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Introduction

Let a be a fixed positive constant and let 2, = {x € R"; a < |x| < b}, where
N =2 and b is a positive constant with a<b. And we put Q=Q, =
lim,_, Q,. Consider the problem:

(%) du= (x| —a)*G(x)u’ in Q,, u=0 on |x|=a,

where f is a real constant, A is a positive constant and G(x) is a locally Holder
continuous function satisfying some conditions stated below. Note that since
4> 0, the coefficient of u# is unbounded on the boundary Q. So, in general,
it is not clear that the problem (), has a solution. When b = oo, the problem
(*), = (*¥) with 4 = 0 has been studied by many authors and various results on
the existence and asymptotic behavior as |x| —» oo of positive solutions have
been obtained. Among them we refer to [2, 3, 6-12, 14]. The first aim of this
paper is to obtain global positive solutions of (x) belonging to C%(2) N C(Q)
under the condition 4 < 8 + 1. We note that the condition A < 8 + 1 is neces-
sary for the existence of solutions of (x) when G(x) = G(|x|). More exactly, we
show the existence of infinitely many positive solutions of (x) with some growth
properties under A < f + 1 and the integral conditions

Jm r*~*(log (r/a))’G*(r) dr < o (N =2,

J r'~*G*(r)dr < o (N =3),

where G*(r) = max, -, |G(x)|.

The second aim is to show that for any given b (a < b < o0) there exists a
solution u(x) of (x), belonging to C?(2,) which blows up (when b = co, we say
that it grows up.), that is u(x) - +oo(|x| — b), when f > 1 and G(x) > 0, x € 2,.

Our plan in this paper is as follows. In Section 1, we construct global
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positive solutions for the Cauchy problems of related ordinary differential
equations. In Section 2, applying the results in Section 1, we obtain solutions
of () such that if N =2, they have logarithmic order at co and if N = 3, they
are bounded. In the final section, we discuss the existence of solutions of (x),
which blow up or grow up as |x| — b faster than the solutions as in Section 2.

1. Initial value problem for related ordinary differential equations

We consider the following Cauchy problem:

{(p(r)y’)’ =(r—a @)y, r>a,

1.1
(L1 y@=0, y@=n>0,

where ' = d/dr, B is a real constant, A is a positive constant, p(r) € C![a, o0),
p(r) > 0, r € [a, ), and q(r) € C[a, x0), q(a)# 0. We call y(r) a solution of (1.1)
if y(r) belongs to C%(a, ©0) N C'[a, o) and satisfies (1.1). Then we have:

r

THEOREM 1.1. Let R(r) = J ds/p(s) > o (r > ) and

a

1.2) M= Jw (r —a) *qM)|(R())P dr < .

(i) If B> 1, then there exists ny, > 0 such that for any n (0 <n < n,), (1.1)
has a solution y(r) with the condition

(1.3) cinR(r) = y(r) = c;nR(r),  rza

for some ¢, > 0, c, > 0 which are independent of 7.

(ii) If B <1, then there exists no > O such that for any n (n > n,), the same
conclusion as in (i) holds.

@) If B=1and M < 1/2, then for any n > O the same conclusion as in (i)
holds. Moreover, if q(r) is of definite sign, we can replace M < 1/2 by M < 1.

(iv) For each solution y(r) in (i) ~ (iii), lim,, y(r)/R(r) exists and is
positive.

PRrOOF OF (i). Let us put 5, = (1/p(a))(2°* M)V =P where M is the num-
ber in (1.2). Here we denote by C the set of all continuous functions on [a, c0)
which is a Fréchet space equipped with the usual metric topology, and for 5
O<n<mn) weset Y = {yeC; (1/2)p@nR(r) < y(r) £ 2p(a)nR(r), r Z a}.
Then we can easily verify that Y is a closed convex subset in C. Define
F:Y->Cby

(1.4) (Fy)(r) = p@nR(r) + f r (R() — ROt — a) ") dt, rza.
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Then, we show for 0 <n<n, that (P);, £:Y->Y, (P), & is continuous,
(P); Y is relatively compact in C. First of all, from (1.2) it follows that
A< B+ 1. In fact, since p(a) # 0, we have (r — a)/2p(a) £ R(r) £ 2(r — a)/p(a),

p'+a
0<r—a<p, for some p>0. Therefore, M= '[ (r —a) *q)I((r — a)/

a
p’'+a

2p(a))? dr = Const J (r—aff*dr for some 0<p <p because g(a) #O0.

