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1. Introduction

In this paper, we present a new method for solving the Cauchy problem

(1.1) u f(f, x) = Δψ(u(t, x)), ί > 0 and x ε RN,

tι(0, X) = MO(X), xεRN,

where φ is a locally Lipschitz continuous and nondecreasing function on R such

that ι/^(0) = 0; and the method is described from the point of view of the nonlinear

semigroup theory.

For u0 e Ll(RN) n L°°(/?N), a function u e L°°((0, oo) x RN) is called a weak

solution of the problem (1.1) if tιεC([0, oo); Ll(RN)} as an L^J^-valued

function on [0, oo),

ιι(f, x)/,(ί, x) + ̂ (ιι(ί, x)W(ί, x)dx )Λ = 0
Jo \JκN /

for any'/e CJftO, oo) x 1?N) and w(0, X) = MO(X) a.e.. The existence of weak

solutions is established in [1] (in a more general situation) and the uniqueness is
proved in [3]. (See also [2] and [11].)

To state the new method for solving the Cauchy problem, let p be an arbitrary
but fixed rapidly decreasing function on RN which satisfies

(1.2)

P > 0 ,

and

RN

ξtξjP(ξ)dξ = dip for

where <5ί7 =l if i=j and <50 = 0 otherwise. (For example, we can choose the
(normalized) Gaussian kernel (2π)~N/2 exp ( — |ξ|2/2) as such p(ξ).) We set

for (ξ, ή) e RN x R and /t>0, where {^A}Λ>0 is a family of smooth strictly increasing

functions on R such that ψΛ(0) = 0, ψ h(n)-+Ψ(n) as h J, 0, uniformly for bounded
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ηeR, and {ψ'h(n)} is uniformly bounded for bounded h>Q and bounded ηeR.
Note that, the assumption (1.2) on the function p implies

(1.4) RN ξίPh(ξ, h)dξ = 0 and ξ.ξjp^ξ, η)dξ = 2h-ψh(η)δitj

for 1,7 = 1, 2, , N.
For each /i>0, we define an operator Ch on L1^^) by the integral

-
(1.5) (QW)(x)= ph(ξ,η)dη)dξ, xeR«,

JRN \Jθ /

where \veL1(RN). Using the properties (1.4) of pΛ, we see easily that, for w e

L1^") Π L°°(/?N), /rKCfcW- w) converges to J^(w) in the sense of distributions
as h I 0. (See the proof of Lemma 3.2 below.) Thus, we can expect that, if

MO e L\RN) Π L°°(/?N), then (C^/Λ]M0)(x) converges to the weak solution of the
Cauchy problem (1.1) as h | 0, where [ί] denotes the greatest integer in ίe/?.
In fact, we have the following theorem.

THEOREM. Let u0eLl(RN)n L™(RN). Then, as h I 0, (C^/Λ]M0)( ) con-

verges in Ll(RN) to the unique weak solution u(t, ) of the Cauchy problem (1.1)
uniformly for bounded t>0.

The method stated above was suggested by the methods of solving the Cauchy

problem for the equation

ut + V- φ(u) = 0, / > 0 and xeRN

that were presented in [5], [6] and [7], and the method of solving the Cauchy

problem for the equation

ut 4- Γ φ(u) = μΔu, t > 0 and x e RN,

that was presented in [9], where φ is an RN -valued function on /?, μ is a positive
constant and Γ denotes the spatial nabla. As in these methods, our method is

also based on a linearization procedure of the problem (1.1) to the Cauchy problem
for a linear equation involving a parameter. In fact, let

F(α, η) = 2-1(sign(α-?y) + sign(ί/))

for α, ηeR, where sign(η) = η/\η\ if η^O and sign(0) = 0. (See [7] for the basic

properties of the function F.) Then, we can rewrite (1.4) as follows:

f(t,x,η)dη,
-oo

where
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η)dξ

for ί>0, η e R and x e /?*, and the function /(ί, x, 77) satisfies the linear equation
involving the parameter η

ft = ψ'h(η)Af for ί>0, xetf",

provided p is the Gaussian kernel.
The result will be obtaind by applying the approximation theory for nonlinear

semigroups. In section 2, an approximation theorem given in [10] will be
recalled, the basic properties of the operators Ch will be investigated so as to apply
the approximation theorem and a dissipative operator A in L*(RN) will be

introduced in such a way that Au = Aψ(u) in an appropriate sense. The proof of

the Theorem will be given in section 3.

Basic properties of C h

We first recall the approximation theorem for nonlinear semigroups due to
Brezis-Pazy [4] and Oharu-Takahashi [10] in a form convenient for our use.

