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About forty years ago the theory of algebraic Lie algebras of endomorphisms
of a finite-dimensional vector space had been developed mainly by C. Chevalley
in his works [2, 3, 4, 5] and the theory of splittable Lie algebras of endomorphisms
of a finite-dimensional vector space had been developed by the present author in
his paper [13]. On the other hand, recently the classical structure theorems
of finite-dimensional Lie algebras were extended to a certain kind of locally
finite Lie algebras by I. Stewart in his works [1, 11, 12].

In this paper, in connexion with the extended structure theorems we shall
generalize the theories of algebraic and splittable Lie algebras to a kind of locally
finite Lie algebras of endomorphisms of a not necessarily finite-dimensional vector
space.

Let V' be a not necessarily finite-dimensional vector space over an algebraically
closed field f of characteristic 0. For an algebraic endomorphism f of ¥ we con-
sider the Chevalley-Jordan decomposition f=f;+f, and the rational decomposition
fi=2 &, fs where {£,} is a basis of  over the prime field. For a Lie algebra L
of endomorphisms of V of finite rank we call L splittable (resp. algebraic) if with
any element f of L f; (resp. each f;,) belongs to L. We shall observe the splittable
hull L and the algebraic hull L of L and show that L2=[2=[2 (Theorem 4.6).
By making use of a known result on Lie algebras consisting of nilpotent
endomorphisms of a finite-dimensional vector space, we shall show that L is split-
table (resp. algebraic) if and only if L has a splittable (resp. an algebraic) system
of generators (Theorem 6.4). We shall also show that L2 is always algebraic
(Theorem 6.7). Finally we shall generalize several known structure theorems of
splittable (resp. algebraic) Lie algebras in [3, 7, 13] to ideally finite splittable
(resp. algebraic) Lie algebras of endomorphisms of ¥ (Theorems 7.2, 7.9 and 7.10).

§1. Preliminaries

Let L be a not necessarily finite-dimensional Lie algebra over a field {.

We write H <L when H is a subalgebra of L and H<L when H is an ideal of
L. We denote by {(L) the center of L.

Let A be an ordinal. A subalgebra H of L is a A-step ascendant subalgebra of
L, denoted by H<1“L, if there exists a series {H,|a <A} of subalgebras of L such that
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(1) Hy=Hand H,=L,

(2) H,<H,,, for any ordinal a <A,

(3) Hy=\U,<p H, for any limit ordinal B<A.

H is an ascendant subalgebra of L, denoted by H asc L, if H<a*L for some oridnal
A. {H,a<A} is called an ascending series from H to L. Especially when A=
n<w, H is respectively an n-step subideal and a subideal of L, denoted by H si L.

For a totally ordered set X, H is a serial subalgebra (of type Z) of L, denoted by
H ser L, if there exists a collection {A4,, V,|o € Z} of subalgebras of L such that

(1) H<A,and H<V forallgeZX,

2 4, <V,<4,ifr<o,

(3) L\H=V,s(4,\V,),

4 V,<A,foranyocel.

Then an ascendant subalgebra of L is a serial subalgebra of L.

A class of Lie algebras is a collection of Lie algebras over f together with their
isomorphic copies and the O-dimensional Lie algebra. We denote by &, A, N,
EU, LF, LN and LEA the classes of finite-dimensional, abelian, nilpotent, soluble,
locally finite, locally nilpotent and locally soluble Lie algebras over T respectively.

Let 4 be any one of the relations <« and ser. For a class X of Lie algebras,
L(4)X is the collection of Lie algebras L such that any finite subset of L lies inside
a subalgebra H of L satisfying H 4 L and belonging to X. Lie algebras belonging
to L(<1)§ and L(ser)§ are respectively called ideally finite and serially finite.

From now on let the basic field £ be of characteristic 0, unless otherwise
specified.

It is known [14] that the serially finite Lie algebras coincide with the
neoclassical Lie algebras in the sense of [1]. Hence we have the following results
by [1, 11, 12].

Radicals. For a locally finite Lie algebra L, we denote by p(L) and (L) the
largest locally nilpotent and the largest locally soluble ideals of L respectively.

(1.1) Let L be locally finite and let Hser L. Then p(H)=H np(L) and
o(H)=H no(L).

(1.2) Let L be ideally finite and let {F,|A€ A} be the collection of finite-
dimensional ideals of L. Then p(L)=73",.4 p(F)).

Semisimplicity. A locally finite Lie algebra L is called semisimple if a(L)=0.

(1.3) Let L be serially finite. L is semisimple if and only if L is a direct
sum of finite-dimensional non-abelian simple ideals. Then such a direct sum
decomposition is unique.

(1.4) Let L be serially finite. If L issemisimple, every ideal of L is a direct
summand of L and is semisimple.
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Levi subalgebras. A subalgebra A of a locally finite Lie algebra L is called a
Levi subalgebra of L if L=0o(L)+ A with (L) n A=0.

(1.5) Every serially finite Lie algebra has a Levi subalgebra.

Borel subalgebras. For a locally finite Lie algebra L, a maximal locally
soluble subalgebra of L is called a Borel subalgebra of L.

(1.6) For an ideally finite Lie algebra L, any Borel subalgebra of L
contains o(L).

(1.7) Let L be ideally finite. A subalgebra B of L is a Borel subalgebra of
L if and only if, for the decomposition A=@®, A, in (1.3) of a Levi subalgebra A
of L, B=o(L)+(®, B,) where each B, is a Borel subalgebra of A,.

Cartan subalgebras. A subalgebra C of L is called a Cartan subalgebra of
L if C is locally nilpotent and C equals the idealizer of C in L.

(1.8) Every ideally finite Lie algebra has a Cartan subalgebra.

(1.9) Let C be a Cartan subalgebra of an ideally finite Lie algebra L.
Then C is a maximal locally nilpotent subalgebra of L. For an ideal H of L,
(C+H)/H is a Cartan subalgebra of L/H.

(1.10) Let L be ideally finite. Then a Cartan subalgebra of a Borel
subalgebra of L is a Cartan subalgebra of L.

(1.11) Let L be a locally soluble, ideally finite Lie algebra. Then a sub-
algebra C of L is a Cartan subalgebra of L if and only if C is a maximal locally
nilpotent subalgebra of L and L=p(L)+ C.

L-modules. Let L be a Lie algebra over a field f of arbitrary characteristic
and let V be an L-module. Then the following result can be shown as in [9].

(1.12) For an L-module V, the following conditions are equivalent:

(1) Vis a sum of irreducible submodules.

(2) Vs completely reducible.

(3) For any submodule U of V, there exists a submodule U’ of V such that
V=U®U'.

