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0. Introduction

Let G be a connected noncompact semisimple Lie group with finite center,
and let K be a maximal compact subgroup of G. Let M be the symmetric space
G/K. We endow M with a G-invariant metric. We assume throughout this
paper that rank (M)=1.

Let I be a discrete torsion-free subgroup of G such that the quotient I'\G
is compact. I acts on the symmetric space M by left translations and the quotient
space I'\M is also compact. We give to the quotient manifold I'\ M which we will
call M, the push down Riemannian metric. Then M is the most general compact
locally symmetric space of negative curvature. Also, the simply connected
covering manifold of M is M, and we have n,(M)=T.

Let T be a finite dimensional unitary representation of I’ on a vector space
E; with character ;. Since I' is unimodular, there exists a G-invariant measure
dx on the quotient space I'G. We denote by L2(I'\G, T) the space of E; valued
measurable functions f on G such that (i) f(yx)=T(y)f(x) for yeI', xe G and

(ii)S \ | f(X)||2dx<oo. Since I' is cocompact, the right regular representation
r\G
np,r of G on LA(I'\G, T) decomposes

T = 2re6 "r,'r(n)n

and ny r(m)<co forany ne G. Here G stands for the set of all equivalence classes
of irreducible unitary representations of G. Suppose that a function f is a C*®
element of L2(I'\G, T) with compact support on G. Then the operator n (f)=

S f)mp (x)dx on LA(I'\G, T) is well defined and is of trace class. Therefore
G

tr 1 {(f) =2 ree Pr,7(m)O,(f), where @, denotes the character of the class .
On the other hand, we may compute a trace of n (f) in a different manner by
using the Selberg trace formula.

In this paper, applying a suitable function in €!(G) to the trace formula, we
will consider the generalization of the following results.

Let X be a compact Riemann surface of genus bigger than 2. Then X=I'\H
where H=SL(2, R)/SO(2) is the upper half plane, and I’ is a discrete subgroup of
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SL(2, R), acting freely on H via fractional linear transformations. Let y be a
character of a finite dimensional unitary representation of I'. In an important
paper [25], A. Selberg constructed a function of complex variable Z(s, x), which
is called Selberg’s zeta function attached to the data (I, x), and showed how the
location and the order of the zeros of Z.(s, x) give us information about the
spectrum of the Laplace-Beltrami operator of X on the one hand and about the
topology of X on the other hand. Furthermore, in a well known paper [7], R.
Gangolli constructed a certain zeta function for the general compact locally
symmetric space of negative curvature, and also he showed that this zeta function
has all of the properties possessed by Selberg’s zeta function.

In essence our object is as follows.

Let (z, V,) be an irreducible unitary representation of K. We consider the
homogeneous vector bundle E,=Gx .V, over M=G/K. There is a unique
G-invariant connection ¥ on E, such that if s is a C® cross-section, Ye T,x(M)
(e is the identity element of G), n: G— M is the canonical projection and dn des-
ignates the differential of n at e, then Fy,(s)=d/dt(s(exp (tY)K))|,=o. We
denote the connection Laplacian on E, by V2, and we put D=—F2. Now, let
G.r be a subset of G defined by {ne LXI'\G, T); n|x31}. The operator D
induces an operator Dy on L2(I'\G, T). Hence one can consider about the
spectrum of D on LXI'\G, T). The principal aim of this paper is to investigate
a certain zeta function Z_ (s) (of a complex variable s) attached to the data (G, K,
I', T, t), which provides information about the spectrum of D;. This means that
our zeta function gives us information related to the determination of the subset
G, 1 of G (see Remark 1 in Section 7). In particular, if 7 is a trivial one dimen-
sional representation of K, then our zeta functions are nothing but the zeta
functions constructed by Selberg and Gangolli.

We will show that Z_; is holomorphic in a half plane Re s>2p, where p,
is a positive real constant depending only on (G, K), and that Z, ; has a merom-
orphic continuation to the whole complex plane. In addition to this property of
Z, 1, we will determine the location and the order of zeros and poles of Z, ; in
connection with the distribution of the series of representations which belongs to
G. r (Theorem 7.1).

We shall prove that Z_ ; satisfies a functional equation (Theorem 7.2), and
that Z_; has an Euler product expansion (Theorem 7.3). Moreover, we shall
show that if Z,  is an entire function then the order of Z_ ; as an entire function
can be related to the structure of (G, K) and it equals to dim (G/K) (Theorem 7.4).

In the previous paper [27], we have dealt with the case when G=SU(n, 1)
and 7 is the one dimensional unitary representation of K=S(U(n) x U(1)).

The problem that we will treat in this paper has been studied in the case when
the zeta function is associated with the group G=SL(2, C) (for detail, see [24]).

We use the standard notation Z, R, and C for thering of integers, the field
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of real numbers, and the field of complex numbers, respectively. We denote by
R* the set of nonnegative real numbers. Furthermore, for any finite set F, we
denote the number of elements of F by the notation either [F] or #F.

1. Preliminaries

Let G be a connected noncompact semisimple Lie group with finite center,
K a maximal compact subgroup of G. Let g, f be their respective Lie algebras
and let g=f+p be a Cartan decomposition of g with respect to the involution
6 determined by f. Let a, be a maximal abelian subspace of p. Let M and M*
be the centralizer and the normalizer of 4, in K respectively, where of course
A,=expa,. Let W=M*/M be the Weyl group of (g, a,). Throughout this paper
we will assume that G has real rank one, that is, dima,=1. Extend a, to a maxi-
mal abelian §-stable subalgebra a of g, so that a=a;+a,, with a;=anf, a,=
anp. Then ais a Cartan subalgebra of g.

For any subsapce [ of g, we denote by I, and [* the complexification and the
real dual of I respectively. Furthermore denote by ¥, the complexification of [*.
Let 4=A(g,, a,) denote the set of roots of (g,, a,). Order the dual spaces of
a, and a,+ia, compatibly, as usual (cf. [13]), and let 4* be the set of positive
roots under this order. Let

P, ={a€d,;a#0 on a,},

P_={aed,;a=0 on a,}.

Put p=(1/2)% ., @ For ae 4™, let X, be aroot vector belonging to a, and put
n=3,,, CX,Ng. Let N be an analytic subgroup of G corresponding to n.
Then we have the Iwasawa decompositions g=f+a,+n, G=KA,N. Since
dima, =1, there is an clement A in a} such that n=n,®n,; with n;;={Xeg;
ad H(X)=j-A(H)X, for any Hea,} (j=1,2). Namely if X is the set of re-
strictions to a, of elements of P, then AeX and 24 is the only other possible
element in 2. Let p be the number of roots in P, whose restriction to a, is 4,
and let g be the number of the remaining elements of P,. Choose H,€a, so
that A(H,)=1.
Let { , ) denote the Killing form of g, that is,

X,Y)y=tr(ad Xad Y) for X, Yeg.

Put | X|?= —<X, 6X), then |-| is a norm on g. Also, the restriction of { , )
to a, x a, puts in duality a, with itself. Given p € a} there is a unique element
H,ea, so that u(H)=<H,, H) for all Hea,. On a} we use the dual inner pro-
duct, that we also denote by ( , >. With respect to these inner products, one
knows that
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{H,, H,) =2p + 8q, p(H,) = (1/2)(p+2q),
H, = (2p+8¢q)'H, and <p, p) = (1/4)(p+29)*2p+8q)~".

Throught this paper, we will denote by p, the number p(H,).

For any x € G, let H(x) € a, be defined by x=k exp H(x)n, ke K, ne N.

For any he A,, we put u(h)=A1 (log h). Then u=u(h) may be regarded as a
parameter on the group 4,. By this parametrization A4, can be identified with
R. Let du be the standard Lebesgue measure on R. Via the identification of
A, with R, we get a Haar measure dh on A, which we fix from now on. On
the other hand, for any veaf, we put r=r(v)=v(H,). Then r is a parameter on
a¥, and maps a} isomorphically onto R. In these parameters, v(log h)=u(h)r(v)
for vea¥, he A,. Let dr be the Lebesgue measure on R. Then dr/2rn is the
measure on R dual to the measure du on R in the sense of Fourier transforms.
We denote by dv the measure on af that we obtain from dr/2n. Then dh, dv
are dual in the sense of Fourier transforms.

Let dk and dm denote the normalized Haar measures on K and M respec-
tively. On N we fix a Haar measure normalized by the following condition:
Let i=6(n"!) for each n in N. The measure dn is to satisfy the condition

S exp (—2p(H(n)))dn=1. Having fixed the above measures on K, 4,, N, we
N

normalize the Haar measure dx on G so that

S f(x)dx = S f(khn)exp 2p(log hydk dh dn.
G KApN

These normalization will be adhered to throughout in this paper.

For any subgroup L of G, let L be the set of all equivalence classes of ir-
reducible unitary representations of L. If ne L is a finite-dimensional representa-
tion, then we put y,=tr 7 and d,=dim z.

If vea¥, and (o, H,) € M put

f: G-H,; f(gmhn) = o(m)~! exp (—(iv+p) (log h)) f(9)

He»w = (9eG,meM, heA,, neN)
and
g F(K)|2dk < oo
K\M

If ge G, fe Ho¥ define
®o (@) (xX) =flg™'x)  (x€G).

Then =, , defines a represntation of G on He:*. If r=r(v) € R then this represen-
tation is called a (unitary) principal series representation of G. We denote by
G, the set of all equivalence classes of irreducible unitary principal series re-



Zeta functions of Selberg’s type 239

presentations. On the other hand, for r=r(v)€iR, the representation =, , is
called a complementary series representation of G whenever it is unitarizable.
We denote by G, the set of all equivalence classes of the complementary series
representations.

If fe C(G), we define the Abel transform F by

F,(mh) = exp p(log h) S fGemhnk=dn dk

Kx

for meM, heA,. Let 0,,=0
7., Then it is known that

(ceM, vea},) denote the character of

To,v

(1.1 0,.(f) = SM gA F ;(mh)y,(m) exp iv(log h)dh dm.
p
Applying the Fourier inversion formula and the Peter-Weyl theorem we see that

12) F(mh) = ¥ S 0,.,(f) exp (—i(log M) (m)dv.

o}
Define for me M, vea¥,
(1.3) D(mh) = exp (p(log h))|det (Ad (mh)~"1=1)|,]|.
Clearly D(mh)#0 if h#e. Moreover, if h#e then it is known that

(L.4) F(mh) = D(mh)g . Jamhg™dg.

G/

Here the measure dg on G/A, is defined by

SG $(g)dg = SGM SAP S(ghydh dg.

Now let G; be the set of all equivalence classes of the discrete series re-
presentations of G, that is, those classes w e G that contain a square integrable
representation of G. Let @, denote the character of we G;. Then we state the
version of the Plancherel formula for G (see [11]):

oceM

(L9) f@= % deouf) + W1 5, |, en e

for any K-finite (on both sides) function f in C®(G). Here d(w) stands for the
formal degree of we G, and u,(v) is the Plancherel measure corresponding to
o€ M. Of course, the quantity d(w) and the function u,(v) depend on the choice
of the Haar measure on G.

Throughout this paper, for simplicity, if f(v) is a function on af,, then we
will write
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SO =) (r=r0)=vH,), rA=).

Then p,(r) (6 € M) is a meromorphic function on C that restricts to an even,
nonnegative, analytic function on R that has polynomial growth.

Let m be the Lie algebra of M. Then a, is a maximal abelian subalgebra of
m. Let 4, be the root system of (m,, a,;,). We define an order on 4, so that
the set P_ is the set of all positive roots in 4,,.

If e M, we denote by A, its highest weight and we put py=1/2 2 aep O
Both A, and p,, are trivially extended to a,. Put

qa(r) = qo’(v) = Haed* <d, iv + Ao + pM> .

Let b denote the number of different positive restricted roots of a,. Then
it is known that, up to a constant factor depending only on G, u,(r) is given by the
formula (see [15])

q4(r[b)§,(r[D).

Here ¢,(r)=1, if g=s0(2n+1, 1), and otherwise ¢,(r)=tanhr or ‘cothr, de-
pending on o. The choice of tanh or coth is done roughly as follows. There
exists a distinguished element y € exp a, of order at most two. If H* € a, satisfies
exp (H*)=1y, then exp (4,+ py) (H*)=t1. The tanh is used when the sign is —
and the coth when the sign is + (see [23]).

Since

—_ 1 —_ <a9 Aﬂ+pM>
(Ao =dimo =TT —=2r 0

we see that g,(r) can be written
qa(r) =c- do‘ : po(r)

where ¢ is a constant depending only on G and on the normalization of the Haar
measure on G, and p,(r) is a monic polynomial of degree dim (G/K)—1=p+q.

We will need a very explicit formula of p,(r). Miatello has computed it for
each particular group, but he uses a different normalization from our Haar
measure on G. Now we list them below in our normalization of the Haar
measure:

D G=S0,2n+1,1) (n>1), g,~0,,,.
The Satake diagram:

(:j , if n=1),
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o =8—&+1 (=1,2,...,n), 0,1 =&, + &4, (see [2]).
={8,i81;1<l<j<n+1}.
P,:& +¢; (1 <j<n+ 1) (They all restrict to 4).
The general form for a highest weight:

Ao= "+1S & (52 S3 >>Sn> Isn+1|’ SiEZ)'

Then

Ug(r) = 24n—21~(7;+1/2)2 dajli[l (r*+ (s +n—j)?).

