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1. Introduction

Let X be a Banach space with norm | - | and we denote by B(X) the set of all
bounded linear operators on X to X. A one-parameter family C={C(t); te R=
(— o0, 00)} in B(X) is called a cosine family on X if it satisfies the following three
conditions:

(1.1) C(t+s) + C(t—s) = 2C(1)C(s) for all ¢, seR;
(1.2) C(0) = I (the identity operator) ;
(1.3) C(?) is strongly continuous in ¢.

The associated sine family S={S(#); t e R} is the one-parameter family given by

S(f) = f " C(s)ds.
(o]
The (infinitesimal) generator A of a cosine family C is defined by
(1.4) Ax = lim, o 2h~2(C(h)—I)x

whenever the limit exists. Hence the set of elements x for which lim,_,2h"2-
(C(h)—I)x exists is the domain of 4 and is denoted by D(A).

The following theorem was established by Sova [12], Da Prato-Giusti [1]
and Fattorini [2]. It is analogous to the Hille-Yosida theorem on the generation
of semigroups of class (Cy).

THEOREM 1.1. Let A be a closed and densely defined linear operator in X.
Then A is the generator of a cosine family C satisfying

IC@| = Mewl!t  for teR,
if and only if for all A with 1> w,

(1.5) A2e p(A) (the resolvent set of A),
(1.6) (d/dA)"[AR(4%; ]Il < Mn!(A—w)™""!



592 Tosiharu TAKENAKA and Noboru OkAazawa

for neN={0, 1, 2,...}, where R(A%; A)=(A%2— A)~! (the resolvent of A).

Let A be a linear operator in X and consider the Cauchy problem for the
evolution equation of second order in time

(1.7) u"(t) = Au(t), u(0)=x, u'(0)=y.

The problem (1.7) is uniformly well-posed (see [2] and [13]) if and only if 4
generates a cosine family C; in this case the unique solution of (1.7) is given by
u(t; x, y)=C(t)x+S(t)y. For first order evolution equations of the form

(1.8) u'(t) = Au(t), u(0) = x,

several authors have treated the case where p(4)=g (see e.g. [7], [8], [9] and [10]).
However, it seems that there has been no attempt to consider the corresponding
problems in the second order case.

In this paper we make an attempt to treat the Cauchy problem (1.7) in the
case in which p(4)=g¢. We proceed with our argument as follows: Let A be a
closed linear operator in X and let Y be a linear manifold of X. We then impose
on them the following conditions:

(a) Yis a normed space under a certain norm || - || which is stronger than
the original norm |- | of X;

(b) there exists a real w such that for each 1> w, the range R(A?— A) contains
Y, R(A2)=(A2— A)~! exists, and such that Y is invariant under R(42?);

(c) there exists a constant M >0 such that

sm(;2 ) s,

”ZL":@] (27{ >JA"_k(Jz“1)kx

for xe Y, A>w and n e N, where J,=12R(A2).

Under these conditions and an assumption on the denseness of Y, in Y
(see §3), there is a one-parameter family {C(¢); t € R} of linear operators defined
on Y such that C(f)x is a solution of (1.7) with xe Yand y=0.

In addition, we give another proof for the “if’’ part of Theorem 1.1. It
should be noted that we do not make use of the Laplace transform in this proof.
In §4 we shall construct approximation schemes for a cosine family C in terms of
the resolvent of its generator.

2. Preliminaries

Let C be a cosine family on X and S the associated sine family. Then by
condition (1.1), we have

2.1 C(t)=C(—1), S(t)= —S(—t), teR.
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Let A be the generator of C. Then we have for x e D(4) and te R,
2.2) AC(t)x = C(H)Ax, C'(t)x = AS(t)x = S(t)Ax.

Moreover, under the assumpition of Theorem 1.1, we have

(2.3) [COII < Me=ltl, teR,

2.4) IR(2; A) = J: ROy, 1>
and hence

(2:5) IS = M|tlel], teR,

(2.6) R(2; A) =f: HS(Ddt, 1> .

