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§1. Introduction

According to the so-called Hunt theory, the complete maximum principle is
an essential property for a continuous kernel ¥ on a locally compact space X to
possess a resolvent and further to be represented by a sub-markovian continuous

semi-group (T), o, that is, Vf= S: T,fdt for any fe Cx(X) (see, for example, [2]
and [13]). While the logarithmic kernel on the 2-dimensional Euclidean space R?
does not have this property, it satisfies the “semi-complete maximum principle”’
with respect to the Lebesgue measure &, (see [4]). Furthermore the logarithmic
kernel possesses a resolvent and is represented by the 2-dimensional Gauss semi-
group in the following sense:

[ Joglx =31 /az0) = (7 grexo (=22 ) r0)dt (s

for any fe Cx(R?) with [fdé,=0. Recently, generalizing the logarithmic kernel,
M. 1t6 [4]-[7] considered a real convolution kernel N of logarithmic type on
a locally compact abelian group G. By definition, N is “of logarithmic type’’
if there exists a markovian convolution semi-group (o,),»o such that Nxf=
S:a,*fdt for any fe Cx(G) with [fd¢=0, where ¢ is a Haar measure on G. He
showed in [4, Théoréme A] that a real convolution kernel N is of logarithmic
type if and only if

(L.0) N satisfies the semi-complete maximum principle with respect to &,

(L.1) inf, ¢ N*f(x) =<0 for any fe Cx(G) with [fdé=0,

(L.2) N is non-periodic,

(L.3) lim,., nyck,= — o, where (K,)%, is an exhaustion of G and #y cx,
is the N-reduced measure of N on CK,,

In this paper, taking the above fact into consideration, we investigate a real
continuous kernel ¥ on a locally compact space X satisfying the semi-complete
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maximum principle with respect to a certain positive Radon measure m (see
Definition 2) and conditions (A), (B), and (C) (in Theorem 7) which correspon‘d
to (L.1), (L.2) and (L.3). We shall construct a resolvent (V,), o satisfying

Vf=V,f+ pV,Vf forany feC{X,m)

(in section 3) and under some additional conditions, we shall also construct a
continuous semi-group (T}), o satisfying

Vf = Sm T,fdt for any feCYX, m)
0

(in section 4). Here CYX, m)={fe Cx(X); | fdm=0}. The results in section 3
are slight generalizations of the result announced in [17]. Remark that the
resolvent associated with V is uniformly recurrent in the sense defined in [16].
We note in the final section that the Neumann kernel satisfies the semi-complete
maximum principle with respect to its invariant measure.

Our study is also closely related to that of conditions of kernels to be “weak
potential operators’ for recurrent Markov processes in the probabilistic view
point (see, for example, [10], [11], [12], [14] and [15] in which strong Feller
kernels are studied).

§2. Definitions and preliminaries

Let X be a locally compact Hausdorff space with countable base. We
denote by C(X) the Fréchet spece of real continuous functions on X with the
topology of compact convergence, by Cx(X) the topological vector space of real
continuous functions on X which have compact support with the usual inductive
limit topology, by M(X)=Cg(X)* the topological vector space of real Radon
measures on X with w*-topology (i.e., vague topology), by M (X)=C(X)* the
subspace of M(X) consisting of measures with compact support. C*(X), CK(X),
M*(X) and M{(X) denote their subsets of non-negative elements. We denote
by C,(X) (resp. C,(X)) the subset of C(X) consisting of bounded functions (resp.
functions tending to zero at infinity). For me M*(X), put CYX, m)={fe
Cx(X); [fdm=0} and put M(X)={ue My(X); [du=0}, My(X)={neM(X);
fdiul <o}, where |u| is the total variation of u. Naturally, if X is compact,
Cx(X)=C,(X)=Cy(X)=C(X) and M(X)=M,(X)=M(X).

An operator V: Cg(X)—C(X) is called a real continuous kernel on X if it is
linear and continuous. If V is also positive, i.e., Vfe C*(X) for fe C¥(X), we
simply call it a continuous kernel on X.

For a real continuous kernel V, we denote by V* its transposed operator
M (X)—M(X), which is defined by
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S de*,u=SVfdﬂ for feCy(X) and peM(X).

In general, a continuous linear operator from Mg(X) into M(X) is called a real
diffusion kernel on X. Evidently, V* is a real diffusion kernel.

The identity operator I on Cg(X) is trivialy a continuous kernel. For the
sake of simplicity, its transposed kernel I* will be again denoted by I.

For a real continuous kernel ¥ on X, we put

D(V*)={ueM(X);SIVfldl,u|<oo for any fecK(X)}.

By the Banach-Steinhaus theorem, for each pue D(V*), Cx(X)3f— | Vfdu defines
a Radon measure, which is denoted by V*u. We write DO(V*)={ue D(V¥*);
fdlul < oo and [du=0} and D*(V*)=D(V*) n M *(X).

We denote by ¢, the Dirac measure at xe X. Let (V*¢,)* —(V*e,)~ be the
Jordan decomposition of V*¢,. Then for any fe CH(X),

gfd(V*ex)i = sup {+ Vg(x); g € Cx(X), 0=g <f},

and hence x— [ fd|V*¢,| is a lower semi-continuous function on X. For a Borel
function u on X and xeX, we put Vu(x)=[udV*e, and |V|u(x)= [ud|V*e,]|
provided that they make sense. By an argument similar to that in [13, p. 176],
we see that Vu and |V|u, when defined, are Borel measurable. Furthermore
we can easily show

REMARK 1. Let u be a Borel function and pe D(V¥*). If [|V||uld|ul <o,
then (Vudu=[udV*p.

Let V; and V), be two real continuous kernels. We define the product oper-
ator V,V, by V,V,f(x)=[V,fdV*e, provided that it makes sense for any fe
Cy(X) and any x € X.