Vis called locally finite if any finite subset of ¥V lies inside a finite-dimensional
submodule of V.

§2. Semisimple and nil endomorphisms

From now on let f be an algebraically closed field of characteristic 0. We
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identify the prime field of f with the field Q of rational numbers and take a basis
{&.lue M} of T over Q containing {o=1.

Let Vbe a vector space over f which is not necessarily finite-dimensional. The
set End V of endomorphisms of Vis a Lie algebra with commutator product, which
we denote by [End V]. LetfeEnd V. Then Vis an {f)-module. Foraef, put

V,={veV|v(f—a)"=0 for some n}.
LemMa 2.1.  If Vis locally finite as an {f)-module, then V=@, V,.

Proor. For any finite-dimensional submodule U of V, it is known that
U=®, U, where each « is an eigenvalue of f|;. Denoting by A the set of
eigenvalues of f, we have V=3, , V,. It follows that V=@®,., V,.

LEMMA 2.2. Let W be an f-invariant subspace of V. Then for a €t
a) W,=wnV,
b) If V=@, V, then (VIW),=(V,+ W)/W.

PROOF. a) is evident and b) follows from
VIW =2, (Va+ W)W 2, (VIW),= @, (VIW), = VIW.

f is called semisimple if V has a basis consisting of eigenV/ctors of f. fis
called nil if for any ve V there exists an integer n=n(v)>0 such that vf*=0.
We call f rationally semisimple if f is semisimple and all eigenvalues of f belong to

0.

It is immediate that if f is semisimple then Vis a locally finite {f)-module.

LEMMA 2.3. Let f be semisimple. Then for any eigenvalue a of f, V,
consists of eigenvectors of f corresponding to a.

PROOF. Let A be the set of eigenvalues of f and for ae A let ¥, be the
eigenspace of f corresponding to «. Then 7, V, and therefore V=3, ,V,<
@pes Vo=V by Lemma 2.1. Hence V =V,.

LEMMA 2.4. Let W be an f-invariant subsapce of V and denote by f the
endomorphism of V/W induced by f. If f is semisimple (resp. rationally semi-
simple, nil, nilpotent), then so are f|y and f.

PrROOF. Let f be semisimple. Then by Lemmas 2.1 and 2.2,
V=@, V,, W=@.,(WnV), VIW=@,V,+W)W.

By Lemma 2.3 WnV, and (V,+ W)/W respectively consists of eigenvectors of
flw and f corresponding to . Therefore f|, and f are semisimple. The case
that f is rationally semisimple is similarly shown and the other cases are evident.
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LeEMMA 2.5. Let f, g€ End V and assume that fg=gf. If f and g are semi-
simple (resp. rationally semisimple, nil, nilpotent), then so is f+g.

Proor. Let f and g be semisimple. Then by Lemmas 2.1 and 2.3, V=
@, V, where each V, consists of eigenvectors of f corresponding to «. Since
fa=gf, V, is g-invariant and by Lemma 2.4 g|, is semisimple. Hence by
Lemmas 2.1 and 2.3, V,=®; V,, where each V4 consists of eigenvectors of gl
corresponding to f. It follows that any element of ¥, is an eigenvector of f+g
corresponding to a+f. Hence f+g is semisimple. The case that f and g are
rationally semisimple is similarly shown and the other cases are evident.

§3. Chevalley-Jordan and rational decompositions

Let fe End V. If fis uniquely expressed in the form
f=f+1 @

where f; is a semisimple element of End V f, is a nil element of End V and f,f,=
f.fs then (1) is called the Chevalley-Jordan decomposition of f. f;and f, are
respectively called the semisimple and the nil parts of f.

It is shown in Proposition 3.1 that f; is uniquely expressed in the form

fs = ZueM éufsu (2)

where each f;, is a rationally semisimple element of End V and f,,f;,=f, f;, for
any u, ve M. Here by f,=3% .y ¢, f,, Wwe mean that for each v e V uf,, =0 except
a finite number of € M, that is, vf, is a finite sum v(X 7, &, f;,). We call (2) the
rational decomposition of f; and each f;, the rationally semisimple part of f.

PropPosITION 3.1.  Iffis semisimple element of End V, then f has the rational
decomposition.

Proor. Let A be the sef of eigenvalues of f. Then by Lemmas 2.1 and 2.3
V=@®,.4 V, where each V, consists of eigenvectors of f corresponding to «. For
each a € A we have

o= Z[leM éuau (au € Q) .
Define f, € End V by

fulv, =1y, (x€A).
Then f, is rationally semisimple and

f= ZueMéyf;u fufv=fvfu (#’VGM)'
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To show the uniqueness of the decomposition, assume furthermore that

f= ZueMéufua fufv=fvfu (,u,veM)

where each f, is rationally semisimple. For any a€ 4, fixe a nonzero element v
of V,. Since f, commutes with f, f, keeps V, invariant and by Lemma 2.4 f,|,_
is rationally semisimple. Hence V, has a basis consisting of common eigenvectors
of f,ly. (e M). Write v=3; v; as the linear sum of elements of this basis. Then

Vifu =¥y 0u€Q)-

It follows that

of = (Z;0)(Zp&uf) = X (0 Euvupv; -
On the other hand

of = (Zo)(Z, &) = Z5(Z, &a)v;.
Hence we have

2ului = 2v 6y for each j
and therefore y,;=a, for each j. It follows that
of, = v =of,.

Since « and v are arbitrary, we have f,=f,.

f is said to be algebraic if there exists g(f) e f[t] such that g(f)=0. f is
algebraic if V is finite-dimensional. Furthermore f is algebraic if f is of finite
rank. If fis algebraic, then V is locally finite as an {f»-module.

The part a) of the following proposition is due to [11].

PROPOSITION 3.2. Let f be an algebraic element of End V. Then

a) f has the Chevalley-Jordan decomposition f=f,+f, with f, nilpotent.
Furthermore there exist polynomials g, h e ¥[t] without constant terms such that
fi=9(f) and f,=h(f).

b) The rational decomposition f,=3 ,.p .15, of f; is a finite sum and
there exist polynomials g, € k[t] (ue M) without constant terms such that f,,=

9.f)-
PrROOF. Let g(f) be the minimal polynomial of f and let
q(t) = (t—ay)™ - (t—o)m

where «;,..., o, are different from each other. Put V,=Ker(f—o)™:. Then
V;is f-invariant. Putting
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a(t) = qO/(t—oy™ (1<i<k),

q(1),..., q;(t) are relatively prime. Hence there exist polynomials p,(?),..., p(t)
over f such that

2 pt)glt) = 1.

