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1. Introduction

This paper is concerned with problems of testing the hypotheses (i) for the
equality of covariance matrix to a given matrix, (ii) for the sphericity and (iii) for the
equality of two covariance matrices. When the underlying distribution is normal,
the commonly used tests for testing these hypotheses are the likelihood ratio
(=LR) tests. Anderson [1], Sugiura ([10], [11], [12]) and Nagao ([6], [8]) derived
the asymptoic expansions of their null and non-null distributions. Nagao ([7], [9])
proposed certain test statistics for testing the above hypotheses and derived the
asymptotic expansions of their null and non-null distributions. Hayakawa [3]
proposed a modified Wald statistic for a simple hypothesis when underlying
distribution is more general. He made the comparison of some tests for the problem
(i) under local alternatives.

Let the p x 1 vectors Xj,..., Xy be a random sample from a normal distribution
with mean vector u and covariance matrix 2. The modified LR criterion for testing
the hypothesis 5#: X' = X, against the alternatives . X # X', for some given positive
definite matrix 2, is given by

(1.1) A=|Z5 18" 2etr{ — (n/2)(Z5 1 S—1)},

where S=n"'YY_ | (X;— X) (X;— XY, X=N"'Y)_, X;and n=N— 1. Wald statistic
is given by

1.2) T, = (n/2)tr(S"1 X, — 1)
The test statistic proposed by Nagao [7] is given by
(1.3) T, = (n/2)tr (X5 'S—1)%.

These three statistics are the symmetric functions of latent roots of 25 ' S. Let d, ...,
d, be the latent roots of X5 1S. It is seen that (d, ..., d,) is a maximal invariant under
a certain group of transformations (see e.g., Muirhead [5]). We consider a class
C of ststistics

(1.4) T=ny3-.0(d),
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where the critical region based on T is “T>k” and Q(d) is a function on d>0
satisfying the following assumptions /1~ /4.

1. Q(d) has a continuous fifth order derivative in a neigh-
borhood of d=1,

2. Q"(1)=1,

3. Q(1)=0'(1)=0,

4. Q'(d)<0 if O0<d<l,
Q'd>0 if 1<d

If #: X=X, is true, the roots d; should be close to 1. T may be regarded as a
measure of the deviation from the hypothesis by /3 and /4. Without loss of
generality we can impose /2 under /1, /3 and /4. &71 is necessary for obtaining
an asymptotic expansion of the distribution of 7. The modified LR test To=
—2logl, Wald test T, and Nagao’s T, belong to C.

In this paper we shall derive the asymptotic expanison of the null and non-null
distributions of test statistics in C. Our purpose is to compare the local powers of
tests on the basis of the expansions. The differences in the powers of all the tests in C
can be explained in terms of g=Q® (1). The comparisons reveal no uniform
superiority properties.

2. Asymptotic expansions of the null distribution for X=X,

We shall give an asymptotic expansion of the null distribution of T given by
(1.4). Without loss of generality we may assume that X, =I. Then nS has a Wishart
distribution #,(n, I). Let Y =n'/?(S— ), then Y is asymptotically normal and the p.
d.f. of the distribution of ¥ can be expressed (see, Siotani, Hayakawa and Fujikoshi
[13]) as

21  f(¥)=c,tetr{—(1/4)Y*} {I+n"12Q,(Y)+n ' Q,(Y)} +o(n™?),
where ¢, =nP(P+ D42p(P+ 34 apd
22) 0,(Y)=— (12)(p+ )tr ¥ + (1/6)tr Y3,

0,(Y)=(1/2) {Q,(Y)}* — (1)24)p(2p* +3p—1)
+ (1/4) (p+1)tr Y2 — (1/8)tr Y*.