A family (V,),>, of continuous kernels is called a resolvent if for any p>0,
q>0, V,V, defines a continuous kernel and V,—V,=(q—p)V,V,. A family (T),.,
of continuous kernels is called a continuous semi-group if for any t>0, s>0,
T, T, defines a continuous kernel, T,T,=T,,, and for each fe Cx(X), the mapping
[0, c0)3t—>T,fe C(X) is continuous, where T,=1. We say that (V,),>, (resp.
(T);> o) is markovian if for any p>0and any x € X, p [dV*e,=1 (resp. for any >0
and any xe X, [dT¥e, =1).

DEerFINITION 2. We say that a real continuous kernel ¥ on X satisfies the
semi-complete maximum principle with respect to m (€ M *(X)) (resp. V satisfies
the complete maximum principle) if for any fe CYX, m) (resp. for any fe Cx(X))
and a € R, Vf<a on supp (f*) implies Vf<a on X.
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Here R is the set of all real numbers, supp (g) is the support of g and f +(x)=
max {f(x), 0}.

LEMMA 3. Let V be a real continuous kernel on X and let me M *(X).

(a) If V satisfies the complete maximum principle, then V is positive,
that is, V is a continuous kerenl.

(b) If V satisfies the semi-complete maximum principle with respect to m,
then for fe CYX, m),

1Vf o < SUPzesuppcsy | V(X1

where || f || =Supyex | f(X)I.
(c) If there exists a markovian resolvent (V,),»o such that for any fe

C2X, m) (resp. for any fe Cx(X)), lim,_,o V,f=Vf in C(X), then V satisfies the
semi-complete maximum principle with respect to m (resp. V satisfies the complete
maximum principle).
(d) If there exists a markovian continuous semi-group (T,),~o such that
t
for any fe CYX, m) (resp. for any fe Cy(X)), lim,_.wg T, fds=Vf in C(X),
1]

then the same conclusion as above is obtained.

In fact, (a) and (b) are clear from the definition. It is known that, for a
markovian resolvent (V,),-o, each V, satisfies the complete maximum principle
(see, e.g., [2]). Let feCYx, m) (resp.feCg(X)) and aeR. If Vf<a on
supp (f*), then for any £> 0, there exists p,>0 such that V,f<a+¢ on supp (f*)
and so on X for any O<p<p,. Letting pl 0 and ¢ | 0 we have (c). For (d),

put VP=S: e P'T,dt (p>0). Then (V,),-, is a markovian resolvent. Since

W) = Vof ) = ) = o[ e ([ Tpcods Jar
0 0
= o emre) - (| Tpodsyae
0 0

and since lim,_, ., S‘ T,fds=Vfin C(X), for any compact set K in X and any £>0,

0
there exist T>0 and M >0 such that lgt T,f(x)dsl <M on K for any t>0 and

0
’St T, f(x)ds— Vf(x)‘ <eon K for any t=T. Therefore
0

V)=V, /()] < p gr e-PI2Mdt + p gw se~Ptdt
(1] T

on K. Letting p—0 and e—0, we see lim,_, V,f=Vf uniformly on K, so that
(c) gives (d).
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In the same manner as in [4, Remarque 5 and Proposition 11], we obtain the
following

PROPOSITION 4. Let V satisfy the semi-complete maximum principle with
respect to me M*(X) and let c=0. Then we have:

(a) For any feCYX, m) and aeR, (V+cI)f<a on supp(f*) implies
Vf<a on X.

(b) V*+cl satifies the semi-balayage principle relative to V*; that is, for

any pe M{(X) and any relatively compact open set ®#@ in X, there exist u, €
M¥(X) and a, , € R such that

(SB.1) fdu, = fdu,

(SB.2) supp (u,) = @,

(SB.3) (V*+cDpy, + a,, ,m =V*u in o,
(SB.4) (V*+cDu, + a;, ,m < V*u on X.

We say that u, (resp.a, ,) is a semi-balayaged measure (resp.a semi-
balayage constant) of u on w with respect to (V*+cl, V*).

A real continuous kernel Von X is said to be strong Feller if for any bounded
Borel function g on X with compact support, Vg(x)= [ gdV*e, is continuous.

REMARK 5. Let V, m and c be as in Proposition 4. Assume that V is strong
Feller. Then for any bounded Borel function g with compact support and
{ gdm=0, and for any aeR, (V+cDg=a on {x; g(x)>0} implies Vg<a on X.

In fact, if (V+cl)g<a on {x; g(x)>0}, Vg=<a on the same set. Since Vg is
continuous for any £>0 there exists a relatively compact open set @, such that
{x; g(x)>0}cw, and Vg<a+eon @, For xeX, let ¢,, and a) , be a semi-
balayaged measure and a semi-balayage constant of ¢, on w, with respect to (V*,
V*). Then we have

Vot = [gravee = (g e, +a. m)
= S Vgtde, , + a;,sgg*’dm < S(Vg‘+a+s)ds;,e + a;,ESg_dm

= Sg‘d(V*s;,8+a;,£m) +a+eg Vg (x)+a+e,

where g~ =g+ —g. Letting ¢ | 0, we see Vg(x)<a for all xe X.

DEFINITION 6 (see [16, Definition 1]). We say that a resolvent (V,),>, is
uniformly recurrent if there exist a family (u,),>o in C(X) and p,>0 satisfying
the following:

(@) u,>0on X for all p>0.

(b) lim,_qu,(x)=0 for all xe X.
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(¢) Forany fe Cy(X), (u,V,f),,>p>0 forms a normal family on any compact

set in X.
(d) For any x € X, there exists fe Cg(X) such that inf, . .o u,V,f(x)>0.
We also say that a continuous semi-group (T;),»o is uniformly recurrent

if its resolvent defined by V”=S e PTdt is uniformly recurrent.
0

§3. The resolvent associated with a real continuous kernel

The purpose of this section is to show the following theorems, which generalize
the result in [17].

THEOREM 7. Let m be a positive Radon measure on X whose support is
equal to X and let V be a real continuous kernel which satisfies the semi-complete
maximum principle with respect to m. We assume:

(A) There exists a constant cy, such that for ue MYX) and aeR,
V*uzam implies a<cy [d|u|.

B) If (V*+cDu=am for pe D°(V*), c>0 and aeR, then p=0 and a=0.

