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1. Introduction
Let R" (n=2) be the n-dimensional Euclidean space, and set
Ry = {x=(x', x,); x,>0}.

In this paper we investigate the behavior near the boundary dR} of a-potentials

Ul = 1x=ylrr iy,

where O0<a<n and f is a nonnegative measurable function on R” satisfying the
condition:

M) [ s0wiyiedy < .
For y>1, we say that a function u has a T,-limit £ at £ e dR% if
lim, g ver, (g0 #(x) = ¢
for any a>0, where
T, a) = {(x', x,) € R}; |(x', 0)—&] < ax}/7}.

If u has a T,-limit at { for any y> 1, then u is said to have a T -limit at {. Our
first aim is to prove the following result:

THEOREM 1. Let ap>n and f be a nonnegative measurable function on
R" satisfying (1) with f<p— 1.

(i) If n—ap+pB>0, then for each y=1 there exists a set E,cdR% such
that H,,_,+5(E,)=0 and U] has a T,limit at any € OR} —E,.

(ii) If n—ap+p=0, then there exists a set EcORY such that B,;, (E)=0
and Uf has a T,-limit at any ¢ e 9R"% —E.

(iii) If n—ap+p<O0, then UL has a limit at any ¢ € OR".

Here H, denotes the ¢-dimensional Hausdorff measure, and B, , the Bessel
capacity of index (4, p) (cf. [5]).
As an application of (ii) of Theorem 1, we can prove a result of Cruzeiro
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[4] concerning the existence of T,-limits of harmonic functions with gradient
in L*(R%).

In case ap<n, if we further restrict the set of approach, then we can obtain
a similar result by replacing “T,-limit”” by “(a, p)-fine T#-limit”’. To do so,
we need a capacity C, , (-; ), which is a special case of the capacities of Meyers
[s].

Let G be an open set in R". For E<R", define

Co (E; G) = inflg||},

where the infimum is taken over all nonnegative measurable functions g on R”
such that g =0 outside G and Uj(x) =1 for every xe E, and | - ||, denotes the L?-
norm in R". A set E in R" is said to be (, p)-thin at ¢ € R relative to T, if for
any a, b, a’ and b’ with O<a’<a<b<b’,

2 272,200 C, (E 0 T(E, a, b); Gin T(¢, a’, b)) < oo,

where E;={x€E; 27 S|x—¢| <27}, G;={x; 27171 <|x—¢|<271*2} and T,/(¢,
a, by={x=(x', x,) e R%; ax}/?<|& —x'|<bx}l/?}.  We 'say that a function u
has an (a, p)-fine T#-limit ¢ at ¢ if there exists a set E< R% such that E is (a, p)-
thin at ¢ relative to T, and

limx—vg,xsry(g,a,b)-ls u(x)=4¢

for any a and b with 0<a<b; u is said to have an (e, p)-fine T¥-limit at & if it
has an («, p)-fine T¥-limit at £ for any y> 1.
Now we are ready to state our second result.

THEOREM 2. Let p>1, ap<n and f<p—1. Let f be a nonnegative mea-
surable function on R" satisfying (1).
(i) Ifn—ap+p>0, then for each y=1 there exists a set E,cOR' such that
yn—ap+py(Ey)=0 and U} has an (a, p)-fine T%-limit at any (€ R} —E,.
(ii) If n—ap+p=0, then there exists a set ECORY such that B,,, (E)=0
and UL has an (a, p)-fine T%-limit at any ¢ € OR" —E.
(iii) If n—ap+B<O0, then UJ has an (o, p)-fine Tk-limit at any &€ 0R™.

H

We shall also discuss the existence of T,-limits and («, p)-fine T¥-limits of o-
Green potentials in R, and give a generalization of a result of Wu[12; Theorem
1], in which he treated only the case n—2p+f>0 («=2). Since T;-limit ((«, p)-
fine T*-limit) coincides with nontangential limit (nontangential («, p)-fine limit),
Theorems 2 and 3 in [10] are included in Theorems S, 7 and 10 of the present paper.
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2. Proof of Theorem 1

For a nonnegative measurable function f on R*, we set

UL = | Ix= )y,

LEMMA 1. For x°eR" and ¢>0, we have

lim, -0 | [x = Y1) dy = UL0).