Considering a Taylor expansion of Q(d) at d=1, we can express the statistic 7 in
terms of Y for large n as

2.3 T=(1/2)trY*+ (1/6)gn~**tr Y3 + (1/24)rn"*tr Y* 4+ 0,(n™ 1),

where g=0® (1) and r= 0" (1). We shall find the asymptotic expansion of the
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characteristic function of 7 up to the order n~! and invert it. The characteristic
function of 7 can be written as

24) c(t)= &[exp(1/2) (i) tr Y?) {1+ (1/6) (git) n~*%tr V3
+n"[(1/72)¢* (it)*(tr Y3)? + (1/24) (rit) tr Y*]} + 0,(n"1)].
Using the p.d.f. of Y given by (2.1) and (2.2), we can obtain
(2.5) c(y= (1-2it) 712&[1+n~12{Q(¥) + (1/6) (git) tr ¥*}
+n”{(1/27) (qit)*(tr ¥°)* + (1/24) (rit) tr ¥* + Q,(¥)
+(1/6) (git) tr Y20, (P)}1 + o(n™),
where f=(1/2)p(p+1), Q,(*) and Q,(-) are given by (2.2) and Y= hasap(p
+1)/2 variate normal distribution with mean zero and cov(J;,7.)=(1
—2it)™ 040+ 0,405). Calculating the expectations in (2.5), we have
(2.6) c(t)=(1=2it) 12 1 +n 133 _oa;(1-2it) 7} + o(n™ 1),
where
27)  ag=—(1/24)p(2p*+3p—1),
a, = (1/24)p(2p*+3p—1) + (1/48) (g+2)*p(4p* +9p+7)
= (1/12) (g+2)p(p* +3p+4) — (1/48) (r—6)p(2p*+5p +5),
a,=—(1/24) (g+2)*p(4p*+9p+7) + (1/12) (g +2)p(p*+3p+4)
+(1/48) (r—6)p(2p* +5p+5),
ay = (1/48) (g+2)*p(4p*+9p+7).
This implies the following theorem.

THEOREM 2.1.  Letd,, ..., d, be the latent roots of 5 'S andlet T=T (d,, ..., d,)
be the statistic given by (1.4). Then the null distribution of T can be expanded for large
n as

(2.8) P(T<x)=P(x}<x)
+n7 Y3 aP(x3,,;<x)+o(n™?),
where f=p(p+1)/2 and the coefficients a;’s are given by (2.7).

The asymptotic expansions of T, T, and T, are obtained from (2.8) by putting
(g, r)=(—2,6), (—6, 36) and (0, 0), respectively. The asymptotic expansions of the
null and non-null distributions of Ty, T, and T, were obtained by Sugiura ([10],
[11]), Hayakawa [3] and Nagao ([7], [9]), respectively.
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Next we consider Bartlett’s [2] adjustment for 7. From (2.8) we have
29) ET)=f+n"1Y3 oa;(f+2j)+o(n™ ")
=f(l+h/n)+o(n™"),
where
(2.10) h=(1/24)f{2p(2p*+3p—1)+ 4(q+2)p(p* +3p+4)
+ (r—6)p(2p>+5p+5)}.

Therefore the Bartlett’s adjustment factor is given by p=1—A/n and pT has an
expected value closer to that of x} than T has, in the sense of §(pT)=f+o(n"1).
Further it holds that under the null hypothesis

(2.11) - P(pT<x)=P(3<x)
F Y 0GP <X) +o(n7Y),
where
(2.12) do=(1/12) (g+2)p(p*+3p+4) + (1/48) (r—6)p(2p*+5p+5),
dy = (1/48) (g+2)°p(4p*+9p+17) — (1/6) (g+2)p(p* +3p+4)
—(1/24) (r—6)p(2p* +5p+5),
Gy =a,, 43 =a;

This shows that Bartlett’s adjustment implies P(pT<x)=P(y}<x)+o(n™')ifand
only if g= —2 and r=6. The LR test T, satisfies this property. (2.11) also shows that
the y2-approximation y% to T will get worse as |g+2| and |r— 6] are large.

