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1. Introduction

This paper is concerned with the problem of classifying a series of T obser-
vations coming from one of two first order autoregressive Gaussian processes.
Let 77 ,0 = 1, 2) denote the first order autoregressive Gaussian process which
satisfies the stochastic equation

(1.1) yt = aijyt_l + ut ( r = •• - 1, 0, 1,...)

where ay(|ay |<l) is known, and w,'s are independent identically distributed as
N(0, <rj) with known variance a). Suppose that y = (yu...9 yT)' is a series of T
observations coming from 771 or 772. It is natural to consider a classification
method based on the density of y. The density of y is given by

(1.2) f{y; a,., aj) = {2ncj)

when y comes from 77p where

-a,. 1 + a? 0

0
IT1 = ^

V
Since all the parameters are known, an optimum classification rule is based on the
statistic (cf. Anderson [1])

where

(1-4)
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The rule is to classify y as coming from 77\ if V>k and from 772if V<k, where
k is a constant. If the prior probabilities qj of 77j are known, the rule with
k = \og(q2lql) is the Bayes rule.

We study the asymptotic (T-xx?) distribution of F or equivalently of Z.
Kligiene [3] and Krzysko [4] showed in a more general case that the limiting
distribution of this function is normal. In this paper we give an approximation
for the distribution function of V based on an asymptotic expansion of the dis-
tribution of Z up to the term of order T"1.

2. The main result

First we define some coefficients used to describe an asymptotic expansion of
the distribution function of Z when y comes from II j .

Let

(2.1) ct = (TJ{oT2-°22}, c2 = ^{ai<jr2-a2(T22},

(2.2) yl = a"3{- \(a-2)c\ - 4a,c2c3 - (a2 + 2a-4)c|} ,

72 = a~5{- ±(a2-6a+ 6)4 - 3(<i-2)a/c§c2

- ±-(a3+ 2a2 +12a-24)otjcl

y (a3 + 2a2-4)4 + y a3c\ - 2aocjclc2 - (a2-a)clc3\ ,

where a = l—(x2j.

We state here the main theorem and its corollary, which will be used for the
evaluation of the probabilities of misclassiflcation.
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THEOREM. Let Z be the random variable defined by (1.4), and put

(2.3) Z 4

where /i = (2a)~lT(2OLJC2-c3) + yl9 p = (y§ + 2y3T~1)1/2. Then ^ distribution
function of Z can be expanded as

(2.4) P(Z <x) = (̂x) -4r

if y comes from Uj, where <&(x) and (j)(x) are the cdf and the pdf of iV(0, 1) re-
spectively, and

(2.5) r l (x) = p - 3
? 2 ( x 2 - l ) ,

COROLLARY. The distribution function of V when y comes from IIj can be
approximated as

(2.6) P(K< v) s 0(xt,) - ^(x , , )^! (xv)

/or /arge T,

Let P(i|j) be the probability of misclassifying y into IIt when it comes in
fact from IIj (i ̂  j). Then

= i-p(v<k\n2),

Therefore, the corollary can be used for the evaluation of P(l|2) and P(2|l).

3. Derivation of the asymptotic expansion

To obtain the asymptotic expansion of Z we consider the characteristic
function of Zx = (llyff)Z,

(3.1) ^ i(0

when y comes from 77j. By (1.2) we can write \j/i(t) as
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(3.2)

where

(r *

p. \

\ q rl

with r=l + c1itT~1/2, q= —<Xj — c2itT^1/2, p=l + oij + c3itT~1/2 and cf's are
given by (2.1). Following arguments similar to Ochi [5], we expand ^ ( 0 in a
power series with respect to (1/^/T). We use the formula (cf. Anderson [2],
Ochi [5])

(3.3)

where x±= -y(p + yjp2 — 4q2) and x2= -y(p — yjp2 — 4q2). Using the definition

of p and q, we can see x1 = l+0(T"1 /2) and x2 = a} + 0(T-1/2). Noting that
x\~2 has higher order convergence to zero than any fixed power of T, we have

(3.4) log iMO = y log (1 - a?) + \ log (p2 - 4q2)

l- y

Using the definition of p, q and r and expanding each term in the right hand side
of (3.4), we obtain

(3.5) log<Ai(0 = 4ra-\2oijC2-c3)ityfT+ \ y2(it)2

Therefore the characteristic function of 2, can be written as

(3.6) WfJ



Asymptotic expansion for the distribution 629

where gi=y2p~3> ^2 = ?4P~4 a n d #3 = yyip"6- Now we invert the characteristic

function (3.6) term by term. We note

where fcj(x)'s are Hermite polynomials; ft2(
x) = x2"~l> /z3(x) = x3 —5x, /i5(x) =

x5 —10x3 + 15x. Using (3.7), we obtain the expression (2.4) with ri(x) = glh2(x)
and r2(x) = g2h3(x) + g3h5(x). It is easy to see that the expressions / \ ( x ) and
T2(x) are the same as the ones given by (2.5), which proves (2.4).
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