Now let A be a closed linear operator in X and let Y be a linear manifold of
X. We impose the following conditions on 4 and Y:

(a) Yis a normed space under a certain norm ||| - || which is stronger than
the original norm || - || of X;

(b) there exists a real w such that for each A>w, R(A2— A4) contains Y,
R(A%?)=(A%2— A)~! exists, and such that Y is invariant under R(4?);

(c) there exists a constant M >0 such that

= m(22) Il

for xe Y, A>w and neN, where J,=A42R(1?).
Now for the problem (1.7) with y=0 and the problem (1.7) with x=0and y=x
we consider the following two approximate schemes:

|08 (g War = D

AUy —2uy+ Uy ) = Atyyy, neN,
2.7

Ug=x, U, =U—-124)x, 1> o,
and

Az(vn+1_2un+un—l) = AU,,+1, nEN’
(2.8)

vo=0, v, =11 (I-1"24)"x, 1> o,

where xeY. For A>w, we put J;=(I—4"24)"'. Then we can rewrite (2.7)
and (2.8) as follows:

(2.9) Uy = 2J1u" - Jlu"_l, Uy = 2J;_U" - len—l’ neN.

LEMMA 2.1. For A>w and x € Y the following equalities hold :
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(2.10) u,

I

S{ (g ) I L= Dkx, meN,

@.11) va= 5 Sl () I G= DR, neN.

Proor. It is clear that (2.10) and (2.11) hold for n=2. Assume that (2.10)
holds for n<2m. Then the application of (2.9) implies

Upmi1 = 2 20 %;Cn)-lzzmﬂ—k(']z_])kx - Xred (2"21]: ! )Jzzm_k(-]a“l)kx-

Using<lnc>=<”;l>+<z:i>, we have
J 2=k (] — T )kx — k“0<2"21;1>J12'"“"(Jl—1)"x

= 2e= (P D)k Drx o+ S (G ) e = D

— oy ( 2rgk— 1 >J12m—k(J;._1)kx

_ ;:.;(1)( 1>J 2mek (J, — I)*Hx + Y= 2k+ll )lem—k(.]l_l)kﬂx

_ 2 _ -2 _
=204 2k’-n}—1 >J12m KL= D x = 3, 2krf1>~112"'“ k(= Dkx.
Hence we obtain

Upmi1 = Zk 0< >_] 2m+1-— k(J —‘I)kx + Zk 1 <21;2’111>J12m+1_k(J1—])kx

= S (V5 )k Ik

Next assume that (2.10) holds for n<2m+1. Then we can derive (2.10) with n
replaced by 2m+2 in the same manner as above.

Next assume that (2.11) holds for n<2m. In a way similar to the proof of
(2.10) we have

gy = 22053 (213'_:1_1 )J;.Z'"H_k(Jz—I)k

_ -1 . 2 -
=é(§Z1+l )szm K(J,—Dkx = X (2;:1:‘11> J 2=k (] — Tkx

We may omit the proof of the rest part. g.e.d.

LEMMA 2.2. Let A be a closed linear operator in X and let Y be a linear
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manifold of X. Assume that conditions (a)-(c) are satisfied. Then we have

(2.12) I = 2<"-‘>1M(I}6)~>" i,
that is
(2.13) ILR@AD]"x|| = 2= V*MA="(L— )"l x [l .

Proor. First we note that u; =J,;x. Furthermore, we see from Lemma 2.1
that

_ X . k .
uy = 2 ( 33 ) It L= Dix = T Sl- 17 () )(5) 2o,
Let a,_; be the coefficient of J,"~/x, namely
n o n\(k o [n/2]-j n k+j
ap-j = Z£=/}](— l)l<2k><j) =(—1)/ 2£=/g] I<2k+2j)( j J )
Using a well known formula, we see that a,_; can be written as

Ay j=2""H"N (1) ';1 "}Z_ ! )

But since

(n—=1!  (n—j—1!
(n=j)t = (n=2j)! °

we have

n ("Tf— 1 ) —_nn—j-D! - nm! ( n)
J\ Jj-l1 Jin=2j)! = jin—j)! 7/
It then follows that
a,_;| 221 ( n_>.
la,—;| < f
Noting that
ay =S (5} ) =2
we obtain
2= nx = u, — YPa, Jmix.

We now assume that (2.12) with n replaced by k holds for 1<k<n—1. Then
we have
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R (O I B R 70 e B (D [T I Y
and hence

Wl < 202 (2 Y st (O sl

< 2oty () 2OV e s 2o ae (G A Y
q.e.d.
For A4, u>w and x € Y, we have
R(A%)x — R(p?)x = — (22— p?)R(A>)R(p?)x.

Therefore, R(42)x is continuous in A with respect to the norm | - ||. Hence R(42)x

is continuously differentiable with respect to 4.
In what follows we shall make use of the notations:

Fix = (dJd2)"R(A3)x, Gix = (d/d2)"[AR(2)x].