(C) For any feCHX) with f#0, lim,_,; Vf(x)=—o0, where 0 is the
Alexandrov point of X.

Then there exists a markovian resolvent (V,),-o which has the following
properties:

(1) For any xe X and any p>0, V*e,=V}e +pV*Vye, +a, ,m with some
constant a, ,. In particular, '

Vf=V,f+ pV,Vf forany feCX,m).

(2) (V,)p>o is uniformly recurrent.
(3) For any p>0, me D(V}) and pVym=m. Furthermore if pe D*(V})
and pV¥u=<pu, then p=cm with some constant ¢ 20.

By the condition (B), a markovian resolvent (V,),, satisfying (1) is uniquely
determined. We call it the resolvent associated with V.

THEOREM 8. Let Vand m be as in Theorem 7 and let (V,),> o be the resolvent
associated with V. Assume further that

(D) for any fe CYX, m), Vfe C(X).

Then for fe CY(X, m), we have:

€)) Idem=oo, lim, o V,f=Vf uniformly on X.
2 Ifgdm<oo, the above equality holds if and only ifS Vfdm=0.
(3) If X is compact, lim, o V,f= Vf—(Sdm)'1 gidm uniformly on X.
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REMARK 9. If Vis strong Feller then the condition (B) is satisfied.

In fact, let ¢>0. Remark 5 and the proof of [11, theorem 5.1] show that for
any fe Cx(X), there exist a sequence (g,),; of bounded Borel functions with
compact support and [ g,dm=0 and a sequence (a,)>-, of constants such that
f=lim,_, , (V+cI)g,+a,) uniformly on X. Thus if (V*+cI)u=am with | du=0,
then

[ sau = tim,..o, 7+ g+ )
= lim,_, Sg,,d(V*+cI)y =lim,_,,a Sg,,dm =0,

which implies 4=0 and hence a=0.

REMARK 10. If X is compact, then the conditions (A) and (B) are always
satisfied.

In fact, putting ¢, =||V1||,, wehavea=<{1dV*u=<c, [ dlu|, and hence (A) is
satisfied. As for (B), in the same manner as in [12, Lemma 3.1] (considering
the space C(X, m) in place of N(m) there) we see that for any fe C(X), there
exist g e CYX, m) and a € R such that f=(V+cl)g+a on X. Then, we obtain
(B) as in Remark 9.

ExaMPLE 11. Let R" be the n-dimensional Euclidean space and let £, be
the Lebesgue measure on R" (n=1,2). The real continuous kernels G, ,, G,
and P defined by

Graf () = = F(Ix =yl +alx = DIWIE), fe CLRY) 0Sa<),
Gof () = — {loglx—31f (), fe CulRY,

Pf(x) = — {loglx—)1£(x)d&,(»), fe C(RY),

satisfy the semi-complete maximum principle with respect to the Lebesgue measure
(see, e.g., [4] and [11]). Furthermore, they all satisfy the conditions (A), (B)
and (C). In fact, for (A), see [5, Théoreme 52'] (acturally we may take ¢, =0).
Since they are all strong Feller, Remark 9 gives (B). (C) is clear. For another
examples, which are not convolution kernels, see [10] and the section 5 of this
paper.

To prove Theorem 7, we prepare the following

LEMMA 12. Let V be a real continuous kernel satisfying the semi-complete
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maximum principle with respect to me M*(X). Suppose that the condition (C)
in Theorem 7 is fulfiled. If p,eD*(V*), [dp,<1 (n=1, 2,...), p, and V*yu,
converge vaguely to u and v respectively as n— oo, then

(@) peD*(V),

(b) lim,.., | du,={dp,

(c) v=V*u+am for some constant a<0.

Proor. Let K be any compact set in X with non-empty interior and let
f,€ C(X) with supp(f,)cK and [f,dm=1. Since supp ((Vf,)*) is compact
(by (C))

—o0 < { fudv = tim, ., ( Vi, = (Whdu = (01" ds < 0

and hence | |Vf,|dp<oco. By the continuity of ¥, there exists a constant x>0 such
that max, g |Vf(x)| Sckl fll» for any fe Cx(X) with supp (f)=cK. We put a,=
{fdm. Then

Vf=V(apf)l = ex(llf o +lasl 1 foll ) on K.

Since supp(f—a,;f,)=K and f—a,f,e CYX, m), the semi-complete maximum
principle implies that the above inequality holds on X, and hence

[1771du <m0 (1¥7ddu+ et exmE 11 1S 1o

because [du<1 and |a;|<m(K)| f|,. Consequently we have (a).
Evidently, liminf,, , {du,> [ du. Let f,e Ci(X) with f,#0. Since (Vf,)* e
Cx(X) by (O),

f=dun = (10 dus = (Vi — (00 du = [fidv < 0 (100).

Hence there is M 20 such that | (Vf,)~du,<M for all n. On the other hand, by
(O), for any ¢<0 there is a compact set K, such that (Vf,))~(x)>1/¢ for x e CK,.
Thus,

Sd“n é BS (Wo)—(x)d"‘n + S dﬂn é eM + S d,u,, — eM + S d[l
CK: K. K. Ke
(n—0).

Since ¢ is arbitrary, it follows that lim sup,_, , | du, < [ du, which shows (b).
An argument as in the proof of (a) leads to v=<V*u. Since for any
fe CYX, m), Vfe Cy(X) (see Lemma 3 (b)), (b) shows

g fdv = lim, ., SVfdu,, - SVfdy - S fav*u.
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It follows from these facts that v=V*u+am with some a<0. This completes
the proof.

Using the above lemma, we shall show the following, which is called the semi-
balayability in the case when Vis a convolution kernel (cf. [7]).

PROPOSITION 13. Let V and m be as in Theorem 7 and let ¢=0. Then for
any ue M3(X) and any open set 0#@ in X, there exist u,e D*(V*) and a, ,€R
satisfying (SB.1), (SB.2), (SB.3) and (SB.4) in Proposition 4. p, and a, , are
called a semi-balayaged measure and a semi-balayage constant of u on w with
respect to (V*+cl, V*). Furthermore, a,, ,<2cy [du with cy given in condition

(A).