3. Asymptotic expansion of the non-null distribution and the comparison of
powers for X=23,

The asymptotic non-null distribution of 7" depends on the type of alternative
being considered. Here we consider a sequence of alternatives 4 ,; X=2X,(I
+n~12@). Under the alternatives X,, W=2X, 1?8352 has a Wishart
distribution #,(n, I+n~'2?0). Let Y=n'?(W—I—n"'?@), then Y is
asymptotically normal and the p.d.f. of the distribution of ¥ can be expanded (see,
Siotani, Hayakawa and Fujikoshi [13]) as

(3.1) f(Y)=c, tetr{—(1/4)Y?} {1+n"2Q(Y, )} + o(n~'/?),

where ¢, is given by (2.1) and
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3.2) oY, 0)=—(1/2) p+trO + (1/2)tr Y20
—(1/2) (p+1)tr Y+ (1/6)tr Y3,

By the same consideration as in the null case, the characteristic function of T'is given
by

(3.3) e(r) = (1—2it)~"2exp{[it/2(1 —2it)]tr 62}
- E[1+n"Y2{(1/2)[1+ (¢ +2)ita,]tr Y26
+ (1/6)[gita® + 8(it)*a? + 2(it)2a? ] tr &3
—(172) (p+1)a,tr O] + o(n~112),

w‘her'e ffp(p+1)/2, a,=(1-2it)"" and Y= (y;;) has a p(p+1)/2 variate normal
distribution with mean zero and cov (y;j, yi;)=a,(640 %+ 6,9;). Calculating the
expectations in (3.3), we have

(3.4) c(t)=(1=2it) T2 {1+n"12Y3_ b;(1-2it) '} + o(n~172),
where the coefficient b;’s are given by
(3.5 by = (1/3)6;,
by =—(1/4) (p+1) (g+2)0, — (1/2)85,
b, = (1/4) (p+1) (g+2)0, — (1/12) {g+2)—2}6,,
by =(1/12) (¢+2)6,,
with 6,=tr@®’. This implies the following theorem.

THEOREM 3.1  Under the sequence of alternatives #,: £=Xo(I+n"'?0), the
distribution of T given by (1.4) can be expanded for large n as

(3.6) P(T<x)=P(x}(8)<x)
+n 23 0bP(xF 4 2i(0)<x)+o(n” 12y,
where 8 =tr©?/2 and the coefficient b;'s are given by (3.5).
Using the relation
(3.7) P(x}+2(0)>x) — P (x}(0)>x) = 2g,.,(x; 9),

where g (x; 8) is the p.d.f. of a noncentral x? variate with f degrees of freedom and
noncentrality parameter 8, the power of the test based on T in C follows from

theorem 3.1.



604 Hirofumi WAKAKI

THEOREM 3.2.  Under the sequence of alternatives A,: X=X (I+n"'?0), the
power Py of the test with a level a based on T can be expanded as

(3.8) Br=Bo+ (1/2)n™12(g+2)d(O, u) + o(n™11?),

where P, is the power of the test with q= —2, u is the upper 1000% point of the x3
distribution and

(3.9) d(©, u)= (p+1)0, 8+ 6)+ (1/3)038, 46 (s J).
Further B is given by

(3.10) Bo=P(x}(8)>u)+ (1/6)n~*120,{2P(x3(8)>u)
—3P(x7+208)>u) + P(xF+4(8)>u)} + o(n™1/?).

We note that the power of the modified LR test is expanded as f, in (3.10). The
sign of d(O, u) depends on @ and u, and no one statistic is uniformly superior to the
remainder in the sense of the comparisons of powers up to the order n~ /2. 1f d(0, u)
>0, the test with larger ¢ than —2 is preferable, but such a test is very poor for the
alternatives such that d(©, u) <0. Similarly if d(®, u) <0, the test with smaller g than
— 2 is preferable, but such a test is very poor for the alternatives such that d(0O, u)
> 0. In practice, we will hesitate to recommend such a tests with larger values of |g
+ 2| because the approximation to the distribution of T will be worse as |g+ 2| is
large, and we do not know that d(@, u) is positive or negative. Some sufficient
conditions for d(©, u)>0 and d(@, u)<0 are given as follows.

() If @ is positive (negative) semidefinite, then d(O, u)>0 (< 0),
for all u.

(¢) If05<0and 3(f+4) (p+1)0, +ub;>0, then d(®,u)>0.

(¢) If 03>0and 3(f+4) (p+1)8, +ub;<0, then d(®, u)<O0.

The conditions () and (c) are obtained by expressing the noncentral % —density as
a Poisson mixture of central y? —densities.

