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Introduction

For any (based) space X, the set £(X) of all homotopy classes of homotopy
equivalences of X to itself forms a group under the composition of maps. The
group £(X) has been studied by several authors. In particular, in case when X
is a principal S3-bundle over S*, the group &(X) is already known for X =SU(3),
Sp(2) by [10], for X=S3x S* by [13] and for X=E,, by J. W. Rutter [11],
where E,, is the principal S3-bundle over S7 with characteristic class kw € n¢(S3),
o a generator of n4(S3)=2Z,,.

The purpose of this note is to study groups &(X) for principal S3-bundles
over spheres. Our main result is stated as follows:

THEOREM 3.1. Let E; be the principal S3-bundle over S" (nZS5) with
characteristic class fen,_(S3). Assume that woS3fefyn,,,(S*1). Then we
have the following exact sequence:

0-m, 3(Ef) > S(Ef)— &(SP U en) > 1,
where S3\U ; e" is the mapping cone of f.

The group &(S*\U,e") is given in [10, Th. 3.15] up to extension (see (2.2)),
and the homotopy group =, 3(E) is studied for some fin §3.

Throughout this note, all spaces have base points, and all maps and homo-
topies preserve base points. For given spaces X and Y, we denote by [X, Y] the
set of (based) homotopy classes of maps of X to Y, and by the same letter a map
f: X—Yand its homotopy class fe [X, Y].

§1. The homomorphism ¢ and its kernel

Throughout this note, let fen,_,(S%) for n=5 be a given element, and let
X =E, denote the principal S3-bundle over S" with characteristic class f and

K=83%U,e" the mapping cone of f. Then by James-Whitehead [8], X has a
cell structure given by
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X =K\ e"3,

Since j,:[K, K]-[K, X] (j: KX is the inclusion) is bijective, the
homomorphism
¢: &(X)— &£(K)

is defined by the restriction on &(X) of the composition [X, X]-4%[K, X ]l
[K, K].
In this section, we consider the kernel of ¢. We define the coaction

£: X =K\Uet3sK\Uertd v S3 =X v Snt3

by shrinking the equator S"*2x {1/2} of e"*3 to the base point. Since 7,4+ 3(S3)
and =&, 5(S") for n=5 are finite groups (cf. [14, (4.2)]), 7, 3(X) is a finite group
by the eXaqt sequence associated with the principal S3-bundle X over S”*:

(1.1) Ss_t,x_P, 8

Therefore, by the Blakers-Massey theorem and the exact sequence of the pair
(X, K) we have

(1.2)  jg: mr3(K) > 7, 3(X) is epimorphic.

By Barcus-Barratt [1, Th. 6.1] and J. W. Rutter [11, Th. 2], we can define a
homomorphism

(1.3) A T 3(X) = juTty 1 3(K) > £(X) by A0) = Po(1va)s,

where aem,,3(X), V: XvX—-X is the folding map and 1 is the class of the
identity map of X; and since the attaching element g ex,, ,(K) of e"*3 in X=
K\Ue"*3 is of infinite order by [3, Th. 3.2], we have

(1.4) Im A = Ker (¢: £(X)-&E(K)).

Let h: S"“_l x §3—S3 be the map defined by h=(f-p,)- p, where p, and p,
are the projections and - is the canonical multiplication on S3. Then by [7,

(3.1)] and [3, (3.6)], we have
(L.5) Sg = ixH((fop1) - P2) = ixy°S*,

where i: S*< SK is the inclusion, H is the Hopf construction and y is the Hopf
map S7—S*. Therefore

(1.6) SX—’-‘—Kl Uil.sfe”"'l, Kl =S¢ U'y"s“f e”+4,

where i;: S*c K, is the inclusion.
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LemMma 1.7. Let S: 7, 3(X)—> 7, 4(SX) be the suspension homomorphism.
Then Ker S is generated by i,v'oS3fon,,,, where v eny(S3=Z,, is an
element of order 4 and n,.,€n,,5(S"*2)=Z, is a generator.

PrROOF. Let Hg,: 7, 6(S"t1)—>75(S*) be the homomorphism defined by the
composition:

T o(S71) s 7, o(8271) S m(Sm) 3, 1y (54),

where H is the generalized Hopf invariant of [15]. Let Q: n4(S%)—m,, s(SK, S%)
be the homomorphism defined by Q(1,)=[u+4, 74], Where SK=8%\g,e"*!,
u,, is a generator of n, . ((SK, S4)=~n,, (S"*1)=Z and [ , ]denotes the relative
Whitehead product. Then by [4, Th. 2.1], we have the following exact sequence:

+6(S"+1) ns(S4) ——-> Taes(SK, sS4 ) — Tuus(S™Y).