PROOF. We may assume that [du=1. If o is relatively compact, the as-
sertion has already been shown in Proposition 4. Hence we may assume that X
is non-compact and ® is not relatively compact. Let (w,)2; be an exhausition
of w, that is, a sequence of relatively compact open sets in X satisfying @,c @, ,
(n=1) and UX, w,=w. By Proposition 4 there exist u, e Mi(X) and a,eR
such that (du,=1, supp (u,)<@,, V*u=(V*+chu,+a,m in o, and V*ux
(V*+cDu,+a,m on X. Since (u,)>, is vaguely bounded, we may assume
that lim,_, . u, exists in M *(X), which is denoted by u,. Then supp (u,)< @.
Since V*(u—p,)=a,m and u—pu, e MYX), condition (A) gives a,<2c, for all
nz1. LetfeCiX) with [fdm=1 and supp (f)cw,. Then

ay = (v — {0+ enfau, 2 fran - {@n* + .

Since (Vf)* e Ci(X), (a,)%, is bounded below, so that it is bounded. Hence we
may assume that a, converges to a, (Z2c¢y,) and V*u, converges vaguely as
n—oo. ByLemma 12, we see that [ du,=1=[du and lim,_, , V*u,=V*u,+am
with some a<0. Putting a, ,=a+a,, we obtain that V*u=(V*+clu,+a, ,m
in o and V*u2(V*+chy,+a,, ,m on X. Since a,<2c, and a<0, we have
a),,<2cy=2cy [ dp. Thus Proposition 13 is shown.

ReMARK 14. If o=X, and ¢>0, then the condition (B) shows that p,, and
a, . are uniquely determined.

We shall turn to the proof of Theorem 7. From now on, let ¥V and m be
the same as in Theorem 7. We devote ourselves to the case that X is
non-compact; the case X is compact is similar and simpler (note Remark 10).

Let p>0 be fixed. We can define a linear operator ¥, on Cg(X) by

V.f(x) = % S fde,,, xeX,
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where ¢ , is the semi-balayaged measure of ¢, on X with respect to (V*+p~!I,
V*). We may write Ve, =p~le, ,. Then p[dV*e,=1 and (pV*+ID)V3ie +
a, ,m=V*e, with some constant a, ,<2cy,. Thus, we have

LemMA 15.  (V,),>o possesses property (1) in Theorem 7.
Furthermore we have
LEMMA 16. The mapping V, is a continuous kernel on X.

ProoF. Clearly V), is positive. Hence it is sufficient to show that V,fe C(X)
for any fe Cx(X). It is then sufficient to see that for any (x,)2%,<X with
lim,,  x,=x€X,

1 * —_ *
lim,, ., Vye, = Vye, vaguely.

We have V*e, =(pV*+DV3}e, +a,m with constants a,<2c,. Let fe Ci(X)
with [ fdm=1. Then

@y = V) - p (VidVse,, — (favse,,
2 VG = (109 1o+ 1S ),

so that the relative compactness of (x,);%, implies tkat (a,)2 is bounded. Let A
be any vague accumulation point of (V}e, );=;. There is a subsequence of (x,),
which is again denoted by (x,), such that Ve, —2 vaguely. We may assume that
a,, and hence V*Vye, , converges as n—o. By Lemma 12, we see that de
D*(V*), pfdi=1 and V*e,=(pV*+I)A+a’'m with some constant a’. On the
other hand, since V*e,=(pV*+I)V}e . +a,m, condition (B) gives A=Vje,.
Since A is an arbitrary vague accumulation point, we conclude that lim,_, , Ve, =
Ve, vaguely. Thus Lemma 16 is shown.

LemmA 17. (1) If we write V*e,=V}e, +pV*Vie,+a,m, then x—a, is
lower semi-continuous and bounded above.

(2) If ueD*(V*), then [du<oco, e D*(V¥) and V¥pe D*(V*). Further-
more, pV¥u and [a,du(x) are a semi-balayaged measure and a semi-balayage
constant of p on X with respect to (V*+p~1, V¥*).

Proor. (1): By Proposition 13, a,<2¢, for any xeX. Let feCi(X)
with {fdm=1. Then a,=Vf(x)—V,f(x)—pV,Vf(x). Since V, is a continuous
kernel and supp ((Vf)*) is compact, V,Vf is upper semi-continuous so that x—a,
is lower semi-continuous.

(2): Let ue D*(V*) and let fe C{(X) with f#0. By definition | |Vf|du< oo
and hence condition (C) gives fdu<oo. Since p [dV¥e,=1 for any xeX, we
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see My (X)c D(V¥) so that e D*(V}). Next we take a sequence (u,)7%; = M(X)
which converges increasingly to y. Then —oo<{a,du,(x)<2c¢,{du<oo for all
n21and hence we see V*u, e D*(V*)and V*u,=V¥u,+pV*Vip,+(§ adu(x))m.
Since

p | W71dV 3 = sup,z. p \IWr1aV3a,
= sup,s (= p{ Vsavim+ 20\ v 30,)
< (11w + {0+ 1200 1di +  fam 26, (du < oo,
we see Viue D*(V*) and lim,_, ,, pV*V 5, =pV*V¥u vaguely. This also implies

lim,_, { a,dp(x)=Ja,du(x)>—oo. Thus we have V*u=V u+pV*Viu+
(j a,du(x))m, which shows (2).

To see that (V,),> is a resolvent, we shall show the following
LemMma 18. For any p>0, g>0 and pe M¥(X), we have
Vin—Viu=(q—pV3iViun (the resolvent equation).

PrOOF. Let a, and aj be the semi-balayage constants of u on X with respect
to (V*+p~', V*) and to (V*+q~ I, V*), respectively. Then

(V*+ I>(V u—viu)

~(v++L NVin - (L- ) —<V*+%I>V}‘ﬂ
_L(V* —a\m) — 1 _T\p» Ly '
p VTH=am) = (=g )Veu= g (V*u—am)

_<p “>(V*“ V“)+<q pa;’>m'

We also denote by a,, , the semi-balayage constant of g~V u on X with respect
to (V*+q~ ', V*) (cf. Lemma 17). Then

<V*+ I>(V*V u)—~V*V*u a, m

1
= —ﬁ( V*u—Viu) — (——a +ap, q>m

and hence
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(r*+L0)vau-viu-@-priviw

= {111 ~—a +(q—p) (——a +a, )}m
Since [ d(Viu—Viu—(a—p)VEVi)=(1/p—1/g—(q—p)Ipq) [du=0, we obtain
the desired equality by condition (B). This completes the proof.

