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§1. Introduction

An H-space is a path-connected (based) space admitting a continuous multi-
plication for which the base point is a homotopy unit. An H-space is called
finite if it has the homotopy type of a finite CW-complex. Typical examples of
finite H-spaces are the product spaces of Lie groups, the 7-sphere S7 or the 7-
projective space RP7. The other examples are constructed by Hilton-Roitberg
[6], Curtis-Mislin [4], A. Zabrodsky [17] and so on. These are given actually
by sphere extensions of the classical groups SO(n), SU(n) or Sp(n) which we shall
discuss in this paper. To prove our main results we find a decomposition formula
for cohomology operation in the BP-theory, which would be useful in the further
study of H-spaces.

Let d=1, 2 or 4, and

(1.1) G(n, d) = SO(n), SU(n) or Sp(n) accordingto d =1, 2 or 4.
Consider the commutative diagram
G(n—1,d) —* G(n,d) =5 G(n,d)/G(n—1, d) = S1
(1.2) [k iy
G(n—1,d) - M(n, d, 2) Lz > §dn—t

of the principal bundles for any integers n=2 and A, where the lower bundle is
induced from the upper one by the map h; of degree . The total space M(n, d, 1)
is called a sphere extension of G(n—1,d). On the conditions for M(n, d, A)
to be an H-space, the following are known:

(1.3) ([17; Cor.]) When G(n, 1)=SO0(n) and n is even #2,4, 8, M(n, 1, 2)
is an H-space if and only if A is odd.

(1.4) ([4], [17; Cor.]) When G(n, 2)=SU(n), M(n, 2, %) is an H-space if
and only if n=2, 4 or 4 is odd.

(1.5) ([17; Cor.], [18; Th. 3.10]) When G(n, 4)=Sp(n), M(n, 4, ) is an
H-space if and only if A is odd or n=2 and A#2 mod 4.
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The purpose of this paper is to complete (1.3) in case when n=2, 4, 8 or n is
odd, and furthermore, to give the condition for the H-space M(n, d, A) to have the
homotopy type of a loop space. Our main results are stated as follows:

THEOREM A. M(n, 1, A)in (1.2) for G(n, 1)=SO0(n) is an H-space if and only
if
n=2,4,8or Aisodd when n is even, and A = +1 when n is odd.

Furthermore, in these cases, M(n, 1, A) has the homotopy type of a loop space,
and in fact, it is homotopy equivalent to SO(n).

THEOREM B. M(n, d, 1) in (1.2) for G(n, 2)=SU(n) or G(n, 4)=Sp(n) has
the homotopy type of a loop space if and only if

A#O0Omodp  for any prime p with 2p < dn;
and then M(n, d, A) is p-equivalent to G(n, d) for any prime p.

We remark that M(n, d, ) in Theorem B is not homotopy equivalent to
G(n, d) if 2# +1 mod (dn/2—1)! by A. Zabrodsky [19; Th. A].

Theorems A and B follow from Theorems A and B, respectively, which are
presented in §2 by considering the conditions that M(n, d, 1) is p-equivalent to
an H-space or a loop space for a prime p. In addition to Theorems A and B, we
state in Proposition 2.4 that ¢, in (1.2) is a loop map up to homotopy type, which
is proved in §4. Theorem A is proved in §3 assuming Proposition 3.2 which is
proved in §5 by using the unstable secondary operations introduced by A.
Zabrodsky. Theorem B is proved in §3 assuming Proposition 3.11 which is
considered in a little more general situation than M(n, d, ). We prove (i) of
Proposition 3.11 in §6 by studying the action of the Steenrod algebra, and (ii)
in §8 after performing a decomposition formula (Proposition 7.7) for the
Landweber-Novikov operations in the BP-theory in §7.

The author wishes to thank Professor M. Sugawara for his many helpful
suggestions.

§2. Restatement of results

Throughout this paper, we assume that all spaces, maps and homotopies
are based, and all spaces are path-connected and have the homotopy type of
CW-complexes.

Let p be a prime. Then, we say simply that a map f: X— Yis a p-equivalence
if fis a mod p (co)homology equivalence, i.e., if

fer H(X; Z,) —> Hy(Y; Z,) (or equivalently f*: H¥(Y; Z,) — H*(X; Z,))
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is an isomorphism. When such a map f exists, we say that X is p-equivalent to

Y and denote by X=~,Y. We notice that this relation =~ , is an equivalence

relation in the category of p-universal spaces and spaces treated in this paper are
all in this category (see [13-15] for the definition and the properties of p-universal
spaces). We say that X is a mod p H-space (resp.a mod p loop space) if it is
p-equivalent to an H-space (resp. a loop space QY for some Y).

Now, for G(n, d) and M(2)=M(n, d, ) in (1.1-2), we consider the following
conditions:

(pH) (resp. (pL), (pG)) M(A) is p-equivalent to an H-space (resp. a loop space,
G(n, d)),

where p is a prime or oo and ‘co-equivalent’ means ‘homotopy equivalent’.
((coH) means that M(4) is an H-space.) Then, we can state Theorems A and B
which are stronger versions of Theorems A and B in the introduction.

THEOREM A. Let d=1, G(n, 1)=S0(n) and M(A)=M(n, 1, 1).
(I) Thecaseniseven: (i) (pH),(pL)and (pG) hold for any odd prime p.

(i) The conditions (2H), (2L), (2G), (0H), (oL), (c0G) and the following
(2.1) are equivalent to each other:

2.1) Aisodd, or n =2,4,8.

(II) The case nis odd: The conditions (pH), (pL), (pG) and the following
(2.2: p) are equivalent to each other for any prime p or p=00:

(2.2: p) A # 0 mod p (when p is a prime); A = + 1 (when p = ).
THEOREM B. Let d=2 or 4, G(n, d)=SU(n) or Sp(n) and M(1)=M(n, d, A).