Il G6=s0,2n,1)(n=2), g,~b,
The Satake diagram:

oy oy Apey

o—o—o——o—c:):n (o@:;,

Oy oy

=& —&e (i=1,2,...,n—1),a,=¢,
t={eyl<i<niU{gte;l<i<j<n}.

P,:¢&, € + & (1 <j< n)(They all restrict to 4).

The general form for a highest weight:

A =21 025-8(,=>83=>5,20,5,€ Z).
Then

Bo(r) = Wd" 1_[ (r2+(s;+n—j+1/2)?) tanh nr.

) G=SU(n, 1) (n>2), g.,~ a,.
The Satake diagram:

u=¢g—¢&4 (i=1,2,...,n).

At ={g — €413 1 <i<j<n}.

P,:e — g5,y (1 <j<n)restrict to 4,
& — &,41 (1 < i.< n) restrict to 4,

€ — &,41 restricts to 24.

241
if n=2)
if n=2)
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The general form for a highest weight:
Ay =212 sie + (52) iz (52 2 5322 8,1 20, 54, 5€ Z).

If we set 5,=0, then
_ T r et (r\? a2 r
1) = grrpyr do 5 L {(5) + @sprnt s +n-214}0,( %),

where ¢,(r)=tanh nr or coth nr, and ¢ (r)=tanh nr if and only if s+n is an odd
integer.

For SL(2, R) there are two representations of M, one trivial and one not.
The Plancherel measures in the two caces are of nr-tanh nr and nr-coth nr,

respectively.
(IV) G=Sp(n, 1) (n>2) g,~¢p4 1.

The Satake diagram:

—Oo—o—-- —c#. (—o—=(—e , if n=2)

oy o %3 ®pt1 oy oy oy
o =8—&r1 (i=1,2,...,n), tyrq1 = 26,41.
At ={2;1<i<n+1} U {gte;l<i<j<n+1}.
P,:e, +¢;(3<j<n+ 1)restrict to 4,

g + ¢ (3<j< n+1)restrict to 4,

&, + &,, 2e; and 2eg, restrict to 24.

The general form for a highest weight:
A, = 20 s 6+ soy (5322 5,.120,5>0,s5;,25€ Z).

Then

1) = geapaye 45 ILA((5) + (mstn=i+ 3))
() + (Sf+s+" =i+ 3))(5) + G+ 3)ed5)
where @,(r)=tanh 7r or coth nr and ¢,(r) =tanh zr if and only if s € Z.
(V) G=Fa_z0p 8.5

The Satake diagram:
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1
Oy =& — &3, Uy = €3 — &4, U3z = &4, Uy = 7(31“32—33—84)-

A+={£u l 4} U {6 —_ J51<l<‘]<4} U{%(81i82i83i84)}-
P,: %(31 +&,+e3+¢,) restrict to 4,

g, and &, + ¢; (2< j<4) restrict to 24.
The general form for a highest weight:
Ay =518+ 5363+ 53-6,(5,>5,>5;>0,25,€ Z,5;,—5;€ Z).

Then

0= g () + () (3 + (422))
(N Homsmsr )

(3 +(omssrns D) +Gorocmns 1)
(5 + oo 2)e(5)

where ¢,(r)=tanh nr or coth nr and ¢ (r)=tanh nr if and only if s;€ Z.

Suppose that (n, H)e G. Then (n, H) is K-finite, that is, as a representation
of K, it is the unitary direct sum H=3 ¢ H,=3Y . g m.V,, where 7|y ~m.z
(m,< o) for any te K.

For fe C.(G) and h € C(K), we define the convolution products of them by

(f+h)(x) = SKf(xh)h(k‘l)dk, (hxf)(x) = SK h(k)f (k~*x)dk.

Let E,: H—H, be the orthogonal projection onto H,. For any 7€ K, we
observe that if d_ f*y,=f then

(1.6) 0.() = | _tr(EA(xE)(x)dx.

If (n, H)=(n,,, H*") (ceM, veay},) then the t-primary component H, =
Hgv is identified with V,@Hom,, (V,, H,) via the map A4 given by
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A(w®T)(khn) = exp (—(iv+p)(log W) T(x(k™ ")),
where ve V, and Te Homy, (V,, H,).

Let 7, ye K, Te Hom,, (V,, V,), vea}, and xe G. We define an Eisenstein
integral by

E, (T:iv:x)= Sx exp (— (v + p)H(xk)y(k(xk)) Tr(k~V)dk.

These integrals are essentially the matrix coefficients of the principal series.
That is, it can be easily seen that

iy (X)AW@ ), A®pE)> = <E.(p]'pk: —iv: x)w, v)

where {pJ;j=1,...,a,} is the basis of Hom, (V,, ¥,) and pi* is the adjoint
operator of pJ [28].
Let us fix te K. Put M,={ce M; [o: 7|,,]#0}. Then we have

Vt = Zaeﬁr 2;21 H;' with (TIM, Hf;)eo'-

Let gi=ppl (j=1,...,2,). The following lemma will be used below.

LEmMMA 1.1 [11]. For each o€ M,, let a,(v) be a C* function on af,. Let

at(v) = ZaeMr Z;gl aa(v) * qé’
Then we have

Zae)ﬁ, tr (Etna‘,v(x)Er)aa(v) =tr (at(v): —iv: x)
for any veaf,.

Proor. By the matrix expression for E,x, (x)E, we get

tr (E;n, (X)E,) = Y%z, tr E, (qf: —iv: x)

for each deM,. Hence by the very definition of a,(v), we have the desired
result.

We now refer to the important property of Eisenstein integrals.

THeOREM 1.2 [11][32]. If G is a real rank one semisimple Lie group with
finite center, then there exist a meromorphic End,, (V,)-valued function c(r)=
c(v) (r=r(v)) on af, and a meromorphic End.(Endy (v,))-valued function
o(r: u)=a(v: h) (u=u(h), he A,) on a}, so that for any TeEndy (V;) and u>0,
we have
1.7 E (T:ir:h)

= e~Pou{exp (i ru)o(r: u)Tc(r)
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+ exp (—iru)o(—r: w)r(m*) e (F)* Tr(m*)}
for each te R. Here m*e M*— M.
In connection with the function c(r), the following results are known.
ProposITION 1.3 [11].  For any t€ K, define
1l(r) = Toem, 2921 Ho(r)- 43
There exist constants b, € R depending only on o so that, if

bt = ZJEMg 2721 ba'q{;

then
(1.8) clr) - c(F)* = pr)~'b, .
PROPOSITION 1.4 [26]. There is a rational function q(r) such that if Im r <0,
1.9 ()™t < 1q4(M).
Here || - || stands for the operator norm in End,, (V,).

We turn our attention to the function a(r: u).

PropoSITION 1.5 [26] [32]. There exist End(End,, (V,))-valued rational
Sfunctions I'\(r) on af, such that o(r: u) is given by a series

(1.10) o(r:u)= X2 I(ir—p,) ek,

Furthermore, for any k (k=0, 1,...), there exist a rational function q,(r) and a
constant ¢ such that if Im r>0 then we have the estimates

(1.11) ITWGr—po)l < cklga(n)l.

Let X,..., X,, be a basis of m such that <{X;, X ;>=—4,;. Put

oy = — 3™ X3,

Then, since w,, lies in the center Z(m) of the universal enveloping algebra U(m)
of m, for a given o € M, there is A, such that

a(wy) = 2p+89)4, L.

The functions I'y(r) are defined by means of complicated recurrence relations.
But, by the very definition of that relations, one can find the following proposition.

PROPOSITION 1.6 [26]. The poles of ['(ir—p,) lie in the set
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» _ =12,k
Pk,r= [r: 71_(] A’a A§>GC; R
J o, teM,

Now let H={re C; Imr>0}. Let H be its closure. Set
Pl‘:—,t=H n Pk,‘l"

Then we get

¢ = Pg,r c P-J:—,t Ceev Pl-:',t Coes

Also it is seen that this chain is stationary if k is sufficiently large. Accordingly
we put

s

P =

T

+
Py
k

1

On the other hand, it is known that the matrix entries of ¢, (r) are expressible
as linear combinations of products of beta functions [29]. Therefore, as a
consequence of Proposition 1.3 and Proposition 1.4, we know the fact that the
poles of ¢ (F)*~' form a discrete subset of the imaginary axis. Furthermore we
see that only finitely many of those poles lie in H. Let

Zr = {reH; c(F) = 0}
and put
P, =Py Zt.

Then one finds the fact that the set of poles of tr (a(r: u)b,c(F)*™') in H is
contained in the finite set P.. So, let r=iz,,1iz,,...,iz, (z;>>0) be the poles of
tr o(r: u)b.c(F)*") that occur as a pole of tr(I'y(ir—p,)b.c(F)*" ") for some k
so that k+z;< p,, and let N be the order of iz; as a pole of tr(a(r: u)b,c,(F)* ).

Let now X,,..., X, be a basis of g. Let Y;,..., Y, be defined by <X, Y;>=

;. Set Q=3 X,Y,, the Casimir element of g. Suppose that i,,=1,, is the
eigenvalue of Q on the class m, ,. Then it is known that

Aep = — 2p+8q)~1(r2+p2+25).

Now we define a polynomial which will play an important role in our argu-
ment as follows:

(1.12) P(r) =, I1 (r—Agi: V-

eM.j=1,...,

Here we put

(1.13) der = Qp+8) s, = — (PP +p2+1)).
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2. The trace formula

Let I be a discrete, torsion free subgroup of G such that I'\G is compact.
Fix a G-invariant measure dx on I'\G by requiring that for each fe C.(G) we have

[ reoax = Srsomas.

We denote the volume of I'\G in the invariant measure dx by vol (I'\G).
Let (T, E7) be a finite dimensional unitary representation of I' with character
xr- Let L2(I'\G, T) denote the set of functions f: G— E such that

f(yx) = T()f(x) forall xeG,yerl

and
[, 1f@lzds < oo
r\G

where || - |7 is the norm on Ej.

Because I'\G is compact the right regular representation 7, of G on
LX(I'\G, T) splits into a direct sum of irreducible unitary representations of G
and we can write

Trr = Zreerr(m)-m, np(n) < co.

Here n; (n) is the number of summands of 7, - which lie in the class n e G.
We now discribe the trace formula on L%(I'\G, T). Let fe L(I'\G, T). If
¢ € C¥(G) then we get

@r (@) x) =\ f(xg)d(g)ds  (x€G)

f(@)d(x~1g)dg

=S 2er f(19)P(x"1g)dg
[ (S ) TONS @)y

General theory implies

@) = | Fyer 61012 1)dg.

For yeTl, let C, denote the set of representatives in I" for the I'-conjugacy
class of elements of I" and let G, be the centralizer of y in G. Weput I',=I'nG,.
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Also we normalize the measure on G, and G,\G so that for f, he C(G)
[ r@dg=( S rexgax ag,
G G,\G )G,

[ hardg =S S, hG0)dd.

k4

With these normalizations,
wnrr@) = | Tyecr Soer,ir #671671950)4r(67198)dg
= Zreceti® || Saerpr $(G0)"1(39))dd
= St | #(a720)dd

= 2yecr X1(¥) gG \GS ¢(g~'x"yxg)dxdg

r,\G,

= 2 ecr Xr(?) SG \GS . ¢(g~'yg)dxdg

k4

= Tyecr trM Vol (1,6 | d(g™99)dg.

Gy

Since all elements y e I' are semisimple and I" has no elements of finite order,
it follows that every element y e I is conjugate in G to an element of the Cartan
subgroup A=A4,4,. Choose an element h(y) of 4 to which y is conjugate, and
let h(y)=m,h,(y) (m,€ A, h(y)€A,). We now further demand that h(y) be
chosen so that h,(y) lies in A} =exp a}, where a is the positive Weyl chamber in
a,. We then define u,=A(log h,(y))=u(h,(y)). Of course u, depends only on 7.
Also, m, is determined up to conjugacy in M. Therefore, the following are well
defined:

C(») = D(y)~* = D(h(y)~',

V(y) = vol (4,\Gy,y) (4,\Gy,, is compact),

Xo(m,) = tra(m,) and Fyy) = Fy(h(y)) = Fy(m,h, (7).
Now since

vol (4,\Guoy) [ #ahdadd = dlahr)a™)dd.

using (1.4) we get
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[, 9 9)dd = vOyCIF .
Gy\G
Hence we have the trace formula,

2.1 tr p, 1 (@) = e (M) OH(d)
= xr(e) vol (I'\G)(e)
+ Zrecritey 21(0) VOLT\G )V (7)1 CRF () -
An element ye I’ (y#e) is called primitive if it can not be expressed as J/
for some j>1, eI’ We denote the set of all primitive elements of I" by P.
It is well known that every y (#e) is equal to a positive power of a unique primi-

tive element . The integer j(y) is defined by y=4/(*). Then we have u,=
Jj(y)us. Moreover, it is known that

vol (T \G)V ()™ = j(y) 'u,.
Hence the trace formula is rewritten as follows:

(2.2) tr np 7(¢) =xr(e) vol (I'\G)p(e)
+ 2 recr ey XrM Q) 1, C(Y)F (7).

