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Introduction

For any (based) space X, the set &(X) of all homotopy classes of homotopy
equivalences of X to itself forms a group under the composition of maps. The
group &(X) has been studied by several authors. In particular, in case when X
is a principal S3-bundle over Sn, the group £(X) is already known for X = St/(3),
Sp(2) by [10], for X = S*xSn by [13] and for X = Ekω by J. W. Rutter [11],
where Ekω is the principal S3-bundle over SΊ with characteristic class kω e π6(S3),
ω a generator of π 6 (S 3 )=Z 1 2 .

The purpose of this note is to study groups &{X) for principal S3-bundles
over spheres. Our main result is stated as follows:

THEOREM 3.1. Let Ef be the principal S3-bundle over Sn (n^5) with
characteristic class /eπ^.^S 3 ) . Assume that ωoS3fef*πn+2(Sn~ί). Then we
have the following exact sequence:

0 - πn+3(Ef) - *(Ef) -> <f(S3 \Jf e») -> 1,

where S3 \Jfe
n is the mapping cone of f.

The group #(S3 \Jfe
n) is given in [10, Th. 3.15] up to extension (see (2.2)),

and the homotopy group πn+3(Ef) is studied for some/in §3.
Throughout this note, all spaces have base points, and all maps and homo-

topies preserve base points. For given spaces X and 7, we denote by [X, Y] the
set of (based) homotopy classes of maps of X to 7, and by the same letter a map
/ : X-> Yand its homotopy class fe [X, 7].

§ 1. The homomorphism φ and its kernel

Throughout this note, let / e ^ _ ! ( S 3 ) for n ̂ 5 be a given element, and let
X=Ef denote the principal S3-bundle over Sn with characteristic class / and
K = S2KJfe

n the mapping cone of/. Then by James-Whitehead [8], X has a
cell structure given by
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X = K \j en+3.

Since 7*: [K, K]-»[X, X~] (j: KaX is the inclusion) is bijective, the

homomorphism

is defined by the restriction on <f(X) of the composition [X, Jf]-il>[j£, X]<A-

In this section, we consider the kernel of φ. We define the coaction

β\X = K\J en+3 -> K W e M + 3 v Sn+3 = X v Sn+3

by shrinking the equator 5" + 2 x {1/2} of enJr2> to the base point. Since πM + 3(S 3)

and πn+3(Sn) for n}z5 are finite groups (cf. [14, (4.2)]), πM+3(X) is a finite group

by the exact sequence associated with the principal S3-bundle X over Sn:

(1.1) S3ΛlΛS".

Therefore, by the Blakers-Massey theorem and the exact sequence of the pair

(X, K) we have

(1.2) j * : πn+3(K)->πn+3(X) is epimorphic.

By Barcus-Barratt [1, Th. 6.1] and J. W. Rutter [11, Th. 2], we can define a

homomorphism

(1.3) λ: πn+3(X) = j*πn+3(K) - *(X) by λ(<x) = Γo(l v α)o^,

where α e π Λ + 3 ( I ) , V \ I v I - ^ I is the folding map and 1 is the class of the

identity map of X; and since the attaching element g eπn+2{K) of en+3 in X =

K\Jen+3 is of infinite order by [3, Th. 3.2], we have

(1.4) Im λ = Ker (φ: £(X)^S(K)).

Let h: S""1 xS 3 -*S 3 be the map defined by h = (fop1)-p2 where px and p2

are the projections and is the canonical multiplication on S3. Then by [7,

(3.1)] and [3, (3.6)], we have

(1.5) Sg = i+H{(foPι) p2) = i*yoS%

where i: S*czSK is the inclusion, H is the Hopf construction and γ is the Hopf

map S7->S4. Therefore

(1.6) w

where it: S 4 c X 1 is the inclusion.
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LEMMA 1.7. Let S: πn+3(X)-+πn+4(SX) be the suspension homomorphism.

Then Ker S is generated by i*vΌS3foηn+2, where v ' eπ 6 (S 3 ) = Z 1 2 is an

element of order 4 and ηn+2eπn + 3(Sn+2) = Z2 is a generator.

