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§1. Introduction

Let X be a finite H-space, i.e., a path connected space admitting a continuous
multiplication with homotopy unit and having the homotopy type of a finite
CW-complex. Then, on the homotopy groups 7,(X) of X, the following results
are basic:

(1.1) (W. Browder [6; Th. 6.11]) The first non-vanishing heigher homotopy
group n(X) (n=2) occurs for odd n.

(1.2) (A. Clark [9; Th. 1]) If X is simply connected, noncontractible and
admits an associative (not homotopy associative) multiplication, then n3(X)#0.

(1.2) is not true in general, e.g., for X=S7, and we have the following
question:

(1.3) Does there exist a 3-connected finite H-space except for the product
(87)!=87x%x-.-x S7 (I-fold, 120)?

In this paper, we study this question under some assumptions. Our main
results are stated as follows:

THEOREM 1.4. For a 3-connected finite H-space X, assume that

(1.5) H*(X; G) are primitively generated for G=Z, and Q, and
(1.6) the indecomposable module QH"(X ; Z,) vanishes for n=15.

Then, X has the homotopy type of (S7)! for some 1=0.
By this theorem, we have the following

COROLLARY 1.7. Let X be a homotopy associative finite H-space with
H*(X; Z) of 2-torsion free and (1.6). Then, X has the homotopy type of a torus
(SH)t=Stx--- x St (t-fold, t=0) if and only if n;(X)=0.

Our method of proof is to study the cohomology of X and the Adams
operation " on the K-ring of the projective plane PX of X.

The author wishes to express his hearty thanks to Professor M. Sugawara
for his variable suggestions and discussions.
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§2. Reduction of the main results to Lemma 2.4

PrOOF OF COROLLARY 1.7 FROM THEOREM 1.4. Let X be an H-space stated
in Corollary 1.7, and X be the universal covering space of X. Then, X is a
homotopy associative H-space and so X satisfies (1.5) for G=Q by [4; Th. 6.6].
According to W. Browder [5; Cor.], X is also finite. Assume that m;(X)=0.
Then X is 3-connected by (1.1). Furthermore, we can prove that

(2.1 X satisfies (1.5) for G = Z, and (1.6).

Then, X~(S7)! by Theorem 1.4. If 1>1, then (S7)' admits no (mod 2)
homotopy associative multiplications by [10; Th. 1]. Thus [=0, X ~« and
X=K(n,(X), 1). If K(n, 1) is a finite H-space, then it has the homotopy type
of a torus. So, X=~(SY)!. Conversely, if X ~(S!)!, then 7;(X)=0 clearly
Thus, we see the corollary.

To prove (2.1), we consider the map

f: X — K(n(X)/tor, 1) ~ (S!)

inducing the projection 7,(X)—n,;(X)/tor of the fundamental group. Further-
more, we take g;: S'->X (1Zi=t) so that their homotopy classes form a basis
for n,(X)/tor, and consider the composition

g: (SN 41X X8, x % ... x X (t-fold) 2oy X,
where p, is the t-fold multiplication of X, i.e.,
(2.2) p, = u: X x X — X is the multiplication of X and u,,; = p(u,xid) (s=2).
Then, for the homotopy fibre ¢: X—»X of f: X—(S')!, we see that
(2.3) u(exg): X x (S)* > X x X - X is homotopy equivalence,

because so is fg: (S1)*—(S')* by definition.

Now, since H*(X; Z) has no 2-torsion by assumption, so is H*(X; Z) by
(2.3) and 7,(X) =tor n,(X) has only odd torsion. Thus, X is homotopy equivalent
to the universal covering space of X, which is 2-equivalent to X ; and so

HXX; Z,) = HXX; Z,), Tor(HX(X; 2), Z,) = Tor (H*(X; 2), Z,)

by natural maps. These shows that QH!5(X; Z,)=QH'S(X; Z,)=Q'SH(X; Z,)
=0 by (2.3) and (1.6), and that H*(X; Z) has no 2-torsion since so is H*(X; Z).
Thus H*(X; Z,) is primitively generated by [4; Th. 6.6] since X is a homotopy
associative H-space, and (2.1) is valid. Q.E.D.
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Theorem 1.4 follows from the following

LeEMMA 2.4. Under the assumptions in Theorem 1.4, QH*(X; Q)=0 for
n#7.