By [14, Table of =,.,(S"), I], we have =,,(S" )=m,,5(S*"*1)=0 for n=6,
7,1(8%)=Z and 7,o(S®)=0. Let 4(¢,;) be the generator of =,,(S%). Then
H(A(¢y3))=+2¢,, by [14, Prop. 2.7]. Since n5(S*)=Z,, we have Hg,=0:
7,,(S%)—>7ns(S*). Hence Q is an isomorphism in the above sequence for n=5
and we have

(1.8) s s(SK, §%) = 75(S*) = Z,,

which is generated by [u, ., 74]-
Consider the following commutative diagram including the exact sequence
of the triad (SX, SK, S*):

Tr6(SX, S*) > m,,6(SX, SK) > 1,15(SK, S4)-j—**7‘n+5(SX, §4) > m,45(SX, SK)
Ii:* lﬂ'* Ifx* 17’-’*
n+6(Kla S4)”l* +6(S"+4) n+5(K1’ S4)”1* n+5(S"+4)’

where j,: K;=SX is the inclusion given in (1.6), n: SX—>SX/SK=_S"** and
7. K=K [S*=S8"** are the collapsing maps. We see that =x,,4(S"*4)=2Z,,
et 5(S")=Z,, m,, s(SK, SY)=Z, by (1.8) and n, and =, in the both squares
are isomorphisms by the Blakers-Massey theorem. Therefore we have

(1.9 T,+5(SX, §*) = Z, ® Z, generated by jy[t,+1, 14] and jyufins 4,

where 7, 4 is a coextension of 7, , 4.
Consider the following commutative diagram:

Tps3(S3) 255 m,03(X) —22 5 7,,5(S™)

(*) ls ls ls

Trs(SX, §4) 25 7,1.4(S*) 255 7,,,(SX) 5P, 7 (S™+1),
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where the left homomorphism S is monomorphic by [14, Lemma 4.5] and the
right homomorphism S is isomorphic for n=5. Here, we have

Ojaltns 12 161 = = [0ty 1, nal = [SF,ma] by [2, 3.5)]
= [tar €418 s by [15, (3.59)]
= (2v4—SV)eS¥ony 5 by [14, (5.8)]
= SV/oS*f oMy,

and 0j, 7, + 4=7S%fon, 3 by the following commutative diagram:

0. Q4
nn+5(SX’ S4) —a* 7':n+4-(‘94) (‘r_s—f)’*‘ nn+4(S"+3)
N* Ial 515
Tues(Ky, S*) —F20 m,,5(S™H4).

Since 7,4 4(S*) =57, 3(S3)D 47,1 4(S7) as is well known, (1.9) and these equalities
show that

Sﬂ,,+3(S3) n (37'5,,+5(SX, S4) = {S(VIOSSfO”n+2)} .
Hence Ker (S: 7,4 3(X)— 71, 4 4(SX)) = {iov'oS3fon, , ,} by the diagram (). q.e.d.

REMARK 1.10. The kernel of the homomorphism S: 7, 3(X)—> 7, 4(SX) is
investigated by S. Sasao [12, Lemma 4.1] for S™-bundles X over S" with the
condition 3<m+1<n<2m-—2.

LemMA 1.11. Let gem,,,(K) be the attaching element of e**3 in X=
K\Ue"*3, Then the induced homomorphism (S2g)*: [S2K, SX]-n,.4(SX) is
trivial.

Proor. Consider the following commutative diagram which is obtained
by (1.5):

m5(S%) 2%, n(SX) L [S2K, SX]
j(sn* j(Sr)* j(s’g)*
ns(S4) -5 my(SX) SISV, 7 (SX),

where the upper i, is isomorphic for n=6 and is epimorphic for n=5. Since
408y =n40v5=_SVv’on, by [14, Lemma 5.4, Prop. 5.6 and (5.9)] and dj [t +1.14]=
Sv’oS*fon, .3 in the proof of Lemma 1.7, we have

(S31)*is(SY)*N4 = i3 SV'on7085f = i, SV'oS*fon, 3 = ixOjulUy+1, N4] = 0.

Therefore, by the above diagram,
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Im (S29)* = Im (S3)*(Sy)* = Im (S3)*(S)*ix = {(SY)*ix(SV)*ns} = 0. q.e.d.

PROPOSITION 1.12. The kernel of A: w,,3(X)—>&(X) in (1.3) is contained in
the subgroup generated by iyv'oS3fon),, ;.