If ¢ € LY(G) insted of ¢ € C2(G), the operator n; 1(¢) is still defined but it
need not be true that ny (@) is of trace class. Now we refer to a sufficient con-
dition for ¢ € LY(G) to be put into the trace formula. That is to say, it is a
sufficient condition that ¢ is an admissible function (cf. [6] [8]). The fact that
¢ is admissible means that both sides of the trace formula converge absolutely.

At first, we prepare several notations.

Let Z(x) be the spherical function of weight zero, that is,

E(x) = SK exp — p(H(xk))dk.

Let #1(G) be the set of all C*-functions on G such that for any positive in-
teger m and each D, a product of a left invariant differential operator and a
right invariant differential operator on G, there exists a constant K(m, D) such
that

SuP,eq |Df (x)] < K(m, D)E(x)*(1+0(x))™.

Here o(x)=X if x=k-exp X (ke K, X € p) is a polar decomposition of x € G.
Then €*(G) with the topology defined by the seminorms

Vp,m(f) = SUPyeg [(1+0(x))"E(x)"2Df (x)]
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is a Fréchet space. It is clear from the definitions that fe #!(G) implies that
Q*fe €(G) for all k and that €1(G) < L1(G).

ProposITION 2.1 [8] [21]. Let fe €'(G). Suppose that f is K-finite and
K-central (i.e. f(kxk=Y)=f(x) for all ke K). Then f is admissible.

3. The series 7, 7(r)

In this section, we shall define a series 7, 7(r) =1y 1.(r) (te K) by means of
applying a suitable admissible function to the trace formula. This series is the
most important one for defining the zeta function of Selberg’s type. The first
half of this section, we devote ourselves to studying the function which we will
need for the sake of defining n, (7).

In the first place, we define a new polynomial P?(r) for each o € M, through
the use of the polynomial P,(r) which is defined at the end of Section 1 as follows:
(3.1) Pir)=P(d,) =TI = (Aop—2giz)"

teM.j=1,...,p
= —r2—z2— 4+ A)".
§EM,11'—=[1 ..... 4 ( J g)

Let D¢ be the differential operator on R(~A4,) whose Fourier transform is P¢.

Let ¢, be a fixed positive real number and let g be a real valued function in
C%(R) such that: (i) g is even, (ii) g vanishes in some neighborhood of zero,
(iii) g is constant, equal to «, say, in {xe R; |x|>¢,} and (iv) 0<g<k. Such
functions surely exist. The value of x and of ¢, will be chosen conveniently later
on.

Let ) =1|y. For any complex number s, define a function .4, on M4, by
(3.2) . F(mh) = Xseq. [0: Tylx(m)DI(g(u(h))) exp (—(s—p,) [u(h)]),

meM, he A,. Since g vanishes in a neighborhood of zero, .4, is a smooth
function on M A, for fixed s.
Let

H(r) = S: g'(x)exp(irx)dx (reC).

Because of the properties of g, we see that g’ is in CP(R) and g'(x)=0 if |x|>e,.
Hence H(0)=«x=g(e,)—g(0). Moreover H(r) can be viewed as the Fourier trans-
form of the function G(x) defined by

gx) if x>0

0 if x<O0.

G(x) = [
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Hence an application of the Paley-Wiener theorem gives us the following
lemma.

LemmA 3.1. H is an entire function of r. Furthermore, for any integers
n>1 and m>0, we can find the positive constant C,,, such that we have the
estimates

Conn(L+|r])7" if Imr>0

|dmH(r)[dr™| <
Cp(1+ )" exp (&,/Im r|) if Imr<0O.

Using this function H(r), we can calculate the Fourier transform .%, (o, v)
of .%, at the character (y,, v) of MA,.
LEMMA 3.2. Let
Z.(0,v) = g S x.(m) exp (i v(log h)).%(mh)dmdh.
Ap JM

Then we have

(33) 8o = [o:npi) {HUl=ed=n) | Hieopu)tr |

for any se C satisfing Re(s—p,+ir)>0 and o€ M. Here of course we put
r=r().

Proor. By the Peter-Weyl theorem we get

0 if o4¢

[ xemyomam =[ |
M 1 if o~¢&

Hence,
40,1 =[0: 0] |”_De(g(w) exp (~(s—p)lub) exp (i ru)du
= [o: udP2() | g(u) exp (= (s— polul+i ru)du
= [o: 2P0 {{ 9w exp (~(5—p)+iryu du
0
+ S_w gu)exp(s—p,+ir)u du}
= [o: 10 ] P2(r) {g: gu)exp(—s+p,+ir)u du

+ S:g(u)exp(—s+p,,——ir)u du},
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because g is an even function. Integration by parts yields

S:g(u) exp(—s+p,+ir)udu

~[o SRESERINNT L (% ) expie-
(g0 SR Estpatini L (" g'(w) expi(i(s - po)+r)udu

= H((s—p,)+r)
S—p,—1ir

for Re(s—p,—ir)>0. Similarly we obtain

H(i(s—p,) —r)
S—p,+ir

S: gu)exp(—s+p,—iru du =
for Re (s—p,+ir)>0. The assertion now follows.
Now let

h (x) = H(l(s—po)—x) + H(i(s_po)+x)
s S—p,+ix s—p,—1x

We now prove an estimate that we will need lator on.

PRrOPOSITION 3.3. Let f be a meromorphic function on H={ze C; Im z>0}
such that |f(2)|<|q(2)| for any ze H, q(z) being a rational function. Suppose
also that the polse z,..., z; of f in H all lie in the upper half plane H and that
N is the order of the pole z; (j=1,..., k). We put, for a complex s with Re s> p,

10) = S: hy(x) exp (i x)f (x)dx.

Let a be a positive number. 'Then we have the following estimates:
If s—p,+iz;#0 for all j (j=1,..., k), then there exist polynomials py(t),
depending on s, of degree N;—1 and a constant c, depending only on s such that

exp ar?(I(t) — Th-; p1) exp (i7;1)— ¢,exp (~1(5—p,))
= O(exp (go|Re s—po—at|)) as t— o0.

If s—p,+iz,=0 for some m (1<m<Kk), then there exist polynomials p;(t)
(j#m) of degree N;—1 and a polynomial p,(t) of degree N,, all of them de-
pending only on s, such that

exp ar*(I(f) — 2?;}'] pi(®) exp (i z;t) — () exp (— (s —p,)))

= O(exp (¢,|JRes — p, — at])) as t—> 0.
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Proor. Since the latter half of assertions can be proved same as the proof
of first one, we will prove only the first assertion.

Since we are interested in large values of ¢, we may assume ¢>Im z; for all j.

Let x=y-t. Then we get

(3.4) 10 =1{" hooexp(r)fndy.

Also we may assume ta>Imz; (j=1,..., k) and ta>Re(s—p,). Now we
will shift the contour of integration up to the line {ye C; Im y=a}. Let C.=
{y=+R+ir;0<r<a}. We assume that the integrand of (3.4) have no poles
on the lines C.. We consider the following rectangular contour integration.

Im
1\

ia

\'4

ij/t C+

(=]
v

~
N

—R

All the poles of the integrand of (3, 4) lie in the interior of this rectangle and
these are at z;/t (j=1,..., k) and i(s—p,)/t. Therefore, by the residue theorem
we obtain

1) =t S:o hy(ut+i af) exp (i 2(u+1 a)) f(ut +i at)du

+2nit 35 Res,—, i (hy(yt) exp (i £2y) f(y1))
+ 2nitRes, -5 5, (hs(y) exp (L 2Y) f(y1))

+tlimpo | BOD PGPS0

Let y=R+ir (0<r<a) on C,, then
A ((R+ir)t) exp (it2(R+ir))f((R+ir)t)]|

< {I H@i(s—p,)—(R+1ir)t) +lH(i(s—-po)+(R+ir)t) }
= s—p,+i(R+ir)t s—p,—i(R+1ir)t

-exp (—2r)| f((R+ir)1)]
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By Lemma 3.1, for any integer n, there exists a constant C,, , such that the right
side of this inequality is dominated by

< KIg(R+iM0)|Copof(Res—p,—1r1)? + (Rt—|Im s|)2} "%
-exp (¢,|]Res — p, — rt|) exp (—1?r)

for-some constant K (>0), if R is sufficiently large. Since n is arbitrary we get

limps | B0 xp (23S ()Y = 0.
Similarly we have
limgin | B0 exp (i 2)f 70y = 0.
Therefore we see that
I(t) = texp (—t%a) S:) h(ut+iat)exp (i t?u) f(ut+iat)du
(3.5 +2mit 3k, Res,— ; hy(yt) exp (i t2y) f(y?)

+ 2mitRes,— -0y hs(yD) €xp (1 2y) f(y1).

In this place, if we put ut=x in the first term of (3.5), then the following
equality holds.

texp (— 12a) Sw hy(ut+ i af) exp (i £2u) f(ut +i at)du
= exp (—1?a) Sw h(x+iat)exp (itx)f(x+iat)dx.

By means of the assumption on f, if we let |z| be sufficiently large, then there
exists a non-negative integer N such that

lf(2] < K'|z|",
where K' is a certain constant. Accordingly, if ¢ is so large then
|h(x+iat)exp (itx)f(x+iat)] < K'|h(x+iat)||x+iat|".

Therefore, if we use Lemma 3.1 again then, for each n, we can find a constant
C,, such that the above expression is dominated by

. 1 1
N
Ix + 1a] {IS—Po—at+iXI * Is—po+at—ix|}

{(Res—p,—at)? + (Ix|—|Ims])*} " exp (¢,|Re s — p, —atl) .
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Hence we have
(3.6) So_o hy(x+iat)exp (i1x)f(x+1iat)dx = O(exp (¢,|Re s—p,—at])).

On the other hand, since
Resy=i(s-poye Bs(¥) = — (i/)H(0),
we have
(X)) 2mit Res,—iis— o,y (hs(yt) exp (i 2y) f(¥1))
= 2H(0) exp (— (s = po)0) f(i (s —p,)) = ¢;exp (—(s—po)D)-

Here we put ¢,=27H(0)f(i(s—p,)).
Suppose that

f@) = 2w, bifz—z))".
Then
2mitRes,-,,, (hy(yt) exp (i 2y) f(y1))

=_._.2_7rit_1im ﬂ_{zm—l b;iti(y—z;[t)itNi-h(yt) exp (it2y)}
(N;=D! 225/t N=1 i2-N; 0ijt (Y —2Z; s\ p ity

2ritt-Ni .. danNi—1 _ . , .
-(Nn‘:jll—)!hmy—»z,-/tw {Z2 byt (v —z;[t) - hy( yt)exp (it2y)}

If we apply the Leibniz rule to the last expression, then we see that there exists a
polynomial p,(t) such that

(3.8) 2nitRes,=,  (h(y?) exp (i 2y) f(yD)) = p;(t) exp (iz;1),
and
degpi(t) =2(N;—1)+ (1-Nj)=N; — 1.

The assertion of our proposition follows from the equalities (3.5), (3.7), (3.8) and
the estimation (3.6).

We next use a wave packet to define a function ,g(x) on G closely related to
the series 7, 1(s).

PROPOSITION 3.4. For each 1€ K and se C, with Res>2p,, put

(3.9) 9 X)=d ' [W] ' Zpem [o: TM]“S T (Bt (DE).Z (0, v)u,(V)dv.
ap
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Then .g, has the following properties:
(i) .g,is K-central and d y*.g,=d.- .g*x.=.9, in particular g, is K-finite.
(i) .g,€ €1(0).
(i) 0,,(g)=.%(c, V).

Proor. (i) This is immediate from the definition of .g,. (iii) Frobenius
reciprocity says that

tr (Etna,v(e)Er) = dt[T: na',le] = dt[a: TM] .

Hence, by definition,
tgs(e) = [W]_l Za‘eﬂ, S * t?s(aa V)[la.(V)dV.
ap

Therefore, by means of the Plancherel formula, we have the desired result.
(i) For the sake of simplicity, we put

1) = b)) = 2LC=2d=n) | HEG=p)tr)

Then, by Lemma 3.2,

J(x) = (1/4nd,) S 2 oem, tr (Eimtg (X)E)PI(r)h(r)po(r)dr-

If we put (see, Section 1)
qr(r) = Zaeﬁg Z(};l Pg(r)qfr (ao‘ = [O'l TM])a
then
94x) = (t4nd) " tr B, (qrw(r): = ir: b )dr,

by Lemma 1.1. Let u=u(h) (he A,). Using (1.7), .g(h) can be put into the
following form.

90 = (tfand) e (" h @)t eo(r: g el
+ e7 i o(—r: u)yr(m*)~ e (F)*q(r)ur)ye(m*))dr.
Thanks to the relation (1.8), we have

(310) ) = G| m et o(r: Wb e

+ e7irutr (o(—r: wyr(m*)~1q(r)c,(r)~1b,x(m*)}dr.
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We now consider the above integral breaking into two pieces. By (1.10),
we have

S:o hy(r) eir tr (o(r: u)b.q(r)c(F)* Vdr

= 7 n@em (S Tulir—p) e ba e Fy=Hdr.