(y;lx=y|>c|x-x|}

ProOF. If UZ(x%=oco, then Fatou’s lemma gives the required equality.
Assume UZ(x%)<oo. If |x—y|>c|x—x|, then '

X0 =yl = Ix0—x| + |x—y| < (A+cHIx—yl,

so that Lebesgue’s dominated convergence theorem establishes the required
equality.

LEMMA 2. Let f be a nonnegative measurable function satisfying (1) with
real numbers p>1 and p.  If we set

B, = {teory; limsup,or=¢ | f(plyrdy>0}, d>0,
B(¢&,r)

then Hy(B,)=0, where B(¢, r) denotes the open ball with center at £ and radius r.

LeEmMMA 3. Let f be as above and define

Bo = {€ € aRe; limsup,.q (log r=)~t | f(yyrly,ledy>0} .
B(¢,r)

Then B,,, ,(Bo)=0.

n/p,p

These lemmas follow from the facts in [6; p. 165] and [5; Theorem 21].

LemMa 4. Let ap>n, f<p—1, p'=p/(p—1), E€OR% and xe€R%. Then
there exists a positive constant C independent of x such that

»
{f e =yl ey, [pirdy}
'B(x,|§-x]/2)

[ xﬁ’up—ﬁ‘")/l’ if n— oap + ﬁ > 0,
< C{ [log (xy'[E=x[+2)1'7"  if n—oap+ =0,
\l |& — x|(@p=B=mIp if n—ap+ pf<0:
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PrROOF. Let £*=(0, 1). By change of variables, we see that the left hand
side is equal to

, , , 1/p’
xa=n=p/ptn/p {S |E% — z|p(@=m)| 7 |=BP /sz} ,

(z;] 8%~z sx;7 1 &~x]/2)
which is dominated by

Cx:,ap-—ﬁ—n)/p {S |é*_zlp’(a—-n)dz
B(&*,1/2)

, , 1/p’
f (1412l elz, [or iz}
B(O, x| &—x|/2+1)
Evaluating these integrals by the aid of polar coordinates in R”, we obtain the
required inequalities.

We are now ready to prove Theorem 1.

PRrOOF OF THEOREM 1. We write UL =U, + U,, where

U, = | Ix = () dy,

slx—yl>|&-x|/2}

Ux(x) =| [ = 31 (r) dy.
slx=ylS(&-x1/2}
By Lemma 1, lim,; U(x)=U{(&).
First let n—ap+f>0. It suffices to prove that U, has T,-limit zero at {e
ORY — Byu—ap+py SiNCE Hoy_opi gy (Byn-ap+p) =0 on account of Lemma 2. By
Holder's inequality and Lemma 4, we have

1
U,(x) < const. {x,“;""’”"g f(J’)”IJ’nI"dJ’} ’

B(&,2|&~x|)
Hence if {€0RY —B,,_,p+p and xe T(E, a) N B, 1), then

Uz(x) < const. { v = efreersn | syelyaeant”,

B(&.2|2-x])
which tends to zero as x—¢, xe T(&, a). This implies that U, has T,-limit zero

at é E 6Rg, - B?(ll‘ap‘f'ﬂ)‘
Next let n—ap+f=0. Then it follows from Lemma 4 that

. 1/p
Us(x) < const. {[log (x| — ¢l + 217! Sy dedy) .

B(&,218-x])

If e ORT — By and x € 7}(5, a), then

Ux(x)  const. {[log (1x=¢|!+2))7™ oy, pavt”,

SB(-:‘szlé-‘xl)
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and hence U, has T,-limit zero at . Since y is arbitrary, U, has T,-limit zero
at {edR?—B,. By Lemma 3, B,, (By)=0.
In case n—ap+ f <0, we obtain

U(x) = const. {I¢ = xl=vs+ | LEOLEALY I

B(&,2|¢~x|)
which tends to zero as x—¢&. Thus Theorem 1 is established.

A function u is said to have a nontangential limit at £ € dR” if it has a T,-limit
at £. The following can be obtained with a slight modification of the above proof.

THEOREM-3. Let ap>n and f be a nonnegative measurable function on
R" satisfying (1) with a real number .

(i) If n—ap+B>0, then UL has a nontangential limit at any ¢ e dR" —
Bn—ap+ﬁ‘

(ii) If n—ap+B=0, then UL has a nontangential limit at any & €0R".