For any veV

v=3k,p(Na(f), vp(NaNeV, (A<i<k).

Hence V=%, V,. Since V;=V,, by Lemma 2.1 V=%, V.
a) By the Chinese remainder theorem, there exists a polynomial g(¢) over
f such that

o; mod (t—oa)™ (1<i<k)

g(H) =
0 modt.

Put h(f)=t—g(t). Then g(f) and h(t) are polynomials over ¥ without constant
terms. Put

fs=9(f), fu=h().
Then f; and f, belong to End V. Each V is invariant by f; and f,, and

fslh = aly,,
(fulv ) = (f=aly )™ = 0.

Hence f, is semisimple and f, is nilpotent. Obviously f=f,+f,, fofo=Ff.f
To show uniqueness of the above decomposition, assume that

f=k+TF Ifa=Fis

where f; is semisimple and f, is nil. Then f,—f,=f,—f,. Since f, is expressed as

a polynomial of f, f; commutes with f, and therefore by Lemma 2.5 f,—f, is semi-

simple. Similarly f,—f, is nil. Hence f,—f,=f,—f,=0, that is, f,=f, and f,=f,.
b) Each «; is expressed as

o = Z ﬁuaiu (aiu € Q) .

By the Chinese remainder theorem, for each pe M there exists a polynomial
g,(t) over { such that

a; mod(t—a)™ (1<i<k)

g, =
0 modt
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Putting
f:w =49 u(f ) s

we have f, |y, =a;,1y, (1<i<k). Hence f, is rationally semisimple and
Jo=2X &S SuSo =SS W veM).

By Proposition 2.1, this is the rational decomposition of f; and each f;, is a
polynomial of f without constant term. For all u€ M except a finite number of
elements of M we have «;, =0 (1 <i<k) and therefore f,,=0.

LemMa 3.3. Letf,geEnd V and let f, g, f+g be algebraic. If fg=gf, then

(U+9s=f+ 90 ((+@h=l+ 9w ([+Du=Ffu+ Gu
for each peM.
PrOOF. By Proposition 3.2
f+g9=_+g)+ (f+39n), 3
Jo+ 95 = Zuem Efout 940 - @

Since fg =gf, by Proposition 3.2
f9s =9:fo Jodn = Gufr FoOsu = GsuSou-

Hence by Lemma 2.5 f,+g, f,+9, and f,+g,, are respectively semisimple,
nilpotent and rationally semisimple. Since factors in (3) and (4) respectively
commute with each other, by Proposition 3.2 (3) is the Chevalley-Jordan decom-
position of f+g and (4) is the rational decomposition of (f+g);.

LEMMA 3.4. Let f be an algebraic element of EndV. Let W be an
f-invariant subsapce of V and let f be an endomorphism of V|W induced by f.
Then

a) The Chevalley-Jordan decomposition of f induces the Chevalley-

Jordan decompositions of f|y and f.
b) The rational decomposition of f, induces the rational decompositions of

filw andﬁ

Proor. a) Let f=f+f, be the Chevalley-Jordan decomposition of f.
Then by Proposition 3.2 W is invariant by f, and f,. Hence by Lemma 2.4
filw» f; are semisimple and f,|,, f, are nilpotent.  Since f|, and f are algebraic,

flw=filw +fulw and f=f +f,
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are respectively the Chevalley-Jordan decomposition of f |y and f.
b) is similarly shown.

LEMMA 3.5. Let L<[End V] and let f be an algebraic element of L. If fis
semisimple (resp. nilpotent, rationally semisimple), then so is ad, f.

Proor. By Lemma 2.4 it suffices to show the case that L coincides with
[End V]. Put E=[End V].

Assume that f is a semisimple element of E. Then V, consists of eigenvectors
of f corresponding to «. Since f has only a finite number of eigenvalues, denote
them by a,..., o, and put V;=V,. Then by Lemma 2.1 V=@®??., V. Hence

E = ®?,j=l Hom(l/l', I/_))’

where Hom (V,, V)) is the subspace of E consisting of all endomorphisms g of V'
such that V;g< V; and V,g=0 (k#i). It follows that

[gijaf] = (“j—“i)gij (gijeHom(Vi, V,))

Hence choosing a basis of each Hom (V;, V;), we have a basis of E consisting of
eigenvectors of adgf. Therefore adgf is semisimple.
This reasoning also shows that if f is rationally semisimple then so is adf.
Finally, let f be nilpotent. Since

gade) = T1o (' )f'afm (@B,

fr=0 implies (adgf)>~1=0. Therefore adf is nilpotent.

COROLLARY 3.6. Let L be an ideally finite subalgebra of [End V] and let f
be an algebraic element of L. If f, and f, belong to L, then

(adpf)s = ad,f,, (ad,f), = ad.f,.
If furthermore f,, belongs to L for any ue M, then
(ade)su = adesu (lu € M) .

Proor. Let f, f,eL. Then for the Chevalley-Jordan decomposition f=
fi+f, of f we have

ad, f = ad,f, + ad.f,. (5)

Since f; and f, are algebraic, by Lemma 3.5 we see that ad,f, and ad,f, are
respectively semisimple and nilpotent and are commutative. By our hypothesis
that Le (<), ad, f is an algebraic element of End L. Hence (5) is the Chevalley-
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Jordan decomposition of ad, f.
Furthermore let f,€ L for any peM. Then it is similarly shown that
ad, f,=3% ¢,ad,f,, is the rational decomposition of (ad, f),.

Let L be a subalgebra of [End VV]. L is called splittable, provided every
element f of L has the Chevalley-Jordan decomposition and f;, f, belong to L.
We call L algebraic, provided every element f of L has the Chevalley-Jordan
decomposition and f,, f,, f;, belong to L for any pe M.

Especially in the case that every element f of L is of finite rank, by Proposition
3.2 f has the Chevalley-Jordan decomposition and the rational decomposition of
f,1is a finite sum. Hence L is algebraic if for every element f of L all the rationally
semisimple parts belong to L. In the beginning of Section 2 we fixed a basis
{¢,lne M} of t over Q, but in this special case the definition of algebraicity does
not depend on the choice of such a basis.

We remark that when V is of finite dimension the above definition of
algebraicity coincides with the known definition (e.g. [4], Chap. 2, §4,
Definition 1).

Evidently if L is algebraic then L is splittable.

Next, let L be a Lie algebra over f which is not necessarily linear. An element
x of L is called ad-semisimple (resp. ad-rationally semisimple, ad-nil, ad-nilpotent)
if ad;x is semisimple (resp. rationally semisimple, nil, nilpotent).