To see that Fix and G%x are well-defined for xe Y, we prepare the next
lemmas.

LEMMA 2.3. Assume that R(A%)x is n times continuously differentiable with

respect to the norm || -||. Then the following relations hold:
(2.14) AFix + nF1~'x = Gix,

(2.15) AGIx + nGY¥ 'x = AFx,

(2.16) Fix 4+ 2AnF7"'R(A%)x + n(n—1)F172R(A?*)x = 0,
(2.17) Gix 4+ 2AnGy'R(A%)x + n(h—1)G12R(A¥)x = 0.

Proor. First, we note that (12— A)R(A?)x=x. Differentiate both sides n
times in 4 we have (2.14), (2.15) and

(2.18) A2Fix + 2AnFy~'x + n(n—1)F1~2x = AFix.

From (2.14) we have

(2.19) 22Gix + 2AnGi 'x + n(n—1)G4 2x = AAFix + nAF} 'x = AG)x.
Therefore, (2.16) and (2.17) are direct consequences of (2.18) and (2.19). g.e.d.

LEMMA 2.4. Let R(A?)x be as in Lemma 2.3. Then we have for > and
xeY
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(2.20) Gix = (—lymla-n—1 YL n/21 ( ntl )JA"“"‘(JA— I x,
@21 Fix = (= tyentae S (SR s -

PrOOF. By virtue of Lemma 2.1 it is enough to prove that for x € Y we have
Gix =(=1)rnlA " tu,,, and Fix =(—1)"nli"""1p,,,.
We shall prove them by induction. Using (2.9) and (2.17), we have
Gix = — 2AnGy 'R(A?)x — n(n—1)G1~2R(A?)x
= (= 1y gty — Tty ) = (= 1)l |
Relation (2.21) can be derived in a way similar to the proof of (2.20). q.e.d.

Lemmas 2.3 and 2.4 together imply that FIx is differentiable. Therefore,
F7x and Gjx are well-defined for xe Y. Let A be a closed linear operator in X
and consider the differential equation in X

(2.22) (d?/dt*)u(t) = Au(t), teR.

By an abstract Cauchy problem for A we mean the following:

ACP. Given an element x € X, find an X-valued function u(t)=u(t; x, 0)
defined on R such that

(i) u(?) is twice continuously differentiable in ¢,

(ii) for each teR, u(t) e D(A) and u(?) satisfies (2.22), and

(iii)) u(0)=x, u'(0)=0.
A function u(t) satisfying (i)—(iii) is called a solution of ACP.

DEFINITION 2.5. Let D be a linear manifold in X such that
(2.23) there is a norm || - || under which D is a normed space,
(2.24) there are seminorms p(-) and q(-) on D.

Let {U(¢); te R} be a family of operators on D into D(A) satisfying
(2.25) for every x e D, u(t)=U(t)x is a solution of ACP,
(2.26) there exists a positive constant M such that

(U@ < MelHix]l, U (Dx] < Mltle®!"Ip(x),
and [AU(®)x| < Me®ltlg(x) for xeD, teR.

We call {U(t); te R} a family of solution operators of ACP on D with type
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w. It follows from condition (ii) that D<= D(A4). Also, by (2.25), the norm || - ||
is stronger than the original norm |- | on D.

3. Construction of solution operators

Let 4 be a closed linear operator in a Banach space and Y be a linear manifold
in X satisfying conditions (a)-(c) which have been introduced in the preceding
section. We further introduce two linear subspaces of Y:

Y, ={xeY; Axe Y},
Y, ={xeY,; Axe Y,}.
From the relation
R(A%)x — R(u¥)x = — (A2—u?)R(A®)R(u?)x for L, u>w and xeY,
we see that
3.1) A2R(A?)x — x = R(A?)Ax (€ Y) for xeY, and 1> w.
We need the following lemmas:

LeEMMA 3.1. Let A be a closed linear operator in X and let Y be a linear
manifold of X satisfying (a)-(c). Then we have for A>w and x€Y,

(3.2) 1Gix]l = Mn!(A—w)™"HIx]Il,
(3.3) IFix] = M(n+ DI(A—aw)™" 2| x]| .
ProoF. By Lemma 2.4, it is clear that (3.2) follows from (¢). From this and
(2.14), we obtain (3.3) by induction. q.e.d.
LEmMMA 3.2. Let A and Y be as in Lemma 3.1. Moreover we assume
that Y, is dense in Y with respect to the norml||| - ||. Then we have for xe Y
(3.4) lim, ., %Pﬁ Jnt Fry = 0,
(3.5) tim, .., (= D" 21G3x = x.