THEOREM 2.1. Let {Ch}h>Q be a family of contractions on a real Banach
space X. Suppose that the limit

exists for any veX and any A>0, where I denotes the identity operator in X.
Then there exists an m-dissipative operator A in X such that Jλ = (I — λA)~1

for λ>Q and, for each υeD(A),

uniformly for bounded ί>0, where {T(t)}t>0 is the semigroup generated by A.

For the proof we refer to [10]. We wish to apply this theorem to the

operators Ch defined by (1.5) and the Banach space X — Ll(RN) with the usual
norm \\ \\ι. For this purpose, we first prepare a few estimates concerning the
operators Ch. In what follows, for each yeRN

9 we define an operator τy on

Ll(RN) by (τ'tiXx) = u(x + y) for x e RN where u e Ll(R»). Let ML denote the
usual norm of the space L°°(/?N).

PROPOSITION 2.2. Let h>0. Then :

(i) Ch is a contraction operator on L1(RN) and \\CfrU\\i_ < \\u\\! for ue

Ll(RN).

(ii) Chτ'
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(iii) If ueLW^nL^R"), then Chu e L\RN) n LX(RN) and

ML.
PROOF. LetueL^R1*). Then

Γ /C Γu(x-hξ) \
< ( sign(U(x-Aξ)) ph(ξ,η)dηdx)dξ

JRN\JRN Jo /

= \RN (\κlf sign («(*

Since \ Nph(ξ,η)fξ = l, this implies that CΛM e L1^*) and HCaull^llulU. Let

«,06L*(Λ*). Then,

(CΛu)(x) - (C4»)(x)

Γ /fu(Λ:-Aξ) \

= \ (\ PM, η)dη)dξ
jR"\)v(x-hξ) /

= JΛNQ/^, θu(x-hξ) + (l-θ)v(x-hξy)dθ) (u(X-hξ) - v(x-hξ))dξ.

Therefore, we have

( |(C4u)(x) - (Chv)(x)\dx
JRN

(( (Γp^ftίίx-ΛO + α
\JRN\JQ

|ιι(x)-ι<x)|dx.

Assertion (ii) is evident from the definition of Ch. It now remains to prove (iii).
Let u e LKfl*) n L°°(#") and /c e R. Since

L (Jo^
we have

(2.1) (C»ιι) (x) - fc =
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Taking k=± \\ u\\x in (2.1), we find that (CAM)(x) - |NL < 0 and (CA«)(x)+ ||u|L
>0. Hence Chu e L°°(Λ") and || Chu \\ x<\\u \\ β. Q.E.D.

The following result will be used to estimate the integrals ( \(Chu)(x)\dx

for R>0 and u e Ll(RN). W<*

PROPOSITION 2.3. Let ueL1^) and h>0. Then,

(2.2) \(Chu)(x)\ - |«(χ)| < f ^"(JC-ftί>

 sign (η}ph{ξί
JRN \Ju(x)

x e

PROOF. Let keR and x e /?N. Since the function sign ( ) is nondecreasing
and pΛ>0, (2.1) implies

sign(/c)((CΛιO(x)-u(x))

S /Γu(x-hξ) \

( Sij>n(k)ph(ξ,η)dη)dξ
RN\Jk J

C /Γu(x-hξ) \

<\RN(\k siSn(η)pH(ξ,η)dη)dξ.

On the other hand, we have

|fc|- |ιι(x)|= -

r /Cu(x) \

= - \ (\ sign (η)ph(ξ, η)dη jdξ.
JRN\Jk /

Hence,

S /Γu(x-hξ) \
sign(η)ph(ξ, η)dη )dξ.

Λ ^ V J u ( x ) /

Taking k = (Chu)(x) in this inequality, we obtain (2.2). Q. E. D.

We set

Ah = h-\Ch-I) and Jλth = (/-A^r1

for A, /ι>0. Assertion (i) of Proposition 2.1 implies that each Ah is m-dissipative
and the resolvent Jλίh is nonexpansive in L^/?*). The following result can be
proved in the same way as in the proof of Proposition 2.2 in [7].

PROPOSITION 2.4. Let λ, h>0. Then:
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( i ) Jλ,h is a contraction operator on Ll(RN) and \\Jλthv\\ι < ||ι?ι|| for vε

(ii) Jλ,hτy = τ*JλtHfo

(iii) IfveLW^nL^R^ then Jλ,hveL"(RN) and

We define an operator A0 in Ll(RN) by

= Δ\l/(u) for w 6 D(AQ) ,

where the domain D(A0) of 40

 is tne set of w e LH/?*) Γ) L°°(RN) such that
in the sense of distribution is an integrable function on RN. Let A be the closure
of A0 in L*(RN). The following fact is proved in [1] but we here gives its proof
for completeness.