By the definition of g.(r), the integrand has no poles on the real line. Therefore,
by (1.9) and (1.11), there is a rational function g(r) and a constant ¢ so that

[tr (T r— po)bq(r)e(F)* )| < c*lq(r)l,
if re H. Hence the integrand is dominated by
|hy(r) e q(r)/(1—ce™)| < |hy(r)q(r)l,

if u>1. Therefore, since hy(r) is a rapidly decreasing function by Lemma 3.1,
the dominated convergence theorem implies that the above integral is

= Zixo S: hy(r) e tr (Dy(i T — po)beg(r)c(F)*~V)dr e+,

The poles of tr (I'(ir—p,)b.q.(r)c(F)*~1) in H are all pure imaginaly numbers.
Let iry,...,ir,, be the poles of this function in H. Then, by the definition of
q.(r), we have

r;>p, (G=1,2,...,p0).

Now let N;, denote the order of pole at ir;. Then, thanks to the estimate of
Proposition 3.3, there exist polynomials p;,(u) of degree N;,—1 or N;, and a
constant ¢, so that

S0 (" B tr (1yGir=p )b () )drehs
= Yieo L2k Pja(u)e it + cem (7P [(1—e™¥)
+ exp (—au?) Yo gi(u)e™
Here g,(u) is a function which satisfies
|g(w)l < c*O(exp ¢,|Re s — p,— aul) as u— o,
for some constant c. Hence we have

| X0 guwe ™| < (1/(1—ce™))O(exp &,|Re s—p, —aul)
= O(exp &,|Re s—p,—aul).
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Next, we consider the other half of the integral in (3.10). Since the poles of
o(—r: u) and c,(r)"! are the negative of the poles of o(r: u) and c¢,(F)*~! respec-
tively, and the function hy(r) and the polynomial g.(r) are even, we have the

similar estimates of the first one.
Therefore, we easily see that there are polynomials g;,(u) and a constant

¢, such that

TPolu N (e -
() = G AT 0 T0%, 45,4(u)e™ 08 4 Eem(spou/(1 —ev)

+ exp (—au?)O(exp gy|Res—p,—aul|)} as u — oo.

Since r;>p,=(p+2q)/2, e*#-* g(h) decays exponentially as u—oo. Let
us consider the Cartan decomposition G=KA,K. Then, since the Haar measure
dg on G can be written by

dg = (constant)(sinh u)?(sinh 2u)4dk du dk’,

we see that
(1+0a(x))".g,x) € LY(G)

for all non-negative me Z. On the other hand,
1 © .
(@400 = a7 OB (@m0 —ir: h()dr

=g | ot By w)PEO)

(PP +pi+2,)ql: —ir: x)h(r)dr.
Therefore, arguing as in the case of .g,, we obtain a similar estimate to show that
(1+a(x)"(2*.g,) (x) € LY(G)
for all m, ke Z (>0). It follows that .g,€ ¥(G) and Proposition 3.4 is proved
(see [21]).

Suppose that Res>2p,. Then, if we apply the results (i) and (ii) of Pro-
position 3.4 to Proposition 2.1, we see that the function .g, is admissible. Hence,
tr 7y 7(.gs) can be evaluated by the right hand of the trace formula (2.2). It

implies
tr 71:I",T(tgs) = Zne@ nI',T(n)@n(tgs)
= yxr(e) vol (I'\G).g,(e)
+ Z yeCr\{e} XT(y)j('Y)ulqu(y)F‘ gs(y) ’
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where both sides converge absolutely for Re s>2p,.

In order to parametrize the elements of G which appear in the left side of trace
formula, we now refer to the result of Langlands concerning the classification of
representations.

PROPOSITION 3.5 [16] [19]. If ne G then n satisfies one of the following
conditions:
(a) meG, (the discrete series).
(b) 7meG, (the irreducible unitary principal series).
() me{nt o, w50} (6 €M) (the limit of discrete series).
(d) neG,, the complementary series, that is, nm, (7, ) for some veia¥
with 0<|r(v)| < p,-
(e) = is infinitesmally equivalent with L, ,=n, [Ker A(v) with 0< —ir(v)<p,,
where A(v): H>Y—>H™" (e#se W) is the canonical intertwining operator
(cf. Wallach [28]). Moreover L, ,~L,. ., iff 6~¢" and v=v'.

We now put
Qr = {TIEG; T < nl‘,T! @n(tgs) ?é 0}'

For ¢ € M, we set
1Qr = {7‘ = T(V)E R+a nd,VEG’ 7za‘,v < nF,T},

2Qe = {r =r(v)ei R*\{0}; =, , € G, Mgy S Tp,7} -
By the definition of g, it is clear that
Gd n Qr = ¢,

For convenience’ sake, we set up the following agreements: 1°. Suppose that
the representation 7, , is reducible. Then it is known the fact that at the least one
of 0.+ ,(.g,) and O.- ,(.g,) is zero. Hence we make a change in the definition
of 7, , to the following effect:

n:,o if @n:,o(rgs) #0
7’:41—,0 if @n;,o(tgs) ;é 0.

6,0 —

2°. Let n~L,,=m,,/Ker A(v) as an infinitesimal representation, where A(v):

Hev—»Ho=, If KerA(v)n(H°"),=0, then one finds that @,  (4g,)=

0,.(9,). If Ker A(v) n(H"),#0, then it turns out, by the definition of P(v),

that P(4,,)=P(v)=0. Thus 0, (,9,)=0. In either case, we define n by =, ,.
Under these agreements, we let

Q7 =107 U %Q7.

Then we have
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0. = Ygenm, 07 .
Also we put 2= {r=r(v)eQ7; P2(v)#0}. Set
0. = Usen, 07
Recall that @,,v(tgs)=,'?¢s(a,v). Therefore, by (1.2), we have
F ;. (v) = Z(h(y))
= Yoem, [0 Ty 11(m,)D3(g(u,) exp (—(s—p,)u,)).

Moreover, it is well known that the numbers u, (ye Cr\{e}) are bounded away
from zero. If we choose and fix ¢, so small that it is smaller than the smallest of
these numbers, namely 0<e¢, <u, for all y(#e)e T, then we have

D7(g(u,) exp (—(s—poJu,)) = kP7(i (s — p,)) exp (—(s— p,)u,),

by the definition of the function g. Hence we can rewrite the trace formula as
follows:

(3.11)  Xree nr,1(M)O(:9,) = x1(€) vol(I'\G).g(e)
+ K Toem, [02 1P (5= Po) T pec () 120 Ae(my) ()7
“u,C(y) exp (— (s — po)u,) -
PROPOSITION 3.6. For Res>2p,, set
(3.12)  ne1(s) = KX gem, [0 TP (s —p,))
-2 yecr ey Ar(Mxa(m,) j(7)~1u,C(y) exp (— (s — po)us,) -

Then 1, (s) is holomorphic in the half plane Res>2p,. Moreover, the
series (3.12) converges uniformly with respect to yr for each s in the half plane
Res>2p,.

Proor. Since .g, is admissible, the series is absolutely convergent and
uniformly convergent in any half plane Re s>2p,+6 with 6>0. Therefore the
series defines a holomorphic function in the half plane Re s>2p,. The uniformly
statement with respect to y; comes from observing that |y;(y)| < xr(e)=dim T,
and that C(y)>0 for every y. Thus the series (3.12) is dominated by a multiple
of n,,(s) where y is the trivial character of I.

Because of (3.11), we can easily see that
”r,T(s) = ZneG n[‘,T(n)@n(tgs) - XT(e) vol (F \G)tgs(e) .

Next, we will show that each term on the right side of the above expression
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has a meromorphic continuation to the whole complex plane. This gives us a
meromorphic continuation of 5, ;(s).
In the first place, we note that

2 ree 1r,1(m)0,(:95)
= D semt. Zveag nr,7(7e,v)0,,,(:95)
= Toem. Zuegr 1r,1(T0,) 940, V).
PROPOSITION 3.7. Let

ALS) = oem, Tregs 110, V) F0, V),

where we put n(o, v)=nr (n, ) for the sake of simplicity. Then the function
A(s) is holomorphic in the half plane Res>2p,, and has a meromorphic con-
tinuation to the whole complex plane. The poles of A(s) occur at the points
po+ir,, where r,eQ%(ce M,). These poles are all simple. The residues at
p,+iry, and p,—ir, both equal ni(c, r,))P%(r,)[o: 131 (6 € M,) if r,#0. Finally,
if r,=0 for some o € M,, the residue of A(s) at p, is 2kn(c, 0)P2(0) [a: Ty].

In order to prove this proposition, we need the following result due to Wallach.

PROPOSITION 3.8 [30]. There exists a positive number x, such that for any
€K and all x with x> x, we have

2rec [t: 7lgdnr,o(m) (1+[7(Q))™ < co.

PrROOF OF PROPOSITION 3.7. Note the fact that Re(s—p,—ir,)>0 for all
ceM, (reR). By (3.3) we have

(313) At(s) = Zaeﬂt [0': TM] Era eQ? Pg(ra)nT(a’ ro‘)

. { H(i(s_po)+ra) + H(i(s_po)-rd) }
S—po,—ir, S—p,+ir, ’

if Res>2p,. Each term in the series is a meromorphic function of s.

A consequence of Proposition 3.8 says that {p,+ir,; r,e 0} contains no
finite accumulation points. If @ is a compact set that is disjoint from {p,+ir,;
r, € 0¢} then the distance between them is positive, so there is a positive constant
C so that for all se 0,

- H(Gi(s—p,)—r
Sreca: | na(, 1) P2 (rp) UL 1)

<C ZrceQ; nT(o" ra)ng(ra)H(i(s_po) - ra)l .

Since 7, () is a polynomial in v and 0 is compact, using Lemma 3.1 we see that
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SuPsea,r‘,ng ,Pg(ra) (1 + |na,ra ('Q)l)xH(l(s_po) - ra)l <,

where x is an arbitrary real number. Hence, if x> x,, then there exists a positive
constant M such that

Zraség nT(a’ ra)lpg(ra)H(i (S_pa)— ra)]
< M Zraeé‘; nT(a’ ra)(1+ Ina,ra(g)l)-x < o,

by Proposition 3.8. Similar analysis is valid for the term involving H(i (s — p,) + ).
Hence the series

H(I(S po)+r ) H(i(s_po)._ro') }
s — p,,—lr S—pot+ir,

Zraeb‘“, P[tr (ra)nT(oa ra) {

converges uniformly on any compact subsets that are disjoint from {p,+tir,;
r,€0?}. If we turn our attention to the fact that #{M,} is finite, then the
series gives us the meromorphic continuation of A4,(s). The assertion about the
poles of A(s) follows from the direct calculations. This completes the proof of
the proposition.

We next investigate the analytic continuation of the second term of (3.3).
By definition,

(&) = A2V DT en, |” G0, D) dr

_ 21 (% ey [ HGG=p) =1
= (1/47) e, Lo 1] | Pe(){HUE=LI2D

+ Lfff-;of’i—)ij’l} u(F)dr.

Since P¢(r) and u,(r) are even, we see that

9:(6) = (1/20) Toem, Loz 7] | P2(r) HOEZPIED. ) d
o

The function r—pu,(r) is meromorphic in the upper half plane, and can only
have simple poles (see, Section 1). Let r{ (k>0, o€ M,) be the poles, if any,
and let dg be the residue of p,(r) at the pole r§.

We now shift the integration into the complex plane by using a rectangular
contour with vertices at —R, + R, R+iR, —R+iR as in the figure below. Of
course, we assume that there is no poles on the rectangular contour.
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Im
N
iR «
S5—
b 4
xryg
\z J/
X
N \
> Re
-R 0 4 R

Using the residue theorem we see that

. H(i(s — a
=10 [0 1) T ipstmrs<my PE0D) LI dpi 114 15407,

Here

H(i(s—p,)+ (X R+ir))
S—po—i(xR+ir)

‘U (£ R+ir) dr

I8 = (i/27) ¥ pem.[0: Th] S Pe(+£R+ir)

and
= (120) Soen, [oix] | PIG+iR) H(;(j;p:)iz (4 R)
.'ua(r-l-i R)dr

Let 0<r<R. Then, since Im(@i(s—p,)+(+R+ir))=Re(s—p,+r)>0, Lemma
3.1 implies that for any n (>0) there is a constant C, , such that

[H(Gi(s—po) + (£ R+ir)| < C, (1 + |i(s—po+7r) £ R)™"

Also, since u,(+ R+1ir)is a polynomial growth function, there exists a polynomial
Q(R) so that the integrand of I§ is dominated by

QR) (1 + li(s—p,+r) £ R)™!
Since n is arbitrary, it can be easily seen that
limR_.._(_w Ig = 0.

Similarly one finds that limg_, ., JR=0. Hence we get

(.14)  .0.6) =i Soem, [0: ] Tio PR HLE=2I7) 4y,
Po—1ry
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Of course, if u,(r) (6 € M,) has no poles in the upper half plane, that is, if
g=~so(2n+1, 1) then this sum is to be interpreted as zero.
If g#£so(2n+1, 1) then, as we have seen in Section 1,

u(r) = ¢-dyp,(r) x (tanh (nr/b) or coth (nr/b)),

where p,(r) is a polynomial and b is the number of distinct positive restricted
roots. Hence we see that r{ is purely imaginary, r§=0(k), and d{=0(k?)
where a is a positive integer depending only on o (€ M,) and G.

We now claim that the series on the right side of (3.14) converges absolutely,
uniformly with respect to s varying over a compact subset @ of the complex
plane, provided that ¢ is disjoint from the points {p,+ir,; k>0, ce M,}. In-
deed, for s e 0, we see that

Im@(s—p,) + 1) >0
for large enough k. For such k, the estimate
[HG (s—po) + DI < Cpo(l + li(s—p,) + rE)™"
of Lemma 3.1 is available. Since s is confined to which misses p,+irg, we get
|H( (s—p,) + DI < C(o, n)|rg|™"

for large k, with C(o, n) independent of k. Using the facts on r¢ and d¢, as we
have mentioned above, we conclude by choosing n large that the series on the right
side does indeed converge.