PRrROOF OF THEOREM 1.4 FROM LEMMA 2.4. First We prove that
2.5) H*(X; Z) has no torsion.

In fact, if H*(X; Z) has p-torsion for a prime p, then QH?{(X; Z,)#0 for some
i=1 by [6; Th.4.9], and QH?P*~(X; Q)#0 for some k=1 by [7; Th. 4.7].
Here, i 23 by (1.1) since X is 3-connected, and hence 2i p“ — 177 which contradicts
Lemma 2.4. So, (2.5) holds.

Now, we have H¥(X; Z)~H*((S7)}; Z) by A. Borel [4: Prop. 6.5], (2.5)
and QH"(X; Q)=0 for n#7 in Lemma24. Since n(X)H. (X;2Z)x
Hom (H'(X ; Z), Z), there are maps f;: S7»X (1=i<]) such that H,(X; Z)=

Z{f 14O, fix(E)} (E€Hy(S7;Z) is a generator). Then f=p(f;xxf):
(S)!>X (u, is given in (2.2)) satisfies f*: H¥(X; Z)= H*((S")}; Z), and so
X= (8. Q.E.D.

§3. Cohomology of X in Theorem 1.4

The rest of this paper is devoted to prove Lemma 2.4.
In this section, assume that X is a 3-connected finite H-space with (1.5).
Then, we notice the following results due to E. Thomas [17]: '

(3.1) (i) ([17; Th. 1.1]) Let n and t be positive integers with (2n _ll —t> #0
mod 2. Then,

Sq'PH?*"Y(X;Z,) =0 and PH>"Y(X; Z,) = Sq'PH>"'"(X; Z,),

where P denotes the primitive module.
(i) ([17; Th. 1.2]) Ifue PH*Y(X; Z,), then

u = v* for some ve PH(X; Z,).

ReMARK. (3.1) is based on Browder-Thomas [8; Th. 1.1] for p=2 which
is valid because X is finite (see [14]).

Now, we use the following notation hereafter:
(3.2) d(n, G) =d(n, G; X) =dim PH*X; G) for G = Z, and Q.

Then, we have the following two lemmas:

LemMma 3.3. (i) dim QH™(X; Q)=d(n, Q), and d(2n, Q)=0.
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(i) dim QH?*"*\(X; Z,)=d(2n+1, Z,), and QH?**(X; Z,)=0. Therefore,
the assumption (1.6) is equivalent to d(15, Z,)=0.

ProoF. (i) Since H*(X; Q) is primitively generated by (1.5), PH(X ; Q)=
QH™X; Q) by Milnor-Moore [16; Prop. 4.17]. Furthermore, by Hopf’s
theorem, QH?"(X; Q)=0, which implies d(2n, Q)=0 by the above fact.

(ii)) Since H*(X; Z,) is primitively generated by (1.5), we have the exact
sequence

(3.4 0 — P((H*(X; Z,)) — PH*(X; Z,) - %> QH*(X; Z,) — 0

by [16; Prop. 4.21], where &¢: H¥(X; Z,)»H*(X; Z,) is defined by &(x)=x2
and is a map of Hopf algebras. Thus n: PH?"*(X; Z,)~QH?*"*(X; Z,). By
(3.1) (ii), QH* X ; Z,)=n(PH?*"(X; Z,))=0. These show (ii). Q.E.D.

LEMMA 3.5. (i) d(n, Q)=d(n, Z,) for n<12, which is 0 if n#7, 11.

(ii) If d(15, Z,)=0, then d(n, Z,)=0 for n<30 and n#7, 11, 13, 14, 28.

(iii) If d(15, Z,)=0, then d(n, Q)=0 for n<30 and n#7, 11, 13, 27.

(iv) If d(n, Z,)=0 for n=11 and 15, then d(n, Q)=d(n, Z,) for all n, and
d(n, Q)=d(n, Z,)=0if n#7,2'—1 (r=295).

Proor. For the simplicity, we denote PH*(X ; Z,) by PH".