PROOF. Let HSf : πΠ + 6(SM + 1)->π 5(S 4) be the homomorphism defined by the

composition:

πrt+6(SM+1) -^ πΛ+6(S2»+i) J ^ - π s(S") - < ^ π 5 (S 4 ) ,

where H is the generalized Hopf invariant of [15]. Let Q: π5(S4)->π r t + 5(SK, S4)

be the homomorphism defined by βθ/4) = [t t n + 1 , ιy4], where SK = S 4 W s / e " + 1 ,

M M + 1 is a generator of πΠ + 1(SK, S 4 )^π M + 1 (S w + 1 ) = ̂  and [ , ] denotes the relative

Whitehead product. Then by [4, Th. 2.1], we have the following exact sequence:

πn+6(S^) *!U π5(S*) -&+ πn+5(SK, S*) _ > πn+5(S^).

By [14, Table of πn+k(S»), I ] , we have π n + 6 (S' ' + 1 ) = πΠ + 5(S«+ 1) = 0 for n ^ 6 ,

πιι(S6) = Z and π l o (S 6 ) = 0. Let A(cί3) be the generator of πtl(S6). Then

H(A(cί3))=±2cίί by [14, Prop. 2.7]. Since π5(S4) = Z 2 , we have HSf = 0:

π 1 1(S 6)->π 5(5 4). Hence Q is an isomorphism in the above sequence for n ^ 5

and we have

(1.8) π n + 5 ( S K , S 4 ) ^ τ r 5 ( S 4 ) = Z 2 ,

which is generated by [un+l91/4].

Consider the following commutative diagram including the exact sequence

of the triad (SX, SK, S 4):

πn+6(SX, 5 4 ) -+ πn+6(SX, SK) - πΠ

T I • f I

*>πn+6(S»+*) πn+5(Ku

where Ί : KtczSX is the inclusion given in (1.6), π: SX->SX/SK = Sn+* and

πί: K1^KJS4 = Sn+4 are the collapsing maps. We see that π Π + 6 (5 w + 4 ) = Z 2 ,

π Λ + 5 (S M + 4 ) = Z 2 , πn + 5(SK9 S4) = Z 2 by (1.8) and π* and π 1 # in the both squares

are isomorphisms by the Blakers-Massey theorem. Therefore we have

(1.9) πn+5(SX, S4) = Z2®Z2 generated by U[uΛ+u fy4] and

where fjn+4. is a coextension of ^ M + 4 .

Consider the following commutative diagram:

πn+3(S3)

Is

πn+s(SX, S*) -L> π n + 4 ( S 4 )
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where the left homomorphism S is monomorphic by [14, Lemma 4.5] and the

right homomorphism S is isomorphic for n ^ 5 . Here, we have

3/ lA+i, nΔ = - ίdun+l91/4] = LSf, r\Δ by [2, (3.5)]

= [<4, < 4 > S 4 / ^ w + 3 by [15, (3.59)]

= (2v4-Sv')oS*foηH+3 by [14, (5.8)]

and dju.fjn+4 = y°SAf°ηn+3 by the following commutative diagram:

Since π Π + 4 (5 4 ) = SπΛ +3(5 3)®y+πΠ + 4(S 7) as is well known, (1.9) and these equalities

show that

Sπn+3(S*) n dπn+5(SX9 S4) = {S(v

Hence Ker (S: πn+3(X)-+πn + A(SX)) = {iovΌS3foηn+2} by the diagram (*). q.e.d.

REMARK 1.10. The kernel of the homomorphism S: πn+3(X)-*πn+4(SX) is

investigated by S. Sasao [12, Lemma 4.1] for 5m-bundles X over Sn with the

condition 3 < m + l < n < 2 m — 2.

LEMMA 1.11. hex geπn+2(K) be the attaching element of en+3 in X =

K\Jen+3. Then the induced homomorphism (S2g)*: IS2K, SX^πn+4(SX) is

trivial.

PROOF. Consider the following commutative diagram which is obtained

by (1.5):

ϋU π5(SX) JL- [S2K, SX]

|(5r)* ^(S2g)*

i ^ > ! > πtt+4(SX),

where the upper 1* is isomorphic for n^.6 and is epimorphic for n = 5. Since

η^oSy = η4ov5 = SvfoηΊ by [14, Lemma 5.4, Prop. 5.6 and(5.9)] and <?/*["„+.,,7/4] =

SvΌS*foηn+3 in the proof of Lemma 1.7, we have

(S*f)*im(Sy)*η4 = i*SvΌηΊoS5f= i*SvΌS*foηn+3 = i s | 6 ^ [ W n + 1 , i J = 0.