PrOOF. For the suspended complex SX=S*Ue" 1\Ue"*, we define a
homomorphism

Ayt jama+4(SK) > &(SX) by Ay(a) = Po(1va)d,y,

where a€j,m,,,(SK) and £,: SX—>SX v S*** is the coaction defined by the
similar way to 4. Then by (1.2) we have the commutative diagram

Ts3(X) = jaTas3(K) =25 8(X)
s s
Tsa(SX) D juT,ral(SK) 215 £(SX),

where S: &(X)—&(SX) is the suspension homomorphism. We notice that A,
coincides with the restriction of Aj: m,,,(SX)-[SX, SX] given by Aj(a)=
1+ n*x, where n: SX—>SX/SK=S"** is the collapsing map, 7n*: x,,,(SX)—~
[SX, SX] and + is the comultiplication on SX. Then, by Lemma 1.11,

A7(1) = n*~1(0) = (S%2g)*[S2K, SX] = 0.
Hence the above diagram shows that
A7H(1) e A7X(SH (1) = ST (AT ()
= §S710) = {iov'oS3*fon,,,} by Lemma 1.7. q.e.d.

§2. The image of ¢

In this section we consider the image of ¢: £(X)—&(K) defined in §1, where
X=K\U,e"*3, gem,,,(K). By[10, Lemma 2.2], we have

2.1) Im¢ ={hed(K): hog =¢eg (e=+1) in =,,,(K)}.

Let ¢,: K=S>Ue"»S3Ue"vS"=KvS" be the coaction defined by
shrinking the equator S"~! x {1/2} of e" in S*Ue" to the base point. Then we
can define a homomorphism

Ayt iy (S3) = £(K) by Ay(o) = Po(1va)ed,,

where a€i,n,(S3). Furthermore, let T and p be the elements in &(K) such that
the following diagrams are homotopy commutative, respectively:
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§3— K— 8" §3— K— S"
T
S§3— K— S, S§3— K — 81,

where S3L,K_=,S" is the cofibering of K=S3\Ue". Then, we have the following
(2.2) by applying [10, Th. 3.15]:

(2.2) For the cell complex K=S83e" (n=5), we have the exact sequence
0-H, »&¢K)>Z,-1.
Here, by using H=m,(S3)/{f«m.(S"1)+(Sf)*n,(S3)}, H, is given by
Hi=H if 2f#0; H =DH) if 2f=0,
where D(H) is the split extension
05 H—DH)—>Z,—1

acting Z,={1, —1} on H by (=1)-a=—a for ae H. Furthermore, T exists
always, p exists only when 2f=0 and

{Ax(@)e1?: a€iym,(S?),8=00r1} if 2f#0,
{Ay()ot010p%2: € iy, (S3), 6, =0 0r 1 (k=1, 2)} if 2f=0.

LEMMA 2.4. The normal subgroup {i,(a): o € i,n,(S3)} of &(K) is contained
in Im ¢ given in (2.1).

2.3) 6(K) =

ProoF. Since j,g=+[u,, ¢;] by [3, Th. 3.2] for the generator u, of
(K, S3)=Z, we have £,,9=k,g*[k,, k3] by [5, Lemma 5.4], where k: S3\
e"—»S3\Uerv S" and k,: S'—>S3\Ue" v S" (r=3, n) are the inclusions. Therefore,
for a=i,o’ €i,m,(S3),

Ay(@)eg = Po(1v a)oly0g = Po(1v a)o(kog £ [k, k3])
Po(1 v a)okog + Po(1 v a)o[k,, k3]
g + [Po(1v a)ok,, Po(1va)ks]
=gx[ai]l=9g+ i*[a,’ ‘3] =4d.
Hence we have {A,(®): x € iy, (5%} = Im ¢. q.e.d.
By [3, (3.4)], we may regard X in (1.1) as the push-out

I

SP1x 83— CS*1x 83
2.5 l(f‘?n)'Pz j

S —1 X
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Then we have the following

LEMMA 2.6. (i) If2f=0, then p in(2.2) can be taken in Im ¢ of (2.1).
(ii) If f satisfies the assumption

@7 oS € s (S™),
then 7 in (2.2) can be taken in Im ¢.
ProoF. (i) Since 2f=0, the diagram
srtx g3 _epdps | g3
l('—fn—x)xla 1:3
SIS oy §°

is homotopy commutative. Therefore from (2.5) we have an element p e £(X)
such that g|K=¢(p) is an element p in (2.2).