(i) Since X is 3-connected, it is clear that d(n, Q)=0=d(n, Z,) for n<4
by (1.1). Thus (3.1) (i) shows that PH5=Sq?PH3=0 and hence PH°=
Sq*PH>=0. Furthermore, (3.1) (ii) implies

3.6) PH" = (PH*)®) = {x*"| xe PH'} for n = 2st.
Thus, PH?"=0 for n<6. Therefore, in the Bockstein spectral sequence
3.7 E? = HYX; Z,) = E" = (H*(X; Z)/tor) ® Z,,

if n<12, then d,=0 on E? and E}=E?", which implies d(n, Q)=d(n, Z,) by
Lemma 3.3.
(i) If n<7, then Gi) £0 mod2 and PH!S*21=Sg>"PH'5=0 by (3.1)

(i) and the assumption. For n=25<30 with odd ¢, PH"=0 if t#7, 11, 13 by
(3.6) and (i). On the other hand, by the Adem relation, we have

(3.8) PH?' = (PH")® = Sq'PH' = Sq'Sq*~'PH' = Sq'PH"! (t: 0odd),

which is 0 if t=11, 13 by the above argument. Thus, we see (ii).
(iii)) By (3.6), (3.8) and Sq!(PH*)(® =0, we see that

PH?® = (PH")® < (Sq'PH').(PH")® = Sq'(PH'3.(PH")®).

Thus in (3.7), E3"=0 for n<15 and E3"*!1=E3"*! for n<14 with n#6, 13.
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Therefore, if n<30, then d,=0 on E" for r=2 and E%=E3. Hence d(n, Q)
(n=<30)is 0if n¥#7, 11, 13, 27 by (ii) and Lemma 3.3 (i).

(iv) Assume d(11, Z,)=0, in addition to (ii) and (iii). Then, PH!3=
Sq?PH'"' =0 by (3.1) (i), PH'*=Sq'PH'3=0 by (3.8), and PH?=(PH*)® =0
by (3.6). Thus d(n, Z,)=0 for n<30 and n#7 by (ii). Now, we prove that

(39) d2n+1,Z,)=0 for2r' +1<2n+ 1< 4r — 3 (r'=2Y)

by induction on r, which is shown already if r<4. Let r>=5.
Case 1) 2r'+1<2n+1=<3r'—3: Then (2n +r% -r ) #0 mod 2 and PH?"*1

=Sq"" PH?"+1-"" =( by (3.1) (i) and the inductive hypothesis.

Case2) 2n+1=3r'—1: Take any xe PH?"*!, Then, x=Sq"y for some
yePH?>'~! in the same way. Now, Sql'ye PH*' =(PHY)?")=0 by (3.6),
and Sq?'ye PH?*'*2'-1=0 for any t with 1<t<r—2 by Case 1). Thus, [1;
Th. 4.6.1] and r=5 imply that

x = 8q"y = X o, for some v;e H¥(X; Z,) and o; € o with 0 < dega; < 1/,

where & is the mod 2 Steenrod algebra. Since H*(X; Z,) is primitively generated,
we can write as v;=w;+d; where w; € PH* and d, is decomposable. Here, w;=0
if w,e PH°4¢ by Case 1) and we can take w;=0 if w;e PHe**" by (3.1) (ii). There-
fore, x=3 a;d,e PH?"*! is decomposable, which implies x=0 by the exact
sequence (3.4).

Case 3) 3r+1Z2n+1Z4r'—-3: Put t=2n+2-3r. Then<2n+t1_t>=

(3’ t‘l) £0 mod2, and PH?"*'=Sq'PH¥*-1=0 by (3.1) (i) and Case 2).
This completes the inductive proof of (3.9).

Finally, we prove that
(3.10) d(2n, Z,) =0 for any n = r't with ' = 2"~! and odd t.

If t#£25—1 (s=3), then PH?"=0 by (3.6) and (3.9). Assume t=2—1 (s=3).
If =1, then PH?"<=Sq'PH?'~'=0 by (3.8) and (3.9). If r'=2, then PH?>"=
(PH2")") by (3.6), which is 0 as is shown. Thus, we see (3.10), and (iv) is
proved for Z,.

Now, consider the Bockstein spectral sequence (3.7). Then, PE3"=PH?**=0
and d,=0 on E* for any r=1, since E7=H"(X; Z,) is primitively generated.
Thus, E% =E%} which means d(n, Q)=d(n, Z,) for any n=1, and (iv) is proved
completely. ’ Q.E.D.

§4. K-ring of X and the projective plane of X

We continue to assume that X is a 3-connected finite H-space with (1.5).
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Furthermore, we regard X to be a finite CW-complex and the multiplication p a

cellular map.