PrROOF. We prove the above formulae by induction with respect to n.
From (3.1) and (3.2), we have

1R —xl 5 M ax.
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Since Y, is dense in Y, we obtain (3.4) and (3.5) in the case of n=0. Assume
then that (3.4) and (3.5) are valid for n<k—1. By (2.15) we have

(7{1) MHIGhx = ( ) AAGk Tx +. (= - Ak AF%x

(k—1)!

The first term on the right side is convergent to x as A— oo by the induction hypo-
theses. For x €Y, we have

1)k=1
k!

[0 arpax] < M—((lk ji});ffz Il Ax]l.

Therefore the second term is covergent to 0.  Since Y, is dense in Y by assumption,
(3.5) is obtained for any x e Y. Next, (2.14) yields

(—]‘cl) A+ Fhy = ((kl)l)' MV Ry 4 (= 1) IkGhx

The first term on the right side is convergent to 0 by the assumption of induction.
For x e Y, we have

|G wate | s M

From this (3.4) follows. q.e.d.

For xe Yand t=0, we set

(3.6)  C,()x = (( 1)1)‘ (nftyGriix  for >0, CyO)x = x,

(37 S.()x = ..(:1 D" (npyr+iFn,x for 1>0, S,0)x =0,

(3.8)  W(x = (( }r)l)' (nf)*2Grtix  for >0, W(O)x = x.

By virtue of Lemma 3.2, C,(t)x, S,(t)x and W,(1)x are continuous in t>0. From
(3.2) and (3.3), we have for n=2wt, t=0 and x e,

(3.9 ICDx] = Me?|jx]I ,
(3.10) IS.(0x]l = 8M|rle> [ixl
(3.11) W, (x| = 4Me2et|| x]| .

Differentiating C,(t)x and S,(t)x in t, we see from (2.14) and (2.15) that for
xeY,
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(312 (@dnC,nx = D" iy 1 nGrzx+ (/G x)

= AS,()x = S,(1)Ax,

(3.13)  (d)dD)S,(1)x = ”:1 ((;_lf_);;;-(n/t)"”Gﬁ;‘,‘ x = ”:‘ W (1)x .

Noting that

(_l)"+I (n/t)"+‘AF"+‘x+ (_n})" (n/’)nAF:;/'x

Wn(t)x - C"(f)x (n+ 1)' n/t

= D" Gy AR x + 1A, (0)x
(n+1)! WX Ty A
we have
(3.14) IWAx—Cy(xl £ 20 Meorjjax))  for xe,.

LemMA 3.3. Let A be a closed linear operator in X and let Y be a linear
manifold of X satisfying (a)-(c). Moreover we assume that Y, is dense in Y with
respect to || -|l. Then for any xeY, C(t)x and S,(t)x defined respectively by
(3.6) and (3.7) both converge as n—oo with respect to | -||. In each case the
convergence is uniform with respect to t on bounded intervals of [0, o).

PROOF.  Let e>0and xeY,. It follows from (3.12) and (3.13) that
C,(e)C (t—e)x — C,(t—¢€)C, (e)x
+ S,(e)S,(t—&)x — S, (t—¢)S,(e)Ax

= J:_E js. [C.(t—5)C,(s)x]ds + f:—e :113 [S,.(t —5)S,(s)Ax]ds

- J' [C, (1 —5)AS,(s)x — S, (t —$)AC,(s)x]ds

-

+‘f’_£{.n:15m(t—s)A W (s)x — ’”,:' Wt =5) AS, (9)x | ds,

&

and hence

C(Dx — C,(x = fo [Co(1—5)— W, (t—s)]S,(5)Axds
+ f 8,1 —5) [W,(s) — C(s)] Axds
0

+J‘;Li]1 Su(t—5) W, (s) — ,,'1 Wm(l—S)S,,(s)jj Axds.
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Therefore (3.14) implies that for each x e Y,

1C(Dx—Cult)x] = & ( by !

3 (3 + ) Mre2r | 2]

+16<-’l1-' + h‘l)wﬂezw' Il Ax|l.