(i) The conditions (pL), (pG) and the following (2.3: p) are equivalent to
each other for any prime p:

23:p) A#0modp, or 2p=dn.

(i) The condition (coL) is equivalent to (pG) for all prime p and also to
(2.3: o0) A#Omodp  for any prime p with 2p < dn.

In addition to these theorems, we have the following

PROPOSITION 2.4. When M(n, d, A) is homotopy equivalent to a loop space,
i.e., when (2.1) or (2.2: o) holds in Theorem A or when (2.3: 00) holds in Theorem
B, the map ¢,: G(n—1, d)->M(n, d, A) in (1.2) is homotopy equivalent to a loop
map in the sense that we can choose a homotopy equivalence f of M(n, d, 1) to
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a loop space so that the composition foc, is a loop map.

We remark that i1,: M(n, d, A)—G(n, d) in (1.2) is not necessarily homotopy
equivalent to a loop map unless A= + 1, even if M(n, d, 1) is homotopy equivalent
to G(n, d).

§3. Reduction of Theorems A and B to some propositions

In this section, assuming Propositions 3.2 and 3.11 stated below, we prove
Theorems A and B by using mainly the results due to A. Zabrodsky [17] [20].

PrROOF OF THEOREM A (I). The implications (pG)=>(pL)=>(pH), (coH)=
(pH), (0oL)=>(pL) and (c0G)=>(pG) are trivial for any p<o00. We notice that

3.1 n,-1(BSO(nh—1))=0,Z,0r Z, ® Z, forn=2k =>4
(cf. [10; pp. 161-162]).

(i) Let p be an odd prime. By (3.1) and the definition of M(1)=M(n, 1, 1)
in (1.2), we see that f1,: M(2)~,S0(n) for n=2k=4. When n=2, n: SO(2)—
St is a homeomorphism and so is 7,: M(1)—»S!=S80(2). Thus we see (pG).

(i) (2H)=-(2.1): This is shown in [17; Cor.].

(2.1)=(00G): If Ais odd, then h;: M(X)~SO(n) for n=2k>4 by (2.5). If
n=2, 4 or 8. then the upper principal bundle in (1.2) is trivial and so is the lower
one. So, M(A) is homeomorphic to SO(n). Q.E.D.

Theorem A (II) follows from the following proposition, which will be proved
in §5:

PROPOSITION 3.2. In Theorem A (I1), (pH) implies (2.2: p) for any prime p.

PrROOF OF THEOREM A (II) FROM PROPOSITION 3.2. (2.2: p) implies (pG)
for any p< oo by definition, and (2.2: c0) means (2.2: p) for all prime p. So, we
see Theorem A (II) by the trivial implications and (pH)=>(2.2: p) for any prime p.

Q.E.D.

Proor oF THEOREM B (i) FOR p=2. (2G)=>(2L) is trivial.

(2.3:2)=(2G): If A is odd, then h, is a 2-equivalence and so is i,: M(1)—
G(n, d) in (1.2). If 4=dn, then d=n=2, G(2, 2)=SU(2), and =,: M(1)-»S3=
SU(2) is a homeomorphism, because so is 7: SU(2)— S3.

(2L)=(2.3:2): When dn#S8, this is shown in [17; Cor.]. Assume dn=3.
Then G(n, d)=SU(4) or Sp(2). We notice that

1,(BSU(3)) = Zg and m,(BSp(1)) = Z,, (cf. [3; 26.10], [12; Th. 2.2])
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By (1.2), we see that M(n, d, gA)~ ,M(n, d, 1) if q#0 mod p and p'is a prime.
So, M4, 2, })~S"xSUQ3) if A=0,6, ~,M(4, 2, 6) if 1=2; and M(2, 4, )~
S7x Sp(1) if A=0, 12, ~ ,M(2, 4, 1)=Sp(2) if A=2, ~,M(2, 4, 12) if A=4, ~,
M(2, 4, 12) if A=6, where p is any odd prime. Here, S7x SU(3) and S7 x Sp(1)
are not mod 2 loop spaces, because they admit no mod 2 homotopy associative
H-structures by [5; Th. 2]. So, M(4, 2, ) (1: even) and M(2, 4, 1) (A=0, 4) are
not mod 2 loop spaces. Furthermore M(2, 4, 1) (A=2, 6) is a mod p H-space
for any odd prime, and is not an H-space by (1.5). So, it is not a mod 2 H-space
by [20; Prop. 4.5.3]. Thus M(2, 4, 1) (A: even) is not a mod 2 loop space.
Q.E.D.

PRrOOF OF (ii) FROM (i) IN THEOREM B. If M(4) satisfies (pG) for all prime p,
then it has the same genus type as G(n, d) and hence satisfies (coL), according to
[20; Cor. 4.7.4]. The implications (coL)=>(2.3: 00)=>(pG) follow from (i).

Q.E.D.

Now, let p be an odd prime in the rest of this section. Then, Theorem B (i)
for p is proved in somewhat more general situation given as follows:

(3.3). Let G be a given simply connected finite mod p loop space such-that
H*(G; Z) has no p-torsion, i.e.,

(3.4 HXG; Z,) = A(g,,..., gs), dimg;=2n,—1,2<n, S-Sy,
for some g; of mod p universal transgressive. Furthermore, let

(3.5) mn: G-»S™ (m=2n,—1) be a given fibering with n*¢=g, for a generator
Ee HY(S™; Z,,).

By replacing G(n, d) by G in (1.2), we can define M(G, A) for any integer A
by the pullback diagram

M(G, ) P, G
(3.6) 17:; 1;:
sm_t, gm

where h, is the map of degree .. Then we can prove the following theorem,
where & denotes the mod p Steenrod algebra and &7 is its augmentation ideal:

THEOREM 3.7. Under the assumption that
(3.8) g & L (HXG; 2,)) if nm=p°b and 1<b<p,
M(G, 2) in (3.6) is a mod p loop space if and only if
3.9 A#O0modp, or nm —n +2=p;
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and then M(G, 1) is p-equivalent to G.