3. (a, p)-fine T#-limit

For a nonnegative measurable function f on R", we write UL =U,+ U, + Us,
where

v, = e~ v,
Rn=B(x,|x—¢&]/2)

Ux(x) = | % = pIf )y,
B(x,|x=¢&[|/2)—B(x,xn/2)

U =, e = )y,

Lemma 1 implies that lim,_,, U,(x)= UZ(¢).
LEMMA 5. Let p>1, f<p—1, xeR? and £€0R". Then there exists a
positive constant C independent of x such that
x2P~B-nF(x) incase n—oap+ >0,
Uy(x)p < C( [log(x;tIx—¢|+2)]P"'F(x)  incase n—oap+ =0,
|x — &|*P~B-nF(x) incase n—ap+ B <0,
where F(x)= S S)Plyalbdy.
B(&,2|¢-x])

This lemma can be proved in the same way as Lemma 4 with the aid of
Holder’s inequality.
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LEMMA 6. Let f be a nonnegative measurable function on R" satisfying
(1) with real numbers p>1 and p. For ' > f, set

Ay ={E€ORE [ 1y = &P Ly, e IRy, dy = of
Then H),(,,_ap+ﬂ,(Ay’B/)=0f0r '))gl and ﬁ’>ﬁ
REMARK. If weset A,=N4.5A4,,,then Hy . ..5(A4,)=0.

PROOF OF LEMMA 6. If n—ap+B=0, then A,z is empty. Suppose n—
ap+B>0and Hy,-4p+p(4,,4)>0. By [3; Theorems 1 and 3 in §II] we can
find a nonnegative measure u such that u(A4, 5)>0, u(R"— A4, ;)=0 and

W(B(x, r)) £ rr(n=aprth) for every x and r.

Then, sinceS(Iy’—-é’l“+Iynlz)(“”‘ﬁ""’/zdu(é)§const. |val#~#°, we have

w={{{ay - er + ey, ay | due)
I }
= [{§ay = g1y + 1panerrmraue) 1o, v

< const. Sf(y)"ly.,l”dy < o,
which is a contradiction. Thus the lemma is proved.

LEMMA 7. Let f be a nonnegative measurable function on R" satisfying
(1) with real numbers p>1and 8. Letap=<nandy=1. Then for each £ € 0R%: —
A,, there exists a set EcR"; such that E is (o, p)-thin at  relative to T, and

3) limy s ver g0~k Us(x) =0 for any a and b with b>a>0.

PROOF. Suppose {€dR}—A,,, f'>B. Take a sequence {a;} of positive
numbers such that lim;_,, a;= 00 and

Sria (=8P + per s mrfplyrdy < o,
where G;={x; 27i"1<|x—¢|<27i*2}. Consider the sets
E, = {xeB(& 2 — B, 27); Us(x) 2 ap'h).

Let O<a’<a<b<V’, and find ¢>0 such that ¢<1/2 and B(x, cx,)cT/(¢, a’,
b") whenever x € T,(¢, a, b) and 0<x,<1. Set
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3(x) = S lx — y|I*"f(y)dy,
B(x,xn/2)—B(x,cXn)
i@ = =y,
B(x,cxn)
By Holder’s inequality,
1/p
Uj(x) < const. {xz""‘g f(J’)”dJ’}
B(x,xn/2)

1
< const. {S f(y)"y?i"'”dy} "

B(x,xn/2)
Find b”>0 such that B(x, x,/2)<=T/(¢, b”) whenever x e T,({, b) and 0<x,<1.
Since >, aig f)ryerrdy<oco, we may assume that Uj(x)<

GinTy(&b")
271g;7VP for all xe E;n T(&, a, b), and hence

U4(x) = 2 tayt/r forall xeE; n T(¢ a, b).
Consequently it follows from the definition of capacity C, , that

Ca,p(Ei n Ty(éy a, b); Gi n Ty(és a,9 b/))

< 2"aig Sf(y)rdy

GinTy(&,a’,b")

< const. 2-i7(n-ap)g, S F(»)ryze-rdy.
GinT,(&Db")

Define E=\U2, E;. Then we see that E satisfies (2) and (3). Thus the lemma is
established.

With the aid of Lemmas 5 and 7, we deduce the following result, which
proves Theorem 2 in view of Lemmas 2, 3 and the remark after Lemma 6.

THEOREM 2'. Let p>1,ap<nand f<p—1. Letfbea nonnegative measur-
able function on R" satisfying (1).

(i) If n—ap+p>0 and ¢ €dRL—(A,U B,y_up+p) for somey=1, then U/,
has an (a, p)-fine T*-limit U/(&) at &.