This implies f — A > —1,ie, A< f + 1.

Now we prove (P);. Since 0 < R(r) < Const(r —a) near r=a and
A< B+ 1,it is apparent that Fye C if ye Y. For simplicity we put p(a)n =7,
p(@n, =7,. From (14),ifye Y, 0<n < ny, we have

(1.5) Fy(r) = 7R(r) + f (R() — R@&)(t — @) *1q(0)| 27 (R()Y dt

= {'7 + (27 j (t — A g@OIROY dt} R(r)

= (77 + 2’ MA*)R(r) < (3/2)7R(r) ,
using 7, = (1/p(a))(2**M)YA=P_ On the other hand, we have

r

(1.6) Zy(r) 2 fiR(r) — j (R() = RO)(t — &) *q(®)| 27’ (R()) dt

2 (77 — A M)R(r) Z (1/2)7R(r) -

This shows that Fy e Y.

Next, we prove (P),. Let {y,} =Y be a sequence converging to some
y€ Y. Then for each fixed ro(>a) and for any ¢ > 0, there exists ny such that
SUP,<,<r, | Va(r) — y(r)] <& for n2n,. We take 6 as 0 <6< f— 41+ 1. Then
we can verify that

A7) 100 — O] S BETROP Iy — YOI, t>a.
Hence we get forn > ng, a <r £,

[(Fya)(r) — (Fy)O)]

f r (R() — R&)(t — @ *q()((ya Y — (y(®))) dt

< R(ro) max, <., |q(0)| B4~ Iro (t — ) "HREOP 7 ya(e) — y(O)I dt

é Ml(ro)gts ’
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ro

where M,(r)) = R(ro) max,<,<,,|q(t)|B(47)~° J (t — o) *(R@))* dt < 0.

a
This implies that #: Y — Y is continuous.
We next prove (P);. Let ye Y and ry > a. Since 0 < (Fy)(r) < 27R(r)
2iR(ry), a Sr =ty ye Y, FY is locally uniformly bounded. Furthermore, we
have for ye Y

(Fy)(r) = {ﬁ + f r (t — a) ") (y(1))* dt} / p(r),
and so

(Fyy ()l = {ﬁ + (2'7)”J "t — & *a@IROY dt}/minagrgro p(r),

as<r=r,.

Thus, #Y is locally equi-continuous. By the Ascoli-Arzela theorem, we see
that ZY is relatively compact in C.

Consequently, from (P); ~(P); applying the Schauder-Tychonoff fixed
point theorem, we can assert that there exists y € Y such that Zy(r) = y(r),
r 2 a. This function y(r) satisfies (1.1), (1.3) with ¢, = p(a)/2, ¢, = 2p(a).

PROOF OF (ii). Putting o = 2*'M)Y*~P/p(a) if B > 0 and n, = 2M 7B/
p(a) if B <0, setting for n > n,, C, Y and & the same as in (i), we can prove
(1.5), (1.6) and then (P),, (P),, (P);. The remaining part of the proof is the
same as in (i).

PROOF OF (iii). Let C be as in (). Now let us put
Yo={yeC;(1 —2M)(1 — M)"'p(@)nR(r) < y(r) < (1 — M)~'p(a)nR(r), r Z a}
in the general case of g(r),
Y_={yeC;(1 — M)p(@nR(r) < y(r) < pa)nR(r), r = a}
if g(r) <0, r 2 a, and
Y, ={ye C; p(@nR(r) < y(r) < (1 — M)'p(a)nR(r), r Z a}

ifqr)=0,r=a.