Let L be ideally finite. If for every element x of L

X =X;+ X, Xz X,€L, [x5 x,]=0
and ad;x=ad;x,+ad,x, is the Chevalley-Jordan decomposition of ad;x, then
L is called ad-splittable. Furthermore if
Xs = ZueM éu‘xsw xsu EL’ [xsu’ xsv] = 0 (,ll, Ve M)

and ad;x,=3 ,.u ¢,ad;x,, is the rational decomposition of ad;x,, then L is
called ad-algebraic.
We here give examples of algebraic Lie algebras in the following

PROPOSITION 3.7. Let A be an algebra over .
a) The Lie algebra Der A of all derivations of A of finite rank is algebraic.
b) If Aisfinite-dimensional, then the derivation algebra Der A is algebraic.

Proor. a) LetdeDer;A. Then A is a locally finite (§)-module. Hence
by Lemma 1.1
A=@®,4,.
For any eigenvalues a, f of J, we have A, 4;S 4,5 Ifa=3,.p ¢, (2,€0),
by Proposition 3.2 b)
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65I4|Aa = OtﬂlA“.

Hence for xe 4, and y e 4,

(xy)5u = (a+B)u(xy) = (@, + B (xy) = (x65,)y + x(ydy,) .

That is, d,, € Der A. Since d,, is expressed as a polynomial of § without constant
term, J,, € Der, A.
b) is a special case of a).

§4. Splittable and algebraic hulls
Let F(V) be the set of endomorphisms of V of finite rank. Then F(V) is a
subalgebra of [End V]. F(V)=[End V] if Vs finite-dimensional.
LeEMMA 4.1. Let L be a subalgebra of F(V). For fy,..., fu€ L, put
W=3Ym Imf, U=nNr, Kerf,
K ={feL|VfcW, Uf=0}.

Then K is a finite-dimensional subalgebra of L containing f,,..., f,.. Especially
if L is splittable (resp. algebraic), then so is K.

Proor. Evidently f,,..., f,e K< L. W is of finite dimension and U is of
finite codimension. Hence if we take a subspace U’ of V complementary to U,

dim K < dim Hom (U’, W) < co0.

Especially, let L be splittable (resp. algebraic). Then for fe K f, (resp. f;, (ne M))
belongs to L. By Proposition 3.2 we see that f; (resp. f;, (u€ M)) belongs to K.
Therefore K is splittable (resp. algebraic).

PrROPOSITION 4.2. a) F(V) is.locally finite and algebraic.
b) Let L be an ideally finite subalgebra of F(V). If L is splittable (resp.
algebraic), then L is ad-splittable (resp. ad-algebraic).

ProOF. a) Applying the first part of Lemma 4.1 to L=F(V), we see that
F(V)is locally finite. For any element f of F(V'), by Proposition 3.2 b) f;, belongs
to F(V) for any ue M. Hence F(V) is algebraic.

b) Let L be splittable (resp. algebraic). Then for any element f of L we
have the Chevalley-Jordan decomposition of f (resp. the rational decomposition

of f,)
f=f:9 + fu fs’fneL
(resp. fs=2ueM énfs;u fsuEL(“EM))
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Then by Corollary 3.6

ad f=ad.f, + ad,f, (resp.ad,f,= ZueM fyadesu)

is the Chevalley-Jordan decomposition of ad, f (resp. the rational decomposition of
(ad.f),.- Hence L is ad-splittable (resp. ad-algebraic).

The first half of Lemma 4.1 and local finiteness of F(V) in Proposition 4.2 a)
are due to [11].

By Proposition 4.2 a) F(V) is algebraic and therefore splittable. Hence for
any subalgebra L of F(V) there exist the smallest splittable subalgebra and the
smallest algebraic subalgebra of F(V) containing L. We call them the splittable
hull and the algebraic hull of L, and denote them by L (or L") and L (or L~)
respectively.

Then L<L<L. If H<Lthen A<L and A<L.

LEMMA 4.3. Let L be a subalgebra of F(V). If Le& then L, Le §.

PrOOF. Assume that Le § and let f,,..., f,, be a basis of L. We set W, U as
in Lemma 4.1 and put K={fe F(V)|Vf< W, Uf=0}. Since F(V) is algebraic by
Proposition 4.2 a), by Lemma 4.1 K is a finite-dimensional algebraic subalgebra of
F(V) containing L. Hence L<K. Therefore L, L€ .

LEMMA 4.4. Let a subalgebra L of F(V) be ideally finite and splittable
(resp. algebraic). For A, B, C<L and C<ANB, if [A, B]<C then [4, B]l=C
(resp. [4, B]< C).

Proor. Let K={feL|[4,f]=C}. Then K is a subalgebra of L. For
any element f of K, f; (resp. f;, (1€ M)) belongs to L. By Corollary 3.6
ad f=ad.f, + ad.f, (resp.ad, fi=X ¢,ad.f,,)

is the Chevalley-Jordan decomposition (resp. the rational decomposition). Hence
by Proposition 3.2

A(ad, f)c 32, 4A(ad, f) = C
(resp. A(ad, f,)= 22, A(ad f)I = C).

It follows that f; (resp. f;, (u€ M)) belongs to K. Hence K is splittable (resp.
algebraic).
By assumption B< K. Therefore B<K (resp. B<K), whence

[4, Bl = C (resp.[4, B1=C).

Next, apply the above reasoning to B, A, C (resp. B, A, C). Then we have
[B, A]=C (resp. [B, A]1=C).
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LEMMA 4.5. Let L be a subalgebra of F(V). Assume that L=\U, ,H,
with H, <L and that for any A, p€ A there exists ve A such that H;U H,c H,.
Then

‘t:U)_eAﬁ;, and E=U;.GAH,1.

ProoF. Put K=\U,_4 H,. For any elements f, g of K, take 4, u€ A such
that fe A, and g € A1, and take ve A such that H, U H,< H,. Then A,u A,< A,.
It follows that [f, gJe H,=K. Hence K<L. Therefore K is a splittable sub-
algebra of L containing L. Thus K=L and L=\U,_, A,.

The other formula is similarly shown.

THEOREM 4.6. For a subalgebra L of F(V),
a) LW=LM=LM™ (n>1),
b) Lr=Lr=[I" (n>2).

Proor. By Proposition 4.2 a) we have LeL§. Let {F,|]A€ A} be the set of
finite-dimensional subalgebras of L. Then L=\U,,F, and A satisfies the
condition of Lemma 4.5. By Lemma 4.5

L=yU,uF,.
By Lemma 4.3 F,e§. Applying Lemma 4.4 to L= F,, we have
Fr=F1 (n>2)
by induction on n. It follows that
[" = Usea Fi = Vsea Fi=L" (n>2).
In particular L =L®. Now by induction on n we have
L =L (n>1).
Since L< L < I, we have the assertions of the theorem.