It follows that the series defines a meromorphic function of s with simple
poles at the points p,+irg (k>0, o € M,), and the residue of this function at the
pole p,+irg is equal to ik[o: 7, ]P2(rg)d. We summarize these observations.

ProrosiTION 3.9. For Res>2p,, we have

(3.15)  xz(e) vol (I'\G).g,(e)

= ir(e) Vol (1\G) Toea, [0 ta] S P2(rg) HUEZLILTD. gy

Here {ri; k>0, 0 M.} are the poles of the function pu,(r) in the upper half
plane and dg is the residue of that function at the pole r{. The series converges
absolutely and uniformly for s in any compact set disjoint from {p,+ir,; k=0,
o€ M.}, and define a meromorphic function of s in the whole complex plane.
Thus it gives us a meromorphic continuation of the left side of (3.15). This
function has simple poles at the points p,+irg, k>0, 6 € M,, and has the residue
ixyxr(e) vol (I'\G) [o: 1, 1P2(r)dg at the pole p,+irg.

We now have the following proposition on account of the studies that we have
seen up to the present.
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ProprosiTION 3.10. For Res>2p,, the function
Ne,7(8) = K Xoem, [0: i ]PUi (s —p,))
° Zyecr\(e) XT(?)Xa(my).](‘y)_ 1u'y(:(‘y) €Xp ( - (S =P uv)

is holomorphic. Moreover, this function has meromorphic continuation to the
whole complex plane, via the relation

(3.16) 1, 1(5) = ALs) — xr(e) vol (I'\G).g,(e) .

The poles of n, r are all simple, and are as follows:

Pole Residue
po i 1 rcr KnT(o-’ ra)P:(ra') [0: TM] ra‘ € Q:(O’ € Mr)
P, +1irg —ikyr(e) vol(I'\G) [o: 1) 1P2(rg)dg k>0,0eM.

Here, of course, if P2(r$)=0 for some k, o, then we understand that there is no
pole at p,+irg, and if r{=r5 for some (o, k), (&, j), then the residue of n,.(s) at
s=p,+iry is —ixyg(e) vol(I'\G)([o: tp ] PI(r)dg + [€: Tp] PE(r5)dS). More-
over, if 0e Q¢ then the residue of 1, (s) at s=p, is 2xny(a, 0)P2(0)[a: t\], and
if r{=r, for some (o, k), &, then the residue at s=p,+irg is k(ny(&, roPi(ry)
[€: Ty —ixr(e) vol (I'\G) [o: ) JP(r)d5).

4. Another expression of 1,

In order to prove the functional equation of 7, ; we now define a new function
L, 1, which we can call a sort of modified theta function. For the purpose of
defining this function we need the following proposition.

PROPOSITION 4.1. Let 1€ K. For each t>0, define the function ,h(x) on
G by

()= ATV Soam, oxp Aot |11 (B, ()E) PEY) exD g, ytho(1)dY.
%

Then .h, possesses the following properties:
(1) do xexche = d;- hxy, = chy
(ii) .h,e€YG).
(i) O, ,(h) = [0: TMIP(r(v)) exp (—(r(v)*+p2)1).

This proposition follows immediately from the result in [21, Theorem 4.12],
so we omitt the proof.

This proposition implies that the function .k, is admissible. 'We now put the
function ,h, into the trace formula.
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By means of (iii) of Proposition 4.1 and (1.2), we have
Fa) = (20 (Soes, 160 | 00,(he) exp (=iru,)dr.
Hence we get the trace formula
4.1 2ree 1r,H(M)O(hy) — x1(e) vol (I'\G)hy(e)
= (1/21) Zoemr, [0 Tn] Zoec i 1y Xr(M2(m,) J() ™10, C(7)
A7 exp (—02+ 0P exp (—irw,)
Since

(12m) | exp (=24 p2)0 exp (=i ru) dr = exp (~(p3r-+uilan),

according to the definition of D? we see that
® . 1
(1727) 7 exp (=2 + D) Pe(r) exp (=i ruy) dr = 1o Defexp (—(p3t-+u3f40)).
Therefore, if we define L, ; by the left side of (4.1), we see that
(4‘2) Lt,T(t) = Zo‘eﬂ, [0': TM] ZyeCr—{e) XT(Y)Xa(nly)j(Y)_l
1
u,C(y) Jant Di(exp (—(p3t+u3/41))).

Since .h, is admissible, we note the fact that the series (4.2) converges
absolutely for 1>0.
By the very definition of D?, D? can be written as the form

d2 Ny
D7 = Cllsen, H7=1<7uT + Cj,a) )
where C and c; , are certain constants. But, since

2 2
<% +c>exp(—u2/4t) = <—‘%~2— - —21-t— +c>exp(—-u2/4t) ,

we can easily see that
(4.3) Dy(exp (—(p3t+u3/41))) = P(u,, t~') exp (—(p3t +u3/41)),

where P(u, x) is a polynomial in two variable u and x, with the property that if
we write
P(u, x) = X ja; ;u'x7,

then a; ;=0 in case of i>j.
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Recall the fact that the constant g, is defined to be satisfied 0<e¢,<u, for all
ye Cr\{e}. We now find the following lemma.
LEMMA 4.2. There exists a constant M such that
SUD:> 0,ecr\ ey [P(Uys 1) €Xp (—(u,— & /DD)| < M.
PrOOF. Since u,>¢,, we have t<¢;'u,t. Hence, if i< j then
ulti = (u,t)it/=t
< (uyt)i(egtuy t)i~t = eli(u )i .
Therefore we obtain
IP(uw | < Zi,j ]ai,jlu;tj
< Zijlagjlel
where we used the property that a; ;=0if i>j. Now we put
P(x) = i Iai,j|8£_ixj~
On the other hand, one finds that
exp (—(u,—¢,/4t) < exp (—u,t) exp (u,t/4) = exp (—(3u,t/4)).
Hence
SUP;>0,pecr(ey | P(Uy, 1) €Xp (—(u,—¢,/4)2)|
< SUP¢s0,yeCr\(e) |F(uyt) exp (—3u,t/4))|

< SUpyso P(x) exp(— %x) < + oo.

The lemma now follows.

Now we have the following theorem, which asserts the fact that the function
1.,7(s) is related via an integral transform to a sort of modified theta function

Lr,T(t)'

THEOREM 4.3. Suppose that Re s>2p,. Then we have

a(s) = 25— py) | exp (=5(5 =20 )DL, 1 (0.

Proor. First we assume that s is real and s>2p,. Note that u=
(U, —&,/2)*+ (u,—e,/4)s,. By (4.3) we get

|D7 (exp (— (3t +u3/41)))]

< [#(unF)er(~ o)~ a5 ).
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The assertion of Lemma 4.2 implies that one can find a constant # such that

P(un Dss(~ (- ) < 2

Sup;so, yeCr\{e}

Hence we obtain

[ lexp (=s(s=2000) = Ditexp (—(pit-+uzpany)ias

() gmren(=((s=n) 1+ (w=5) s ))a
= #QG- o)) exp(—(s—p)u,— %))

= M(2(s—p,))™* €xp ((s—Po)e.[2) €xp (= (s—po)u,)-

Here we used the well known formula

(4.4) - \/%Tt exp (— (x2t+y2/4n)dt = (%) exp (—xy),

valid for x>0, y>0.
Therefore we have an estimate

26(s—p) . exD (=5(5—p)1) Toest, [7° Tae] Eecrice 1109
TNV 18,C0) gz DECexp (= o3+ u3f40)
< KM €Xp (s_pn)solz * Za‘sM, [O': TM] ZyeCr\{e) XT(Y)Xa(my)j('Y)_l *
* uyc(‘)’) €Xp (_ (S —po)uy) )

for s real and s>2p,. But, since the series 5, r(s) converges absolutely and
uniformly on compacts of Re s >2p, as we have seen in Proposition 3.5, it is clear
that the series of the above expression converges on compacts with respect to
s (>2p,). Hence the dominated convergence theorem implies that

@5 2(-p) | exp(=(s=pIOL.rdt
= 2K(s—po) ZUEM, [0’: TM] Zyecr\(e) XT(Y)Xa(my)j('y)_l
4,C0) . xp (=5 = ) 7z Di(exp (~(o3t+ w3/ 4Nt

Since
1

Jant

exp (—s(s—p,)t) exp (—(p3t +u3/41)) < \/—CXP( (s—po)*t+e3/40),
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and the right side of this inequality is integrable by means of the formula (4.4),
the same argumentation that we have used in the above says that we can change
the order of the differentiation and the integration in (4.5). If we use the formula
(4.4) again, then

[ exp (=sts—po) 1 J _ Di(exp (— (p3t+u?[41))ds

= Do (g \/__ exp (—(s—p,)t + u2/41)dr)
= (2(s—p,))"'Di(exp (—(s—po)u))
= (2s—p)) P (s—p,)) exp (— (s —po)u) ,

for u>e,. Hence, by (4.5) we obtain for s real and s>2p,,

2(s=p) || exp (=55 = PIOL () = ().

The procedure can be justified easily by the analytic continuation, since the

function 7, 7(s) is holomorphic in the half plane Res>2p,. This completes the
proof of Theorem 4.3.

We now have the following inversion formula.

COROLLARY 4.4. Let & be a positive number. Let us consider the part of

hyperbolic curve C,={s=c+iu;(c—p,)2—u*=pi+e¢,06>p,}, as in the
figure below.

Im
AN\

N/

O pa p0+\/p3‘+8

\4

Re

Then we have
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46) Lo = g | exp (s(s=200012()ds,

Jfor t>0.

ProoF. Note the fact that Res(s—2p,)=(6—p,)?—p2—u?=e>0 and
Res>2p, for s=o+iueC,. Hence the formula of Theorem 4.3 is available
for any s in C,. For s in C,, we put s=p,,+\/p§+p (s(s—2p,)=p) on that
formula. Then one finds that

m,r(po+\/p§+p)_g"°ex — L. ()dt
PN , P (=Pt L, 1(1)dt,

for Re p>0. This says that the function #, +(p,++/p2+ p)/2k\/p?+ pisa Laplace
transform of the function L, .(f). Hence, by the Laplace inversion formula
we see that

1 g+i® —
b= o0 00 SLTED

Since p=s(s—2p,), we see that ds=dp/2./p2+p. Hence we obtain the desired
formula.

REMARK. Let Qy be the Casimir operator of K. Then there exists a scalar
A, such that 7(Qx)=(2p+8¢g)4,I. Now let D=—-Q+ A1 (see §0). Consider the
vector bundle NE,=I'\Gx,V,»M=I\G/K. Then D is a second order, elliptic,
formally selfadjoint differential operator on I'\E,. The spectrum of D is the
sequence of eigenvalues 0=41,<1,<A,<---, and lim;,, A4;=c0. Let C*(I'\
E,.: M) denote the space of C* cross-sections of I'E,. Put CP(I'\E,: M)=
{fe C*('\E,: M); Df=Af}. As it is well known, e 2 exists and is of trace
class for t>0. Moreover, if we put m;=dim CZ(I'\E,: M) then

tr(e ) = 32, me i,
N. Wallach shows in [30] that this can be written
= 2 ree Nra(m) [t: T g JetAn—2a)t,

Here (2p+89)~14, is the eigenvalue of Q on the class 7€ G.
If we define the function i,(x) (>0) on G, which is similar to the function

<he, by

i) = AW S e, |t (Bt (B Je " (),
b

then we find that 0, ,()=[0: 1)Je*=.»~2)1. In general, i, does not belong to
#1(G), so it is not admissible. But, at least formally, one finds that
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tr(e™P) = 3 e 1r,t (MO

For this reason, we called I, r a sort of modified theta function. One can
find details in [5], [21] and [30] on these matters.

5. Functional equation of 7 1

In the first place, we prove several estimates of 7, r that we will need later on.

LEMMA 5.1. Put

Ag(S) - Z,UEQ: P,"(r,)nT(O', ra){ H(;(j;p:)l;"ra) + H(.lg(i;p_‘;_)l:rd) } .

Then by (3.13) we have
At(s) = ZGEM: [0': TM]Ag(s) .

For any real numbers a, b (a<b), we take a subset 0, of {se C; a<Res<b}
which satisfies a condition that 0, n{p,+ir,; r,€ 02} =8. Then there exists
a polynomial P, such that

|47(9)| < |Py(Im 5)],
for any s in 0,.