We define & by (1.4) with f=1. Then, for any # >0 £ satisfies
(P); ~ (P); for each case Y=1Y,, Y,, Y.. We prove these facts in the case of
Y =Y,. Here we note that M < 1/2.

Putting p(a)n = 7, we have for y € Y,
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Fyr) < qR@ + | ROIGOIE — a) (1 — M)T'7R(2) dt

SARM{1+M/1 - M)} =(01—-M7T4R>r), rza,

Fy() z iR(r) — | ROIqO)It — a)™*1 — M)"'7R(t) dt

2 iRM{1 — M/(1 — M)} = (1 —2M)(1 - M)"'fR(r), rza.

This shows that #ye Y,. The proofs of (P),, (P); are completely the same as
in (i).

In the cases of Y=Y, and Y = Y_ under the condition M < 1, we can
examine necessary properties to apply the Schauder—Tychonoff theorem.

ProoOF OF (iv). Finally we prove the existence of lim,_, y(r)/R(r) for each
solution y(r) obtained above. Since

y()/R(r) = p(a)n + {1/R(r)} jr (R(r) — R(®)q(t)(t — a)"*(y(1))’ dt

0

lim,_.,, y(r)/R(r) = p(a)n + J a@(t — a) Hy()Y dt
holds from L’Hospital’s rule.
The right-hand side is finite from (1.2) and (1.3). The positivity of this
limit follows from (1.3) in each case (i) ~ (iii). Q.E.D.

RemArk 1.1. The condition A < ff + 1 is necessary for the existence of
solution of (1.1). In fact, integrating over [r,,r,] (a < r; < r,) both sides of the
equation in (1.1), and letting r; — a, we have

r

p(r2)y'(r;) — p(a)n = lim, _,, j g - a) " (y()y dr.

r

Therefore, by this and g(a) # 0, the integral f (y)A(r — a)* dr should exist.

And since y'(a)=n >0, we can assert that there exists p >0 such that
nr—a)2<yr)<3n(r—a)/2,a<r<a+p. Thus,

atp atp
J (r—af*dr<K J (@)P(r—a)*dr< o,
where K = (2/n)? if B 2 0 and K = (2/3n)# if B < 0. This shows that A <  + 1.

QED.
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We apply Theorem 1.1 to the following Cauchy problem:

{y” +{(N=D/r}y' =G@r)(r—a**, r>a, a>0,

(18) y@ =0, y@=n>0,

where N is a positive integer with N = 2. Then we get:

CoOROLLARY 1.1.  Suppose N = 2. Assume G(r) € C[a, ), G(a) # 0, and
(1.9 M= f r|G(r)|(r — a)~*(log (r/a))? dr < .

Then (i) ~ (iv) in Theorem 1.1 hold. Moreover the solution y(r) satisfy
(1.10) c;nlog(r/a) < y(r) S c;nlog(r/a), r=za
for some constants ¢, > 0, ¢, > 0, and

(1.11) lim, ., y(r)/log r exists and is positive .

COROLLARY 1.2. Suppose N = 3. Assume G(r) € C[a, ) G(a) # 0, and
(1.12) M = {1/(N — 2)} jw r(1 — @/ 2P |G@E)|(r —a) *dr < .

Then (i) ~ (iv) in Theorem 1.1 hold. Moreover the solution y(r) of (1.8) satisfy
(1.13) en{l — @MV 2} Sy Seonf{l — @2}, rza
for some constants ¢, > 0, ¢, > 0 and
(1.14) lim, ., y(r) exists and is positive .
2

PROOF OF COROLLARIES 1.1 AND 1.2. By the change of variable z = r¥~2y,
problem (1.8) reduces to

(1.15) P3Ny = NG (r — a)"*2P, r>a,
' z@)=0, z'(@=a"?y.
Thus, putting p(r) = r3~¥ and

R(r)=log(r/a) (N=2), =(Q1AN=2)("*—a"?) (Nz3)
and applying Theorem 1.1, we have the assertions. Q.E.D.