Let Y be a CW-complex with the n-skeleton Y”, and K*(Y) be the Z,-graded
complex K-ring with K%(Y)=K(Y) and K(Y)=K(ZY), where X~ denotes the
suspension. We filter K*(Y) by

4.1) F,Ki(Y) = Ker (K/{(Y)-Ki(YP~1)) (j=0,1).

Then, for any y € Ki(Y), we write

4.2) degy=p if yeF,Ki(Y)—F,, Ki(Y).
Now, we prove the following key lemmas.

PROPOSITION 4.3.  Under the above assumption on X, K*(X) is torsion free
and has the structure of primitively generated Hopf algebra. Moreover, there
exist x;e PK(X), 1Zi<|, such that

K¥X) = Ag(xy %) and 4{i| deg x;=n} = d(n, Q).
Here, $A denotes the number of elements in a finite set A.

Proor. Since H¥(X; Z,) is primitively generated by (1.5), the Pontrjagin
ring H,(X; Z,) is associative by [16; Prop. 4.20]. Thus H,(2X; Z) (QX is the
loop space of X) is torsion free by J. Lin [6; Th. 8.1], and then so is K*(X)
by R. Kane [13; Th. 1.4]. This implies that K*(X x X))~ K*(X)® K*(X) and
K*(X) has the structure of Hopf algebra. Furthermore, the Chern character

ch: K¥X) — K*X) ® Q = H*(X; Q)

is monomorphic and is a map of Hopf algebras. Here, H*(X; Q) is an exterior
algebra over primitive elements by assumption (1.5) and Hopf’s theorem. Thus,
by L. Hodgikin [11; Th. 2.2], we see that

K*(X) = Ay(xyy-, %)  for x;e PK*(X).

Here x;€ PK'(X), because PH***(X; Q)=0 by Lemma 3.3 (i) and ch(K°(X))c
Heer(X; Q). On the other hand, by the Atiyah-Hirzebruch spectral sequence

for K*( )®Q, we see that
(F2p- | KNX)/F,,K(X)) @ Q = H»" (X Q),
which implies #{i|deg x;=2p—1}=d(2p—1, Q). Q.E.D.
Let PX be the projective plane of X, i.e.,
PX = ZX\Upym C(X*X)
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is the mapping cone of the Hopf construction H(u): X*X—XX of u. Then, PX
is a finite CW-complex containing XX as a subcomplex. By definition, we have
the exact sequence

4.4 - — R(X)— R(X A X) — R(PX) = R}(X) — R{(X A X)—> -
R(1)=K(Y)),

where R(X A X)=~(K*(X)® K*(X))° by the above proposition.

ProPOSITION 4.5. For x; (1ZiZ1) in the above proposition, there exist
elements y; and an ideal S in K(PK) such that

1y; =x;, degy;,=degx;+1; tS=0, S-K(PX)=0,
K(PX) = T3A ® S (as rings), and Y™S) < S for all n,
where t is the homomorphism in (4.4),
T3A = A|D3A, A = Z[y,,, ], D*4=(4-4)-4
and y* is the Adams operation on K.

PrOOF. The proof of the corresponding results for H¥(PX'; Z,) and K(PK)®
Z ;) are given in [8; Th. 1.1] and [12; Lemmas 6.3—4]. This proposition can be
also proved by the same method, and we omit the details. Q.E.D.

T3A in the above is called the filtered truncated polynomial algebra of
height 3.0n {y;}.

Let B be a filtered algebra over Z by a filtration
B=FyB>FB>:-> F,B>:.- with F,B-F,Bc F,, B forany p,q = 0.

Then, we say that B is a y-algebra if there are maps y": B—B (ne Z) of filtered
algebras, i.e., algebra homomorphisms y" with y"F,B< F,B, such that

(4.6.1) yYl=id and Y™y =y"ym =y for any m, ne Z,
(4.6.2) if xeF,,B, then y"x=n"x mod F,,, B for any r=0 and ne Z, and
(4.6.3) Y2x=x? mod 2 for any x € B.

By [2; Th. 5.1], [3; (1.1-5)] and the definition, we see that

LemMA 4.7. (i) The K-ring K(Y) of a finite CW-complex Y filtered by
(4.1) is a Y-algebra by the Adams operations Y.

(ii) IfIis an ideal in a Y-algebra B with y"I <1 for all n, then B/I is also
a Y-algebra.