Therefore, by the above diagram,
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Im(S*g)* cz Im (S5/)*(Sy)* = Im(S 5/)*(Sy)% = { ( S 5 / ) * / * ^ ) * ^ } = 0. q.e.d.

PROPOSITION 1.12. The kernel of λ: πn+3{X)-*£{X) in (1.3) is contained in

the subgroup generated by i*v'°S3f°ηn+2.

PROOF. For the suspended complex SX = S4\jen+1\Jen+*, we define a

homomorphism

λ^.j^USV-xϊiSX) by λ1(α)= Fo(lvφ£u

where aιej*πn+4(SK) and Sί: SX^SXvSn+4- is the coaction defined by the

similar way to £. Then by (1.2) we have the commutative diagram

where S: &{X)->&(SX) is the suspension homomorphism. We notice that λί

coincides with the restriction of λ[: πw + 4(SX)-»[SX, SX] given by λi(α) =

l + π*α, where π: SX-+SXISK = Sn+4 is the collapsing map, π*: πn+4.(SX)-+

[SX, SX] and + is the comultiplication on SX. Then, by Lemma 1.11,

λi\l) cz π -HO) = (S2g)*lS2K9 SX] = 0.

Hence the above diagram shows that

by Lemma 1.7. q.e.d.

§2. The image of φ

In this section we consider the image of φ: #(X)-+£(K) defined in §1, where

X=K\Jg eΛ+3, g e πn+2(K). By [10, Lemma 2.2], we have

(2.1) lmφ = {he£(K):hog = εg(ε=±l) in πw

Let £2' K = S3\Jen-+S3\JenvSn=KvSn be the coaction defined by

shrinking the equator S""*1 x {1/2} of en in S3\Jen to the base point. Then we

can define a homomorphism

λ2:i*πn(S*)-+<?(K) by A2(α) = fo(l vα>^ 2 ,

where α e i*πn(S3). Furthermore, let τ and p be the elements in #(K) such that

the following diagrams are homotopy commutative, respectively:
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S3 —>K >Sn S3—>K >Sn

S3 > K > Sn, S3—+K—+Sn,

where S3—i—>K-Z-+Sn is the cofibering of K = S3\Jen. Then, we have the following
(2.2) by applying [10, Th. 3.15]:

(2.2) For the cell complex K = S3\Jf€n (n^5), we have the exact sequence

Here, by using H = πn(S3)l{f*πn(S»-i) + (Sf)*π4(S3)}, Hx is given by

HX=H if 2fΦV;Hx = D{H) if 2 / = 0 ,

where D(H) is the split extension

O-+H-+D(H)->Z2->1

acting Z2 = {1, —1} on H by ( — ϊ)-a=—aforaeH. Furthermore, τ exists
always, p exists only when 2/=0 and

ί {λ2(xyτδ: α e ϊ*πn(S3), δ = 0 or 1} if If Φ 0,
(2.3) < W =

I μ2(α)oτ^op^: αe i*πn(S3), δk = 0 or 1 (fc = l, 2)} if 2/= 0.

LEMMA 2.4. 77ιe normal subgroup {A2(α): α e i#πw(S3)} o/ &(K) is contained

in Im φ given in (2.1).

PROOF. Since j*g= ±[un, ί 3 ] by [3, Th. 3.2] for the generator un of
πw(X, S3) = Z, we have &2*g = k*g±\_kn, fe3] by [5, Lemma 5.4], where fe: S3W
en-*S3\Jen v SΛ and kr: S

r-+S3\Jenv Sn (r = 3, n) are the inclusions. Therefore,
for α = i^α' e ΐ*πw(S3),

^±[fcM, k3])

± >o(l vα)o[fcM, fc3]

= g ± [ Γo(l v α)ofcn, Fo(l v α)ok3]

= g ± [α, Ϊ] = g ± i*[α', c3] = g.