REMARK 1.2. The condition (1.12) in the cases (i), (ii) in Corollary 1.2 can

be replaced by 4 < B + 1 and J r'~*G(r)| dr < co. In fact, from

a



Semilinear elliptic equations 385

Q=@ 2Yer—a*=0((—-af* (@r—a
=0(™%) (asr— ),

we see the condition (1.12) directly.
2. Dirichlet problem for semilinear elliptic equations in the exterior domain

Let a > 0 and put 2 = {x € R"; x| > a}, where N = 2. In this section we
consider the problem:

.1 Au = G(x)(|x| —a)™*u? inQ, u=0 onoQ,

where f is a real constant and 1 is a positive constant. We call u(x) a positive
solution of (2.1) if u(x) belongs to C3(Q)n C(), satisfies (2.1) and u(x) > 0,
xe€ . In what follows we use the notation G*(r) = max-,|G(x). Now we
have:

THEOREM 2.1. Let B# 1 and A < B+ 1. Assume that G(x)e CL.(Q) (0 <
6<1),Gx)#0, xe Q.
(i) If N=2and

(2.2) fw r*~*(log (r/a))’G*(r) dr < oo ,

then there exist infinitely many positive solutions of (2.1) with the condition
23) ¢, log (Ixl/a) S u(x) < c; log (Ixl/a), xeQ,
for some ¢y, c, > 0.

@) If N=3and

(2.4) f " 2GR dr < oo,

a

then there exist infinitely many positive solutions of (2.1) with the condition
(2.5) e {l = (@/Ix)"?} Su(x) S {l = (a/Ix)" %}, xeQ
for some ¢y, c, > 0.

THEOREM 2.2. Let f=1, A <2 and G satisfy the same assumption as in
Theorem 2.1.
(i) If N=2and

(2.6) on r(log (r/a))(r — a)"*G*(r)dr < 1,

a
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then the same conclusion as (i) in Theorem 2.1 holds.
(i) If N=3and

2.7 jm r(l = (a/r)N"2)(r — a)"*G*(r)dr < N — 2,

a

then the same conclusion as (ii) in Theorem 2.1 holds.

Since the proofs of Theorems 2.1 and 2.2 are essentially the same, we only
prove Theorem 2.1.

ProoF oF THEOREM 2.1. It suffices to prove in the case § > 1.
(i) By Corollary 1.1, there exist n, >0, {, >0 such that for any 7
0 <n<n), ¢ (0<{<{, the problems

28) y"+ /My +G*r)r—ay ¥ =0, r>a; y@=0, y@=n,
29) z'+ 1/ —G¥r)(r—a)*2$ =0, r>a; z@=0, z'(a=¢
have solutions y(r; 1), z(r; {), respectively, with the conditions

(2.10) Ainlog(r/a) < y(r;n) < Aynlog(r/a), r>a,

(2.11) B, {log (r/a) < z(r; {) < B, log (r/a), r>a

for some 4, >0, B;>0,i=1, 2, with 4, < B,.

Let # = min {5y, {o}. Then for any 5 (0 < 5 < #), putting { = A, B;'n, we
see that 0 < { <. Now for y(r;n), z(r; {) the solutions of (2.8), (2.9) in this
case, we get

(2.12) (A1 B,/By)n log (r/a) < z(r; {) £ A;n log (r/a)
S y(r;n) < Aynlog (r/a), r>a.