LeEMMA 19. Let (u,)2;<M*(X) with lim,.,, [du,=0 and let (p,)2; <R
with p,>0 and lim,_, ., p,=0. If V} u, converges vaguely as n—oo, then the
vague limit is of the form cm with some ¢=0.

Proor. Let A=lim,_,, V3 u,. For any fe CR(X, m), since Vfe Cy(X) and
Voo f=Vf—paV,, VS, we have

S fdA = lim, ., S faVE p, = lim, ., SV,," fdu,

= lim, ... 2, (V)= p. [WfaV 3,00 )au(0=0,
which implies that A=cm with some ¢=0.

LeMMA 20. The family (V,),>o is a uniformly recurrent markovian
resolvent.

ProoF. By Lemmas 16 and 18, we see that (V,), is a resolvent. Clearly
it is markovian. To see the uniform recurrence, we first show that for any p>0
and any xe X, supp(V3}e,)=X. Let x be fixed. By the resolvent equation,
we see that supp (V7e,) is independent of p>0. Since (qV}e,),>o is vaguely
bounded, there exist (¢,)%>; <R and 1e M*(X) with {dA<1 such that g,>0,
lim,., q,=0and lim,_, , q,V¥ e,=4 vaguely. By Lemma 19, we see A=cm with
some ¢=0. Therefore if 1#£0 we see supp (V}e,)=supp(4)=X so that supp-
(V¥e,)=X. In case that A=0, we put supp (V}¢,)=X, and suppose that X,# X.
Let f,e Cx(X) with supp (f,)=X\X, and [f,dm=1. Then for any fe C{(X),
V(f—a,f,)e C,(X) shows that (g, fV(f—a,f,)dV*e)>, is bounded, where
a;=[fdm. By Lemma 15,

Vof ) = Volf=af) (%) = V(f~a, ) () = 4, \ V(= f)dV 3.

so that (V, f(x));%, is also bounded. Hence the equality

V() — V, f(x) = g, SVde*"a +ala,

with a,<2c, implies that (q,,ijdV &), is bounded below. On the other
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hand, since lim,,,, 4,V ¥ &,=0 vaguely and g,[dV* e =1,

fim, ., q,,SVde:"sx - -

(see the proof of Lemma 12 (b)). This contradiction shows that supp (V3e,)
=X for any p>0 also in case 1=0.

Now let f; e CX(X) with [fidm=1. We see that V,f1>0 on X for any
p>0 and V,f,(x) increases as p | 0 for any xe X (by the resolvent equation).
Remark that lim,., V,fi(x)=00 for all xeX. In fact, if lim,., V,f,(x)<o0
for some xeX, then the equality Vf,(x)—V,fi(x)=p | Vf,dV¥e, +al , with
ay ,<2cy, implies (pj Vf1dV3e,),>0 is bounded below and hence by the same
" manner as above we have a contradiction. For any p>0, we put

1
X = G -

We shall show that (u,),>, is a family defining the uniform recurrence of (V,),>o.
It is clear that (u,), ¢ satisfies conditions (a), (b) and (d) in Definition 6. Further-
more the Dini theorem shows lim, o u,=0 in C(X). Let geC{(X). For any
sequence (u,,V,.9)s=1 in (U,V,9)12p>0, if (P.)s=1 has a subsequence (g;)%-, with
lim;_, q;=p,#0, then by the Dini theorem lim;.,u,V, g=u,V, g in C(X).
Hence to verify condotion (c) in Definition 6 it is sufficient to show that for any
g € CH(X) with f[gdm=1, any compact set K in X and any &> 0, there exists r,>0
such that

lu,Vg—uVgl <e on K

for any 0<p, g<r,. Put hy=f, —geCYX, m). Then |Vh,, <o and

[u (X)V,g(x) —u(x)V,g(x)| = Vg (;Z;I(pr)f (%) _ ng(JIC/);(Vq)fI(X)

qJ1\X
S up(x)[Vphg(0) + ug(x) |[Vhy ()]

Lemma 15 gives ||V, h,ll, =2|Vh,|,. Hence we may assume that ||Vhl,#0.
By the fact that lim,_,u,=0 in C(X), there exists r,>0 such that for any 0<
p<r, u,<e/4|Vh,|, on K. Then |uprg—quqg|<é on K for any O<p, g<r,.
Thus (u,V,9)5,>0 forms a normal family on K. This completes the proof of
Lemma 20.

LemMA 21. For each p>0, {pe D*(V}); pVinsu}={cm; c20}.

Proor. Put S(pV¥)={ueD*(V}¥); pViu=su}. By [16, Proposition 5]
S(pVy)={ueD*(V}); pVyu=u}, and by [16, Cororally 13 and Lemma 22],
we see that S(pV}) is one-dimensional. Hence, to complete the proof, it is
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sufficient to show that me S(pV}). Let f; and (u,),>, be as in the proof of
Lemma 20. Since (u,(x)V}e,)15,>0 is vaguely bounded (by (c) in Definition 6)
and u,(x)| fidVie,=[fidm=1 (g>0), Lemma 19 implies lim,_, u(x)V*e,=m.
Letting q | O in the equation

uq(x)V;‘Sx - uq(x)Vzex = (p_q)V:(uq(x)stx) )
we obtain me D*(V}) and mzpV3im. Thus Lemma 21 is shown.

By Lemmas 15, 16, 20 and 21, we have Theorem 7.
We now give the proof of Theorem 8.

