Theorem 3 shows that, under the hypotheses of Theorem 3,

every proper solution y(t) of (1) such that y(to) = y'(to) = Q and |/'(f0)l is sufficiently
large is oscillatory.

THEOREM 4. Let p(i) be a positive continuous function on [ί0, oo), f0>0.
Suppose that there exists a positive constant ε such that

(35) -^ [>(/)/<3«+5-β)/2] > 0

for t>t0. Then every proper solution y(f) of (1) such that y(to) = yf(to) = Q is
oscillatory.

PROOF. We may assume that the number ε in (35) satisfies

(36) ε < α - 1,

since if (35) holds for some ε>0, then it also does for all smaller ε>0. Suppose
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to the contrary that there exists a nonoscillatory solution y(t) of (1) such that

y(to) = y'(tQ) = Q. Without loss of generality we may assume that Xί)>0 for all
sufficiently large t. It is easy to see that (35) implies (3). Hence it follows from

Theorem C that y"(t0)ϊQ and y(t)<$^4. Since Xί0) = /(ί0) = 0, XO^^Γo
Consequently we conclude that y(t)e^2, so that (25) holds. If /"(oo)<0,
then Xί)-> — oo as f->oo, which contradicts the assumption that X0>0 for all
large t. Hence (26) holds and y(i) satisfies the integral equation (27). From
(25), (26), (27) and (35), it follows that

y(t)

-i-(/- T)2y (t)P(l)

where P(0 = jp(0*(3α+5~ε)/2 From the above there exist Γ j>Tand K>0 such
that

(37) y(t)

By (1), we obtain

< K'Pφ-W'-VΓ5'2-*'**-1), t > T,.

By an argument similar to that employed in the proof of Theorem 4 we have,
using (35) and (36),

(38) y"(t) =

y(t) =

as ί->oo. We make the change of variables x = logί, w(x) = t~3/2y(i), which

transforms (1) into (30) with/(x) = P(Ofε/2 Since from (37)

/(«-i)rβ/<«-1>, t > Tl9

we have, by (31) and (38),

w(x)
(39) /(x)
as x-*oo. Consider the function F(x) defined by (33). From (35) we obtain

F(x)=~/(x)|w(x)|1+α/(l + α)<0 and hence \imx^00F(x)<F(x0\ x0 = logί0 It
follows from χί0)=/(f0) = 0, /'(ί0)^0 and (39) that

lirn^ F(x) = 0 < F(x0) = - -i- t0(y"(t0»
2 < 0,
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which is a contradiction. This completes the proof.

EXAMPLE. Consider the equation

(40) yW =;tP\y\«sgny9 t > 1,

where β is a real number and α> 1. Theorem 3 implies that (40) has an oscillatory
solution if /? + (3α + 5)/2 > 0. Combining this with Theorem 2, we see that (40)

has an oscillatory solution if and only if β + (3α + 5)/2 > 0. The classes of solutions
of (40) mentioned in the introduction can be characterized as follows :

Λ^O T* 0;

J/*2 Φ 0 if and only if α + β + 3 < 0;

*̂4 7^ 0 if and only if 3α + β + 1 < 0;

0 T* 0 if and only if β 4- (3α + 5)/2 > 0.
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