We put v(x) = y(|x]; ), w(x) = z(|x|;{), x€ 2. Then v, we C*(R) n C (), and
we have

(2.12') (A, B,/By)n log (|x|/a) < w(x) £ v(x) < A nlog (Ixl/a), x€Q,

and
a1y (4000 GU(x| — 0P =0, xeQ; w=0, e,

' Aw(x) — G*(|x|)(Ix| — @) *w(x)) =0, xeQ; w)=0, (eo.
Therefore,

(2.14)  Adv(x) £ GX)(Ix] —a) *vX)?, xeQ; v(E)=0, (iR,
(2.15)  Aw(x) = G(x) (x| — a) *w(x)P, xeQ; wlE) =0, (€of.
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This shows that v(x) is a supersolution and w(x) is a subsolution of (2.1). Now
forn=1,2,...,if we put

Q,={xeR*a+1/n+1)<|x|<a+n},

then Q,— Q2 as n— 0. From Theorem 1 in H. Amann [1], there exists a
maximal solution u* € C2*%(,)(0 < 6 < 1) of a problem

(2.16), AU = G(x)(|x] —a)"*U?, xeQ,; UE)=uv(), e,
such that
(217) w(x) = u,(x) S uz(x) Sv(x), xeQ,
for every solution u, of (2.16), with the condition
w(x) S u,(x) So(x), xeQ,.
Now we define ii,(x) = u*(x) for x € Q,, i,(x) = v(x) for x € 2\2,. Then since
Q,cQ,,,, we have

Aty (x) = GO (1x] — @) (Fpsr (), x €25 Bpia(Q) S0(E), C€0Q,.

This shows that #,.,(x) is a subsolution of (2.16), with w(x) < i,,,(x) < v(x),
x € Q,. Thus, again from the result of [1; Theorem 1] there exists a solution
,(x) of (2.16), such that

W(X) é an+l(x) é ﬁn(x) é v(x) » XE Qn .

From this and the maximality of u} in (2.17) we can assert that i, ,(x) <
i,(x), x € Q,. Thus, we get

(218) W(x) é an+1(x) é an(x) é U(X) , XE Q.

This shows that {i,(x)};>, is monotone decreasing and locally uniformly
boundeded in 2. Then by the standard theory of Schauder estimates and
Lr-estimates (cf. [11]) to such a sequence of solutions, we can conclude that
u(x) = lim,_, , ii,(x) exists in  and by choosing a suitable subsequence {#, } <
{u,} we get

(2.19) lim,, .., [l#,, — ullc2p)=0

for any bounded domain D cc Q. Therefore u(x)e C*(2)n C(Q2). From
(2.16),, (2.18) and (2.19) we have

Au = G(x)(|x| —a) P, wx)Zulx)Zv(x), xeQ.

From the definition of v, w this function u is a solution of (2.1) with the
condition (2.3). Now the existence of infinitely many solutions of (2.1) is seen
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as follows. For the above n >0, we put 0 <#, =(1/2)(4,B,/A,B,;)n. Then
replacing n by #, in the above arguments, we have a solution u,(x) of (2.1) such
that u,(x) < (1/2)u(x), x € 2. Continuing this procedure and argument, we
have a sequence {u,} of solutions of (2.1) with the property u,,,(x) < (1/2)u,(x),
xeQ,n=1,2,.... The assertion will follow apparently.

(ii) The proof is the same as in the case (i). Q.E.D.

3. Blow-up and grow-up of positive solutions

In this section we consider the problem (x), when G(x) >0 (x € 2,) and
B > 1. We first prepare some lemmas.

LemMma 3.1. Suppose that A<f+ 1, f>1 and q(r)>0 (r = a) in (1.1).
Then for any n >0 there exists a unique solution of (1.1) in some interval
[a,a +6,]

Proor. For the existence we note that since A < f + 1, we can take J, > 0
such that

J h a(O)(t — a) (R)Y dt < 27%(p(a)n)* ~*

a

for any > 0, where R(r) = f ' ds/p(s) (r = a). Let us put
Y={yeCla,a+ 4,1 p@nR() = yr) < 2p@nR(r)asr<a+d,},
(Fy)(r) = pla)nR(r) + jr (R(r) — R®)qO(t — A *(y(®)Y dt, a<r<a+3,.