PROPOSITION 2.5. The operators A0 and A are dissipative in

PROOF. It is sufficient to show that A0 is dissipative in LH/?^). To this end,
define a linear operator L by Lu = Δu for ueD(L\ where D(L) is the set of u e

L*(RN) such that the distributional derivative Δu is in L\RN). Since the

assumptions on ψ imply that ^(M)eL1(^JV) Π L*(RN) if ueH(RN) n L°°(/?N), we
have A0u = Lψ(u) for u e D(AQ). It is known that the operator L is densely defined

(linear) m-dissipative operator in Ll(RN). (See, for example, Lemma 1.1 in [1].)
Let M, VGD(A0) and λ, ε>0. Since ψ is nondecreasing and (ί — εL)"1 is

nonexpansive in L^/?*), we have

RN

Letting ε i 0 in this inequality gives

[\(u-v)(x)-λI4φ(U)-φ(vy)(x)\-\(u-v)(x)\]dx > 0.
RN

Q.E.D.

3. Proof of the Theorem

We start with the following lemma.

LEMMA 3.1. Let v e U(RN) n L°°(Λ*). Then
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> 0 as R - ,00,
\x\>R

uniformly for bounded h>Q and bounded A>0.

PROOF. Set uλ>h = Jλthυ for λ, h>Q. Then it follows from Proposition 2.4

that uλ>h e L
1^") Π L°°(R") and

(3.1) IK,Λ<IMIp, p = l , o o .

Since

(3.2) Λ

we have

< sign (u^x^λ-^u^x) - v(x))

= sign (uλ>h(x)}h-\(Chuλ^(x)-uλth(x)

<h-\\(Chuλ>h}(x)\-\uλ>h(x)\).

Hence, (2.2) with u = uλ>h implies

(3.3) λ-i(\uλ>h(x)\

Choose a function g e C°°(/?) such that

0(s) = l if s > l ; 0(s) = 0 if s < 0; and 0 < g(s) < 1 for seR,

and define, for .R>r>0, the function fR'reCcc(RN) by

r)-1(W-r)) for

Since /R'r(x) = l if |x |>K; /R'ί'(x) = 0 if |x|<r;and 0</R'Γ(x)<l for xeRN, it
follows from (3.3) that

(3.4) ( \uλih(x)\dx - ( \υ(x)\dx
J\x\>R J | x |>r

RN

< λh-i \ \\ f(u* h(χ-hξ) sign (φh(ξ, η)dη)dξ}f« '(X)dx
J Λ N L J Λ N V J u A . h W / J
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By Taylor's formula, we have

Therefore, in view of (1.4), (3.4) implies

Γ Γ\ \uλh(x)\dx — \ |ι?(x)|dx
}\x\>R ' J\x\>r

< λN2 \ \ \ X signWψ'Mdηldx'Supij -̂ -
JRN LJO J OXiOX

Thus, using (3.1), we obtain the estimate

\uλ,h(x)\dx < ( \v(x)\dx

-f
'R,r

\x\>R

+
d2

dXidXj
fR,r\\

By the hypothesis on \j/'h and the definition of/*'r, we see that the second term on

the hand side of the above inequality converges to zero asR-*co, uniformly for

bounded λ, h>0. Therefore,

lim supo< λ < Λ o,o<h<Λo \ \Uλ,
J\x\>R

\v(x)\dx

for A0>0 and /z0>0. Since veLί(RN)9 this shows the desired assertion.
Q.E.D.

LEMMA 3.2. Let v e L\RN) n L°°(/?N) and λ > 0. Then we have :

(i) The set {Jλ>hv; Q<h<h0} is precompact in L\R*)for h0 >0.
(ii) // {h(n)} is a null sequence such that Jλ>h(n)V converges to a limit

ueL1(RN) as n->oo, then ueD(A^) and λ~1(u — v) = A()u.

PROOF. Let Λ 0 >0 and set uλ)h = Jλhv for λ, h>0. Assertions (i), (ii) of

Proposition 2.4 together imply

(3.5)

for h > 0 and y e RN. Hence

(3-6) sup0<Λ<Λo | |τ^λ jh-Mλ)Λ | |1

Furthermore, Lemma 3.1 implies that

as y 0.
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(3.7) sup 0 < Λ < Λ o( \uλth(x)\dx - » 0 as R - .00.
J\x\>R

In view of (3.1), (3.6) and (3.7), the well-known compactness criterion in ^(RN)
can be applied to get the first assertion (i).