PROOF OF THEOREM B (i) FOR ODD PRIME. p FROM THEOREM 3.7. We notice
that (cf. [1; Prop. 9.1], [2; Cor. 11.4, Cor. 13.5])

H*(G(n, d); Z,) = A(e3, €344, m—g» €,), dime; =i, m = dn — 1, %) = e,

for G(n, d) (d=2,4) and = in (1.1-2), where e; is universal transgressive. Fur-
thermore,

(x) Pley,_, = <f;1>em where 2j — 1 + 2i(p—1) = m, i.e., j + i(p—1) = dn/2.

Assume that dn/2=p*b and 1<b<p. Let
i=cop' +c;p'tt (120, 1=Sco<p,c;20) and j = p° —i(p—1) > 0.
Then, since 1< b<p, we see that t<a, (co+¢,p) (p—1)<p*tb and
j—1l=cop' — | + cp'*! where ¢ = p**"lb — ¢y — ¢y (p—1) 2 0.

So, the coefficients of p* in the p-adic expansions of i and j—1 are ¢y and ¢y —1,
respectively, which implies <J : 1 )EO mod p as is well-known. Therefore

e, €. (H*(G(n, d); Z,)) by (*); and the assumption (3.8) is satisfied for G=
G(n, d). Now Theorem B (i) for odd prime p is the special case of Theorem 3.7
for G=G(n, d) with n,=2 and n,=dn/2. Q.E.D.

Theorem 3.7 follows immediately from the following propositions:
ProrosiTIiON 3.10. (3.9) implies that M(G, ) is p-equivalent to G.
PRrROPOSITION 3.11.  Assume that M(G, A) is a mod p loop space.
(i) If b>p (where ny=p*b and b#0 mod p), then A#£0 mod p.
(i) If1=b<p and (3.8) is valid, then 20 mod p or p=n,.
Proposition 3.11 will be proved in §§6-8.

ProoF oF PROPOSITION 3.10. If A#0 mod p, then h, is a p-equivalence and
so is /1, in (3.6).
Now suppose that n,—n,;+2=<p. Then, we have a homotopy equivalence

. Q2n—-1 2nk—1
@8 XX Sy ’G(p)

by Kumpel [11], where — ,, denotes the localization at p (cf. [15] for the details
on the localization). Here, we may assume that the composition 7 ,es of
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$ = @88 St — Gy and 7,1 Gy — Sy (m = 2m — 1)

is a homotopy equivalence, i.e., s is a homotopy section for n(,,. Let ¢: Y=>G,
be the homotopy fibre of n,,. Then, the composition

f=pe(sx): S x Y— Gy X Gy — Gy
is a homotopy equivalence, where y is the multiplication. Now we define
g = prof ~1: G,y — S%, x Y—— Y (prdenotes the projection).

It is clear that go¢~id: Y-Y. Let ¢;: Y->M(G, 1), be the homotopy fibre of
(TC).)‘SP): M(G, l)(p)—-hsz”p) so that (h/l)(p)“,l"" for (h;_)(p): M(G, A)(p)*G(p). Then
go(h)pet,~id, and

(7 3) ) g°(ﬁz)(p)): M(G, Dy —> STy X Y

is a homotopy equivalence. Thus M(G, 1),,~S7,) x Y-G,, and M(G, )=~ ,G
by [15; Cor. 5.4]. Q.E.D.

§4. Proof of Proposition 2.4

Proposition 2.4 is clear in the case (2.2: o) in Theorem A (II), and seen in
the case (2.1) in Theorem A (I) (ii) by the proof of (2.1)=>(c0G) in Theorem A (I)
given in §3.

The case (2.3: o) in Theorem B (ii): If dn<4, then d=n=2 and G(1, 2)=
SU(1)=#. Thus ¢;=x:%—M(4) is clearly a loop map.

Suppose dn>4. Put P,={p; prime|i=0modp} and P,={p; prime]|
p&P,}. Since P, is a finite set by definition, we write P, ={p,, ps,-.., Px}- We
define integers yu; (0=<i<r) inductively so that Ay;=1 mod N=2{(dn/2—1)!} and
#;#0 mod p; for any j<i. Since 1#0 mod N by (2.3: o) and 2<dn/2, there is
an integer g, such that Auo=1 mod N. Suppose that we have yu; for j<i (i=1)
with the desired properties. If u;_, #0 mod p;, then ;= y;_, satisfies the desired
properties. If u;_, =0 mod p;, then y;=u; ,+Np,---p;_, satisfies the desired
properties since N #0 mod p; by the definition of P,. Put u=g,. Then

4.1) Ju=1modN =2{(dn/2—1)!} and u # 0 mod p for any pe P,.
Now we notice that
4.2) Tgn—1(BG(n—1, d)) = Zy,, or Zy (cf. [3;26.10], [12; Th. 2.2]).

Then we have the following commutative diagram of the principal bundles:



458 Yutaka HEmmi

G(n—1)==G(n—1)=—=G(n—-1)=—G(n-1)

e e

4.3) G(n) —Es M(3p) —t2s M(D) —2s G(n)
A
Sdn—l N Sdn—l h/: Sdn—l hl Sdn-—l,

where G(i)=G(i, d) and ¢ is a homeomorphism by (4.1) and (4.2).