Then from Schauder’s fixed point theorem, # has a fixed point y(r) in Y. This
function y(r) is a solution of (1.1) in [a, a + §,].

To prove the uniqueness, let y;(r) (i=1,2) be solutions of (1.1) in
[a,a + 8,]. Then there exists M, > 0 such that |y,(r))| < M,R(r), a<r=<a+}9,
(i =1,2). Therefore we get

1Y — (2] < BMETHRE)P Ty () — (0], as<r<a+9,,

hence,

11(r) = y2(r)| = BM{T'R(r) j 4@t — a) HROY . () — y2(0)] dt,

asr=<a+§,.

Now, if we put ¥(r) = |y,(r) — y,(")I/R(r), a <r < a + J,, ¥(a) =0, then we see
that ¥(r)e C[a, a + 9,] and
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(31 ¥r) =M fr gt — a) * R P()dt, a<r<a+§é,.

a

Here we choose 6 (0 < J < J,) such that

a+d
J q(t)(t — a) *(R()Y dt < 2pME{~1)" .
Thus, by (3.1) we can assert that 0 < Y(r) < (1/2) max,<,<,45 (1), @71 =
a +9). This shows that ¥(r) =0, i, y,(r) = y,(r) fora<r < a + 6. Q.E.D.

In what follows we denote by y(r;#n) the solution of (1.1) obtained in
Lemma 3.1 and by [a, T) the right maximal interval of existence for y(r; ).

LEMMA 3.2. Let B> 1, ¢ C[0, 00) and 0 < t, <t, < oo. Suppose that
o) >¢ in [t,,t, + €] for some ¢ >0. Then, there exists a positive constant
M > 0 such that the solution z(t) of the equation i = ¢(t)z° satisfying z(f) > M
and (f) > M for some t e [t,,t,] has the finite right maximal interval [f,1.) of
existence, where a dot denotes differentiation with respect to t. Moreover,
f, —t<¢2andlim,.; _oz(t) = co hold.

This lemma is essentially the same as [13; Lemma 3.1]. So the proof is
omitted. Here, we note that the constant M > 0 does not depend on f in

[y, t2]

LEMMA 3.3. Let A, B and q(r) be as in Lemma 3.1, and 7 > 0 be fixed.
Then,

@) y@r;m—-=y@;H), y'(r; n)—>y'(r; ) uniformly in any bounded closed interval
Ic[a T;) as n > 7,

(i) lim,.;T, = T.

Proor. Step 1. We prove the following assertion:

Assume that a <f < T; for some # > 7. Then, y(r; n) exists in [a, f] for
each n in (0,7]. Furthermore, y(r; #) and y'(r; n) converge to y(r; #) and y'(r; #)
uniformly in [a, ] as n — #j, respectively.

We first note that by [13; Lemma 0.2]

(3.2) y(r;n') = y(r;n") if they exist in some interval [a, r,] and ' > 5".
This implies that
(3.3 T,£T, for n'>n">0.

Hence we have T, 2 T; > # for every n€(0,4]. Furthermore, by (3.2) we can
choose a constant K, >0, which is independent of n in (0,7], such that
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0=<y(r;n) < y(r;A) S K R(r), a<r<f. Now define &(r) by &(r) = |y(r; n) —
y(r; f)I/R(r) for a < r < f and ®(a) = p(a)|ln — 7j|. Then, we obtain analogously
to (3.1)

?(r) < P(a) + BKI™ J a0 — A RE)IP()dt, a<r=<*F.
Hence, by the Gronwall inequality,

D(r) = p(a)ln — filexp (ﬁK’l’_‘ J a( — o *(R@)) dt) , asr=f.

This shows that

ly(r; n) — y(r; A < p(a)ln — fflexp <BK€“ I ' q(t)(t — a)"A(R(r))* dt) R(#),

as<r<F*#,

and so
(3.4) lim,_; y(r; n) = y(r; ) uniformly in [a, 7] .