4. A class of test statistics for sphericity

Let the p x 1 vectors Xj,..., Xy be a random sample from a normal distribution
with mean y and covariance matrix X, and let d,,..., d, be the latent roots of pS/tr S,
where S=n"'YY_,(X;— X) (X;— X), X=N"'YY_oX;andn=N—1. (d,,...,d,)isa
maximal invariant under a certain group of transformations (see, Muirhead [5]).
For the sphericity hypothesis # : X = g2 against the alternatives ": X # I, where
o2 is unspecified, we consider the same class C of test statistics as in the problem (i),
ie.,
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4.1 T=ny}-,0(d),

where Q(d) satisfies the same assumptions &/ 1 ~ /4 as in (1.4). The LR test statistic
T, and a test statistic T; proposed by Nagao [7] are defined by Q(d)=d—1—logd
and (d—1)?/2, respectively, but Wald statistic

42) T, = (1/2)n{p— (trS~1)*/tr§~2}

dose not belong to C. In this section we shall give the asymptotic expansion of the
null distribution of 7. Without loss of generality we may assume that %= 1. Then
nS has a Wishart distribution #,(n, I). By expressing T with Y=n'/?>(S—1I), we
have

4.3) T=(1/2) {tr¥?—p ' (tr V)?}
+n7 2R (Y)+n 'R, (Y) + op(n_l),
where
(4.4) Ry (Y) = (1/6)qtr ¥*— (1/2) (g +2)p™  (tr ¥) (tr ¥?)

+(1/3) (g+3)p7 2 (tr Y)>,

Ry (Y)=(1/24)rtr Y* — (1/6) (r+3q)p~ ' (trY) (trY?)
+ (1/4) (r+69+6)p~2(trY)*(tr Y)
—(1/8) (r+8¢+12)p~3(trY)*.

with g=0® (1) and r=0™ (1). Using the p.d.f. of Y given by (2.1) and (2.2), the
characteristic function of T can be expanded as

4.5) e(t) = (1-2it) /{1 +n" Y3 oa,(1=2it) 7} + o(n™ ")
where f=(p—1) (p+2)/2 and
(4.6) ao=—(1/24) 2p*>+3p*—p—4p™"),

a; = (1/24) 2p*+3p*—p—4p™")
—(1/48) (r—6) 2p>+5p*—Tp—12+12p7 1)
+(1/48) (g+2) (¢g—2) (P*+3p*—8p—12+16p~ 1),

a,=(1/48) (r—6) 2p*+5p*—Tp—12+12p~ 1)
—(1/24)q(q+2) (P*+3p*—8p—12+16p~1),

ay = (1/48) (g+2)*(p*+3p*>—8p—12+16p~ ).
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This implies the following theorem.

THEOREM 4.1.  Let d,, ..., d, be the latent roots of pS/trS and let T=T (d,,...,
d,) be the statistic given by (4.1). Then the null distribution of T can be expanded for
large n as

(4.7) P(T<x)=P(j<x)
+n7 0= 0P (174 25<x) +o(n 1),
where f=(p—1) (p+2)/2 and the coefficient a;'s are given by (4.6).
From (4.7), the Bartlett’s adjustment factor is given by
p=1—(1/24n"f " {22p*+3p>—p—4p~?)
4.8) + (r—6) 2p*+5p*—Tp—12+12p~ 1)
+4(g+2) (P> +3p*—8p—12+16p~ 1)},
and under the null hypothesis
4.9) P(pT<x)=Px}<x)+n" 'Y} 03P (x3,,;<x)+0(m™ 1),
where
do = (1/48)(r—6) 2p*+5p*—Tp—12+12p7 1)
+ (1/12) (g+2) (P> +3p*—8p—12+16p~1).
4.10) a=—(1/24) (r—6) 2p*+5p*—Tp—12+12p7 1)
+ (1/48) (g +2) (g—6) (p*+3p*—8p—12+16p~ 1),
4, = a,, 43 =as.

This shows that Bartlett’s adjustment implies P (o T<x)=P (y7<x)+o(n™')ifand
only if g= —2 and r=6. The LR test T, satisfies this property.