ProoF or THEOREM 8. Let (x,)X; =X and (p,)X,<R with lim,. p,=0
(p,>0). Since (p,V} e, )=, is vaguely bounded, Lemma 19 shows that its
any vaguely accumulation point is cm with some ¢>0. It is clear that if [dm= o0
then ¢=0 and if X is compact then c=1/[dm. The equality Vf(x,)— Vo f(xn)=
[vfd(p,V}.e,,) and the fact Vfe C,(X) show (1), (3) and the “if”’ part of (2).
On the other hand, the equality pV}im=m (p<O0) implies the “only if”’ part of
(2). This completes the proof.

§4. The continuous semi-group associated with a real continuous kernel

We shall show the following

THEOREM 22. Let V be a real continuous kernel on X and let m be a positive
Radon measure on X whose support is equal to X. Suppose that V satisfies the
semi-complete maximum principle with respect to m and conditions (A), (B),
(C) and (D) in Theorems 7 and 8. We further assume:

(By) For any ueD°(V*) and aeR, V*u=am implies u=0 and a=0.

(Do) If [dm<oo, then [Vfdm=0 for any fe CYX, m).

Then there exists a uniquely determined uniformly recurrent markovian
continuous semi-group (T,), o such that for any fe CYX, m) and t>0,

e = | Tfods + TR (xeX).
We call the above (7)), the continuous semi-group associated with V'

REMARK 23. In the case that X is compact, D. Revuz [14, p. 258] discussed
similar results under the assumption that V satisfies the semi-complete maximum
principle with respect to m, V is a compact operator on CYX, m) into itself and

(By) the image V[CXX, m)] is dense in CYX, m).

It is easily seen that (By) implies (B,).
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Before the proof of Theorem 22, we recall a characterization of Hunt kernels.
A continuous kernel V on X is called a Hunt kernel if there exists a continuous

semi-group (T,),> o such that Cig(X)2 f—»&w T,fdt defines a continuous kernel and
) 0

and Vf=g T,fdt. Remark that (T;),», is uniquely determined. It is known
(4]

([4, Proposition 1]) that V is a Hunt kernel if and only if V possesses a resolvent
(i.e., there exists a resolvent (V,),., such that for any fe Cy(X), lim,_, V,f=Vf
in C(X)) and V is non-degenerate (i.e., for any x, ye X with x#y, V¥*e, is not
proportional to V*g).

LEMMA 24. Let Vand m be as in Theorme 22 and let (V,),> o be the resolvent
associated with V. Then there exists a uniquely determined markovian con-
tinuous semi-group (T,),» o such that for any p>0 and any fe Cx(X)

V,f= Sw eI T, f.
0

PrOOF. By Lemma 18, V, possesses the resolvent (V,.,),>0. On the other
hand, the equality V*e,=V}e, +pV*Vye, +a,m and condition (B,) implies that
V, is non-degenerate. Therefore V, is a Hunt kernel such that there exists a
continuous semi-group (7,,),>o such that V, f=§ T,.fdt (fe Cx(X)). By the

0

unicity of (T,,),>o and the fact that (V,),., is a markovian resolvent, we see
that there exists a uniquely determined markovian continuous semi-group (T}), o
such that T, ,=e™?'T, (t>0). This completes the proof.

REMARK 25. If V further satisfies

(A,) there exists a constant c, such that for any pe D%(V*) and aeR,
V*u=am implies a<cy [ dlul,
then each V, is a weakly regular Hunt kernel on X in the sense given in [2]
(see [17, Lemme 18] for a proof).

PROOF oF THEOREM 22. By Theorem 8 and condition (Dy), lim,_, V,f=Vf
uniformly on X for any fe C2(X, m). For the continuous semi-group (T}),,
given in Lemma 24, we see easily that

TV,f = entV, f — evt SO P T, fds

for any t>0, p>0and fe C(X). Letting fe CAX, m)and p | 0, we immediately
obtain the desired equality. The uniform recurrence follows from the definition.
This completes the proof.

It is well-known (see, e.g., [10]) that the continuous semi-groups associated
with the real continuous kernels G,, G,, and P in Example 11 are the
1-dimensional Gauss semi-group ((4nt)~1/2exp(—(x—y)?/40)dE()));>0, the
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2-dimensional Gauss semi-group ((4nt)~'exp(—|x—y|?/4)d&,(¥)),>0 and the
1-dimensional Poisson semi-group (t/(t*+(x— y)?)d&,(¥))>0, respectively.
These kernels satisfy

W =5 T (V) () (xeX)
and
Vo = | T (xex),

for any fe C¥X, m). Unfortunately in our general case, an additional assumption
is needed to show the above equalities.
We begin with the following preparation.

LEMMA 26. Let (T,),», be the semi-group given in Theorem 22. Then,
neDH(T*) and TFu=u for all t>0 if and only if u=cm with some constant
¢=20. Furthermore T¥m=m for a.e.t>0.

Proor. The “only if”’ part follows from Lemma 21. Let fe Ci(X). Then
Sfdm = Sde;‘m = Sw ot (ST:“fdm)dt
0

and hence from the injectivity of the Laplace transform it follows that T¥m=m
for a.e. t>0. Since (0, 00)3 t— [ fdT¥m is lower semi-continuous, we see TFm<
m for all t>0. Thus Lemma 26 is shown.

We now denote by L?(m) (1<p=<o0) the usual real LP-space on X with
respect to m and by || - ||, its norm. For measurable functions u and v, put (u, v),,
= fuvdm provided that the right hand side makes sense.

Let T be a continuous kernel on X such that [dT*e, <1 for any xe X and
let me D*(T*) and T*m=<m. Then for fe Cy(X)

S(Tf)zdm - S(S de*s,)zdm(x) < S(dT*sx) (S fsz*ex>dm(x) < S f2dm.

This implies that Tfe L?(m) for any fe Cx(X) and T can be extended to a positive
contraction operator on L%(m). We denote by T its extension and by T* the
adjoint operator of T. Clearly, T* is positive and contractive. Furthermore
we see easily

LemMA 27. (a) Ifue L2(m), (T*u)dm=dT*(um) as Radon measures on X.

(b) If T is symmetric, that is, (g, Tf),=(Ty, f). for any f, ge Cx(X),
then T="T*.