Since Y, is dense in Y, C,(t)x converges uniformly for bounded ¢ for each xe Y.
Moreover we see from (3.14) that W,(f)x converges too. Since

S,(f)x = f’ n+1 oy oxds,
0 n

S,(t)x also converges uniformly for bounded t. q.e.d.

For xe Y and t=0 we define C(t)x and S(#)x as the || - ||-limit of C,(t)x and
S, (t)x, respectively:

(3.15) C(H)x = lim,_, , C,()x = lim,_, , W,(1)x,
(3.16) S()x = lim, ., S,(f)x =f' C(s)xds.
0

We can extend C(t)x and S(t)x for t<0 as follows. For t=>0, we set C(—1t)x=
C(H)x and S(—1t)x=—S(tf)x. We denote the extensions again by {C(f)x; teR}
and {S(t)x; te R}. Then C(f)x and S(?)x satisfy

(3.17) ICOxIl = Mel"lix|l,

(3.18) IS(Mx] = Mzl x| .

From (3.12) and (3.13) we have for xe Y,

(3.19) C,(H)x = x + f ; 2L = sywis)Axds.
Passing to the limit as n— oo, we obtain

(3.20) Clx = x + f;(t—s)C(s)Axds

and we infer that C(#)x is twice continuously differentiable in ¢ for x e Y;. Noting
that AC,(1)x=C,(1)Ax for xe Y, and A4 is closed, we see that C(t)Y, = D(A).
Moreover, we obtain

(3.21) (d]dt)C(t)x = AS(H)x, (d?*/dt*)C(t)x = AC(t)x = C(t)Ax,

for xe Y; and
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(3.22) COx=x, xeY, C'(O)x=0, xeVY,.
We are now in a position to state the main result of this section.

THEOREM 3.4. Let A be a closed linear operator in X and let Y be a linear
manifold of X satisfying (a)-(c). Furthermore we assume that Y, is dense in Y
with respect to the norm || -||. Then {C(t); te R} has the following properties:

(1) JC@Ox|| £ Meeltl|| x|| for xeY and teR,

(ii) for each xeY, C(t)x is || - |-continuous in t e R,

(i) C(Hx — x = f’ S(s)Axds  for xeY, and teR,
o
(iv) AR(A?)x = jw e *C(t)xdt  for A>w and xeY,
0
(v) R(A\H)x = foo e #S()xdt  for A>w and xeY.
0

PrROOF. It remains to prove (iii)-(v). For xe Y,, we obtain (d/ds)C(s)x=
AS(s)x=S(s)Ax. Integrating both sides of this equality from s=0 to s=t, we
get (iii). For xe Y,

(dlds)e=*sS(s)x = — Ae™*sS(s)x + e~ *sC(s)x.
Integrating both sides of this identity from s=0 to s=t, we have
e MS(x = — lJﬁ e~ *sS(s)xds +ft e~ *sC(s)xds.
0 ]
Since || S(t)x|| £ Mte®|||x||, letting t— oo gives

(3.23) F e #sS(s)xds = - f“’ e C(s)xds.
0 0

Similarly, for xe Y; and A>w

(d/ds)e*sC(s)R(A?)x = — Ae~*C(s)R(A?)x + e~ *S(s)AR(A?)x

= — LemC(s)x — L emmC(s)R(1D) Ax + e 35(s) AR (22)x.

Hence integrating this from s=0 to s=t yields
e HC(R(G)xX — R(2)x = — & f " e~isC(s)xds
0

_ 11 J" e MC(s)R(A2)Axds + J“ e~ **S(s)R(A?) Axds.
0 0
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Assertion (iv) follows from (i) and assertion (v) is deduced from (iv) and (3.23).
q.e.d.

THEOREM 3.5. Let A, Y, Y, and Y, be as in Theorem 3.4. Then {C(1);
te R} is a unique family of solution operators of ACP on 'Y, with type w.

PrROOF. We have already proved the assertion except the claim for the
uniqueness. Let {U(#)} be a family of solution operators of ACP on Y, with type
w. Then for x e Y,, we have

(d/ds) [e“SU’(s)x]A = — leAU'(s)x + e *AU(s)x

and hence

e MU' (Hx = — lj; e MU'(s)xds + A f:) e~ *sU(s)xds.
Letting t— o0, we have

A f: e *U'(s)xds = A f: e~*sU(s)xds.
Since the left-hand side can be written as
— x4+ 22 f : e=3sU(s)xds

and R(A2—A)>Y, we have

AR(?)x = f " s U(s)xds.
0

By Theorem 3.4 (iv) there can not exist more than one family of solution operators
satisfying conditions (2.25) and (2.26) stated in Definition 2.5. q.e.d.

