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1. Introduction

Stochastic Sturm-Liouville equations of the form

(1.1) (p(x, ω)uj + q(x9 ω)u = 0; (x, ω)e[0, oo) x Ω

arise naturally in mathematical models of vibrating systems whose physical

properties (e.g. masses and spring constants) are known only in terms of

probabilities. The most obvious deterministic approximation to such an

equation is the classical Sturm-Liouville equation

(1.2) (P(x)ι/)' + ρ ( φ = 0; xe[0, oo)

where P(x) and Q(x) are the expected values of p(x, ω) and q(x, ω) relative to a given

probability space Ω. The rather natural correspondence between (1.1) and (1.2)

makes it important to understand the extent to which solutions of (1.2) do in fact

approximate solutions of (1.1).

This paper is concerned with solutions of (1.1) and (1.2) which also satisfy initial

conditions of the form

u(0, ω) = 0 with probability 1 v(0) = 0.

Denoting the smallest positive zeros of such solutions of (1.1) and (1.2) by ξ(ω) and η,

respectively, we shall focus on the relationship between X and η, where X denotes

the expected value of ζ(ω) relative to Ω.

In [3] an analogous theory for eigenvalues serves as a basis for establishing

criteria which assure that

(1.3) X&η.

While applying to very general classes of equations, the criteria of [3] do not take

into account the nature of the correlation between p(x, ω) and q(x, ω) and, as a result,

lead to rather restrictive hypotheses for assuring (1.3). The present paper focuses on

the nature of the correlation between p(x, ω) and q(x, ω) in establishing criteria for

(1.3).

It is assumed throughout that the coefficients p(x, ω) and q(x, ω) are
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respectively of class C2 and C on [0, oo) for each ωeΩ and that there exist positive

constants a, b, c and d for which

0 < a ̂  p(x, ω)^b; 0 < c ̂  g(x, ω)^d

for all (x, ω)e[0, oo) x Ω. We also use " P r " to denote probabilites of events in Ω.

2. Measures of correlation

In order to establish appropriate measures of correlation and to determine

their effects on first zeros, we begin by considering the simpler equation

with solution sin((g(ω)/p(ω))1/2x) and first zero X(ω) = π(p(ω)/q(ω))1/2. Given a

particuular pair of coefficients p(ω) and #(ω) we consider a closed rectangle in the

for which Pr((p, q)eR) = 1. Our measure of correlation between p(ω) and g(ω) will be

formulated in terms of parameters μ and v satisfying

(2.2) c/b^μ< min(d/b, c/a) <v^d/a.

These parameters are used to partition R into disjoint sets

and

Letting f(p, q) denote the joint probability density function of p and q, the

concentration of/(p, q) in Eμ and £ v corresponds to a strong negative correlation

between p and q, while the concentration of/(p, q) in H corresponds to a strong

positive correlation. Accordingly we introduce the notation

α = Pr((p, q)eEv)

β = Pτ{(p,q)eEμ)

γ = Pr((p,q)eH)
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Figure 1.

2.1 THEOREM. If

(2.3)

then

PROOF. From Figure 1 we readily see that P is minimized if the probabilities
α, β and γ are localized at p = a, p = c/μ and p = α, respectively. This shows that

Proceeding in an analogous fashion, we can use the data represented in Figure 1 to

establish that

(α + y)a + β(c/μ) ̂ P*ί(β + γ)b + <x(d/v)

{β + y)c + αvα < Q ̂  (oc + γ)d + βμb.

This shows that η = π(P/Q)1/2

(2.4) πl(a'

In order to obtain analogous bounds for X we make use of the transformation [2]

or

with Jacobian J(p, q)/(s, t)=-2q^0 which maps R onto a region R' in the (s, ί)-
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Figure 2.

plane as in Figure 2: Since the lines of q — vp and q — μp in Figure 1 map into
horizontal lines t = v " 1 / 2 and t = μ~ί/2, respectively, it is clear from Figure 2 that the
expected value of ί(ω)= (p(ω)/q(ω))1/2 is minimized if the probabilities α, β and y
are localized at / = (a/d)1/2, t = μ~1/2, and t = v~1/2, respectively. This shows that the
expected value of t satifies

(2.5) T^φ/d)1/2 + βμ-1/2 + yv-1/2.

Since X = πT9 (2.3) follows directly from (2.5) and (2.4).

REMARKS

1. From Figure 2 we could also show that

(2.5)' αv " 1 / 2 β(b/c)ί/2 + yμ ~1/2

and then seek to establish the complimentary inequality X ^ η on the basis of

(2.6) αv" 1 / 2

However, it is not clear that (2.6) has any nontrivial solutions-i.e. solutions in cases
where (1.1) is truly stochastic. An example of a stochastic Sturm-Liouville equation
of the form (1.1) for which X < η is given in [3]; however, it is not known whether this
is possible for equations of the special form (2.1).

2. Whereas (2.6) may lack nontrivial solutions, this is not the case for (2.3). In
particular, whenever β > 0 we can exploit the convexity of the square root function
to get solutions of (2.3) by choosing μ~1/2 = (c/b)1/2 sufficiently large. Since the
concentration of the probability density function/(p, q) in the neighborhood of (α, d)
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and (b, c) corresponds to a strong negative correlation between p(ω) and q(ω\ (2.3)

can be interpreted as a correlation condition on these coefficients.