Now we use the localization theory (cf. [15]). Let P be a set of primes or
P=g. We denote X, (resp. fp) for the localization of a space X (resp. a map f)
at P. We also write [(P)=I(X; P): X—Xp, and I(P, P)=I(X; P, P'): X(p—
X py for the standard maps, where P’ P. Then (4.3) induces the homotopy
commutative diagram

G(n—1) 1(P,) » G(n—1)(p,) =225 G(n)p,
| o

Gn—1) —a Ml M, e, Gy,
jl(m lzl 11; N l’(P” %)

Gn—D)py 200, My, —b s Mg 0, Gn)e)
” =) ry :](huoso)m H

GOn=1)(p,) 205 G(n)p,) LL9, G(n) ) B9, G(n) g,

where M =M(A), l;=I(P;) and [;=I(P;, @) for i=1,2. Since h, (resp.h,) is a
P, (resp. P,)-equivalence by the definition of P; and (4.1), so is h, (resp. ﬁ,,)
Thus 7;p,), M) (Bo®)p,, and (h,c0)g, are all homotopy equivalences. Now
the middle square consisting of I, and l; is homotopy equivalent to the weak
pullback diagram by [15; Cor. 4.2]. Therefore M is homotopy equivalent to
the weak pullback of (f1;,00)g,° (P, #) and I(P,, 8). Now G(n)g,~K(Q, 3)x
-+ x K(Q, dn—1) as loop spaces ([15; Lemma 7.4]) and (h n°P)(9) is represented
by a diagonal matrix. Thus (ﬁ“o(p)(m is a loop map up to homotopy type.
Furthermore I(P;, ¥) and ¢p,ol(P;) for i=1, 2 are all loop maps. Thus, up to
homotopy type, M is a loop space and threre is a loop map f: G(n—1)—M so that
lof~typpol(P)~lpe; for i=1,2. But according to Hilton-Mislin-Roitberg
[7; Th. 1], two maps g;: G(n—1)—M (i=1, 2) are mutually homotopic if and only
if liogy ~liog, for i=1, 2. Thus ¢, ~f and the proposition is proved. Q.E.D.

§5. Zabrodsky’s secondary operations and the prodf of Proposition 3.2
In this section, let d=1, G(n, 1)=S0(n), n=2k+1, M(A)=M(n, 1, 1) in
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(1.2) and p be a prime.

Lemma 5.1, If A=0 mod p, then we have the following isomorphism of
algebras over the mod p Steenrod algebra < :

H*(M(%); Z,) = H¥(S?; Z,) ® H*(S0(2k); Z,,).

PrOOF. The case p is odd: Consider the bundle SO(2k)-+.SO(2k+1)Z,
S$2kin (1.2). We notice that (cf. [1; Prop. 10.2])

H*(So(zk); Zp) = A('XS’ X7yeees X4g—55 e2k—1)9
H*(SOQ2k+1); Z,) = A(Y3, V75> Vak—55 Vak—-1)»
and ¢*y;=x; (i<4k—5), =0 (i=4k—1). Furthermore, in the Serre spectral se-

quence {E}*, d,} of modp cohomology for the above bundle with E¥*=
H*(S%; Z,)® H¥(SO(2k); Z,), d,: E3'— Es*r-*~r*1 vanishes except for

dyu(1®ey-1a) =(®a (Se H?*(S%*; Z,), a generator; a € H¥(SO(2k); Z,)).

Now, let {E** d,} be the spectral sequence for SO(2k)-2,M(1)-"4,S% in
(1.2) and h*: E¥*—E** be the map induced by h; and h, in (1.2). Then, E{*=
E%* and

P*(1®x) =1® x;, h*(1Q®ex-1) =1 ® ey, h*(E®1) =0

because A=0 modp. So, dy(1®ey_ a)=h*d(1®e,,_ a)=h*((®a)=0.
Thus {EX*} collapses, and we have the lemma.
The case p=2: Then (cf. [1; Prop. 10.3, (10.6)])

(5.2) HXSOQ2k); Z;) = Z,[xy, X35000s X J/(X§P 1 i = 1, 3,..., 2k—1),
H*SOQRk+1); Z3) = Zo[yy, Vaseeos Yo MO i =1, 3,..., 2k—1)

and ¢*y;=x;, where s(i) (resp. t(i)) is the least power of 2 not less than 2k/i (resp.
(2k+1)/i). Furthermore, if 2k=u(2v—1) and u is a power of 2, then n*({)=
(y,,-1)* for a generator & € H2k(S%*; Z,).

Now, put z;=h*y;e H¥(M(3); Z,). Then ¢*z;=x;. If i#2v—1, then s(i)=
(i) and z§O=h*y' =0, If i=2v—1, then s(i)=u and z¥O=h¥(y,,_)"=
pxmn*E =n*(AE)=0 since 2=0 mod 2. So, we can define an «-algebra homomor-
phism

@ HX(SOQ2k); Z,) — H*(M(A); Z;) by ox;=z; (i=1,3,..,2k — 1),

which satisfies ¢¥op=id. Hence, by the theorem of Leray-Hirsch, we have an
o -algebra isomorphism

Y HX(S8%*; Z,) ® H¥(SO(2k); Z,) = H¥(M(A); Z,) by y(b®a) = (n}b) (¢a)l-
Q.E.D.
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PROOF OF PROPOSITION 3.2 FOR ODD p. Suppose A=0 modp. Then,
H*M(); Z,)= H*(S?**; Z,)® H*(SO(2k); Z,) as algebras by Lemma 5.1, which
admits no Hopf algebra structures by Borel’s structure theorem. So, M(X) is
not a mod p H-space. Q.E.D.

Now we consider the case p=2.

(5.3) ([16; Prop. 1.5]) Let
Ko Xo-Ls X, E— T1K(Z,, m)) 1 TIK(Z, 1)

be fibrations such that X, and X are H-spaces, f is an H-map, the products are
finite products and h is a loop map so that X, and E have the H-structures in-
duced by H-maps f and h, respectively. Assume that

(5.4) Im (f*: H¥(X; Z;) — H*(Xo; Z5)) ® Xi<a H(Xo; Z5)

for some n withn=mgand 2n=1,. Then, for any map g: X ,— E, the composition
got: Xo—E is an H-map.