PROOF. Since the set {p,+ir,; r,e 02} (={Re s=p,} U {s=ix; 0<x<2p,})
has no finite points of accumulation, there exists a positive constant é such that

Infsea;,raeég Is_po+i ra'l = 0 (>0)’

by means of the definition of ¢;. Also, by the same reason, there exists a poly-
nomial P and a constant C so that

Zrae[n,n-*'l]nQ; InT(a’ ra')Pg(rcr)l < P(n)’

for any ne Z, and

2 rocif0,2p,100¢ 117(0, ) PE(r,)| < C.
Now we have
|AZ()| < 671 2402 11(0, 1) PE(r )| - {|H( (s — po) + 7))
+ [HG (s—po))—15)l}
(5.1) =0T ez Zroern,nr1100: (0, 1) PI(7,)]
AIHG (s —po) +ro)| + [H(i(s—po) —ro)l}
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+ Zraei[O,Zpo]ﬂQ: nT(a’ ra)ng(ncr)l
AIHG (5= po) +r )+ [HG (s— po) —1,)1}] .
If we put ‘
K(z) = supyer-1,17 [H(z+X)|,

then, since the function H is rapidly decreasing, K is also rapidly decreasing.
Hence we see that

2 nez Zroetm nt110g: N1(0, 1) | PI(r ) H(i (s — p,) +7,)]
< Xhez K@i (s—po) + 1) X, pepn,nir1nge 11(0, 16) | PE(ro)l
< ez K(i(s—p,)+n)P(n).
The fact that K is rapidly decreasing implies that there exists a polynomial Q,
with deg Q as large as we please, so that
K(i(s—po)+n) < Q(In—Im s,

for any s in @, (see, Lemma 3.1). Hence the last expression of the above in-
equality is dominated by

Znez Q(ln —Im Sl)—IP(n) .

If degQ>2+degP then it is easy to show that 3, , Q(|ln—Ims])~1P(n) is of
polynomial growth as a function of s.

On the other hand, since the set {n, €iz[0, 2p,] n ¢} is finite, the function
defined by the sum with respect to r, €i [0, 2p,] n ¢ is rapidly decreasing relative
to Im s on account of Lemma 3.1.

Finally, similar analysis on the term involving H(i(s—po)—r,) shows that
|A2(s)| is of at most polynomial growth in se ®,. This proves the assertion of
our Lemma.

LEMMA 5.2. Set

¢ — a (ra H(i (s— 0 % 5
G? = Ziso P2 (r) (;E_spol:i):’%rk) ag.

Then by (3.15) we have
tgs(e) = ZaeM, [0'; TM]rGg'

Let & be a positive number. Let a and b be real numbers so that a<b. Put
0,={s; |Ims|>5, a<Res<b}. Is se€@, then there exists a polynomial P,
such that
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1:G¢| < |Py(Ims)].
ProoF. Since r{ is pure imaginary, it is easy to see that
ls—p,—irg| > [Ims| > 9,

for any s in @,. Also, since |r§|=0(k) and |df|=0(k¢) for some positive c
(cf. Section 3), there is a polynomial P so that |P(r$)dg| < P(k). On the other
hand, we see that Im (i (s—p,)+r%) >0 for large enough k. For such k, we find
that for any integer n, one can find a constant C, such that

[H(i(s—po)+1)| < Cy(1+[Im s+k[)™",
because of Lemma 3.1. Hence,
1:G3l < Cp Xk P(K) (1 +|Im s+ k[)™".

Since n is arbitrary, we conclude by choosing n large that | G?| is of at most
polynomial growth in Im s (s € @,) as claimed.

The following lemma is an immediate consequence from the relation
'7:,1(5) = ZO‘EM‘: [O'Z TM] {Ag(S) - lXT(e) VOI (F\G)tGg} s
and above two lemmas.

LemMMA 5.3. There is a polynomial P4 such that

[7e,1(s)] < |P3(Im )],
forallsin 0, n0O,.

The following lemma is a immediate result of [6, Theorem 4.4].

LemMa 5.4. Define for any j>0,

() = #{ye Cr\{e}; u,< j}.
Then we have

2p,j-exp(—2po)Q(j) — 1 as j— .
Using Lemma 5.4, we get the following estimate.

LeEmMMA 5.5. Suppose that Res>2p,. Then there exists a polynomial M
such that the following estimate holds:

7, 7($)l < [M(Im 5) exp (— (s — po)e./2)] -

Proor. If we put
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0(j) = H{ye Cr\{e}; j<u,<j+1},
then, by Lemma 5.4, one can find a positive integer j, such that the following
estimate holds: If j> j, then there is a positive constant ¢, such that
0(j) < ¢,j~texp2p,j.
Let

Fg, T(s) = ZyeCr \{e} XT(Y)Xa'(my)j(’Y)—luyC(’y) eXp (_ (S —Po)uy) .

Then it is clear that
Ne,1(8) = Zoem, [0: Ta] P (s— po))FE,1(s) -

We now split up sums of F? ;(s) on C;\{e} into two sums over {ye Cr\{e};
u,<j,t and {ye Cr\{e}; u>j,} and denote them by 3, and 3, respectively.
Since the set {ye Cr\{e}; u,<j,} is finite, if we note the fact that u,>e¢,,

then we can find a constant ¢, such that

121 x1(MAe(m ) (7))~ 'u,C(y) exp (— (s — po)u,)| < cilexp (—(s—po)e,)]

for Res>2p,.
On the other hand, we obtain the following estimates:

lxr(Mx(m) < ¢z, [j(y)™Y <1 and

C(y) = exp (—u,p,)|det (Ad (h(y))' —D,|~* < ez exp (—u,p,).
Here ¢, and c; are certain constants.
Therefore, we see that

1222 X2 (xo(m,) J()~1u,C(7) exp (— (s — poJu,)|
< €363 2 uy] exp (—(s—p,)u,)| exp (—u,p,)
< €363 g, G+ D [ exp (—s)IOG)
< €,€3¢3 2 jnj, (J+1)j7 exp (—(s—2p,) /)l
< €C2¢3(Jo+1)j5t s, 1 €xp (—(5—2p,) I

= ¢,C,C 'o+1 ‘;1 lexp (_(S_Zpa)jo)l R
265Uo+DJo" T xp (== 2p0)]

if Res>2p, Since —Re(s—2p,)j,=—Re(s—p,)j,+pojo < —Re(s—p,)e,+
PoJo» the last expression of the above inequality is dominated by

co¢2c3(jo + 1)];1 exp (pojo) I eXp (_(s_po)go)l .

Therefore, if Re s>2p, then there is a constant K such that
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[FZ,2()] < K|exp(—(s—p,)e,)!-

Hence we obtain

72,1 < KK{Z gem, |/} exp (—(s—po)e./2)],

where we put
f2(s) = [0 1, 1P2( (s—p,)) exp (— (s —p,)e.[2), (g€ M)).

But, since the function f?(s) is rapidly decreasing with respect to the variable
Re s and is of polynomial growth with respect to the variable Im s, there exists a
polynomial R? such that

If2(s)l < IR¢(Ims)],
for each o e M,. Hence, if we define the polynomial M by
M(s) = kK X gem, R7(5),
then we get the desired result.
Recall the fact that all the poles of the meromorphic function .g(e) liec below
p, on the real line discretely. Let 7,=max {r<O0; re {the poles of g (e)}}.

We now select a small positive number & which satisfies . < —£<0. Then we
get the following result from Corollary 4.4.

PROPOSITION 5.6.  Suppose that t>0. Then the following relation hold:

—&+i

. EXP (s(s=2p,) )11, 1(5)ds

+2 Zaelﬂ, ZraeQ‘; nT(a’ ra) @a,ra(rht)
+ (I/K) Zoe)ﬂ, Zpo+irie[0,po] (Ress=p.,+ir; €Xp (S(S—Zpo)t)'h,r(s) .

M Lor® = e |

—F—

—E+io0
@) Lox(®) = e | exp (s(5=20,)00n,,1(2p, ) ds.

Proor. (i) By Lemma 4.4,

Lorlt) = i) exP(s(s=20)0), 1(5)ds,

where C,={s=0+iu; (6—p,)>—u*=p2+¢,0>p,}.

Let u, be a suciffiently large positive number. Let o,+iyu, be a point of
intersection of C, with the line {se C; Im s=iy,}, that is, (6,—p,)>—p2=p2+e
holds. We note the fact that 0y >2p,. We now shift the integration by using
the following contour, as in the figure below.
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Using the residue theorem one finds

—&+i®
Lox(®) = | exp (s(s=20,)001,,r(s)ds

. gotilo
+ e limn | 7 exp (s(5=2p) 00, 1)
1 . Go—illo
5.2 : ~wS —20)0m.
( ) + 21K hmﬂo —tip, exp (S(S 14 )t)n ,T(S)dS

+ (I/IC) ZraeQ, Ress=po:tir¢ €Xp (s(s—2p,,)z)11,’T(s)
+ (I/K)ZGEM¢2po+ir;‘E[O,pa] Ress=pa+ir; €Xp (S(S _2po)t)'1t,T(S)

Where é1:= Uaeﬂ, Q‘g
Combining Proposition 3.10 with Proposition 4.1, we see that

Ress=pg +ire CXP (S(S - 2Pa)t)'11,1(5)

= k[0 1ylng(o, r)Pi(r,) exp (—(p3+ 1))
= K@a',ra tht) s

so the fourth term of (5.2) equals
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2 Zrasét nT(o', ra) @a,ra (rht) .

Therefore, to prove (i), it is sufficient to show that the second term and the third
term are equal to zero. To begin with, we shall prove the assertion concerning
the second term. It is clear that

S o exp (s(s —2p,)0)n.,7(s)ds

—&+ipo
= exp (— (2 +pd1) S_z exp {(6—p)*t+21 (0 — poi,t} - ,,1(0 +1i p,)do.

Let « be a positive real number such that «>2p,. Since we are interested in
large values of u,, we may assume that o,>a. Then by Lemma 5.3 and 5.5,
we can find polynomials P; and M such that

gotipe
7 exp (s(s=20,)0M.,1(5) ds|

< exp (=2 +oD0) |7 exp (0= poy) IPs(uldo
+ exp (= (uz+990 [ exp (090 IM(to)| ex0 (= (5= p o 2)do.

We can see easily that
lim,, o €xp (— 3+ P20 | P3| | exp (0—p)20)do = 0.
We now put
Ity 1) = exp (= (2+ DD M) | exp (0= p.)20)- exp (— (0 = pJe/Ddo.

It suffices to show that lim, ., I(4,: £)=0 for our aim. Integration by parts
yields

I(p,: 1)
= exp (= (u3+PDOIM(u,)| { exp (0= p.)2e) -SRIl 1
+1120) |7 exp (0= p,y20) LELZLIID. exp (= (- p,)2,/2)do}.

Because (6,—p,)? = u2 + p2 + ¢, we have

[exp (0= pgy2e) SRLTAOZLALID [ s exp (— (u3-+ p3)0) M)
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5. _ &xp (e)| M(p,)| 2T re
63 = SR o iTapTrea )

— 3 exp (= (u2+ p2) (| M(,)| exp {(x—p,) 2t — (= p,)e,|2} /(2= p,).-

On the other hand, if < o< 0, then we have

14+(6—po)e,/2 _ 1+(2—p,)5,/2
G=p) = (a=p,)?

0<

Therefore, we get

|1t 0= (1120) § " exp((o = p,y2e) L LD exp (= (o= p)e,/2)do

_ A+ (2—p,)e,/2) .
> }1 el |-1(u,,.z).

Hence we have an estimate

0< IKu,:t) \1_ (14'252‘“_/’;‘)52/2)

e M(u,)|
2t\/u+pi+te

(54) < exp (—/ui+pi+e-e,/2)

+ 5 exp (= 12+ pD (I M(1,)| exp (&= p,)2t — (= p,)eo 2} [(4— po),

by means of (5.3).

Since the functions p,— exp (—+/u2+p2+e-¢,/2) and p,—exp (— (u2+p2)t)
are rapidly decreasing with respect to u,, it is clear that lim, .. I(uo: t)=0, if
t#(1+(a—po)e,/2)[2(x—p,)?, on account of the inequality (5.4). But, since
the function I(u,: t) is continuous with respect to the variable #, we have lim, o,
I(u,: t)=0 for all t (>0).

Similar analysis shows that the third term of (5.2) equals zero. This proves

the assertion (i).
(i) If we change the variable s—2p,—s on the formula in Corollary 4.4,

then we see that
Lor(t) = yoic | exp (5(s=200001.,1(2p, ~5)ds,

where C_={s=0+ipu; (6—p,)?—u2=p3+e¢, 6<0}.
We may assume that

Fo<p,—Jpite< —&
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Re

Vv

We shift the integration by using the contour, as in the figure above. Since the
function s—n, (2p,—s) does not have a pole in the region which is surrounded
by the above contour, one finds that

—g+io
Lor(t) = g | exp (s(s=20,)0),1(2p, —)ds

l . ) —ootille .

55+ e limea |7 exp (5= 20,001,120, =5)ds
1 . —Go—ilo

+ Anin hm”""mg_g_;,‘ exp (s(s—2p, )., r(2p,—s)ds.

If we put s'=2p,—s in the second and third terms of (5.5), then it is easy to
see that these terms have the form of the third and second terms of (5.2) re-
spectively. Hence one finds that both of them are equal to zero. This shows
the formula of (ii).

We now define the function &, by
P, 1(1) = k Xoem, [0: Ta]P(i0) vol (N\G)xr(e)u,(it) .

This function contributes the functional equation of #, r as follows.
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THEOREM 5.7.  The function n,  satisfies the functional equation

(56) ”r,T(S) + ’7:,T(2Po—3) + ¢1:,T(s_po) = 0: seC.