PROPOSITION 4.7. Let L be a subalgebra of F(V) and let X be any one of the
following classes:

& W, BN, EAUNF, NN F, LEA, LK,
L(<)F, (<)EBANF), (<)(NNF).
If LeX, then L, LeX.

PrOOF. The case that X=§ was shown in Lemma 4.3. The cases that
X=U, A, N follow from Theorem 4.6, the cases that X=gANF, Nn F follow
from Lemma 4.3 and Theorem 4.6, and the cases that X =L, L9 follow from
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Lemma 4.5 and Theorem 4.6.

We now show the case that X=1L(<)§. Assume that LeL(<)F and let
{F;lA€ A} be the set of finite-dimensional ideals of L. Then L=\U,, F,. By
Lemmas 4.3 and 4.5 we have

L=y, F, and F,eF forany AeA.

For F;<F,, apply Lemma 4.4 to L=F,, A=C=F, and B=F,. Then we have
[F,, F<F,. It follows that

[F,F1cF, forany ved,

which shows that F,<[. Hence L e L(<0)§ and therefore L e L(<)F.
The remaining cases follow from the facts that

L(<)(EANF) = LW 0 (<)F and L(<)RNF) = LN 0 L(<)F.

PROPOSITION 4.8. Let L be an ideally finite subalgebra of F(V).
a) If H<°L, then A<°L and A<°L.
b) If H<°L (6>0), then H<°L and H<°L.

PrROOF. By Lemma 4.7 L, Leu(<)§. Let H<°L and let {H |x<o} be

an ascending series from H to L.

~a) Evidently A=H," and L=H,". For any ordinal «<o, by Lemma 4.4
we have H,"<H,,,”. For any limit ordinal A<o, by Lemma 4.5 we have H;" =
Ug<; H,”. Hence H<°L. Similarly H<°L.

b) For 6=1 by Lemma 4.4 we have H< L. For any non-limit ordinal o,
H,_,<L. It follows that H,_;<[. Hence H<°L. For any limit ordinal g,
by a) we have H<H<°L. Since o is infinite, H<t®L. Hence for all 6 >1 H<°L
and therefore H<°L.

§5. Lie algebras of endomorphisms of a finite-dimensional vector space

In this section, we assume that V is a finite-dimensional vector space over f
and we observe several known properties of subalgebras of [End V].

LEMMA 5.1. Let L be a subalgebra of [End V] and let R denote the soluble
radical of L. Then the set R, of nilpotent elements of R is an ideal of L con-
taining [R, L].

Proor. For any element f of L, R+<{f) is a soluble subalgebra of L and
may be triangulated by Lie’s theorem. It follows that [R, f]=R,. Again
triangulating R, we see that R, is a subspace of R and [R,, fIS[R, f]=R,.
Hence R,<L.
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PROPOSITION 5.2. Every semisimple subalgebra of [End V] is algebraic.

PrOOF. Let L be a semisimple subalgebra of [End V]. By Theorem 4.6
we have L<L. Regard L as an L-module by ad;L. Then Weyl’s theorem says
that there exists a subspace A of L such that

L=L+A, LnA=0, [4, L] < A.

By Proposition 3.2 b) and Corollary 3.6 we have [4, L]=A. It follows from
Theorem 4.6 that [4, L] L n A=0, that is, A={(L). Againby Weyl’s theorem
V=@%, V; where each V is an irreducible submodule of V. For any element f
of A, we have f,, € L and therefore

fu=9+h, geL, heA.

By Schur’s lemma h|,,=Aly, (1<i<n). Since L=L2 tr(f|y)=tr(gly,)=0.
Hence

0=tr (stVi) = ZueM éu tr (-/;MIVI') .

It follows that tr(f,,ly)=0 and therefore tr(h|,)=0. Hence 4,=0 (1<i<n)
and h=0. Thus f,=geL.

PROPOSITION 5.3. Let L be a subalgebra of [End V1. If L-module V is
completely reducible, then L is splittable.

For the proof, see [8, Chap. 3, Theorem 17].
Let V5 ,=V®---®@V be the space of contravariant tensors of rank s. For
= =
feEndV,let fo ;=fand
fos =fBI®BL+1Qf®®l +-+1Q--BLQf (s>2).

Then f,,€End V,,. Putting V,,fo =0 for r#s, we may consider that f;
actson ®!-; V.

LEMMA 5.4. Let feEnd V. Then

a) fO,rz(f:s)O,r-I'(fn)O,r and (.f:s 0,r= ZueM Cu(fs,;)o,r

are respectively the Chevalley-Jordan decomposition of f,, and the rational
decomposition of (f5)o,,

b) Let W be a subspace of @i, V,, which is invariant by }.!-, f,, and
let f be the restriction of Y-y fo, to W. Then Wis invariant by f,, f,, f,, and

f=._f:+f—;n K= ZMEMéyfTs;[
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are respectively the Chevalley-Jordan decomposition of f and the rational
decomposition of f,.

For a subalgebra L of [End V], we put
N (Lom) = M feL Ker fo -

THEOREM 5.5. Let L be an r-dimensional subalgebra of [End V] con-
sisting of nilpotent elements. If an element g of End V satisfies

‘/V(Lo,m) S Kergo,m (m=1’ 2; 3,.., 4’)’
then g belongs to L.

Outline of the proof is as follows. Assume that f, f'eEnd V and f is
nilpotent. Then it is shown that if Ker f<Ker f’ and Ker f,, , =Kerf’ ,, then f’
is expressed as a polynomial of f without constant term. Owing to this it can
be shown that if Ker fcKerf’, Kerf, ,SKerf', , and Kerf, ,<Kerf’, 4, then
f'=cf with cef. Using this fact, the assertion of the theorem may be shown by
induction on r.

For detail, see [5, 6].

§6. Splittable and algebraic systems of generators
We begin with

LemMMA 6.1. Let L be a finite-dimensional subalgebra of F(V). Then there
exists a finite-dimensional subspace V, of V so that we can regard

L< [End ¥,] < F(V).

PrOOF, Let fy,..., f, be a basis of L. Take Wand U as in Lemma 4.1 and
put '

K = {feF(V)|Vfs W, Uf=0}.

Then K is a finite-dimensional subalgebra of F(V) containing L. Let U’ be a
subspace of ¥ complementary to U and put

Vo=U + W.