In the remainder of this section we consider a particular case and establish
a second-order analogue of the first order case which was treated by Oharu [9].

Let A be a densely defined and closed linear operator in X and let k be a
positive integer. Then we may regard D(A*) as a Banach space with respect
to the norm

Ixle = lxll + [l AxI] +---+ [ A*x] .

We write [D(A*)] for this Banach space.
We consider the following conditions:
(1) there is w € R such that {1%; 1 > w} < p(A),
(2) there exists a constant M >0 such that

I1Gix| £ MnW(A—w) " x|, for A >w and xeD(A%).
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Then the pair of A and [D(A*)] satisfies the conditions (a)-(c). Furthermore,
D(A") is dense in [D(A¥)] for n=k (see Oharu [9; Lemma 2.7]). Consequently,
there is a family {C(t); t € R} of solution operators of ACP on [D(A*)] with type
w:

IC(Hx|| < Me®!tH| x|, for xeD(A*) and teR.

THEOREM 3.6. Let A be u densely defined and closed linear operator in X.
Assume that the above conditions (1) and (2) are satisfied. Then for each x €
D(A**Y), C(t)x becomes a unique solution of ACP. Moreover, for xe D(A%*),
{C(t)} has the cosine property

C(t+s)x + C(t—s)x = 2C(1)C(s)x.

Proor. Let u(t) be any solution of ACP with the same initial value x.
Putting

o(1) = C(t)x — u(t), teR,

we see that v(0)=0, v'(0)=0 and v"(t)=Av(r). Now, let ioep(A4). Then R(4y?;
A)kv(t) e D(A**1) and

AC(t—35)R(12; AYcu(s) = C(t—s)R(A2%; A Au(s).

By integration by parts we have
f; AC(t—$)R(Jg2; A)eo(s)ds = f; C(1—$)R(3g2; A o(s)ds
- f; C'1—$5)R(Jg2; A)v/(s)ds
and

f " C(1—$)R(3g2: A Av(s)ds = f’ Clt—$)R(Ag2; A)v"(s)ds
0 0

= R(%o2; A)v'(1) + ﬁ) C'(t—5)R(1%; AKV(s)ds.

Therefore, v'(t)=0 for r € R and v(t) must be constant. But v(0)=0, and v(t)=0.
Next, let x e D(A%*1). Then C(t)x € D(A**'). We set for x € D(A%**1)

w(t) = C(t+s)x + C(t—s)x — 2C(1)C(s)x.
Then, in a way similar to the above argument, we can show that w(t)=0, i.e.,

C(t—s)x + C(t—s)x = 2C(1)C(s)x for xeD(A%*+1),
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Here C(t)C(s) is a bounded linear operator on [D(A%*)] to X and so are C(t+5)
and C(t—s). Noting that D(A2**!) is dense in [D(A?%*)] (see Oharu [9; Lemma
2.7]), we obtain the desired assertion. g.e.d.

4. Approximation of cosine families

Let A be a closed and densely defined linear operator in X satisfying
4.1 2ep(A), 1> o,
4.2) |(d/dA)"[AR(2%; A)]|| < Mn!l(A—w) " 1.

We write s-lim,,_, , C,=C, if {C,} converges to some C € B(X) in the sense of the
strong operator topology. We set for A>w

4.3) G, 1 = (d/d)"[AR(2%; A)],
4.4) F, = (d[d})"R(A?; A).
By Lemma 2.4, we obtain
Gy x = (=1)""Y(n=-111""u, for xeX.

Therefore, we have

— n—1
.5) D 4G, x = S (1) Tt
(46) '(_n’%)f'i /ln-HFn,). — JI Z}:(';/&] ( znk-:_ll )J}."+l_k(‘ll_1)k'

We then set for n/t>w

Co(0) = U (S ) un™* =D
t
Sue) = £ S (AL ) Tt = D

Then, in view of the argument developed in Section 3, one finds two families
{C(¥)} and {S(¢)} obtained by

. . —_ n—1 n
@ €)= slim, .o, €(0) = selim,, DL (MY Gy,
(4.8) S(1) = s-lim,,,, S, (1) = s-lim,_, , ( ?;1%)'1 <Jt1.>"+l Fn,n/r .