(ii) Let ¢: S3x S3—S> be the commutator defined by ¢=p3!-p7l-p,-p1s
where p; is the projection. Then by [6, p. 176],

(2.8) ng(S3)=2Z,, is generated by w such that w,n = ¢,

where n: S3x §3— 83 x §3/S3 v §3= 56 is the collapsing map. By the assumption
(2.7), there exists an element

2.9) Bem,.,(S*™1) such that ©,S3f =f,p.
Denote by F the composition of maps:

F=Vo{(—¢,_)op, Vv B}ob:S"1x83 L, sr1x 53y SnH2
(=ta-1)P1VB Sr=1y gn-1 v, Sn-1
where £: S"1x 838" 1x S3v S"*2 is the coaction defined by shrinking the
equator S"*!x {1/2} of e"*2 to the base point and p;: S*"1x S3—S""1 is the
projection. We see that foF=((—¢3)ofop;)-(fofon), where =n: S 1x 83~
Sr—1x §3/S"~1v §3=8"+2 is the collapsing map. So,
((for1) - P2)o(F, (—¢3)op;) = (foF)-((—¢3)°p2)

= ((—¢3)ofopy) - (fopom) - ((—¢3)°p2)

= (fofom)-((—¢3)ofopy) - ((—¢3)°p,) by the similar way to [13, Lemma 6.5]

= (@°83fom) - ((—¢3)of op1) - ((— £3)°p2) by (2.9)

= (¢o(fx ¢3))-((—¢3)of °py) - ((—¢3)°p2) by (2.8)
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= ((—¢3)°p2)- (= ¢3)of op1) - P2~ (fopy) - ((—¢3)ef opy) - ((—¢3)op2)
= (—¢3)((for1) - P2).
Thus we have the following homotopy commutative diagram:
sn1x§3 _opdes | g3
[P =evp |-

-1 S . ]
S"ix S (fep1)p: S3.

This diagram and (2.5) allow us to construct an element 7€ &(X) such that
T|K=¢(7) is an element 7 in (2.2). q.e.d.

§3. Main theorem and examples

In this section we prove our main theorem and give some examples of &(X).

THEOREM 3.1. Let X=E, be the principal S3-bundle over S" (n=5) with
characteristic class femn,_,(S3). Assume that woS3fefqym,.,(S*1) in (2.7).
Then we have the following exact sequence:

(32 07,4 3(X) = &(X) > €(K)— 1,
where K=S53\ e".

PrROOF. If woS3fef,m,,,(S" 1), then woS3f=foB for some Bem,,,(S" 1)
and we have i,v'oS3fon, , , =i, woS3fon, =iy foPon,+,=0, since iof=0. There-
fore, by Proposition 1.12, the homomorphism A: =, ;(X)—&(X) is monomorphic.
Furthermore, by (2.3) and Lemmas 2.4 and 2.6, the homomorphism ¢: &£(X)—
€(K) is epimorphic. Therefore, we have the exact sequence (3.2) by (1.4).

q.e.d.

By using the above theorem and (2.2), we give some examples of &(E;).
For the calculations, we use several results on the homotopy groups of spheres.
The main reference is Toda’s book [14].

In case when f=#;en,(S3), kweng(S3) or 0ex,_,(S?), we can see that f
satisfies the assumption (2.7). Therefore we obtain exact sequences (3.2) for such
f, which are already known for E,, =SU(3), E,=Sp(2) by [10], for E,=S3x S"
by [13], and for E;, (0<k=<6) by J. W. Rutter [11]. The group structure of
&(E;) is also given in each case except for Eg,,.

ExXAMPLE 3.3. Let v'ong e n,(S3)=2Z, be the generator. Then we have the
following exact sequence:

0- 224 @ ZZ - J(Ev’eng) - Zz @ ZZ -1
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PROOF. Since woS3(v'eng)=v'02veone=0 in m,o(S3) by [14, (5.5)], we have
an exact sequence (3.2) for f=v'ons. In general, let n=6. Then 7, 4(S")=0
by [14, Table of =,,,(S™), I] and we have the exact sequence of the principal
S3-bundle X over S” in (1.1):

0 — Ty 3(S3) <25 7,43(X) 25 7,0 5(S™) -2 7,32(S3) —s -,

where 7, ., 5(S")=Z,, generated by w, and d(w,)=f-w,_, by [9, (2.2)]. Let n=8
in the above sequence and f=v'ons. Then we have an exact sequence

0-2, "’7511(Ef)"’224_’0,

since fow,=v'ongow,;=0, and {v'ong, w,, 8¢9} V'°{ne w,, 8¢,0}=0 modulo
(v'one)xmy1(S7)+8m,(S3)=0. Therefore, by [9, Th.2.1], n,,(E;)=Z,,®Z,.
For f=v'one, we can easily see that H in (2.2) is 0 and &(S3 \U,e®)=Z,®Z, by
[10]. Hence we have the required result. g.e.d.

EXAMPLE 3.4. Let f=v'-nZeny(S3)=Z, be the generator. Then we have
the following exact sequences:

0"*22@226224—)6(Ef)_’6—)1,
0-D(Z)»G—>Z,—~ 1.

EXAMPLE 3.5. Let f=0,(3)c,(6) € ng(S®)=Z; be the generator. Then we
have the following exact sequence:

0-Z,®Z, D Z;, > E(Ef) > Z30— 1.

These last two examples are obtained by the similar way to Example 3.3.
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