(ii) Ifn—oap+pB=0and E€dR:— By, then UL has an (a, p)-fine TX-limit
U at ¢&.

(iiiy If n—ap+pB <0, then UL has an (o, p)-fine T¥-limit at any & €dR".

REMARK 1. In case n—ap=pf=0, for each £ €0R? — B, one can find a set
E = R? such that

1imx—~¢,xer.,(;,a,b)—5 U{(x) = U{(é)
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and
lim, o (log r=")*~'C, (EN B, r) n T, a, b); B(E, 2r) n T(¢, a', b)) =0

for any y>1 and any a, b, a’, b’ with 0<a’<a<b<b'.

REMARK 2. Let p>1, ap<n, y>1 and O0<a’'<a<b<b’'. If E satisfies (2)
and EcTy(¢, a, b), then there exists a nonnegative measurable function f on
R" such that

() Ul@®<oo; () lime g p Us(x)=00; (i) Sf(y)"lynl“”‘"dy< .

For £e€dR" and {=({’, 1), we set
L&D ={&+rl', r);0<r<1}.

THEOREM 4. Let p, f and f be as in Theorem 2. Let y>1. Then for each
£€0R: —(A, U B} —ap+p)) there exists a set EcH={({’, 1); {" e R*"'} such that
E has Hausdorff dimension at most n—oap and
4 limx—’{,xety(g,g) U{(x) = U{(f)
for every (e H—E, where BY=B, if d=0 and B} is empty if d<O.

To prove this, we need the following result (cf. [2; Theorem IX, 7]).

LEMMA 8. Let u be a nonnegative measure on R* such that U{:(x)=g |x —

y|*="du(y) £ 00, and x°e R". Then there exists a set Ec H whose Riesz capacity
of order o is zero such that
lim, o r"~2US(x°+r{) = u({x°}) for every (e H-—E.
PRrROOF OF THEOREM 4. Let {e€dR%—B¥,_,,+5. Then Lemmas 1 and 5
imply that
lim g cen | 2=y 1= £(p)dy <UL

R"=B(x,xn/2)

Let 0<e<a. By Hoélder’s inequality we derive

g Ix — =" (p)dy
B(x,xn/2)

v 1/p’ _ 1/p
s{f, = ypeormay UL e plernsyyeay)
B(x,xn/2) B(x,xn/2)

(a—¢) ep—n e
< const. {x{e=o)» [x — ylP="f(y)? dy

B(x,xn/2)

1/p
< const. {zz""S |z — wl"P"'g(w)dw} R

B(z,czyn)
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where ¢ is a positive constant independent of z=(x', x}/*) and g(w)=f(w’,

wi)p witep—m*r=1_If {e€dR% —A,, then S f)ryzrrdy<oco for any a>1,
Ty(&,a)
SO thatg g(w)dw < co for any a>1. yBy Lemma 8, we can find a set E, <
Ti(¢,0)
H whose ll{iesz capacity of order n—egp is zero such that

iy ey |, 5=y () dy =0

B(x,xn/2)

for every (e H—E,. Define E=N\g<,<, E;. Then E has Hausdorff dimensior
at most n—ap, and (4) holds for any { € H—E.

4. T,-limits of Green potentials

For a nonnegative measurable function f on R%, we define

G1() = | Gulx, 1S (),

where G (x, y)=|x—y|* "—|X—y|*™", x=(x', —x,) for x=(x', x,). We firs
note the following property of G,.

LEMMA 9. There exist ¢; >0 and ¢,>0 such that

XnYn

c] 1 xnyn
[x—y|"*x—y|?

"X = y)?

S Gu(x, p) =
= (x y) Cs |x_yl
for every x=(x', x,) and y=(y', y,) in R%.
COROLLARY. Gf % oo if and only ifS (IL+|yDhr"2y, f(»)dy < 0.
R%
For 06 <1, define

E; = {éeaRz; lim sup”or““""“g yuf(y)dy > 0}-

B(&,r)NRY

LemMMA 10 (cf. [10; Lemma 3]). For ¢ €0R% and ¢>0, define

G = G (D dy.

{(yeRY;|x—y|>c|x—¢1)
If Gl# 0 and 06<1, then lim, ;g2 X;°G,(x)=0 if and only if &€ dR}-
E,.
REMARK. If Gf %00, then H,_,, 5.,(E;)=0. If in addition S F(y)rytdy -
RY

oo with p>1 and B<2p—1, then H,_,,,p54+5,(E;)=0 (see [10; Corollary t
Lemma 57]).
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The following result can be proved in the same way as Lemma 4.