According to Theorem 3.6 (see also [5]; Lemma 2.4), {C(t)} has the cosine
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property. Furthermore, it satisfies the following growth condition:
ICOIl = Meel'l.

The generator of {C(¢)} is precisely equal to A. This is seen by employing the
method which was established by Kisynski [4] or Sova [12]. Moreover, {C(t)}
is uniquely determined by A; this is easily seen from the next lemma.

LemmA 4.1. Let C(t) and C,(t) be cosine families with generators A,
and A,, respectively. Assume that D(A,)=D(A,). Then we have for x € D(A,)

C,()x — Cy(t)x = f; S,(t—5)(A, — A,)C,(s)xds.
Proor. For xe€ D(A4,), we have
[C.()—Cyt)]x = [ -4 [Cyt—s5)C (s)xTds + f’ A I5,(1—5)S(s)4,x]ds
1 2 ° ds 2 1 o dS 2 1 1
= [ [Cat=9)5.)41x = St =9)4,C(5)x1ds
+f; [S,(t—3)C,(5)A,x — C,(1 —5)S,(s)A4,x]ds
=f; S, (t—5) (A, — A,)C,(s)xds. q.e.d.

Consequently, we have obtained another proof for the “if*” part of Theorem
1.1. Namely ,we have

THEOREM 4.2. Let C be a cosine family and let S be the associated sine
family. Then we have

(49) C(0) = s-limy .o, (S} )Jas =D
(4.10) S(0) = slim, ., L Sl (J N )

where the convergence is uniform with respect to t in any bounded interval of R.

ReMARK 4.3. The representations (4.9) and (4.10) in terms of the resolvent
were first obtained by Webb [14]. But he used the representation theorem for
strongly continuous groups and required the result of Kisynski [4] in which
second order differential equations are converted into first order systems. In
[6], Lutz announced (4.5) and proved (4.9) by using a different method. In his
proof it is shown that the rate of convergence of (4.9) is O(1/,/m) for n=2m.
Moreover, we have the following representation:



Abstract Cauchy problems 607
AF, ; = (d[dA)"[A?R(A%; A)] = AG, ; + nG,_, ;
= (= 1)"n1i-n Y in2) n+lY (J, = Dk
: k=0 \2k+1)"4 4 :
We assume that [|AF, ;|SMnl(A—-w)™" for A>w, then we obtain |G, ;||<
M+ 1DY(A—w) ! for A>w.

Next we establish another type of approximation formula of a cosine family
C. We define for A>w

(4.11) U,.a

I

S8 (g )L =1,
@12 Vo= Sl (0 )LD Ve =0,

We start with the following

LemMA 4.4. Let U, ; and V, ; be defined by (4.11) and (4.12), respectively.
Then we have the following relations:

(4.13) Upa=LUpog 2+ A —=DV, 2y 5,
4.14) Ao =20Voy0+ JaUs— 145
(4.15) Ups=AV,: — Vi,

(4.16) A=ty Ui

Proor. For n=2m we have
Usns = Zt-o( 5 ) I 41— D*
2 [ /2m-1 2m—
-y s () o (ot e vty
+ (S ) a1y

=== () + = G -

= JUseri + ZE4 (G0 2] )2 K D

= J}.UZm—-l,A + )~(J/1—])V2rn—l,i.‘

For n=2m+1, we have
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Usniron = oo 250 1) 22140, = 1
— s ‘sz) +< 2ml ) , 2mit=k(J — [)k + <2m0+l>J/12,,,+l
= S 2 Vo = s (G2 ) S = 1
= T Usns + S8 ( gy )2 = D
=J,Ugps + M= DV 5.

Therefore we obtain (4.13). Similarly, for n=2m we have

- 2 -
AVioma = ka=(}<2k'_7_1 )JAZ'" K= Dk
=J, 3 1(%5{";#)_]12":—1 KJ, =Dk + J, Sm 1<2rgl:1>JA2m—|—k(JA_1)k

= AJ}.VZ:H——I,A + -]AUZm—l,z-

For n=2m+1, we get
Wamrs = Steo(Sp ) ) 12m K= 1
G s o
+ 2= (5 ) I 1)
= 2, Vans + 3t (5 ) IS5 = 1P = Vo + iU