LEMMA 5.5. (i) Let f: Xo—X be an H-map between H-spaces satisfying
(5.4) for some n. Then, for any map f': Xo—»K=K(Z,, n), XxK has an H-
structure so that (f, f'): Xo—X xK is an H-map.

(ii) Let X, be an H-space and X=T11!-. K(Z,, n,). If a map f:Xq—X
satisfies (5.4) for some n with n=n,, then X has an H-structure so that f is an
H-map.

PRrROOF. (i) Let uo, and u be H-structures of X, and X, respectively. Con-
sider

D: Xo x Xo— K given by D(y, y') = f'(y") " f' ()~ 1f "(uo(y> ¥)),

where K=K(Z,, n) is regarded to be a group. Then, D|X,V X, ~=* and

D~ Dom: Xo x Xo -2 Xo A Xo 25 K (n denotes the projection)

for some map D. By the assumption (5.4), De H"(X, A Xo; Z,) is contained in
the image of (f A f)*: H(X AX; Z,)->H"( Xy A X,y; Z;). So, we get a map

d: X A X — K =K(Z,,n) with do(fAf)~D.
Thus, we see by definition that X x K has an H-structure
w:XxKxXxK— X x K given by u'(x, k, x', k') = (u(x, x"), kk'd(x, x)),
and that (f, f'): Xo— X x K is an H-map with respect to uo and p'.

(i) We may assume that n,<n, if r<s. Put K,=T]s.; K(Z,, n,) and let
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fit Xo— K, be the composition of f and the projection X =K,—»K,. Then, since
n,<n,<n for r<s, (5.4) shows that

Im(f¥: HN(K,-; Z,) — H*(Xo; Z,)) > Yi<n, H(Xo; Z,).

So, we see that K,=K,_; x K(Z,, n,) has an H-structure so that f;: X,— K| is an
H-map, by induction starting from K,=# and by using (i). Thus, (ii) holds for
X =K, and f,=f. Q.E.D.

Now, let
Ko = K(Z,, 2k) 1o, K, = K(Z,, 4k) 1, K, = K(Z,, 4k +1)
be the maps such that
h§ea=(c0)% h¥tas1=Sq ¢, (¢c,e H(K(Z,, t); Z,) is the fundamental class).

Then, h¥h¥csnr 1 =59 (¢2)*=0 and so hyohy is homotopic to *. Thus, we have
the following 2-stage Postnikov system

QK, = K(Z,, 4k—1) L, E M, QK, = K(Z,, 4k)
(5.6) _ lr»
K, e, K, P K,

where r: E— K is the homotopy fibre of h,, j is the natural map and £, is the map
induced from a homotopy of h,oh, to * so that h;oj~Qh,. Then, A. Zabrodsky
proved the following

(5.7 ([20; Lemma 3.4.1]) u*r=0v@1+1®@v+u®@u
for v=h*¢,, and u=r*c,,, where u: E x E~E is the loop multiplication.

PROOF OF PROPOSITION 3.2 FOR p=2. Contrary to Proposition 3.2 for p=2,
suppose that M(1)=M(n, 1, 1) is a mod 2 H-space for even A, where n=2k+1.
Then, we have an H-space X and a 2-equivalence ¢: X—M(1). According to
Lemma 5.1 and (5.2), the algebra H*(X, Z,) over « is given by

(*) H¥X;Z,)=AQ) ® Z,[zy, z3,..., 2331 (25D i =1, 3,..., 2k—1),
{=o¢*nf, z;= (P*ﬁfy,t, nil & Imﬁf’

where 7, ¢, and f, are the maps in (1.2), e H3*(S%; Z,) is a generator and
X;, ¥; and s(i) are given in (5.2). Consider the map

[1 X — Ko=K(Zy, 2k) with f*¢y =

Then, f*hE e, = f*(¢2)? = {2 = 0 and we have a lift
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f:X——E with rf~f for r:E— K, in (5.6).
Furthermore, consider the fibering
X X &, [T K(Z,. 2i—1) with g*¢p_y = z3;_5.

Then, by Lemma 5.5 (ii) and (5.3), X is an H-space with multiplication i so that
foe: X—Eis an H-map. So, (5.7) shows that

(x*) *(foe)*v = (Jo)*v®1 + 1®(foo)*v + (Foo)*u®(foe)*u,
where (foc)*u =c*f*r*c,, =¢*¢. Now, by using (), we see that
Im g* = Im (@*oh¥) 2 {, Imc* = H¥X; Z,)//Im g* = A(¢) and ¢*{ # 0.

Furthermore, f*ve H*(X; Z,)=(Im g*)- H*(X; Z,) and (fo¢)*v=0. Thus, the
left and the right hand sides of (xx) are zero and non-zero, respectively, which is a
contradiction. So, Proposition 3.2 for p=2 is proved. Q.E.D.

§6. Proof of Propositivon 3.11 ()
The rest of this paper is devoted to prove Proposition 3.11.
Let p be an odd prime and & denotes the mod p Steenrod algebra.
LEMMA 6.1. Let m=pst with t#£0 mod p. Then, |
Pm =35 PPa,  forsome q;eL.

Proor. When t=1, the equality is trivial.
Assume that t=2. If s=0, then m=t#0 mod p and the Adem relation shows
that

Pr1Pml = mP™ and P™ = Ploa, for oy = m-ipm1,

Now, assume inductively that the equality is true for s</—1, and consider the
case m=gqt with g=p', I=1. Consider the Adem relation

Papat-1) = Z:"L'{)(— 1)i+q/l’ai9qS~ig)i’ a; = <(q(t - l)q_—i)‘lgzp— 1) - 1> .

Then, ay#0 mod p because q(t—1)(p—1)—1=aq+q—1, a=(t—-1)(p—1)—1=
—t#0 mod p and g=p'. Also, qt—i#0 mod p' for 0<i<q/p=p'~!.  Thus,
we see the equality by induction. Q.E.D.