EXAMPLE. Suppose α = 1/4, β = 1/4, γ = 1/2, a = c = 1 and b = d = 2. Choosing μ

= 1/2 and v = 2 implies that £ μ and Ev consist of the single points (2,1) and (1, 2),

respectively. Here (2.3) is not satisfied because

,(3/4) l+(l/4) 2 i ; * W 4 J I V 4 + U / 4 μ

We can, however, enchance the negative correlation between p and g by setting γ=0

and <x = β= 1/2, in which case (2.3) is satisfied because

The inequality (2.3) also remains valid with α = 1/4 and β = 3/4 or with α = 3/4

3. Comparison theorem

Whereas the techniques of §2 cannot be applied to (1.1) directly, it is possible to

use Sturmian comparison theorems to establish criteria for solutions of (1.1) to

satisfy (1.3). Given

(3.1) (p(x, ω)u')f + q(x9 ω)u = 0; P φ ( 0 , ω) = 0) = 1

with coefficients satisfying

Pr(α^p(x, ω) < b; c*ζq(x, ω)^d)=l

for all xe[0, oo), we enclose (3.1) between Sturmian majorants and minorants

(3.2) Pi(co)y" + qΛco)y = 0; y(0) = 0

(3.3) P2(ω)z" + q2(ω)z = 0; z(0) = 0

whose coefficients satisfy

(3.4) 0 < a ^ p2(ω) ^ p(x, ω) ^ Pι(ω) ^ b

0 < c ^ q^ω) ^ q(x9 ώ) ^ q2{ω) ^ d

with probability 1 for all xe[0, oo). Denoting the first zeros of (3.2) and (3.3) by ξ^ω)

and ξ2(oή respectively, let Xt denote the corresponding expected values for i = 1, 2.

We also associate with (3.2) and (3.3) the deterministic equations

(3.5) Pif



538 K. KREITH

(3.6) P2z» + Q2z = O; z(0) = 0

in which Pt and β t denote the expected values of pf(ω) and qlω\ respectively, and ηt

is the first zero of the corresponding solution. This notation leads to the following.

3.1 THEOREM. If (3 A) is valid for all xe[0, oo) and

(3.7) X2>1i,

then

PROOF. Applying the Sturm comparison theorem to (3.1) and (3.3), we see that

(3.4) assures that ξ2(ω)^ξ(ω) for all ωeΩ and, as a result, that X2^X. The

inequalities of (3.4) also assure that P(x) ̂  Pί9 Q(x) ̂ Ql9so that another application

of the Sturm comparison theorem yields η ̂  ηv Combining these observations with

(3.7) yields

as was to be shown.

REMARK. Hypothesis (3.7) runs counter to what one would expect from the

ordering in (3.4). The usefulness of this theorem depends on showing that (3.7) can in

fact be achieved. In [3], where correlation among the coefficients was not con-

sidered, Jensen's inequality provided a basis for establishing such inequalities. In

the present context (3.7) can be attained by specifying appropriateforms of negative

correlation among the coefficients of (3.2) and (3.3). Specific criteria for (3.7) can be

established in terms of parameters α, , βi9 γi9 μt and vf which are defined relative to

(3.2) and (3.3) in the same way as α, β, y, μ and v were defined relative to (2.1). The

inequality (3.4) calls for a decrease in p^ω) and increase in ^(ω), as ί makes the

transition from i= 1 to i = 2. In terms of Figure 1, this corresponds to a shift in the

corresponding probability density functions "up and to the left" as i goes from 1 to

2—i.e. by α 2 ^ α t and β2^βi if μ and v are to remain fixed, or else by μ2^μγ and

v2 ^ vx if α, β and y are to remain fixed. Referring to Figures 1 and 2, one readily sees

that the hypotheses of Theorem 3.1 are satisfied whenever

, 3 , ,

in the face of such shifts in parameters.

Because of the large number (ten) of indexed parameters which appear in (3.8),

it is difficult to characterize all the relations between them. However, by holding

some of the parameters fixed one can illustrate the importance of "negative

correlation" by examining the constrained relations which result.

By way of example, consider again the case where a = c=l,b = d = 2. Setting vx
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= v2 = 2, α 1 = α 2 = .5, /?x =/?2 = .5, 7 i = y 2

= 0 a n d μi = l/2, we seek the values of μ2

> 1/2 which are consistent with (3.8). In other words, we seek to satisfy

by choosing μ 2 ^.598. In this way we define a region

contained in R = {(p, q): l^p, q^2} in which the trajectory corresponding to

(/?(x, ω), q(x, ω)) must be contained in order to assure that

If we vary this example to allow for a measure of positive correlation

7 l = y 2 = .05; β1 = β2 = Λ59

This can be expected to reduce the latitude in choosing μ. Indeed, to satisfy

(l/2)3/2 + .45μ2"
1/2 + (1/20)2"1/2 ^ 1

we must have μ 2 <.543. However, the correlation implicit in

does not allow us to satisfy (3.8) in the context of the values assigned to the other

parameters.
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