5. Asymptotic expansion of the non-null distribution and the comparison of
powers for sphericity

We shall compare the powers of test statistics in C under the sequence of
alternatives ¢,: X' =02?(I+n~1/2@), using the asymptotic expansions of the non-
null distributions. Under the alternatives ¢, W=0¢"2$ has a Wishart distribution
W ,(n, I+ ~120). Let Y=n'>(W—I—n"'2@), then Y is asymptotically normal
and the p.d.f. of Yis given by (3.1) and (3.2). By the same method as in Section 3, we
obtain the following theorem.
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THEOREM 5.1.  Under the sequence of alternatives A,: X =c*(I+n~120), the
distribution of T given by (4.1) can be expanded for large n as

5.1 P(T<x)=P(}()<x)
+n7 1233 _0bP (X541 ,;(0)<x)+o(n™ ),

where f=(p—1) (p+2)/2, §=1trB?/2 and the coefficient bj’s are given by
(5.2) bo = (1/6)tr[(30 —8)H?],

b, = — (1/2)tr (06?),

b, = — (1/12)qtr &3,

by = (1/12) (g+2)tr &3,
withh ® =0 — (tr@)p~ 1.

The asymptotic expansions of the distributions of Ty and T, are obtained from

(4.7) and (5.1) by putting (g, r)=(—2,6) and (0, 0), respectively.

The power function of the test 7 can be expanded as in the following theorem,
by using (4.7), (5.1) and (3.7).

THEOREM 5.2. Under the sequence of alternatives A,: X =c*(I+n~'20), the
power Br of the test with a level a based on T in C can be expanded as

(3) Br=PBo+ (1/6)n~ 1/2(q+2)tr@gf+6(u’ 8)+o(m™11?),

where B, is the power of the test with g= Q® (1)= — 2, u is the upper 1000% point of
the 3 distribution. B, is given by

(54) o=P}0)>u)+ (1/3)n~ 2 {trOg; , 4(u, 8)
—tr[30—6)0%]g, . ,(u, 6)} +o(n~ /).

Theorem 5.2 shows that if tr@ > 0, the test with larger ¢ than —2 is preferable
and that if tr @ <0, the test with smaller g than — 2 is preferable. This agrees with the
results of Harris and Peers [4].

6. A class of test statistics for the equality of two covariance matrices

In this section we consider the problem (iii) of testing the equality of two
covariance matrices. Let the p x 1 vectors X, ..., Xiy; be a random sample from a
normal distribuution with mean y; and covariance matrix X;(i=1, 2), and let
d,, .., d, be the latent roots of $;'S; where S;=n;'Y%, (X;,— X)) (X;—X))",

X;=N()" 'Y Y9, X;; and n;=N(i)— 1. We consider a class C of test statistics
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(6.1) T'=nk;k;) -1 Q(d)),

where n=n, +n,, k;=n;/n, the critical region based on 7T is “T>k” and Q(d)
satisfies the same assumptions &/ 1 ~ «/4 as in (1.4). The modified LR test statistic 7,
and Nagao’s [7] satistic 7, are defined by Q(d)={log(k,d+k,)—k,logd}/k k,
and (d—1)?/2(k,d+k,)?, respectively.

By the same consideration as in the problem (i) and (ii), the asymptotic
expansions of the null and the non-null distribution of T are obtained. We state the
results and proofs are omitted. The expansion of the null distribution is given in the
following theorem.

THEOREM 6.1.  Let d,,..., d, be the latent roots of S; 'S, and let T=T (d,, ...,
d,) be the statistic given by (6.1). Then the null distribution of T can be expanded for
large n as