In the rest of this section, the coefficient Z, in cohomology is omitted to
simplify the notation.
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PROOF OF PROPOSITION 3.11 (i). By the assumption that M(G, 1) is a mod p
loop space, let f: ZM(G, A)— Y be the adjoint of a p-equivalence M(G, 1)—QY.
Contrary to (i), suppose that 2=0 mod p. Then, by (3.4-6),

(6.2) H*(M(G, %)) = Aley,..., &) (dim e;=2n;—1), ¢, = n¥¢,
h*x; = e (if i<k), = 0 (if i=k) mod D,
where D,,=DH*(M(G, 1)) is the decomposable module. Furthermore,
(6.3) HXY) = Z,[y,..., »i] (dim y; = 2n;), f*y; = ¢; mod Dy,
where f*: H*(Y)> H*(ZM(G, A))= H*"Y(M(G, 4)). So, for any t<2n,,
frd (H(Y)) = o (f*H'(Y)) = o (H'™{(M(G, 1))
= o (hW3H'"(G)) = htof (H*(G)),

where 7 is the augmentation ideal of w7, since A*: H""}(G)= H'"}(M(G, 1)).
Furthermore e, & Im fi*+D,,. Thus e, & f*o7 (H*(Y))+ D, and

Yi & o (HX(Y)) + Dy (Dy = DHX(Y)).
Now, by changing generators except for y,, we may assume that
(6.4) o (HX(Y)) < Z,{1, y1,e.., Yu—1} + Dy.
Since n,=p°b and b#0 mod p, Lemma 6.1 implies that
6.5) yP = Prey, = T4 PPa,y, for some o; €.
On the other hand, we see the following

(6.6) For any ue H*(Y) with dimu>2n(p—1), 24u (j>0) is a polynomial
in yi,..., v without including the term y%.

In fact, dim u >2n,(p— 1) implies that u € D{’ where
(6.7) DY =DWH*(Y) is given by D{» =Dy, and D{*V = D . H¥(Y) (t = 2).
So, u=Y.cy;,+y;, (c€ Z,) mod D+ and

PIu=3 tiy=j cPly, Py, mod D{p+v.

Hence 2Ju does not contain yf by (6.4).

Now, dim oy, =2n,p—2p'(p—1)>2n(p—1) since b>pin (6.5). So, y£ does
not appear in the right hand side of (6.5), which is a contradiction. Therefore,
(i) is proved. Q.E.D.
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§7. BP-theory and the Landweber-Novikov operation

In this section, we summarize the known facts on the BP-theory and prove
Proposition 7.7, which are used to prove Proposition 3.11 (ii) in §8. The main
references are [8] and [9].

Let p be an odd prime and Z ,, be the integers localized at p. Then,

BP* = Z(p)[vb UZ;“']’ lvil = dim Uy = — 2(p"—1).

(7.1) (cf. e.g. [8]) Let Y have the homotopy type of a CW-complex of finite
type. Then, the BP-cohomology BP*Y at p of Y is a module over BP*. Further-
more, the Thom map

T: BP*Y—— H*(Y; Z,) (which is a ring homomorphism)

is epimorphic and ker T=(p, vy, v,,...) (the ideal generated by {p, v,, v5,...}),
if H¥(Y ; Z) has no p-torsion.

Let E=(eq, e,,...) be an exponential sequence, i.e., a sequence of integers
¢;20 being 0 except for a finite number of i. Then, we have the Landweber-
Novikov operation

TEEBP*BP with dcg rg = IrEI = IEI = 22 ei(pi_l).
(7.2) ([8; (1.1)]) rg acts on BP*Y so that the diagram

BP*Y "=, BP*Y
|7 |7
HX(Y; Z,) X2, HY(Y; Z,)
is commutative, where y: o/ -/ is the canonical anti-automorphism on the

mod p Steenrod algebra <.

(7.3) ([9; (2.1)]) Put vo=p and t4,=(0,...,0, t, 0,...) where t is in the i-th
position. Then,

rgv, = 0,-; if E=p"id, =0 otherwise, mod (p, vy, 0,,...)%;
"E((P’ Uy, UZ’-“)n) = (p"5 Uy, 02,...) (Cf [9a (23)])

In the rest of this section, we concern mainly with the following composition
law:

(7.4) ([8;(1.2)]) rere= ZR(X)=F,S(X)=E b(X)"T(X) mod (vy, v5,...),

where X ranges over all matrices (x;;) (i, j=0, 1,...) being omitted the term xo,



On finite H-spaces 465

and consisting of integers x;; which are 0 except for a finite number of (i, j).
Furthermore, for such a matrix X =(x;;), the exponential sequences

R(X)=(ry, r3,...), S(X)=(sy, $3,...), T(X)=(ty, t;,...)
and b(X)e Z are defined as follows:
ry = Zj ijij, S = Zt'xij’ Iy = Zi+j=n Xijs b(X) = TT1(t,H/T1 (xij!)'

For exponential sequences E=(e,, e,,...) and F=(f}, f5,...), put E+ E=(e, +f,,
ey +f5,...). Also,put E—F=(e;—f,, e,—f,,...)if ¢;= f; for any i. Furthermore,
a linear ordering E < F is defined in [8] as follows:

(7.5) E<F if and only if (1) |E|<]|F], or
(2) |E|=|F]| and e;=f; if i>s while e;>f,, for some s.

LEMMA 7.6. |T(X)|=|R(X)+S(X)| and T(X)<R(X)+S(X) in (7.4).

ProoF. If x;;=0 for ij#0, then r;=x;, s;=x¢; and t;=X;o+Xo;=r;+S;.
So T(X)=R(X)+S(X). Assume that x;;#0 for some ij#0, and let x,,#0
(ab#0) and x;;=0 for i+ j>a+b and ij#0. Then, for i=2a+b, we have
ri=X;0, 8;=Xg; and

t,-=xio+x,,i=r,-+si if i>a+b,ti=xi0+in>ri+Si if l=a+b
So T(X)<R(X)+S(X). |T(X)|=|R(X)+S(X)| is clear by definition. Q.E.D.