‘LEMMA 11. Let ap>n and £€0R%. Then

1/p’
{S Go(x, y)¥ yy PP l*dy } ’
{yeRY;|x—y|<|&-x]|/2}

xap=p=m/p if n—ap+p+p>0,
< const. ¢ x,[log (x;'|¢—x|+2)]'*" if n—oap+ f+p=0,
X,|E— x|(@p=B=p=m/p if n—ap+p+p<o.

By Lemmas 10 and 11 we can establish the following theorems.

THEOREM 5. Let ap>n, 0=<6<1 and f be a nonnegative measurable func-
tion on R such that G %« and

®) [ sty <o, p<ap-t

(i) If n—ap+B+6p>0 and y=1, then x;°G%(x) has T,-limit zero at any
éeaR-'ll—_(EJ u By(n—ap+ﬂ+6p))‘
(i) If n—ap+B+6p=0, then x;°GL(x) has limit zero at any E€OR™.

THEOREM 6. Let ap>n and f be as above. Set
G(&) = 2m=) | &=y, S0}y, EeoRs.

(i) Ifn—ap+pB+p>0and y=1, then x;'GL(x) has a T,-limit G(&) at any
¢ €ORY = Byu-ap+p+p)

(ii) If n—ap+B+p=0, then x;1GL(x) has a T,-limit G(¢) at any e
OR%— B,.

(iii) If n—ap+p+p<O0, then lim,_,; cgn X;'GL(x)=G(&) for any &edRY.

As to T}-limits of Green potentials, we have the next result.

THEOREM 7. Let p>1,0=d<1, ap=n and f be a nonnegative measurable
function on R% satisfying (5) with B<2p—1 such that GI =% co.

(i) If n—ap+p+6p>0 and y=1, then x;°Gi(x) has (a, p)-fine T¥-
limit zero at any { € ORt —(E; U A} 5 U Byy—ap+p+6p)-

(i) If n—ap+pB+6p=0, then x;°GL(x) has («, p)-fine T*-limit zero at
any £ €0R’.

Here A$,6=mﬁ'>ﬂ+5p A’y,ﬂ" NOte that Hy(n-ap+ﬁ+6p)(E6 ﬂA;,"";)=0 in the
case of (i) of Theorem 7.
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PROOF OF THEOREM 7. Write GZ(x)=G,(x)+ G,(x)+ G3(x), where

G = | G.(x, NIy,

{yeRY;|x—y|[>|&~x|/2}

Gy(x) = g G, (%, ) F () dy,

{(yeR%;xn/2<|x—y|Z|&—x|/2}

G = G.n sy,
B(x,xa/2)

First note that lim,., .g: X;°G,(x)=0 if { € 0R: —E; according to Lemma 10.
In what follows we shall prove only the case n—ap+f+Jp>0, because the
remaining case can be proved similarly. Assume n—ap+f+6p>0. Then
Hoélder’s inequality yields

P o 1/p’
x;9G,(x) < cyxl™? {S |x —p|p@=n=2)|y P2 ﬂ/p)dy}

B(x,|§—x|/2)=B(x,xn/2)
1/p

X {S ”f(y)"yﬁdy}
B(&,2]&-x|)nR%

IIA

1/p
const. {xﬁ”‘”"”"” S f(y)l’yf,’dy} .
: B(&,2|x—&|)NRY

If £€0R% — By y—ap+p+3p) @a0nd x € T(E, a) N B(E, 1), then

1/
x,%G,(x) £ const. {Ix - él”‘"""’“"""’g f(y)”.V’.fdy} ’

B(£,2|x~¢|)NRE
—s0asx — &, xeT, (¢ a).

Since x;,°G;(x) gczg 2 |x—=yl*=*f(y)(¥,/2)"°dy on account of Lemma 9,

it follows from Lemma 7 that x;°G3(x) has («, p)-fine T#-limit zero at e 0R% —

A} 5. By these facts x;9G/ (x) has («, p)-fine T¥-limit zero at {edR}.—E;—

A;‘n’ _By(n—ap+ﬂ+6p)'

In a similar manner we can establish the following result.

THEOREM 8. Let o, B, p and f be as in Theorem 7.