To prove (ii), let (h(n)} be a null sequence such that WA,Λ(/O converges a.e. to
a limit uλ e Ll(RN) as n-» oo. It follows from (3.1) that uλ e L°°(/?N) and \\uλ\\ „ <
\\v\\n. Let/6 C$(RN). By (3.2) and the definition of CA, we have

(3.8) \ λ-\uλ,h(x)-v(x))f(x)dx
JR"

= h r rr /r -<-*> (ξ> η}dη\dξ\f(x}dx

jR«LjRN\JuA,h(x) / J

Using (1.4), we can rewrite the right side of the above equality as

r rr /r Λ.H(χ) (ξί

)R"L)RN\JQ

= ( Γ( (TΛ'hW P*(t, η)dη)\\lξ.(rf(x + θhξ)- Γ f(xy)dθ\dx]dξ
JRNLJRN\JO / ( J O j J

and by a change of variables the above integral is transformed into

\\
LJRNLJRN\JO

Put h = h(ή) in (3.8) and let n tend to the infinity in the resultant equality. Since
i l w λ , f t l l o o is uniformly bounded for /ι>0 and ψ'h(η) is uniformly bounded for
bounded h > 0 and bounded η e R by the assumption, the Lebesgue convergence
theorem yields

λ-\uΛ(x)~υ(x))f(x)dx
RN

-LD^OΓ

where we have used (1.2). Hence uλeD(A0) and λ~1(uλ—v)=A0uλ. Q.E. D.
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In the same way as in the proof of the consistency condition (d2) in [7]
(p. 504-505), we can show that the lemma above implies the following result.

PROPOSITION 3.3. The operator A is m-dissίpative in L*(J?N) and

(I-λA)-h = limHO Jλ,ιP ίn L\RN)

forλ>QandveL1(RN).

We have also the following result.

PROPOSITION 3.4. The domain D(A) of A is dense in

PROOF. Let veLW) n L"(RN) and set uλ = (I-λA)-^v for A>0. Since
limΛ^0 Jλ)hv in Ll(RN), (3.1) and (3.5) imply

: \\υί\\ί and \\τyuλ-uλ\\1 <

respectively. Also, Lemma 3.1 implies

s u p o < A < A o \ \uλ(x)\dx > 0 as R > oo
J\x\>R

for any A0>0. So, the Frechet-Kolmogorov theorem implies that the set {uλ;
Q<λ<λ0} is precompact in L !̂/?^). Let {λ(n)} be a null sequence such that
MΛ(Π) converges in Ll(RN) to a limit u e Ll(RN) as π->oo. Since ||uλ\\^ is bounded
for A>0 by (3.1), so is H^KtOH^ and λ(n)ψ(uλ(n)) converges in the sense of distri-
bution to zero as n-»oo. Therefore, WA ( / I ) — v = λ(n)Δ\jj(uλ(n^) converges in the
sense of distribution to zero as π->oo and v = u=limn_>00 wΛ(/l) in L^/?^). This

implies veD(A). Since L^R") n L°°(/?N) is dense in L^R"), we see that D(A) =
Ll(RN). Q. E. D.

By Propositions 3.3 and 3.4, the dissipative operator A generates a con-
traction semigroup {T(f)}t^0 on L^/?^). On the other hand, Theorem 2.1 and
Proposition 3.2 together imply that, for

(3.9)

holds in Ll(RN) uniformly for bounded ί>0. Hence, it suffices to show that
ιι(t, x) = (T(t)u0)(x) is a weak solution of the problem (1.1) provided u0 e LJ(/?N) n

L°°(/?"). To this end, let u0 e L*(RN) n L°°(RN) and set ιι(ί, jc) = (Γ(ί)w0)W
Obviously, M eC([0, oo); LX(/?N)) and, by Proposition 2.2 (iii) and (3.9),

MeL°°((0, oo)x(Λ^ with \u(t, x)|^||n0L. Set W/ί(ί, x) = (C^]w0)(x). Since

)ί we have Λ-HM^+ft,.)-"*^'))^^*"^')* so that
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for feC$((Q9 oo)x/?N) and /ι>0 sufficiently small. Since wΛ(f, ) converges to

M(ί, )in L^R") as ft J,0, uniformly for bounded ί>0, and \uh(t, x)|< H^, 'the
same argument as in the proof of assertion (ii) of Lemma 3.2 yields

for feC$((Q, oo)x /?"). Thus, w(f, x) is a weak solution of (1.1). This com-
pletes the proof of the Theorem.
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