Now, we prove the following decomposition formula of pr,. by using (7.4),
where r,=r,4,:

ProrosITION 7.7. Let m=1. Then,
prom = 2 rg. 0, mod (p?, vy, v,,...)
for some 6,€ BP*BP and some exponential sequences E; with

(1) |EjJ<4pifm=1, |[E|<2p™ if m22; and
(2) E;#4;forallizl.

To prove this proposition, we notice the following

LemMa 7.8. Let m=2 and E be an exponential sequence with |E|=2p™(p—1)
and Es#p"4,. Then

rg =rg0y + X aprg = ¥ rg 0, mod (p?, vy, vy,...),

where 0,€ BP*BP, E; satisfies (1) for m=2 and (2) in Proposition 7.7, ag€ Z,),
|F|=|E| and F<E.
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PROOF OF PROPOSITION 7.7 FROM LEMMA 7.8. The case m=1: By (7.4), we

have r,r,_, :—.(5)5 mod (v,, v,,...) and hence
pr, = — 2ryr,_, mod (p?, vy, 05,...).

Since |24,|=4(p—1)<4p and 24, # 4, this is the desired formula.
The case m=2: Put g=p™'. Then, (7.4) shows that

— - —tp—1
(*) Fetpg—q = ;Izc‘)l/p A (pg—tp—t,t)yy At = <pq q—Pt ), mod (v, s,...)-

Here, the term for t=0 is

Aol py = p(-’;q__11>rpq = pr,, mod p2.
Also, in the left hand side of (x), g4, satisfies (1) and (2), i.e., |q4;|=2q(p—1)<
2pq and qd,+#4; for all i. Furthermore, if t=1, then E=(pgq—tp—t, t) in the
right hand side of (x) satisfies |E|=2pgq(p—1) and E# pq4,, and hence 7,1
is decomposed into the form given in Lemma 7.8. Therefore, (*) implies the
desired formula. Q.E.D.

PrROOF OF LEMMA 7.8. We prove the first congruence. Then, it can be ap-
plied also for ry there, since F < E with |F|=|E| also satisfies the assumption of the
lemma. Also for E, the number of F's with F<E and |F|=|E| is finite. There-
fore, we see the second congruence using the first one finite times.

Let E=(e,, e,,...) satisfy |E|=2p"(p—1) and E#pm4,. If e#0, then
2p'—1)=Z|E|=2p™(p—1) andso t<m. Supposee,<1forallt. Then2p™(p—1)
=|E| =2 3™ ,(p' —1)<4p™, which contradicts p=3. Therefore e,=2 for some t.
Let e,= 3 u;p* be the p-adic expansion. Then, u;70 for some i=1 or uy=2.

Assume u;#0 for some i=1. Then, 2pi(p'—1)Z|E|=2p™(p—1) and so
i+t<m or (i, )=(m, 1). If (i, t)=(m, 1), then E=p™A, which contradicts the
assumption. Thus i+t<m. Now, (7.4) shows that

TpiaFE~pis, = (;5)"5 + 2 apry mod (vy, vy,...),
where apeZ, |F|=|E| and F<E by Lemma 7.6. Here, (;5)#0 mod p since

u;#0. Furthermore, |pid,|=2pi(pt—1)<2p™ since i+t<m. So, we see the
desired congruence.

Assume u,=2. Then, (7.4) and Lemma 7.6 show that

_[e
r24,'E-24, = (2‘>r5 + 2 apry mod (vy, V,,...),
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where apeZ, |F|=|E| and F<E. Since (ez'>5é0 mod p by u,=2, this shows
the desired congruence. Q.E.D.

§8. Proof of Proposition 3.11 (ii)

In this section, we assume that G is a simply connected finite mod p loop
space and H*(G; Z) has no p-torsion (p: odd prime), and that

A=0modp and M = M(G, 1) ~,QY  forsome Y.

We continue to use the notations given in (3.4-6) and (6.2-3), and the coefficient
Z, in cohomology is omitted.

LEMMA 8.1. BP*G = Agpdgy,.--» Gi) (dim g; = 2n;—1),
BP*M = Appu(€y,..., &) (dim¢; = 2n;—1),
BP*Y = BP*[[Jy,..., 5] (dim j; = 2ny)

(BP*[[ 1] denotes the ring of power series), and the generators §,;, &; and y;
can be taken to satisfy Tg;=g;, Te;=e;, Ty;=y;,
. & (ifi<k), _
hfg; = f*j;i = éi mOd DM = DBP*M,
28 (if i = k),
and nt€=e,, where T denotes the Thom map and BP*S™=ApgpJ§), TE=¢
(m=2n,_,).

Proor. We notice that (7.1) is valid for G, M and Y.

Take §;e BP*G with Tg,=g;€ H*(G) for i<k, and put g,=n*E e BP*G.
Then Tg,=n*¢=g, by (3.5). We have g?=0 since dim g; is odd. So, we see the
equality for G by (7.1).

In the second place, we define &;e BP*M inductively. Put &, =h*7,. Then
Té,=h*g,=e, by (6.2), since DH2"~{(M)=0. Let j>1 and assume that ¢ is
defined for any i< j so that T¢;=e; and h}g;=¢ mod D,,. If j<k, then Th¥g;=
h%g;=e;+d,; for some d;e Dy, and d; is a polynomial of e; (i<j) by (6.2). So,
we can take d;e Dy such that Td;=d; by the inductive assumption. Put &;=
h*3;—d,;. Then, Tée;=e; and h%j;=¢&; mod D), as desired. When j=k, put
e, =n*f. Then, h¥j,=n*h*Eé=An*é=J)e, and Té,=nté=e, Thus, we have
defined ¢; and the equality for M holds by the same reason as that for G.