Proor. These terms are all meromorphic with simple poles, by Proposition
3.10. Moreover, the poles of #, 7(s)+1, (2p,—s) are at po+irg (k>0, ce M)
with residues TFix[o: Ty ]PI(r)y:(e) vol(I'\G)d respectively. On the other
hand the poles of the function

D 1(s—po) = K Xgem, [0 Ty P (s — p,)) vOL(IN\G)x1(€)p(i (s — po))

are at s=po+irg (k>0, 0e M) and the residues are +ix[a: TpJP%(r)yr(e)
vol (I'\G)dg respectively. It follows that the function #, (s)+n, (2p,—s)+
@, 1(s—p,) is an entire function of s.

Add (i) to (ii) of the preceding proposition and divide it by 2. Then

4niK  )_z—;

—E+io
Lox) = e | XD (s(5=20,)0) e 1) + 1,120 =)} ds
(57) + ZGEM, queé‘,’ nT(65 ra)@a,r‘,(rht)
+ —217 Zueﬂt Zpo-f-irze[o,po] Ress=po+ir,“' €xXp (S(S—zpo)t)”r,T(s) .

On the other hand, by definition
(58) Lr,T(t) = Zne@ nF,T(n)@n(rht) - XI‘(e) VOl (F\G)tht(e) ’

for t>0. The argument of the same kind that we have accomplished in Section 3
shows that

(59) ZneG nr.r (n)@n(rht) = ZUEM, Zraeég nT(a9 ra)@a,ra (rht) .
Furthermore, the Plancherel theorem implies that

X1(e) vol (I'\G),h,(e)

2 11(@WVOl(T\G) Eoet, [ 2a] | P2G) exp (= 2+ pD0)uto(r)dr

’ —

Sio exp (—(r2+pH)t)®,, (—ir)dr.

Il
N

K

Now we put —ir=s—p,. Then, since —(%+p2)=s(s—2p,), we see that the
last expression of the above equality is equal to

poti®
473i;c S,, 1 SXP (S =20)0) P, 1(5 = p,)ds.

We now shift the integration into the complex plane by using a rectangular
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contour with vertices at p,—iy, p,+iy, —&+iu, —&—iu, where u is a positive
real number. Using the residue theorem one finds

xr(e) vol (I'\G).h.(e)

1 —E+io
= i) exp (s(5=2p ) Pe, (5= p)ds

1
+ F ZaeM, Zpo+ir;e[0,p‘,] Ress=pa+ir; (S(S__zpo)t)Qr,T(S— pa)

. potip
+ g imuen | exp (5(5=20,)0) @0, 25— p.)ds

1 . —E—ip
+ ATk llm”—mo Sp i €Xp (s(s—zpo)t)¢t,T(s_po)ds'

Let s=o+iu (—€<o0<p,). Since

exp (s(s—2p,)t) = exp (—(u?+pl)f) exp {(0 — p,)* +2i(6 — p,)u}t

and @_(s—p,) is a polynomial growth function with respect to u, we can easily
see that the third and fourth terms of the above equality are equal to zero.
Therefore we see that

Lr,T(t) = ZaeM, queQ: nT(a9 ra)@a,rg (rht)

(5.10) e | exp (5= 2000 B, 1(5= p)ds

T Amik )_s

1
- —ﬂ- Za’eM17 2p9+ir;e[0,pa] Ress=pa+ir," (S(S —2p0)¢t,T(s—po)9
by means of (5.8) and (5.9).
Note the fact that
Ress=po+ir; €xp (S(S—Zpo)t)ﬂ,’T(S) + Ress=pa+irz (S(S—zpo)t)¢t,T(S_po) = 0.

Combining (5.7) with (5.10) we get

(77" exp (s(s—2000)4,,1(5)ds =0,

—&=i

Here we put
qr,T(s) = ’1:,T(S) + ’7:,T(2Pa_s) + Qr,T(s_po)'

Since g, 7(s) is an entire function, by the same argument that we carried out
before, we can show that if we shift the integration then we obtain

otio
[ exp (s(s—20)0a.1(5)ds = 0.

Po*i
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Namely, if we put s=p,+ir then we have
[* exp(=(2+p0g.1(p,+ir)dr = 0.
It is clear that
{7 1anjdimyiexp (= 02+ o0} 1o, +i ldr < oo,

Therefore we can change the order of the integration with differentiation. Hence,
for any non-negative integer n, we have

G [T 040D exp (24000 2(ou+ i PN = 0.
Since g, r(p,+1ir) is an even function of r, one deduces from (5.11) that

q.,1(p,+ir) =0

for all re R. But q. is entire, hence g, 7(s)=0. This completes the proof of
Theorem 5.7.

For each o € M,, we put

n#(s) = kP (s = Po)) X yecrriey Xr(MA(m,) j(7)1u, C(y) - exp (— (s — po)u,) -
Accordingly we have
nt,T(s) = ZGGM¢ [O': TM]'I%(S)'
Moreover, if we define
7(r) = kPZ(ir) vol (I'\G)xr(e)u,(ir),
then it is obvious to see that
¢t,T(r) = ZaeM, [G: TM]éa‘(r)'
Now we have the following result as a corollary of Theorem 5.7.

COROLLARY 5.8. The function n%(s) is holomorphic in the half plane Re s>
2p,, and it has the following properties:
(i) ng(s) has meromorphic continuation to the whole complex plane, via the
relation

'I%(S) = ZraeQ: nT(01 ra)Pg(rd) {H(l (S—P,,):Fi ra) + H(i(s—po),—rﬂ‘) }

S=pPo— g S§—pPo 11,

0010 B ) PUEED. o
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The poles of n% are all simple, and are as follows:
Pole Residue
potir,  kng(o, r)Pir)  r,eQf
p,+irg —ikyq(e) vol ('\G)Pe(rg)dg k>0.

If some two of these poles coincide with each other, then we interpret the residue
of that pole is the sum of each residue.

(ii) n¢ satisfies functional equation
n%(s) + nf(2p,—s) + P(s—p,) =0, seC.
PrOOF. For each o e M, we define
Pi(r) if ¢{#o
2P3(r) if é~o.

Pi(r) =

Using these polynomials, we now define the functions #, r and &, ; as the same
kind that we defined #, r and @, ; by using P¢(oe M,) before. Then it is easy to
see that

ﬁt,T(s) + ﬁr,T(zpa_s) + 5r,T(s"po) =0, se C.
Also, by definition we have
N%(8) = fie, () — 1.,1(s) -

Hence the assertions (i) and (ii) follow immediately from the results of Propo-
sition 3.10 and Theorem 5.7 respectively.

6. Definition of zeta function

For the purpose of defining the zeta function, we have to improve on the
definition of #, p-function. At the first half of this section, we devote ourselves
to investigation about the analytical properties of that function.

Above all things, for each o € M, let us define

(6.1) 7i5(s) = Pg(i(s—po))~'ni(s)
= 2 secrve 1r0Am) () u,C() exp (= (s—po)uy),
for Res>2p,, and
6.2) B4(r) = Pi(ir)"'d3(r)
= Kxr(e) Vol (N\G)u,(ir).
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Then it is clear that
i5(s) + 14(20,—5) + B4(s—p,) =0, seC.
Let E, denote the set of all zeros of the polynomial PJ(r). Define
E; = {rfeH; P{(rp)=0}.
Since the set E! is finite, we can write it as
E! = {r(o, 1), 1(0, 2),..., (0, j,)}-

Note the fact that the function defined by the series

) a (0 H(i(s—p,,)+r‘,{) o'
2izo PI(rg) S—p,—irg ds

has no poles at s=p,+ir(o, j), j=1, 2,...,j,. Hence the function #¢(s) does
not have a pole at the point s=p,+1ir(s, j) (=1, 2,..., j,)-
Since the function 7§ has meromorphic continuation, via the relation

(6.3) #if(s) = P (i(s—po))™! Zroeqt Pi(ro)ne(o, r,)

,{H(i(s—p.,).+ra) " H(i(s—p.,)—ra)}
S—p,—ir, S—p,+ir,

~ izz(e) Vol (T\G) PE(i(s = p.)* Lo P2(rp) HUCZLILID. gy,

7j3(s) has poles possibly at s=p,+ir (re€E,) on account of the fact that P¢ is
an even polynomial.
Let P£ (s) (j=1,...,j,) denote the principal part of Laurent expansion of

fig(s) at s=p, £ir(s, j):

(6.4) P3; ()= Xnts (s—dﬁa(%3f(:a:n}))m '

Then we have

L di(o,j: m)
P3;(2p,—5) = Xhty (_1)m(sf-p0{_l—ir(a, mme

Hence the functional equation of #j§ says that

. B B d(a, J) =
P} (s) + P; (2po—5) + s—p,—ir(c, J) =0,

where we put

d(0, )) = ReSe=p, +ir(0, 1) BF(5—Po).-
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Therefore, one finds that
di(o,j:1)—d_(o,j: 1) + d(o,j) =0,
d.(o,j:2k+1)—d_(0,j:2k+1)=0 (B<2k+1<my)
and d,(0,j:2k)+d_(0,j:2k)=0 (2<2k<m;)).

We now put
(6.5) 1) = The1 do, D {=5e 5y ~ TFTI G-
Also we put
(6.6) Fi(o, s) = X42,{P} (s)+P; {(5)}.
Note the fact that
6.7 Fi(o, 5) + Fi(o, 2p,—5) + ¢%(s—p,) = 0.
Let
(6.3 fig1(s) = 7ig(s) — Fi(o, 5),
and let
(6.9 4%(r) = P4(r) — @§(r).

According to the relation (6.7), we can easily see that the functional equation
ﬁ%’l(s) + ﬁg"l(zpo —S) + A%(s_po) =0

holds for any se C.
Let E2=E,\{ELU (—E})}. The set E2 is also finite, hence this can be either
written by ‘

{£Fe.., £F,} or {0, +F,..., £F._};

where 7;#0 (j=1,..., t,).
Let R ;(s) be the principal part of Laurent expansion of 7!(s) at s=
poii ?j:

£ ()= Sy A%(o, jin)
(6.10) RZ (s) = ”él(s—poiif',-)"'

Therefore, we have

+ A dt(o,j: n)
Ra,j(zpo S)— an=l (_l)n(s._po_.tifj)” *
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Because the function 4%(s—p,) has no poles at s=p,+if; (j=1,...,,),
the functional equation of ¢! implies that
R% i(s) + RE ;(2p,—s) = 0.
This means that
d*(o,j:2k) +d~(0,j:2k)=0  (2<2k<n))
and
d*(o,j:2k—1) —d~(0,j: 2k—1)=0  (1<2k—1<n;)).

In particular, if s=p,+i#; is a pole of #§-!(s) then s=p,—iF; is also the pole of
i3 1(s), and vice versa.
On the other hand, if 0 € E2, let R, be the principal part of Laurent expansion

of 7§ 1(s) at s=p,:

(6.11) R,(s) = 221@4_1%))—,.-

The same argument as we have proceed above shows that
Ry(s) + Ry(2p,—5) =0,
hence we get
d°2k) =0  (1<2k<ny).
We put
tey {R¥ (5) + R; ;(9)} if 0&E,
bz  {R} () + R; (s){ + R,(s) if O€E,.

a,Jj

(6.12) F3(o, s) =

We now define the function H%(s) by
(6.13) #(s) = fig'(s) — Fi(o, 5).
Summing up these observations, we have the following proposition.

'PROPOSITION 6.1.  The function H$(s) is holomorphic in the half plane
Res>2p,, and is a meromorphic function of s in the whole complex plane.
The poles of H4(s) are all simple, and are as follows:

Pole Residue
Po + ira KnT(a9 ra) r,eQ:

po+1irg —ikyr(e) vol (I'\G)dg k>0, rge&EL
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Furthermore, the following functional equation holds:
t;‘(S) + H%‘(zpa—s) + A%(S—po) = 0, seC.

Note the fact that 0 e Q¢ implies that 0¢ E2.

It is easy to see that the residue d§ of the Plancherel measure u,(r) is pure
imaginary in all cases. Hence the residue —ixkyr(e) vol(I'\G)d§ is real (see,
Section 1).

Also it is known [7] that the number vol (I'\G) is a rational number, for our
normalization of Haar measure. Furthermore, we can find the fact that id{ is
a rational number, whose denominator depends only on &€ M,, and not on k.
Let x, denote this denominator. We now choose k=H(0) to be equal to the
least common multiple of the integers k, (6 € M,). It turns out that the function
H, 1 defined by

(6.14) H1(5) = Zoem, HF(S)t,  (%,=[0: Tpr])

has only simple poles with integer residues. Therefore, we can find a mero-
morphic function Z_ ;(s) such that

(6.15) (d/ds)(log Z, 1(s)) = H,(s).

The function Z_, will be defined up to a multiplicative constant, which we will
now fix. As we have seen, if 0 e (¢, for some o € M,, then H, ; has a pole at p,
with a residue 2k, g, ocp? Nr(0, 0)x,. Hence, Z, ; will have a zero at p, of order
2K X gem,,0e0: B1{(0, 0)2,.  We will denote this even integer by m,. Of course,
m,=0if 0¢¢J,. We now normalize Z, 1 by requiring that

lim, ., (s—p)) ™ Zx(s) = 1.

This determines Z, ; completely. We shall call this the zeta function attached
to the data (G: K, =: I', T).

In the forthcoming section, we shall study on the various properties of the
zeta function Z, ;.

7. Zeta function Z_ 1

In this section we shall describe the main results of this paper, that is, the
fact that the zeta function Z, ; defined in the preceding section has the same kind
of the properties possessed by Selberg’s and Gangolli’s ones.