Now, according to Proposition 4.5, we can prove Lemma 2.4 and hence the
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main results in §1 (see §2) by the following

PROPOSITION 4.8. Assume that a filtered truncated polynomial algebra
T3A = A|D34, A= Z[y,,--,y] with degy;=38, 12, 14 or even = 28,

of height 3 is a Y-algebra. Then:
(i) There is no i with deg y;=12.
(i) Ifdegy; is 8 or 2" (r=5), then deg y,=38 for all i.

PROOF OF LEMMA 2.4 FROM PROPOSITION 4.8. Let X be an H-space in
Theorem 1.4. Then, X is regarded as an H-space in this section satisfying (1.6),
i.e., d(15, Z,)=0 (see Lemma 3.3 (ii)). Thus, T34=K(PX)/S in Proposition 4.5
is a -algebra by Lemma 4.7, and the generators y,,---, y, satisfy g{i|degy;=
n+1}=d(n, Q) by Proposition 4.3. Therefore, d(11, Q)=0 by Lemma 3.5 (iii)
and Proposition 4.8 (i), and hence QH"(X; Q)=0 for n#7 by Lemma 3.3 (i),
3.5 (iv) and Proposition 4.8 (ii). Q.E.D.

The above proposition is proved algebraically in the next section.

§5. Proof of Proposition 4.8

Let T3A be a y-algebra in Proposition 4.8. Then, theideal I in T3A generated
by {y;ldegy;=28} satisfies y"I<I for all n. In fact, if degy,=2r=28, then
yry,=n"y; mod F,,, T34 by (4.6.2) and F,,,,T3AcI by assumption, which
show yy,el. Therefore, we have a -algebra T34/I by Lemma 4.7 (ii), which
is isomorphic to

(5.1.1) a y-algebra T34, = A,/D3A,, A; = Z[y,,--+, y,], with degy; = 2¢(s) if
t,_1 <i=t,ande(s) =4, 6 or7according to s = 1, 2 or 3, respectively
(t0=0, t3=t).

Hereafter, consider this y-algebra T3A4,. Then, we have
(5.1.2) yryi=n* Oy, + 3 < AG j5 n)y; + X< BG J, ks )y (-1 <iSty)
for some integers A and B by (4.6.2). Therefore,

(5.1.3) for any j>t,, the coefficient of y% in Y™y, is equal to

n’B(j, j, j; m) + m“B(j, j, j; n) + m" ¥,<,, B(j, i, j; m)A(, j; m)
+ 2i§k§t; B(I9 i’ k; n)A(l’.]a m)A(k,.]9 m)‘

Thus, by comparing them in Y2~y =y =12y, of (4.6.1), we have
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— Yickzr, B(J, 1, k; 2)A(I, j; —1DA(k, j; —1) mod 4,

because A(i, j; 2)=0 mod2 by (4.6.3). Here, (4.6.3) also shows that B(j, j,
j;2)#0 and B(j, i, j; 2)=0=B(j, i, k; 2) mod 2. Therefore,

(*) for anyj > t,, there is i < t, such that A(i, j: —1) is odd.
Then, by changing the generators y; (1 <i<?) if necessary, we may assume that
(5.1.4) A(@, j; —1) (i=t,<j) is odd when and only when i = i(j),
where
j—1t, if j<t,+r,
i(j) = for some r=0 with d;—d,<r=<d,

ti+j—t,—r if j>t,+r,

(dy=t,—t,_,=4{i| deg y;=2¢(s)}). In fact, for j,>t,, take iy<t, with odd

A(ig, jo; —1) by (*), and with iy > ¢, if it exists; and replace y(jo #,j>t,) with odd

A(ig, j5 —1) by yj+y;, and y; (ip#ist;) with odd A(i, jo; —1) by yi+ i,

Repeat these replacements for all j,>t, and change the order if necessary. Then,

{y;} is replaced with the new {y;} so that A(i, j; —1) turns out to satisfy (5.1.4).
Here, we notice that

(5.1.5) A(i,j; —1)=0foranyi,jwithi<t, <j=<t,.

This is seen by the following equalities of (5.1.1) and (5.4.2) for n= —1:
Vi=y¥yi=y Wy =y + 235,40, j; —1) mod F3T34, .
Now, we put

(5.1.6) Vi=yi+ Zu<;[AG, j; —D2]y; for i = t,,

Vi =¥ iy — Vi for j = t, (by i(j) in (5.1.4)).