Finally, we define j;e BP*Y inductively. Take j;e BP*Y with Tj,=y;€
H*(Y) for any i. Then Tf*j,=f*y,=e; mod D). Let 0=10)<I(1)<---<
I(t)<l(t+1)=k be the sequence of integers such that n;=n,, for I(s—1)<iZI(s).
By the equality for M,
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BP"M|DBP™"M = Z ,{e;| (1) <i £ k} (m =2n,—1)
because |v;] <0 for i>0. Therefore, for any i with I(1)<iZk,
f*9i= % ae; modDy (I(t) <j £ k),

where a;;€ Z,, and a;;=46;; (the Kronecker delta) mod p. Consider the matrix

A=(a;}). Then detA=1 mod p and we have the inverse matrix A~!=(b;;).
Since A is the identity matrix mod p, sois 47! and b;;=0J;; mod p. Now, put

Then, we see that f*j,=¢, mod D), and Ty,=Tj;=y;.

Suppose inductively that y;e BP*Y is defined for any i>I(s) (s<¢) so that
Ty;=y; and f*y,=é¢, mod D,,. By the equality for M, BP" M/DBP™ M (m'=
2ny5y—1) is isomorphic to

Zpie, ue|ls—1) <j=sls) <i, u;€ BP*, lu| + 2n, — 1 = m'}.
So, for any i with I(s—1)< j<I(s),
f*9;,=Xpa;8, + Yicjue; mod Dy (I(s—1) <j' £ I(s) < i),
where a;;, ¢;;€Z, and a;;,=0;;, mod p. Hence
f*(fj" Zicji“i}_’i) =3 ajpej mod D,

since f*y;=¢&; mod D), for i>I(s). Therefore, by the same argument as above,
we can obtain j; (I(s—1)< j=I(s)) from j; so that f*j,=¢; mod Dy and Ty;=y;.

Thus, we have defined y; and the equality BP*Y=BP*[[y,,..., 1] is seen
by (7.1). Q.E.D.

Now we assume that
82  m=pb1Sb<p and g, & o (H¥G) = & (H*G; Z,),
which is the assumption in Proposition 3.11 (ii). We may also assume that
(8.3) o (HXG)) = Z,{1, gy,..., gk-1} + Do (Dg = DH*(G))
by changing generators g; except for g,.

LeMMA 8.4. rgy;€ BP*{1, J,,..., Px—1} +Dy+(p?, v4, v,,...) for any i<k,
where Dy=DBP*Y.

Proor. Since i<k, Trgg;=x(2%)g.€Z,{1,9,,...,9x-1}+Dc by (7.2),
Lemma 8.1 and (8.3). Hence, by (7.1),

rgg; = cg, mod BP*{1, §,,..., Gx—1} + Dg + (p?, vy, v,5,...) (Dg=DBP*G),
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where ¢=0 mod p. So, f*rpy;=rzé;=h*rgg,=cAg, =0 mod BP*{1, &,,..., &,_,}
+ Dy +(p?, v4, 0s,...), since A=0 mod p. This shows the lemma since Ker f*=
Dy by Lemma 8.1. Q.E.D.

PrOOF OF PROPOSITION 3.11 (ii). In addition to the assumptions stated in
the beginning of this section and in (8.2), we assume that p<n,. Then, we arrive
at a contradiction as is seen below; and so we see Proposition 3.11 (ii).

We notice that a=1 by (8.2) and p<n,. Now, in the right hand side of
(6.5), dim oy, >2m(p—1) if i<a. So, by (6.6) and (6.5), 22P°a,y, includes yf.
On the other hand,

H"(Y) = D@WH"Y) = N + Z,{yf} mod D*»*DH"(Y) for n = 2np,
where N=Z,{y;,---y;, | I<i; - <i,<k and i <k} for [ with n,<n; ., =n,. So,

YE = 2%,y mod N + DPTUH*(Y).

Here, 2P“= —y(P?")+ 25271 2 y(2?°7J) and we see that Piy(2?"J)a,y,
does not include yf for 0<j<p® by Lemma 6.1 and (6.6). Therefore, yf=
—x(2?)a,y, mod N+ D@*OUH*(Y). This implies that

J2 =rpaz mod N + DYV + (p, vy, v5,...) (DY’ =D®OBP*Y)

by (7.2) and (7.1), where N=BP*{}7,-1~~)7,-P]l<i1§---§ip§k and i;<k}. Ap-
plying Proposition 7.7 to this equality, we have

(8.5 PR = prpaZ = X rp 02 mod N + DYV + (p2, vy, v3,...),

where |E]|<4pifa=1, |E|J<2p®ifa=2and E;# A4;forall i=1. We remark that
(a, b)#(1, 1) since p®b=n,>p>b by assumption. Now, in (8.5),

dim 6,z = dim j§ — |EJ| = 2mp — |E{| > 2n(p—1),

since 2m,=2p*b=4pifa=1and b>1. Thus 6,Z e D}’ by the dimensional reason
and |v;] <0 for i>0. Therefore, we may write as follows:

0z =W+ pwo + X v;w; mod(p, vy, v,,...)%,
where W, Wo, W;€ DPZ [ ¥4,..., i]. Thus, we see that
rEsesZ = rEsW -+ prEsWO + p Zei>0 rEs_A‘W,- mod (pz, Ul, 02,...)

for E;=(ey, €5,...), by (7.3) and the Cartan formula rp(ii;%,)= > 5, +p,=r (r, i)
(ry,it,) for the Landweber-Novikov operation (cf. e.g. [8]). Here, |E;— 4;|#0 for
any i with ¢;>0 since E;# 4;. Therefore, we have

re0Ze N + DD + (p2, vy, v,,...)
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by Lemma 8.4 and w, Wy, W;€ DWZ ,,[¥;,..., $,]. This contradicts (8.5); and

Proposition 3.11 (ii) is proved completely. Q.E.D.
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