Then dim V, < co and there exists a subspace V; of U such that V=V,®V,. We
now identify an element f, of End V, with an element of End V which is obtained
from f, by putting V;f,=0. Then we have End V,<End V and therefore L<
[End Vo] <F(V).
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By this lemma, we can apply the results on Lie algebras of endomorphisms of
a finite-dimensional vector space to finite-dimensional subalgebras of F(V).

PROPOSITION 6.2. Every semisimple serially finite subalgebra of F(V) is
algebraic.

PrOOF. Let L be a semisimple serially finite subalgebra of F(V). By (1.3)
we have

L= @ALl9

where each L, is a finite-dimensional non-abelian simple ideal of L. By
Proposition 5.2 and Lemma 6.1 each L; is algebraic. Hence any element f of
L is expressed as

f=fi++f. fieL, (1<i<k).

Since fi,..., f, commute with each other, by Lemma 3.3 we have

fsu = (fl)su +eeet (fk)sue 2?=1 L)..- S L
for any pe M. Therefore L is algebraic.

For a subalgebra L of F(V), we call a system {f,|ceI} of generators of L
splittable if the semisimple and the nilpotent parts of each f, belong to L, and
algebraic if the semisimple, the nilpotent and the rationally semisimple parts of
each f, belong to L. We similarly define splittability and algebraicity of a
basis of L.

LeMMA 6.3. Let V be a finite-dimensional vector space over t and let L be a
subalgebra of [End V]. Then L is splittable (resp. algebraic) if L has a
splittable (resp. an algebraic) system of generators.

PrOOF. Let L have a splittable (resp. an algebraic) system G={f,,..., f,.}
of generators of L. Let R be the soluble radical of L. Then by Lemma 5.1
R, =[L, R] consists of nilpotent elements. Denoting r=dim R, we put

W=, /V((R1)o,.‘)
and for any element f of End V we define
f‘—' Z‘it;lfo,i'

Since R, is an ideal of [ by Proposition 4.8 b), Wis invariant by f for any element
fof L. Hence put f=f|, and for A< L put

A= {fIfe4d}.
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Then R is the center of L. Now let L=R+A be a Levi decomposition of L.
Then we have

fi=gi+h, g;€R, hed (1<i<m).
Since [g;, h;]=0, by Lemma 3.3
(F)s = (@ + (h),  (resp. (o= (90)eu+ (h)sy) -

Since A is algebraic by Proposition 5.2, it follows from Lemma 5.4 b) that

(—/l-i)s = (hi)s € ;1 (resp' (7;;):;1 = (hi)su € A) s
(—Z)s = (fi)s € E (I'CSp. (—ﬁ)su = (fi)su € L) .

Hence
(9)s€ L (resp. (g€ L) (1<i<m). (1)
For any element f of L,
=2, fisen fi)]
=Y ufi+ Xia i Lfipe s il (fis i €G).
Replacing f; by g;+ h;, we have

f=9g+h, h=%Yohi+ 300 [his... 01,

g = the sum of remaining terms.
Since he A,
hy=hse A (resp. hy,=h,e A). ©)
On the other hand, §= 3 g, and therefore by (1)
gs = Z Bk(g;()s € E (resp' gsu= z ﬂk(é;)su € E) . (3)
From (2) and (3) it follows that
fi=Ff=3,+heL
(resp‘ f;=fm =gsu + Esu € I_‘) .
Hence there exists an element p (resp. q,) of L such that
fi=p (resp.f,,=4,).
We have
fs —pP= 0 (resp‘f:su_qu=0)’
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whence by Theorem 5.5

fs—peRy (resp.f,—q,€R,).
It follows that f,eL (resp.f,,e L for any peM). Therefore L is splittable
(resp. algebraic).

THEOREM 6.4. For a subalgebra L of F(V) the following are equivalent:
a) L is splittable (resp. algebraic).

b) L has a splittable (resp. an algebraic) basis.

¢) L has a splittable (resp. an algebraic) system of generators.

ProOF. Assume that L has a splittable system of generators. Replacing
each element by its semisimple and nil parts, we may assume that L has a system
of generators consisting of semisimple and nilpotent endomorphisms of V.
Denote this system of generators by {f,|a € A}.

Let {L,|1€ A} be the set of finite-dimensional subalgebras of L. Then by
Proposition 4.2 a) L=\U,., L, and therefore by Lemma 4.5 L=\ wea ;. Let
g1s---» g be a basis of L,. Then

gi = Z yal-"am[fal’“-afum] (lglén)

Let G; be the set of f, appearing in this formula and put G=\U}-; G;. Since G is
finite, there exists a subalgebra L, (u € 4) containing G. Hence

L, <<G)<L,.
By Lemma 6.1 there exists a finite-dimensional subspace V, of V such that
L, <[EndV,] < F(V).
It follows from Lemma 6.3 that {G) is splittable and therefore
L,<<(G><L,.
Hence
L=u,L;=v,L, =L,

that is, L=L. Therefore L is splittable.
The case of algebraicity is similarly shown.

COROLLARY 6.5. For a subalgebra L of F(V), L (resp. L) is a vector space

spanned by semisimple (resp. rationally semisimple) and nilpotent parts of
elements of L.

Proor. Let K be a subspace of F(V) spanned by semisimple (resp. rationally
semisimple) and nil parts of all elements of L. Then
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LcKcL (respLcKcI).
Hence by Theorem 3.6 we have
[K,Klcsl?csLck

and therefore K is a subalgebra of L (resp. [). Since K has a splittable (resp.
an algebraic) basis, by Theorem 6.4 K is splittable (resp. algebraic). Thus
K=L (resp. K=1L).

COROLLARY 6.6. The Lie algebra generated by any collection of splittable
(resp. algebraic) subalgebras of F(V) is splittable (resp. algebraic).

PrOOF. The Lie algebra L generated by such a collection of subalgebras of
F(V) has a splittable (resp. an algebraic) system of generators. Hence by
Theorem 6.4 L is splittable (resp. algebraic).

THEOREM 6.7. For any subalgebra L of F(V) L2 is algebraic.

PrOOF. Let {L,|Ac A} be the set of finite-dimensional subalgebras of L.
Then by Proposition 4.2 a) L=\U,; L,. Hence

L2 = UI.L%‘

For each L,, by Lemma 6.1 there exists a finite-dimensional subspace V, of V
such that

L, < [End V,] < F(V).

Hence by Lemma 5.1 the soluble radical of L? consists of nilpotent elements and
by Proposition 5.2 a Levi subalgebra of L? is algebraic. Therefore by Theorem 6.4
L? is algebraic. Thus by Corollary 6.6 we conclude that L? is algebraic.

§7. Structure theorems

In this section we shall examine the structure of ideally finite subalgebras of
F(V).