(¢) Let (T),~o be a markovian continuous semi-group on X with me
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D*(T¥) and Tfm=<m for all t>0. Then fort, s>0
Tth = Tt+s and T::T: = Tr+s'

(d) Let (V,)p>0 be a markovian resolvent on X with meD*(V}) and
pVim=m for all p>0. Then for p, q>0

~

V,-V,=@q-pV,V, and V¥ —V*=(q—p)V*V*%,

where V= %(pr) and 17;',‘=—;; (7 )*.

Given T as above, consider the subset of L2(m) on which all powers of both
operators T and T* act as isometries:

I(T) = {ue L2(m); llull,= | T"ul = | T*"u|, for all n21}.
The following is an essential tool in our argument.

LemMA 28 (see [1, pp. 85-88]). (a) If ueI(T), then |u|leI(T).
(b) I(T) is an invariant subspace of T and T*, and furthermore

I(T) = {ue LX(m); u=TrT*u=T*"Tru for all n21}.

(c) For ve L*(m), any weak accumulation point of (Tmv)2, or (T*")>,
belongs to I(T).

(d) IfvLKT)(i.e., for any uel(T), (u, v),,=0), then
lim,., T = lim,, T*"v =0 weakly in L*m).

Lemma 29. Let (T);>o and (V,),>0 be as in Lemma 27 (c) and (d),
respectively. Then:
(a) For any s>0,

I(Ty) = {ue L¥(m); |lull,=|Tul,=Ttul, for all t>0}
={ueLl*m); u=T,T*u=T*Tu for all t>0}.
(b) For any p>0, if ueI(pV,), then u=pV u=pV*u.
ProoF. Letuel(T,). For given t>0, we choose n such that t<ns. Then
Nl = 1 Toully = 1 Toguelly = 1 Tosme Tortlls S 1 Toull2 < Jull,

and hence | T,u|| = |u|l,. Similarly || T*u|,=|ull,. Conversely if |u|,=|Tul,
=| T*u|, for all t>0, then taking t=ns we see ucI(T,). The second equality
is an easy consequence of the Schwartz inequality (see [1, p. 85]).

Next, let uel(pV,) and let g>p. By Lemma 27 (d) and Lemma 28 (b),
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u=pV pVru=pV pViu+plq—p)V,V,pV*u. Thus
lull, < IpVpViull, + (@—p) Vul, < pl P ull, + (a—p)I Vull; < lull,,

which implies gV u=qV pV*u=u. Since pV,uel(pV,) (by Lemma 28 (b)),
we also see gV u=qV (pV¥pV u)=(qV pV%)pV,u=pV,u. Hence u=pV,u.
Similarly u=p¥7*u. This completes the proof.

We say that a real continuous kernel ¥ on X is absolutely continuous with
respect to m if V*¢, is absolutely continuous with respect to m for any x € X.

LeMMA 30. Let Vand m be as in Theorem 22 and let (V),),> be the resolvent
associated with V. Then

(a) for any p>0and xe X, V}e, is not singular with respect to m,

(b) if V is absolutely continuous with respect to m then so is V, for any
p>0.

Assertion (a) is shown in the same manner as in [6, Théoréme 1.8], so we
omit the proof (we do not use this fact later). Assertion (b) follows directly
from the equality V*e,=Vy}e +pV*Vye, +a,m (x e X).

THEOREM 31. Let V and m be as in Theorem 22 and let (V,),>, be the
resolvent associated with V. Let p>0 be fixed. Then for any fe CYX, m),
we have

1 @ = T2t PV, D

for any ge C(X). Furthermore if V is absolutely continuous with respect to
m, then

W) =5 20V (xeX).

For the proof, we first show the following

LEMMA 32. For any p>0, I(pV,)={0} if [dm=c0 and I(pV,)={const.} if
fdm<co. In particular, for any fe CR(X, m) and any >0 lim,_, , (pV,)"V,f=
lim,_, ,(pV,)"f=0 weakly in L*(m).

Proor. Let uel(pV,). By Lemma 28 (a), we may assume that u>0.
By Lemma 29 (b) and Lemma 27 (a), the positive Radon measure um satisfies
pVi(um)=um and hence Lemma 21 tells us u=const.. Since ue L¥m), u=0
if [dm=oc0. Hence the second assertion follows from Lemma 28 (d) if [ dm = co.
If {dm<oo, Lemma 28 (c) and the facts that | (pV, )"V, fdm= | fd(pV )"V ¥)m =
g [fdm=0 and f(pr)" fdm =0 together imply the second assertion.
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PROOF OF THEOREM 31.  Let fe C(X,m). The equality Vf=V,f+pV,Vf
implies

V= T (VS + VN

for all N>1. Hence it is sufficient to show that limy_, .((pV,)*Vf, 9),,=0 for any
g€ Cx(X). Since lim,_oV,f=Vf uniformly on X and pV,1=1, we have

limq—*O limN*w ((PVp)Nqu’ g)m = limN—'oo ((pr)NVfa g)m .

By Lemma 32 we see the left hand side is equal to O and hence limy._
((PV VS, 9)m=0.
For the second assertion, we first remark that for any g >0, V, is absolutely

continuous with respect to m (Lemma 30). Let xe X. By the same reason as
above, it is sufficient to show that

limy_, ,, (pV )NV, f(x) =0 forany gq >0.

There exists u, € L'(m) such that Vie,=u, . dm. Since [(pV)¥fllow=If1lo»
Lemma 32 shows limy_, [(pV,)" f)u, .dm=0. Since ( PVINV, f(x)=V (pV, )" -
f(x), we obtain therefore that limy_, ,, (pV,)¥V,f(x)=0. This completes the proof.

THEOREM 33. Let Vand m be as in Theorem 22 and (T,), o be the continuous
semi-group associated with V. Suppose that for any t>0, T, is symmetric.
Then for any fe CYX, m) we have

7, 9 = | (T.f, 9)uds

for any g e C((X). Furthermore if V is absolutely continuous with respect to m,
then

W = | Tf@ds (xeX).