Then, by (5.1.2), (5.1.4-5) and (4.6.1), we see the following (i <t, <j):

Vit y; if i =i())

(517 Yy iy, = mod D24,, y~ly; = -V
y; otherwise

(5.1.8) yi=y; modF,,T34,, y;,=y; modF,sT34,.

LemMaA 5.2. (i) T3A, in (5.1.1) is equal to T3A,=A,/D34, with A,=
Z[yys++s Yi), where deg y;=deg y; (1S i<1).

(i) Let I be the ideal in T34, generated by {y;|j>t,}. Then, y"I<I for
all n, and we have a -algebra
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T3A,/1 = T3A, = A,|D34,, A, = Z[J,,+, 7,,].
Proor. (i) is clear by (5.1.6-8). By (5.1.2) for T34,,
Yy, =n"3; + X< B(j, 1, k; )73, for j>1t,.

Now, compare the coefficients of y;3, in y~y"y,=ymy~'y,. Then, by (5.1.7) and
D2A,=D?4,, we see that

B(j, i, k;n)=0 forany i <k <t,, and y"j;el forany j > t,.

This implies that Y"I I, and we see (ii) by Lemma 5.2 (ii). Q.E.D.

From now on, we omit the bars of generators and consider the above y/-algebra

T3A, = A,/D34,, A, = Z[y,4,"**, y,,), With
degy, =8 if k <t,, = 12 otherwise,

where (5.1.2) is written as follows:
(5.3.1) yry; = n*y; + Zp < AG, ks )y + Zigw B, k, k' My for i S ¢y,
(5.3.2) Yry; =ny; + X<k B(j, k, K'; n)yy, for j > t,.

Then, for i<i’<t, <j, the coefficient of y; in Y™y, is n*A(i, j; m)+mSA(, j; n)
and that of y;y, in ym™y"y; is nSB(j, i, i'; m)+m®B(j, i, i'; n). Thus by
comparing them in Y2y3y, =32y, of (4.6.1), we see that

(5.3.3) 33A(i, j; 2) = 2A4(,j;3) forany i<t <],
(5.3.4) 3%B(j,i,i';2)=2%B(j,i,i';3) forany i<i' <t <.

To study 4 and B more precisely, we prepare the following (5.3.6-7) for i<
t,<jand n, me Z, where

(5.3.5) C(D) = m'2B(l, j, j; n) + m® ¥, <., B(, k, j; n)A(k, j; m)
+ Teswsa BU, k k's m)A(k, j; mA(K, j; m),
D(l) = m°B(l, i, j; n) + m* 3, <; B(l, k, i; n)A(k, j; m)
+ m* 3, B(l, i, k; n)A(k, j; m),
E(, 1) =n*B(i, I, I'; m) + X, <A, k; n)B(k, 1, I'; m).
(5.3.6) The coefficients of y% and y;y; in Y™j"y; are equal to
n8B(j, j, j; m)+ C(j) and n8B(j, i, j; m) + D(j), respectively.
(5.3.7) Those of y?, y% and y;y; in Yy™j"y; are equal to
E(G, i) + m®BG, i, i; ), E(j, j) + C(i) and EG, j) + D(i), respectively.
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LEMMA 5.4. A(i, j; 3) is even for any i<t <j.

PrOOF. Suppose contrarily that A(a, b; 3) is odd for some a<t, <b. Then,
by changing the generators y;, 1<k<t,, we may assume that

(5.5.1) A(a,j;3)=0=A(, b; 3) mod2” forany i,j witha#i<t <j#b.

In fact, there are integers 4 and u with 14(a, b; 3)+u=1 and p=0 mod 27 by
assumption. Then, we see (5.5.1) by replacing y; (a#i<t,) and y, with

Ji=yi— AA(, b; 3)y, and J, = y, + 2., < A(a, j; 3)y, respectively,
because (5.3.1) turns out to
Y3y, = 3*ya + Zii<jes #A(a, j; 3)y; + Aa, b; 3)7,
Y3 = 345+ Toy<jun G, J3 3y, + pAG, b; 3)7,

We now consider the coefficients in Y23y, =y3y2y, given in (5.3.6-7) (k=b
or a) and compare them by taking mod 2" and by using (5.3.3—4) and (5.5.1).
Then, in the first place, we see that

mod D?4,.