THEOREM 7.1. Let L be an ideally finite subalgebra of F(V). Then

a) o(L)"=a(L), o(L)"=0(L) and o(L)=o(L)n L=0(L) n L.

b) Every Levi subalgebra of L is a Levi subalgebra of L and of L.

c) For any Borel subalgebra B of L, B and B are respectively Borel
subalgebras of L and [, and B=BnL=BnL.

PrROOF. Let A be a Levi subalgebra of L. Then o(L)"+ A is a subalgebra
of L by Theorem 4.6 and has a splittable basis by Proposition 6.2. Hence by
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Theorem 6.4 L=0(L)"+ A. Similarly we have L=¢(L)~ + A.

a) By Propositions 4.7 and 4.8 a) o(L)" is a locally soluble ideal of L.
Let H be any locally soluble ideal of L. Then H +o(L)" is a locally soluble ideal
of L. In fact, let K be a finitely generated subalgebra of H+o(L)". Since
F(V) is locally finite, K is finite-dimensional and therefore (K + H)/H is soluble.
It follows that K™ < H. Hence K™ is soluble, that is, K is soluble. Therefore
H+0(L)" is locally soluble, as asserted. Now

H + (L) = (H+a(L)") 0 (a(L)" +A)
=o(L)" + (H+o(L)) n A = a(L)",

whence H<a(L)". Thus o(L)" is the largest locally soluble ideal of L and
o(L)"=0(L). By maximality of o(L), we have a(L)=0a(L)n L.

The assertion for (L) is similarly proved.

b) Taking account of the part a), L=0(L)"+ 4 and L=0(L)~+ A are Levi
decompositions of L and L respectively.

c) By (1.3) A=@®, 4, where each A, is a finite-dimensional non-abelian
simple ideal of A. Hence by (1.7)

B=oa(L) + (®,B)
where each B, is a Borel subalgebra of 4,. By Proposition 6.2
B,<B,<A,=4,

and by Proposition 4.7 B,, is soluble. Hence we have B,= B, by maximality of
B,, that is, B, is algebraic. Now by Corollary 6.6 6(L)" +(®, B,) is a splittable
subalgebra of B containing B and therefore

B =oa(L) + (®,B).

From a) and (1.7) it follows that B is a Borel subalgebra of L. By maximality of
B we have B=Bn L.

The assertion for B is similarly proved.

THEOREM 7.2. Let L be an ideally finite subalgebra of F(V). Then the
following are equivalent:

a) L is splittable (resp. algebraic).

b) a(L) is splittable (resp. algebraic).

c¢) A Borel subalgebra of L is splittable (resp. algebraic).

d) A Cartan subalgebra of L is splittable (resp. algebraic).

PrOOF. a)<«>b) If L is splittable (resp. algebraic), then by Theorem 7.1 a)
o(L)" = o(L) = a(L) (resp. o(L)~=o(L)=0(L)),
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that is, 6(L) is splittable (resp. algebraic). Conversely, if a(L) is splittable (resp.
algebraic), by (1.5) take a Levi subalgebra A of L. Then by Theorem 7.1

L=oly+A=0alL)+A=L
(resp. L=o(L)y"+A=0(L)+A=L),

that is, L is splittable (resp. algebraic).

a)<>c) Let B be a Borel subalgebra of L. If L is splittable (resp. algebraic),
B<L (resp. B<L). By Theorem 7.1 ¢) B=BnL=B (resp. B=Bn L=B),
that is, B is splittable (resp. algebraic). Conversely, let B be splittable (resp.
algebraic). By (1.6) o(L)<B. Taking a Levi subalgebra A of L we have L=
B+A. Hence by Proposition 6.2 and Corollary 6.6 L is splittable (resp.
algebraic).

a)ed) Let C be a Cartan subalgebra of L. If L is splittable (resp. alge-
braic), by Proposition 3.7 C (resp. €) is a locally nilpotent subalgebra of L.
By maximality of C we have C=C (resp. C=C), that is, C is splittable (resp.
algebraic). Conversely, let C be splittable (resp. algebraic). By (1.9) (C + L?)/I?
is a Cartan subalgebra of L/L?. Hence (C+ L?)/L?=L/L2. 1t follows that L=
C+ L2 Since by Theorem 6.7 L? is algebraic, by Corollary 6.6 L is splittable
(resp. algebraic).

LEMMA 7.3. Let L be a locally soluble, ideally finite Lie algebra. Then for
an element x of L, x belongs to p(L) if and only if ad,x is nilpotent.

Proor. Let xep(L). Then by (1.2) there exists a finite-dimensional nil-
potent ideal K of L containing x. Hence adgx is nilpotent and therefore ad, x is
nilpotent.

Conversely, let ad;x be nilpotent. Take a finite-dimensional ideal F of L
containing x. Then adpx is nilpotent. Since F is soluble, it follows that xe
p(F). By (1.1) we have x € p(L).

PROPOSITION 7.4. Let L be an ideally finite subalgebra of F(V).

a) If L is splittable (resp. algebraic), then p(L) is splittable (resp.
algebraic).

b) L=p(L)+L. Therefore L is splittable if and only if p(L)=p(L).

o {D=UL)nL=UD)nL.

PrOOF. a) Let L be splittable (resp. algebraic). Then by Propositions 4.7
and 4.8 a) p(L)" (resp. p(L)~) is a locally nilpotent ideal of L. By maximality of
p(L) we have p(L)"=p(L) (resp. p(L)~=p(L)), that is, p(L) is splittable (resp.
algebraic).

b) Put R=o(L). By Proposition 4.7 Re LEU N L(<0)F. Put R,=p(R)+R.
Then R, <R. For any element f of p(R)UR, we have f,e R and therefore
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adgf, is nilpotent. By Lemma 7.3 it follows that f,e p(R). Hence R, has a
splittable basis. By Theorem 6.4 R, is splittable and R, =R. That is,

R =p(R) +R.

Let L=R+A be a Levi decomposition of L. Then by (1.1) and Theorem 7.1
we have

L=R+A=pR)+R+ A=pL)+ L.

¢) If fe{(L), by Lemma 4.4 we have [{f), L]1=0 and therefore fe{(L).
Hence {(L)<{(L). It follows that {(L)=((L)nL. Therefore {(L)={(L)n L.

PROPOSITION 7.5. Let L be an ideally finite subalgebra of ¥(V). Then for
a Cartan subalgebra C of L there exist Cartan subalgebras C, and C, of L and
L respectively such that C=C,nL=C, n L.