Hence we have {λ2(α): α e i*^(S3)} c l m ψ . q. e. d.

By [3, (3.4)], we may regard X in (1.1) as the push-out

Sn-i x s3 > CS"-1 x S3

(2.5) | ( / PI) Λ J
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Then we have the following

LEMMA 2.6. (i) //2/=0, then p in (2.2) can be taken in Im φof(2Λ).

(ii) If f satisfies the assumption

(2.7)

then τ in (2.2) can be taken in Im φ.

PROOF, (i) Since 2/=0, the diagram

is homotopy commutative. Therefore from (2.5) we have an element pe#(X)

such that ρ\K = φ(p) is an element p in (2.2).

(ii) Let φ: S3xS3~>S3 be the commutator defined by φ—p^'P^'Pi'Pi*

where p, is the projection. Then by [6, p. 176],

(2.8) π6(S3) = Z 1 2 is generated by ω such that ω*π = φ,

where π: S 3 x S3~»S3 x S3/S3 v S 3 = S 6 is the collapsing map. By the assumption

(2.7), there exists an element

(2.9) β e πn+2(Sn~1) such that ω*S3/ = f*β.

Denote by F the composition of maps:

F = Fo{(-^.Jo/ i ! v β}o£: 5"- 1 x 5 3 JU S*-1 xS3v Sn+2

where ^: S11""1 xS3->SΠ~1 x S 3 v Sn+2 is the coaction defined by shrinking the

equator S w + 1 x{l/2} of en+2 to the base point and p 1 : .S"" 1 xS 3 -*S"" 1 is the

projection. We see that /° i Γ =((-£ 3 ) o / o ]?i ) (/o/ϊoπ), where π S ^ x S 3 - *

S"-1 x S^S"-1 v S 3 = S"+ 2 is the collapsing map. So,

= (f°β°π)-((-CsyfopJ-(( — c3)op2) by the similar way to [13, Lemma 6.5]

= (ωoS3foπ).((-c3)ofoPί).((-c3)oP2) by (2.9)

'*))•«-*3*f°Pι)<(-Λ*>pJ by (2.8)
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= (( - C3>p2) (( - (3)°f°Pi) • Pi • (/°Pi) • (( - h>f°Pi) • (( -13>P2)

Thus we have the following homotopy commutative diagram:

S»-i x 53 If'Pi)-Pi , 5.3

This diagram and (2.5) allow us to construct an element τe£(X) such that

τ\K*=φ(τ) is an element τ in (2.2). q. e. d.

§ 3. Main theorem and examples

In this section we prove our main theorem and give some examples of <f (X).

THEOREM 3.1. Let X=Ef be the principal S3-bundle over Sn (n^5) with

characteristic class /eπ π _ 1 (S 3 ) . Assume that ωoS3fef*πn+2(Sn~1) "* (2.7).

Then we have the following exact sequence:

(3.2) 0 -> πw + 3(X) -> *(X) ̂  ^(X) -> 1,

PROOF. If ωoS3/e/*πn + 2(5w~1)> then ωoS3f=foβ for some βeπn+2(Sn~1)

and we have i*v'oS3f°ηn+2=
zi*cϋoS3foηn+2 = ίχfoβoηn+2 = 09 since iof=0. There-

fore, by Proposition 1.12, the homomorphism λ: πn+3(X)-+<£(X) is monomorphic.

Furthermore, by (2.3) and Lemmas 2.4 and 2.6, the homomorphism 0 : &{X)-+

#(K) is epimorphic. Therefore, we have the exact sequence (3.2) by (1.4).

q.e.d.

By using the above theorem and (2.2), we give some examples of #(Ef).

For the calculations, we use several results on the homotopy groups of spheres.

The main reference is Toda's book [14].

In case when / = ^ 3 e π 4 ( 5 3 ) , kωeπ6(S3) or O e ^ . ^ S 3 ) , we can see that/

satisfies the assumption (2.7). Therefore we obtain exact sequences (3.2) for such

/, which are already known for Eη3 = SU(3), Eω = Sp(2) by [10], for E0 = S3 x Sn

by [13], and for Ekω (0^fc^6) by J. W. Rutter [11]. The group structure of

is also given in each case except for £ 6 ω .