(5.5.2) o = A(a, b; 2)B(b, a, a; 3) =0 mod 24,
B = A(a, b; 3)B(b, a,a;2) =0 mod?25.

In fact, (5.3.7) for y? implies a=p mod 24 by (5.5.1) and (5.3.3). On the other
hand, 22a=338 by (5.3.3-4). These show (5.5.2). In the second place, by (5.3.6)
for y,y, taking mod 27, we see that

26B(b, a, b; 3) + 2-3*8 + 35(3*—1)B(b, a, b; 2) = 25%¢ mod 27,
which together with (5.5.2) implies that
(5.5.3) B(b, a, b; 2) = 22B(b, a, b; 3) mod 23.'
In the third place, by (5.3.6) for y? taking mod 23 and (5.5.2), we have
B(b, a, b; 2)A(a, b; 3) = aA(a, b; 2) — BA(a, b; 3) =0 mod?23.
Since A(a, b; 3) is odd by assumption, this shows that
(5.5.4) B(b, a, b; 2) = 0 mod 23, and hence B(b, a, b; 3) is even,
by (5.5.3). Finally, taking mod 22, (5.3.7) for y,y, implies that
2B(a, a, a; 2)A(a, b; 3) = A(a, b; 3)B(b, a, b; 2) — A(a, b; 2)B(b, a, b;3) =0
mod 22 by (5.5.4) and (5.3.3). Thus
(5.5.5) B(a; a, a; 2) is even, since A(a, b; 3) is odd.
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This contradicts (4.6.3); and the lemma is proved. Q.E.D.
LEMMA 5.6. t,=t,, i.e., there exists no y; with deg y;=12.

Proor. Compare the coefficients of y? in Y23y, =y3y2y, taking mod 23
for any i<t, <j by using (5.3.7), Lemma 5.4 and (5.3.3). Then, we see that

(57.1) X, < A(, k; 3)B(k, j, j; 2)
= X<k AG, k; 2Bk, J, j; 3) + Zisy, BG, k, j; 2)Ak, j; 3)
+ Yiswsn BG, k, k'; 2)A(k, j; 3)A(K’, j; 3) mod 23,
We notice by (4.6.3) that
(57.2) Bk, k', k";2)=1 mod2 ifandonlyifk=k" =k".
Here, (5.7.1) implies firstly by taking mod 22 that A(i, j; 3)=0 mod 22 and then
(5.7.3) A(i,j;3) =0 mod23 forany i £t; <.

Compare now the coefficients of y% in Y2y3y;=y3)2y; taking mod2* using
(5.3.6). Then, by (5.7.2-3) and (5.3.3), we see that

(5.7.4) 36(36—1)B(j, j, j; 2) =0 mod 2.

Thus B(j, j, j; 2) is even, which contradicts (5.7.2) if j(>t,) exists; and we have
Q.E.D.

tz =t 1
Now, we are ready to prove Proposition 4.8.

PROOF OF PROPOSITION 4.8. (i) is already proved by Lemma 5.6.

(ii)) Suppose that (ii) is not valid, and let r=5 be the least integer with
#{i|deg y;=2"}#0. Consider the ideal I in T34 generated by {y; | deg y;=2"*1}.
Then, by Lemma 4.7 (ii), we have a y-algebra T34/I, which is isomorphic to

T3B = B/D?B, B = Z[y,,-+*, y], with degy, =8 if i < s;, =2" if i > s,.
In this -algebra, (4.6.2) implies that
Yty = nty, + X, < A(, k; n)y, mod D2B for i < s,
Yry; =n"y; + Ziskp>s, BUs ks k's m)yyy for j > sy,

where r'=2""1, Consider Y2y3y;=y3y2y; (j>s;). Then, by comparing the
coefficients of y;y; (i<s,) taking mod 2", we see that

37(34*—=1)B(j, i, j; 2) = 0 mod 2~ and B(j, i, j; 2) = 0 mod 2"+2,

since ' —42r+2. Therefore, by comparing those of y? taking mod 27+2, we have
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37(3"—1)B(j, j,j;2) =0 mod 2"+2

in the same way as (5.7.4). Here, 3" —1=2"*1 mod 2"*2 by [2; Lemma 8.1].
Thus,

B(j,j,j;2)=0 mod2,
which contradicts (4.6.3); and (ii) is valid. Q.E.D.

Thus, the main results in §1 are proved completely as noted at the end of §4
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