Proor. Let B be a Borel subalgebra of L containing C. Then C is a Cartan
subalgebra of B. By Theorem 7.1 B is a Borel subalgebra of L and by Zorn’s
lemma there exists a maximal locally nilpotent subalgebra C, of B containing C.
Hence by Proposition 4.7 C, is splittable. Therefore C<C,.

Now by (1.11) B=p(B)+C. Hence by Corollary 6.6 B=p(B)*+C. Since
p(B)" is a locally nilpotent ideal of B by Propositions 4.7 and 4.8 a), we have
p(B)* < p(B) and therefore

B=p(§)+cl.

From (1.11) it follows that C, is a Cartan subalgebra of B. Therefore by (1.10)
C, is a Cartan subalgebra of L. By (1.9) we have C, n L=C.

The existence of a Cartan subalgebra C, of L such that C, n L=C is similarly
shown.

For a subalgebra L of F(V), we denote by L, and L, the sets of nilpotent and
semisimple elements of L respectively. Then we have

LEMMA 7.6. Let L be an ideally finite subalgebra of F(V). Then a(L), is
a locally nilpotent ideal of L.

Proor. Let {F,|A€ A} be the set of finite-dimensional ideals of L. Then
L=\, F,. Putting N,=0(F,),, N, is a nilpotent ideal of F, by Lemmas 5.1,
6.1 and Engel’s theorem. Since F; N o(L)=a(F;) by (1.1), we have F, N a(L),=N,.
Hence

o(L)y = Ui (Fana(L),) = U, N,;.

For A, pe A, there exists ve A such that F, U F,F, and we have
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N,UN,=(F,uF)nal),cF,noa(ll),=N,,
[N, F]l< [N, F]<N,.
Therefore
o(L),=\U,N,<\U,F,=L
and o(L),eLN.

PROPOSITION 7.7. Let L be a locally nilpotent, ideally finite subalgebra of
F(V). Then L is splittable (resp. algebraic) if and only if L is the direct sum of
an ideal L, and a central ideal (resp. an algebraic central ideal) L,.

PrOOF. Assume that L is splittable (resp. algebraic). By Lemma 7.6 L,
isanideal of L. If fe L, by Lemmas 3.5 and 7.3 ad, fis semisimple and nilpotent.
Hence ad; f=0 and therefore fe {(L). By Lemma 3.3 L, is a central ideal (resp.
an algebraic central ideal) of L and L=L,®L..

The converse follows from Corollary 6.6 and the fact that L, is algebraic.

When L is a subalgebra of F(V), an abelian subalgebra T of L is called a torus
of L if every element of T is semisimple. When L is a not necessarily linear Lie
algebra, an abelian subalgebra T of L is called an ad-torus if every element of T'is
ad-semisimple.

LeEMMA 7.8. Let L be a torus of F(V)and let V be a locally finite L-module.
Then V is completely reducible.

Proor. Let U be a finite-dimensional submodule of V. Then U is an
L/C(U)-module. Here C (U)={fe L|Uf=0}<L and by Lemma 2.3 L/C,(U) is
a finite-dimensional torus of [End U]. Hence there exists a basis of U consisting
of common eigenvectors of elements of L/C,(U). Namely, U is a direct sum of
1-dimensional submodules. Each 1-dimensional submodule of U is a submodule
of L-module V. Since Vis locally finite, Vis a sum of 1-dimensional submodules.
By (1.12) V'is completely reducible.

THEOREM 7.9. Let L be an ideally finite subalgebra of F(V). If L is
splittable (resp. algebraic), then there exist a torus (resp. an algebraic torus) T
and a Levi subalgebra A of L such that

o(L)=o(L), + T, o(L),n T=0, [4, T]=0.

Proor. Let L be splittable. Put R=0(L). Then by (1.1) p(R)=p(L) and
by Lemma 7.6 p(L),=R,. Since p(L) is splittable by Proposition 7.4 a), as in
the proof of Proposition 7.7 we see that p(L) is a central ideal of R and

p(L) = R, + p(L);.



Infinite-dimensional algebraic and splittable Lie algebras 115

Now let T be a maximal torus of R containing p(L),, Then by Lemma 3.5 Tis an
ad-torus of R. Taking a maximal ad-torus T, of R containing T, we have

Cr(T) 2 Cx(Ty).

By Theorem 7.2 R is splittable and therefore by Proposition 4.2 b) R is ad-
splittable. Hence by [11, Theorem 13.2] Cg(T,) is a Cartan subalgebra of R and
by (1.11)

R = p(L) + Cx(To) = p(L) + Cx(T).

For any element f of Cg(T) we have f,eR,. Since by Corollary 3.6 [T, f,]=0,
by Lemma 2.5 T+{f,> is a torus of R and by maximality of T we have f,e T.
Hence

R=p(L)+ T=R,+ T, R,n T=0.

Next, since ad, T'is completely reducible by Lemma 7.8, there exists a subspace
A, of L such that

L=R+4,, RnA, =0, [4, T]< 4,.

It follows that [T, A,]J=RnA;=0. Putting L;=C,(T), L, is a subalgebra of
L containing A;. Hence L,=(RnL;)+A;. PutR,=RnL,. Then

L;/R, 2 (L,+R)/R =(R+4,)/R =LJR,

whence L,/R, is semisimple and therefore R;=0(L;). Now let A be a Levi
subalgebra of L,. Then

that is, L=R+A4. Here Rn A=0, since RN A is semisimple as an ideal of A by
(1.4). Therefore A is a Levi subalgebra of L. We also have [T, A]<[T, L,]=0,
thatis, [T, A]1=0.

Especially if L is algebraic, by Theorem 7.2 R is algebraic. Hence T <R.

By Theorem 4.6 and Corollary 6.5 T is a torus. By maximality of T we have
T=T.

THEOREM 7.10. Let L be an ideally finite subalgebra of F(V). Then there
exists a torus A of L such that

L=L+A4, L=L+(LnA), LnA=0.

PrOOF. Put R=o(L). Then by Theorem 7.1 R=0¢(L). By Theorem 7.9
there exists an algebraic torus T of L such that

R=R,+T, R,nT=0.
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Putting R, =R+ T, by Theorem 3.6 we have R, <R. Hence
R, =(R;NRY)+ T

Since T is algebraic, R, has an algebraic basis and therefore by Theorem 6.4 R,
is algebraic. Hence R; =R, that is,

R=R+T

Take a subspace A of T complementary to RN T. Then Ais a torus of L such
that RN A=0. By (1.5) L has a Levi subalgebra A and by Theorem 7.1 b)

L=R+A=R+A) +A=L+ A.
Since R n L=R by Theorem 7.1 a), it follows that
LNA=RnA=0.

Finally, since L<L<I, we have L=L+(L n A).
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