(6.2) P(T<x)=P(x}<x)
+n7 1Y 0aP((F 40y <x) +0(n7 1),
where f=p(p+1)/2 and the coefficients a;'s are given by
(63)  ao=(1/24) {1—(k;k,)"'}p(2p*+3p—1)
ay = — (1/24) {1—(k,k;) " }p(2p* +3p—1)
— (1/12) (kyky) Mg +2k +2) {p(p*> +3p+4) + kp(4p*+9p+7)}
+ (1/48) (kyk;) ™ (g+2k, +2)*p(4p* +9p+7)
— (1/48) (k1ky) ™ [r—6(ki+k,+1)1p(2p* +5p+5),
ay = (1/12) (kik;) ™' (q+2k, +2) {p(0*+3p+4) + k,p(4p*+9p+7)}
—(1/24) (kky) " (g+2k,+2)’p(4p*+9p+7)
+ (1/48) (k. k,) ' [r—6(k?+k,+1)]p(2p*+5p+5),
ay = (1/48) (k,k,) ™ '(g+2k, +2)*p(4p*+9p+7),
with g=Q0® (1) and r=Q0™ (1).

From (6.2), the Bartlett’s adjustment factor is given by
(6.4) p=1—(1/24n" (fkik,)™'2[1 - (k1) 1p(2p* +3p—1)
+4(q+2k,+2) [p(P*+3p+4)+kpdp*+9p+7)]
+ [r—6(ki+k,+1)]p2p*+5p+5)},

and under the null hypothesis #: 2, =2,
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(6.5) P(oT<x)=P(3i<x)
+ 17 Y 08P (X4 2i<x) +0(n7 1),

where

(6.6) ao=(1/12) (kyky)™ (g +2k, +2) {p(p*>+3p+4)+ k. p(4p*+9p+7)}
+ (1/48) (kiky) 1 [r—6(k?+k,+1)1p(2p*+5p+5),
;= — (1/6) (k1k,)™ (g +2k, +2) {p(p* +3p+4) + kyp(4p*> +9p+7)}
+ (1/48) (k ky) 1 (g+2k,+2)*p(4p*+9p+T7)
— (1/24) (k1k,) ™' [r—6(k% +ky +1)1p(2p* +5p+5),
&2 = az, 63 = a3.
This shows that Bartlett’s adjustment implies P (0T<x)=P (y}<x)+o(n"')ifand
only if g= —2(k, + 1) and r=6(k? + k, +1). The modified LR test T, satisfies this
property.
For expanding the non-null distribution of T, we cosnsider the sequence of

alternatives J,: 252X X;12=1+n"12?@. The asymptotic expansion of the
distribution of T under 7, is given in the following theorem.

THEOREM6.2 Under the sequence of alternatives A,: X;'?X X;12=1I
+n~ 2@, the distribution of T given by (6.1) can be expanded for large n as

(6.7) P(T<x)=P(x;(0)<x)
+n 23 0biP (xF42;(0)<x)+o(n™1/?),
where f=p(p+2)/2, 6=k, k,0,/2 and the coefficient b;’s are given by
(6.8) bo = (1/6)kk,(2—k,)05,
by=—(1/4) (g+2k,+2) (p+1)6, — (1/2)k1k%93,
b,=(1/4) (g+2k;+2) (p+1)6,
+ (1/12) {2k k,(1—2ky) — k1k,(q+ 2k, +2)0;,
by = (1/12)k k,(q+ 2k, +2)65,
with 6;=tr&’.
The asymptotic expansions of the null and the non-null distributions of T, and
T, are obtained from (6.2) and (6.7) by putting (g, r)= (—2k, —2, 6[ki+k,+1])
and (— 6k, 36k?), respectively. These special cases have been treated by Anderson

[1] and Nagao ([7], [8]).
The power function of the test 7 can be expanded as in the following theorem,
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by using (6.2), (6.7) and (3.7).

THEOREM 6.3 Under the sequence of alternatives A,: X;'X,X;'V*=1I
+n~12@, the power By of the test with a level o based on T can be expanded as

6.9) Br=PBo+ (1/2)n2k,k,(q+ 2k, +2)d(O, u) + o(n~1/?),

where d(®, u) is the same as in (3.9), and B is the power of the test withq= —2(k, + 1)
and is given by

(6.10) Bo=Px}(6)>u)+ (1/3)k,03n~ 2 {(1 -2k, )g +6(u, 5)
—(2—ky)gssa(w, 0)} +0(n™1?).

Theorem 6.3 shows that the results on the power comparisons of tests in C are
the same as the ones in Section 3.
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