At the first place, we state the following theorem concerning the location of
the zeros and the poles of Z, ;.

THEOREM 7.1.  The function Z, 1(s) is holomorphic in the half plane Re s>
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2p,, and it has a meromorphic continuation to the whole complex plane. The
zeros and the poles described below are the only zeros and the poles of Z. r:

(i) Z, 1(s) always has certain zeros that we can call spectral zeros. These are
located at the points p,+ir, (r,eQ¢, o€ M) with at most finite exceptional
points (see (iii) below). The order of the zero at p,tir, equals kn(o, r,)o,
where a, stands for the number [o: t,,], and k is the positive integer mentioned
in Section 6. Of course, if r,=r, for some ¢ and & in M., then we understand the
order of the zero at the point p,tir, is equal to x(ng(o, r)a,+nr(&, rouy).
Moreover, the spectral zeros lie on the line Re s=p, except for a finite number
of r,. Thus Z 4(s) satisfies a sort of modified Riemann hypothesis. The
representations m,,_ which correspond to the r, € R\{0} (that is, Re (p,+1r,)=p,)
are all in the unitary principal series. Those p,+ir, which are off the line
Res=p, are all real, and lie in the interval [0, 2p,], symmetrically about p,.
The corresponding representations w,, are almost all in the complementary
series.

(ii) Apart from the spectral zeros of Z_r, there may exist a certain series of
zeros and poles of Z . These exist only when dim (G/K) is even. These are
located at the points p,+ir§ (ri&Eg, see Section 6) where r is a pole of the
Plancherel measure u,(r) in the upper half plane Imr>0. Whether we have
zeros or poles depends on the sign of the number idg, where df is the residue of
U,(ryat r§. If this sign is positive, then Z_ 1 has poles at the points p,+irg(k>0,
oe M, r{&EY). In the opposite case, Z, r has zeros at p,+iri. In any case,
the order of the zero or the pole is always equal to xyr(e)vol (I'\G)|dg|a,.
Furthermore, ifr‘,§=r§§£E; UE} (o, Ee M) for some o, £, k and j, then we must
obviously change the above statement. Namely, if the sign of idgcx,,+id§oc§
is positive (resp. negative) then Z, 1 has a pole (resp. zero) at the point p,+ir§
with the order ky(e) vol (I'\G)|dja,+dS0|. Of course, if dfa,+d5u,=0 then
there exists neither a pole nor a zero at this point.

(ili) Suppose that re=ri{&E} for some &, o in M, and k. In this case, if the
sign of kng(&, roas—ixyr(e) vol (I'\G)d§a, is positive (resp. negative), then
Z, 1 has a zero (resp. pole) at the point p,+ir.. At any rate, the order of the
zero or the pole equals x|ny(¢, roay—i yr(e) vol (I'\G)dga,|.

Proor. It is well known that the r, which are real correspond to represen-
tations of the principal series, and the purely imaginary r, correspond to represen-
tations either in the complementary series or the series of representations described
in (e) of Proposition 3.5. Hence the assertion of this theorem now follows from
Proposition 6.1, (6.14) and (6.15).

ReMARK 1. The zeros described in the statements of (i) are called spectral
because their location and order provides us spectral information, in the following



Zeta functions of Selberg’s type 289

sense: Let 7y be the representation of G induced from the representation T
of I' (see Section 2). Then the certain representations =,, (c€ M,, re C) of G
occur as summands in wr . The assertion of (i) implies that the order of the
zero at p,+ir, is essentially equal to the multiplicity ny(o, r,) with which the
representation 7, , OCCUIS in 7 1.

o,ra

REMARK 2. Note the fact that if r, € 0, satisfies r, € R\{0} then the points
potir, belong to the set of spectral zeros.

ReMARK 3. The point described in the statement of (iii) is somewhat special
in that the behavior of Z_; at this point has both spectral and structural aspects
of G/K.

REMARK 4. Suppose that ry=r,=-=r,=rj =r{=-=rk (r{ €EL,
r{'&EL,...,rh &EL) for some ¢, o,...,pu, &, 0,..., ) in M, and non-negative
integers k, I,..., m. We denote this by 7. Then the judgment of whether the

point p,+iFf is a zero or a pole is carried out by the same procedure as
we mentioned above.

The proof of the following theorem is the same as that of [7, Theorem 2.9].
But we include its proof for completeness.

THEOREM 7.2. Z_ r satisfies the following functional equation:

Z, 1(2p,—5) = Z, 1(5) exp (S:“"’ 4,4)dr), seC.
Here we put A, 1(r)=3;cq, 49(r)0%,.
Proor. It is obvious to see that
H 1(s) + H,1(2p,—5) + 4.,1(s—p,) = 0
for all se C. Since
Ho1(s) = -3 108 Z,1(),

it is evident that the functional equation of H, r leads by integration to

.0 Z.12p,=5) = - Zaexp (| " 4,1,
0
where ¢ is a nonzero constant. Note that the expression exp(Ss—po A,’T(r)dr> is
S—Po 0
well defined, wheng ’ A, 1(r)dr is interpreted as a contour integral. Indeed,
0
A4, 1(r) is meromorphic and its residues at the poles are always integral. It follows

that two different contours from 0 to s—p, will lead to values for Ss_po A, 7(r)dr
0
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that differ by an integral multiple of 2rni. Therefore exp <Ss—p° A,.1(r) dr) is
(o]

clearly well defined.

We now claim that c=1.

Recall that the multiplicity m, of zero of Z_ 1 at p, (m,=0if p, is not a zero)
is an even integer. Hence we have (s—p,)" =(p,—s)". Thus from (7.1) we
obtain

(72) (pa_s)_mozt,T(zpo_s)

= cs=pymeZ 2 exp (| " A, 1(r)dn).

Let F(s)=(s—p,) ™Z, 1(s) in a neighborhood of p,. Then the definition of
the normalization of Z,  implies that F(p,)=1. On the other hand Z_(2p,—s)=
(po—5)"F(2p,—s) in a neighborhood of p,, so (p,—s) ™Z, 1(2p,—s5)—1 as
s—p,. Thus letting s—p, in (7.2), we see that c=1. This completes the proof
of Theorem 7.2.

For any linear form 4 on a, ,, let £, denote the character of the Cartan sub-
group A= A.A, defined by £,(h)=exp A(log h) (h € A).

We now enumerate the roots in P, as a,...,a, Let L be the semi lattice
in af , defined by L={>{-, ma;; m;>0, m;e Z}. For AeL, define m; to be
the number of distinct orderd z-tuples (m,..., m,) such that =31, mu,.

Let Fi(o,s) (i=1,2,0€ M, be the meromorphic functions defined at
Section 6. Recall the fact that all of the poles of Fi(o, s) lie in the half plane
Res<2p,, because the function #g(s) is holomorphic in Res>2p,. Choose a
point s, € C such that Res,>2p,. We now put

(1.3) f+(6, 5) = exp S:_’“ (FXo, P)+F¥a, r)}dr

o

for each o € M,, and further we put
74 Jo.,1(8) = Tlsem, f1(o, 5).

Here, of course, we demand that the contour of the expression (7.3) should be
chosen so that the poles of Fi(a, r) (i=1, 2, 6 € M,) do not lie on it. Since the
residue of the pole of Fi(a, r) need not be an integer, f;(o, s) is not well defined
for a general choice of contour from s, to s—p,. Thus, we take a particular path.

With these understood, we have the product representation of Z_  as follows.

THEOREM 7.3.  Z_ 1 has an infinite product representation in the half plane
Res>2p,. That is, if the point s—p, (Re s>2p,) is not a pole of Fi(o, r) (i=1,
2, g€ M,), then there exists a non zero constant C(s,) depending on s, such that
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Zt,T(S) = Ct(so) ft,T(S) ]._.[o'eM, HésPr ]._.[}.eL
+(det (I— T(8)x,(ms)~1E1(A(0)) ™" exp (—su,)))*mace
Here I denotes the identity matrix of degree=dim T, and det means determinant.

PrOOF. Let us consider first of all the series
H(s) = Zyecriey tr(ML(m,) ™)™ 'u,C(¥) exp (— (s — poJu,) -
valid for Res>2p,. Now, it is easy to see that
C) = Ep(hy (M) Tlaep, (1 =E(h()) D)7
Recall the fact that
Cr\{e} = Usep {675 j21}.
Combining with these facts we have
(7.5) AHS) = KX sepr 2 j>1X1(0)1(Mms) s
Tlacp, A—E(R(8))™9) 7" exp (—sju,)
Now expand (1—£,(h(6))~/)~! as a power series,
Xm0 S H(8)) 7™
This series converges because ,(h,(6))~* <1 by our choice of h(d), namely h,(d) €
+
o Next, multiply together these series for the various « € P,. Then we see that
Iaer, 1=EL(h(E) )1 = Xier maa(h(8)) 7.
Therefore (7.5) becomes, with a rearrangement,
F(S) = K Xsepr LaeL 2 jm1 UsmMaXr(67)E(h(8)) I x,(ms)~7 exp (—sjus).
If €,(5), €5(9),..., &4(0) are the eigenvalues of T(d), then we get
x1(69) = 2= (e0)).

Hence we can easily see that
AF(8) = kK 2toi Tocpr ZacL Mats 2 o1 8:(0)1E,(A(8)) I x,(ms)~7 exp (—sju,)

(7.6)
e £3(8)E,(h(8)) 11y (my) 1 exp (—s5uy)
= 1o et Zoerr Liel Matls 1= 0 (558 (h(8))- 11, (ma)~ T exp (—suz) "

These manipulations are valid for Re s>2p, because of the absolute convergence
of the series which defines the function #$(s). Since
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7(s) = 7%(s) — (Fi(o, )+ F(o, 5)),

integrating this along the particular path mentioned above, we can find a non
zero constant C,(s,) such that

exp gs—po Hg(r)dr

So

= Co(8:)f1(0, 8) 11 I Tsep [Tac (1 —&d8)E2(h(8))~ 1o(m5) ™" exp (—sug)) ™
= Co(50)f1(0, M Tsepr [Tser (et (1= TO)E,(h(9)) ™ 1o(ms) ™" exp (—su))) ™,

by means of the expression (7.6). If we put C(s,)=c[I,em, C.(s,) for a certain
non zero constant ¢, then the formula

1082, 1(5) = % oem, HEO)2,

implies that the assertion of this theorem.

We finally come to the assertion concerning the order of Z, ; when it is an
entire function. That is to say, we have the following theorem.

THEOREM 7.4. If Z, 1 is an entire function, then the order of it is finite and
equals dim (G/K).

ProOOF. Let & be a fixed positive real number. If Res>2p,+ 4, then the
same argument as in the proof of Lemma 5.5, in particular, says that the function
7ig. is bounded. Also, it is easy to see that the function Fi(a, s) (i=1, 2, 6 € M,) is
bounded in the half plane Re s>2p,+6. Hence, in the half plane Re s>2p,+9,
H, (s) is bound. Accordingly, we see that |Z_;(s)| <exp 4,|s| for some constant
A,

Now let n=dim (G/K)=p+q—1. Then, it is easy to see that there is a
constant C such that |u,(r)]<C(1+|r)*"!. Therefore, in absolute value, the

function Ss_po A, 7(r)dr which appears in the functional equation for Z_  is less
0

then or equal to A,|s|” for some constant 4,. It follows from the functional
equation for Z_ that

|Z, 1(s)] < exp A,|s|exp A,|s|" < exp A;|s|"

for some constant 45, whenever s is in the half plane Re s< —d.
On the other hand, since Z, ;(s) is holmorphic in —d<Res<2p,+ 6, using
the maximum modulus principle, one can easily prove that

1Z.,r(s)| < exp (Byls|"+B,;), —6<Res<2p,+6

for |Im s| sufficiently large, on account of Lemma 5.1 and 5.2. Here B; and B,
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are certain constants, and N is some integer (cf. [7]). This verifies the hypothesis
of Phragmén-Lindelof theorem and we conclude that, as an entire function, Z_
has finite order which is less then or equal to n.

We shall show that the order of Z, ; is more than or equal to n by means of
a different point of view. For any r>0, let

N‘K,T(r) = Za’eM, led,,«,|<r,1rq,r,eéu nT(a9 ra)ud‘

Furthermore we put
L) = | exp (= 1N, 1(r)
0

= Zaeﬂt Zna,rﬂeéu €Xp (M'cr,r,)n’l'(a’ ra)aen

for any t>0. We now set G, ;={n€G; n|g31, ny(n)#0}. Then, since it{G,,T\
(G, nG, )} is finite, the same argument as in [30] implies that there exists a
constant Cg such that the equality

lim,, o 172 L 1(t) = Cgd, vol (I\G)y1(e)
holds. Hence, applying the theorem of Karamatata one gets

N 7(r)[r"? — Cgd, vol (I'\G)xr(e)/T (n[2+1)

as r—oo.

Since 1,,,=—(2p+8q) (r2+p2+4,), this fact leads without difficulty to
the following: The series 3, 3", +ir, 20 n7(0, 7,)%,/|p,+1r,/* converges if k>n,
and diverges if k<n. It follows that the exponent of convergence of the zeros
of the entire function Z, 1 is at least n. This says that the order of Z_ ; is more
than or equal to n. Hence, together with what we showed above, this implies
the assertion.
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