Proor. In Theorem 22, we have already shown that Vf(x)=St T, f(x)ds+
0

T,Vf(x) (xe X) for any t>0. Hence it is sufficient to show that lim,_, . (T,Vf, 9),,
=0 for any g € Cx(X). Assume, to the contrary, that there exist g € Cx(X) and
a sequence (t,)5=; with lim,_, ., t,=00 such that lim,_, , (T, Vf, 9),#0. We may
assume that there exists >0 such that (T, Vf, g),,>¢ for alln=1. For t<t’

TV, Du= (T VS, gl < | [TV, @alds < (=D 1V, 19D

This implies that the function (0, o) 3 t—(T,Vf, g),, is uniformly continuous and
hence there exists t,>0 such that TF m=m and
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lim sup, . , (T;nana 9 > /2.

Since limq_.o wf=Vf uniformly on X, there exists gq,>0 such that limsup,_,
(T,:,Vafs 9m>¢/4.  On the other hand, by the condition that each T, is symmetric
and by Lemma 29 (a), we see

I(T,) = {ue L*(m); T¥u=u for any t>0}.

Then, it follows from Lemma 26 that I(T,)={0} if [dm=oc0 and I(T,)=
{const }if {dm<oo. Sointhe same manner as in Lemma 32, we have 11m,,_>°0
(T, Vo fs 9)m=0, which is a contradiction.

The second assertion can be shown in the same manner as the corresponding
part of Theorem 31. This completes the proof.

REMARK 34. In the case that T, t>0, are all absolutely continuous with
respect to m, the assumption that T,, t>0, are symmetric can be removed in the
above theorem.

In fact, in the above proof, we used the symmetrictiy only to show that
I(T)={0} if [dm=oc0 and I(T,)={const.} if {[dm<oo for t>0. However if T,
is absolutely continuous with respect to m, [1, p. 52, Theorem A] shows that there
exists an m x m-measurable function p,(x, y) on X x X such that for any fe Ci(X)

TS = (px, DFD)my) m - ae. xeX.

Since (T)),» o is uniformly recurrent, we may consider that T, is a Harris proccess
(see [1, p. 58]) and hence I,={A4; y, € I(T,)} is atomic (see [1, p. 58, Theorem D
and p. 87, Theorem B]), where y, is the characteristic function of 4. Let A be an
atom in I,. Then the argument in [1. p. 90] shows that either T?y,, n=0, 1,...,
are all distinct, or there exists an integer k=1 with T**y,=T%y,=y,. But the
Hopt maximal ergodic lemma [1, p. 11, (2.1)] shows that the first case does not
occur. Remarking that I(T;), and hence I,, is independent of >0, we see that
for t, t'>0 with ¢/t irrational, there exist n, m=1 such that T*y,=T* .y =y,
This implies that {se[0, o0); T*(x,m)=yx,m} is dense in [0, c0). Since s—
| T.fdy,m (feCi(X)) is lower semi-continuous, T¥(y,m)<y,m for every s=0.
By Lemma 26, we see I,={g} if [dm=o0 and I,={X} if [dm<oo. Since I,
generates I(T) ([1, p.87, Theorem B]), we have I(T,)={0} if {dm=oc0 and I(T))=
{const.} if fdm< co.

§5. Neumann kernels as our examples

In this section we shall discuss the Neumann kernel as an example of a
continuous kernel satisfying the semi-complete maximum principle (cf. [10,
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Example 5]). We consider the same setting as in S. It6’s paper [9]. Let D be
a relatively compact subdomain of n-dimensional orientable C®-manifold whose
boundary S=D—D consists of a finite number of (n—1)-dimensional simple
hypersurfaces of class C2. Let A be an elliptic differential operator of the form:

6u(x)

Au(x) = \/a ) 6x' <\/ a(x) (a‘l(x) - b‘(x)u(x))>

for u e C¥(D), where [a*/(x)|| and |bi(x)| (1=i, j<n) are contravariant tensors
of class C2 on D, |aii(x)| is symmetric and strictry positive definite and
a(x)=det [a;i(x)|[=det [[a'i(x)|~*. We denote by dx and dS, respectively
the volume element in D and the hypersurface element on S with respect to the

Riemannian metric defined by |a;{(x)|. We also denote by aTu’(IQ and B(&) re-

spectively the outer normal derivative of u(x) and the outer normal component
of the vector || b¥(x)| at the point £€ S. The adjoint differential operator A* of A
is defined as follows:

A*u(x) = \/a(x) v <\/a(x)au(x) u(x)>+b( )51’;§:f)

for ue C¥(D). Let U(t, x, y) be the fundamental solution (for definition, see
[8]) of the initial-boundary value problem of the parabolic equation:

%’: = Au + f (t>0, xe D), ul,—o = u, and. a—-—-ﬁu =y (t>0,x€S).

Then U(T, x, y) is also the fundamental solution of the adjoint initial-boundary
value problem:

g“ A*u + f (t>0, xe D), ul,—g = u, and a——w (t>0, xe S).

The family of continuous kernels (U,),», on X =D defined by
US©) = UG, % »)fdx, fecx)

is a markovian continuous semi-group. In [9], it is shown that there exists a
function w(x)>0 on X satisfying

Sw(y)U(t, ¥y, x)dy = o(x) and Sw(x)dx =1
and that

Ko, %) = {7 U, y, 9@t
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is well-difined whenever x, y € X and x # y, and is a kernel function of the boundary
value problem (Neumann problem)

Au) =f(v) in D and 24O _ g =y on s
4

and also the adjoint problem

A*u(x) = f(x) in D and "5‘(5) ~ W& on S.
ng

The real continuous kernel K on X defined by
Kf() = (K, 0y, fecx)

satisfies the semi-complete maximum principle with respect to w(x)dx. In fact,
for any fe CUX, wdx),

lim,-, || Uuf s = lim, .., || (UG, x, 3) = 0(x)f (x)dxds = K1)

and the convergence is uniform on X (see [9, Theorem 2 and p. 27, (3.10)]), and
hence Remark 3 (d) shows our assertion. We also see that (U,),., is uniformly

recurrent.
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