(i) If n—ap+B+p>0and y=1, then x;1GI(x) has an (a, p)-fine T%-limit
G(é) at any éeaRi_(A;k,l U By(n-—ap+ﬂ+p))'

(i) If n—ap+B+p=0, then x;1GL(x) has an («, p)-fine T%-limit G(¢) at
any éeaRg_Bt(n—ap+ﬁ+p)'

In a way similar to the proof of Theorem 4, the existence of limits along ¢,
of Green potentials can be proved.
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THEOREM 9 (cf. Wu [12; Theorem 1]). Let a, 8, 6, p and f be as in Theorem

(i) If n—ap+B+dp>0 and y>1, then for each {€dR,—(E;U A¥ ;U
Byn—ap+p+sp)) there exists a set EcH such that E has Hausdorff dimension
at most n—op and

(6) M, e e o) X7 °GL(X) =0 for every (eH —E.

(i) If n—ap+p+0p=0, then for each £€dR" there exists a set EcH
such that E has Hausdorff dimension at most n—ap and (6) holds.

As to nontangential limits we have the following results.

THEOREM 10. Let 0=<6<1 and f be a nonnegative measurable function

on R% such that Gl % o and S fO)PyPdy <o for some real numbers p>1
R}
and f.

(i) If B+d6p=ap—n>0, then x;°Gl(x) has nontangential limit zero
at any (€ ORL —(E; U B¥*, . 5+ 5,), where B}* =B, when d>0 and B}* is empty
when d£0.

(ii) If ap<n and n—op+f+56p=0, then for each {e€dR%L—(E;U Af ;)
there exists a set Ec R% such that E is (a, p)-thin at & (relative to T,) and

m e eryea-£ X2 °GL(x) =0 for any a > 0.

Similar results can be obtained in case 6=1.

5. Further results and remarks

Let D be a special Lipschitz domain as defined in Stein [11; Chap. VI].
Then similar results can be shown to hold for U with a nonnegative measurable
function f on R” such that

™ [ foydoyiy <o, p>1,8<p-1,
if we replace T,(, a) by {xe D; |x—¢&|<ad(x)!/?}. Here d(y) denotes the distance
from y to the boundary oD.
Let m be a positive integer and u be an (m, p)-quasi continuous function
(see [7]) such that
S iaton| , 1Du() Pd(x)0dx < oo,
D

where D*=(8/0x,)*---(0/0x,)*» for a multi-index A=(4,,..., 4,) with length
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[A|l=A;+-+2,. If p>1 and f<p—1, then for each bounded open set G we
can find functions f;  satisfying

SG . eIPd(y)Pdy < oo

such that

— )
u(® = Zpapemas (EZD 1, o)y
lx—yl
holds for x € G n D except for a set with C,, , capacity zero, where a; are constants
(cf. [7]). Thus one can discuss the boundary behavior of u by similar methods
as above; one need take into account the following exceptional sets:

{reGnob; (Ix— yimrif, cldy = o}

which has B,,_g,, , capacity zero as will be shown in the Appendix.
For Green potentials in D, we refer to Aikawa [1], in which finely non-
tangential limits of Green potentials are discussed.

6. Appendix

Here we show that B,_g,,, ({x€dD; UJ(x)=0})=0 if f is a nonnegative
measurable function on R" satisfying (7). Set A={xedD; Ul(x)=o0}. If
B =0, then A is included in

A ={xeops | x—yr )Py = o}

B(x,

Since B,_g,(A)=0 by assumption (7), we have B,_z,, (4)=0. If f=ap—1,
then B,_g4,, (0D)=0, so that B,_4,, (A)=0. Now assume that 0<f<[min (,
1)]Jp—1. By considering a Lipschitz transformation of D to R locally, we may
assume further that D is the half space R%.

Let g, denote the Bessel kernel of order o (see [5]), and note

A= {xeaRi; Sg,(x—y)f(y)dy = 00 }

We see that the function G(¢)= Sg,({ —y)f(y)dy, £ € OR", belongs to the Lipschitz

space AL:f ;. 1y,,(0R%) (cf. [11; Chap. VI, §4.3]). Let u be the Poisson integral
of G with respect to R%. By the fact in [11; p. 152] we have

S iaten |, IDAUCIPRE—0 P < oo,
R
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where m is a positive integer greater than «a—(f+1)/p. By [9; Theorem 2] we
can find a set Bc 0R"% such that u has a finite nontangential limit at any £ e 0R* — B
and B,_g, (B)=0. Since lim,_;  gru(x)=00 for any e A, it follows that
AcB, so that B,_g4,, (4)=0.
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