EXAMPLE 3.3. Let vΌη6eπΊ(S3) = Z2 be the generator. Then we have the

following exact sequence:

0 -> z
2 4
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PROOF. Since ω°S3(v'of76) = v'°2v6of/9==0 in π l o (S 3 ) by [14, (5.5)], we have

an exact sequence (3.2) for /=v'°?76. In general, let n ^ 6 . Then π n + 4 ( S Π ) = 0

by [14, Table of πn+k(Sn)9 I] and we have the exact sequence of the principal

53-bundle X over Sn in (1.1):

where 7in+3(Sn) = Z24. generated by ωn and d(ωn)=foωn^ί by [9, (2.2)]. Let n =

in the above sequence and f=vΌη6. Then we have an exact sequence

since/oω 7 = v/o?/6oco7 = 0, and {v'°η6, ω 7 , 8ί lo}=>vΌ{^6) ωη, 8c10} = 0 modulo

(v '^ 6 )*π 1 1 (S 7 ) + 8π 1 1(S 3) = 0. Therefore, by [9, Th. 2.1], π 1 1 ( £ / ) = Z 2 4 φ Z 2 .

Foτf=vΌη69 we can easily see that H in (2.2) is 0 and <f(S3 \J fe*) = Z2®Z2 by

[10]. Hence we have the required result. q. e. d.

EXAMPLE 3.4. Let /==vΌ^|eπ 8(S 3) = Z 2 be the generator. Then we have

the following exact sequences:

Ό -• Z 2 φ Z 2 φ Z 2 4 -» &(Ef) -> G -> 1,

EXAMPLE 3.5. Let /=α 1(3)oα 1(6)eπ 9(S 3) = Z 3 he ί/ie generator. Then we

have the following exact sequence:

O v 7 (T\ 7 ST\ 7 v JP(T? \ _v 7 v 1

These last two examples are obtained by the similar way to Example 3.3.

References

[ 1 ] W. D. Barcus and M. G. Barratt: On the homotopy classification of the extensions of a
fixed map, Trans. Amer. Math. Soc. 88 (1958), 57-74.

[ 2 ] A. L. Blakers and W. S. Massey: Products in homotopy theory, Ann. of Math. 58 (1953),
295-324.

[3] P. Hilton and J. Roitberg: On principal S*-bundles over spheres, Ann. of Math. 90
(1969),91-107.

[4] I.M.James: On the homotopy groups of certain pairs and triads, Quart. J. Math.
Oxford (2), 5 (1954), 260-270.

[5] •-: Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374-383.
[6j — . Qn ff.spaces and their homotopy groups, Quart. J. Math. Oxford (2), 11

(1960), 161-179.
[7] -: On sphere-bundles over spheres, Comment. Math. Helv. 35 (1961), 126-135.
[ 8 ] I. M. James and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres

(I), Proc, London Math. Soc. (3), 4 (1954), 196-218,



424 Mamoru MIMURA and Norichika SAWASHITA

[ 9 } M. Mimura and H. Toda: Homotopy groups of SU(3), SU(4) and Sp(2), J. Math.

Kyoto Univ. 3 (1964), 217-250.

[10] S. Oka, N. Sawashita and M. Sugawara: On the group of self-equivalences of a mapping

cone, Hiroshima Math. J. 4 (1974), 9-28.

[11] J. W. Rutter: The group of self-homotopy equivalences of principal three sphere bundles

over the seven sphere, Math. Proc. Camb. Phil. Soc. 84 (1978), 303-311.

[12] S. Sasao: Self-homotopy equivalences of the total space of a sphere bundle over a sphere,

(preprint).

[13] N. Sawashita: On the group of self-equivalences of the product of spheres, Hiroshima

Math. J. 5 (1975), 69-86.

[14] H. Toda: Composition Methods in Homotopy Groups of Spheres, Annals of Math.

Studies 49, Princeton Univ. Press, 1962.

[15] G. W. Whitehead: A generalization of the Hopf invariant, Ann. of Math. 51 (1950),

192-237.

Department of Mathematics,

Faculty of Science,

Okayama University,

and

Department of Mathematics,

Faculty of Engineering,

Tokύshima University