Therefore we obtain (4.14). Combining (4.13) and (4.14), we obtain

Uy = Uy it 23V00 ) — AV, A—“/,,z—)~l/.,_—11
Thus, we have (4.15). Moreover we have
Woa=22l0Wia—=Vioy ) = Zi-o Ura g.e.d.
We now assume that U, ; satisfies the boundedness condition

(4.17) Wl sm( 2 )

Under this assumption (4.16) implies
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1 M, AN _ M Ao\
@18 1Vl 55 SVl 35 St (52, ) = M (5 )

To formulate an approximation formula for a cosine family, we put for t=0:

(4.19) Cy(t) = et = .(%‘!)f',, U,

(4.20) S = em S, My,

Then, by (4.17) and (4.18), C,(t) and S,(t) are estimated as

IC()] S e Tg A (L 2 Y = Mexp ({20,

and

I5,(00 5 Mz G5 (2 ) =0y 2 ee(125),

Therefore C,(t) and S,(t) are well-defined. Noting that A*(J,—I)=A4J, and
Vo.,=0, we have by Lemma 4.4

(At)nt U

(d]dnC,(0) = — dem Tig YO U, 4+ deis i, =1yt Una

— Jeit g (A-t) (U

n=0

n+1,A— n,/l}

— e MY e WL ((Ja= DU, ,+ MJ,— 1)V, ;)
= AJ,S,(1) + AJ,—D)Cy(t).

Moreover, we have

(d]dn)S;(t) = — de™* T %, (M) Vaa+ de?# X0, ((nl?i]_)lv Vi

_ o~ At)"
= e M n=0 (n? {/1 Vn+1,l_)‘ Vn,).}
= e Sig Y U= D)V, LU = 10 + 0, = DS,

Thus we obtain the relation
(d?]dt®)C;(t) = AJ2C,(t) + 2M(A,—DAJT;S,(1) + AAJ,—1)2Cy(1).

THEOREM 4.5. Let A be a closed and densely defined linear operator in X
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satisfying (4.1) and (4.17). Then A determines a unique cosine family C which
is represented as

4.21) C(1) = s=lim,_ , C;(¥) for teR,
and the convergence is uniform with respect to t in each bounded interval of R.
Proor. For x e D(A), we have

1
1A= Dxll = 3 4Tl < M ax

We here derive the conclusion in a way similar to the proof of Lemma 3.3. For
x € D(A) we have

C.(O)x — Cl)x = f; js- [C(1—s5)Cy(s)x]ds + f '0 i ;’S [S(1—5)S,(s)AJ ,x]ds

- f | Clt=3) {AT,S,)+ 10, = DC,(s)) xds — fo S(t = $)AC (s)xds
+ fo S(t— ) (J,Cx(s)+ 2(J 5 — DS ()} AJ yxdls —fo Cli— 5)AJ,S (s)xds

- f ; S(t—5) (A 2 — A)C,(s)xds
+ f; [C(1 = $)A(J ;= D)C4(5)x + S(t—$)A(J , — 1)S (5)x]ds

= f; S(t—5)Cy(s) (J 2 — 1) Axds
+ j | [C(=9)C()+ S(t—9)S () A5~ Dxds.

Therefore we have
IC0x—C0xl < Moo [ (1=s)exp (22 ) sl — DA
# e [ v -9, 2 Lexo(,27 Vasiatarxl. qed.

REMARK 4.6. The family {C,(t)} defined by (4.19) is not a cosine family
generated by AJ;, but it is closely related to the Yosida-approximation of semi-

groups.
We see from (4.5) that (4.17) is equivalent to (4.2) for A2e€ p(A4). Therefore,

(1.6) in Theorem 1.1 may be replaced by (4.17):

THEOREM 4.7. Let A be a closed and densely defined linear operator in X.
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Then A is the generator of a cosine family C if and only if for all 2 with 1> w,

(D) 12ep(A),
(I .lt zﬁﬂgl(z’}( >JA““‘(JZ—1)"” < M( i_*w ) neN.

REMARK 4.8.  We do not know whether (II) is equivalent to the boundedness
condition for the powers of J;,. Assume that for A>w and neN

M l n
WS gty <;1'_w’> and |J,—1] < 1)2.

Then we have
lstwar( 7N g u-key — el
“Zk—u 2k A ( i ) 11 =

M A " [n/ ](
§ =1 (l—(,l)> Zk=(% 2k

IA

N
L
™M

M [n/2]( n ( ANk
k=0 2k l—‘w

S
~——
lIA
<
Yam

o
o~

S

~
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