Next, integrating (1.1) over [a,r] and choosing v such that 0 <v< f + 1,
we get

[y'(r;n) — y'(r; DI

< (p(a)ln — il + j q@®) — a) *(y(t; M) — (y(t; M) dt> / p(r)

a

= (p(a)ln — 7| + 47 BKE™ Ir a@O)(t — a) H(R@Y ™ dt

X maxX,<,<; | y(r; 1) — y(r; ﬁ)l”)/p(r), asr=f.

From this and (3.4), we conclude that lim,_;y'(r;#) = y'(r; ) uniformly in
[a, 7].

Step 2. We show that T, is right continuous at n = 7.

Since lim, ;.0 T, < T; by (3.3), it is enough to show that lim,_;,, T, = T;.
Let now {n(k)} be an arbitrary sequence such that #(k) > # and lim,_,,, n(k) = .
Take # such that 7§ > sup,>,#n(k), and put #=(a + T;)/2. Then a <7 < T,
for k = 1. Applying the assertion in Step 1, we have

limg y(F; n(k)) = y(# 7))  and  lim,, y'(Fn(k)) = y'(F; 7)) -
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Hence, by [5; p. 14, Theorem 3.2], there is a function y(r) and a subsequence
{n'(k)} of {n(k)} such that

(3.5) {(p(’ )@Y =q)r —a) Ay, F<r<r,,
’ y@& = y#a), y@E=yEFa,
(3.6) ry <liminf T,
k—o

where [#,r,) is the right maximal interval of existence for y(r). On the other
hand, since y(r;#) is a solution of (3.5) in [# T;), by the uniqueness of
the solution of (3.5) we have y(r) = y(r; #) and r, = T;. Therefore, by (3.3) and
(3.6), we have lim, ;.0 T, = liminf,, , T4y = T;. Thus we get lim, ;.0 T, = T;.

Step 3. We now prove the assertion (i). Let I be a bounded closed
interval in [a, T;). Then, since by (3.3) and Step 2 we can choose 7, > 7 such
that I = [a, T,) for 0 < n < n,, the assertion follows from Step 1.

Step 4. Finally, we prove the continuity of T, at n =#. By Step 2, it
is enough to show that lim,,; T, = T;. Moreover, we may assume that
0<T;<o. In fact, if T; = +co, then by (3.3) T, = +oo for every n e (0, 7).

r

By the change of variable t=j ds/p(s), a =r < oo, the function z(t;7n) =

a

y(r(t); n) satisfies

(37 {E(t; n) =@t ), 0<i<T,,
' z(0;m) =0, 2(0;n) = p(a)y,

where ¢(t) = p(r(t))q(r(t)/(r(t) — a)*, r(t) is the inverse of t=t(r) and ’f,,=
T’l
J‘ ds/p(s). Furthermore, the right maximal intervals of existence for y(r;#n)

and z(t; n) are [a, T,) and [0, T,,), respectively. Therefore, it is enough to show
that the left continuity of T;, atn =1. For any g€ (0, T;,), choose &, € (0, €) such
that ¢(t) > ¢, for te[T;,——el, ’f,;+31]. Then, by Lemma 3.2, we can find
K, >0 such that for any function z(t) satisfying the equation in (3.7)
lim,,,,_o2(t) = co holds for some t, € [t;, t; + &,;/2], provided z(t;) > K, and
#(t;) = K, for some t; in [T,; — &4, T},]. On the other hand, since z(t; 7j) > o
and 2(t; ) > oo as t » T; — 0, there is tf e [T; — ¢, T;) such that z(t}; 7) > K,
and Z(t};7) > K,. By the assertion (i), choosing 6 >0 small enough, we
have z(tf;n) > K, and Z(t¥;n) > K, for every n in (7 — o,#). Hence,
lim, ,,,_oz(t; n) = oo for some ¢, <t} + ¢,/2, and so we see that T,, =t, Zt¥ +
e/2<T;+e/2<Tj+eforj—<n<i Thus we obtainlim,; T, =T
Q.E.D.
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LEmMMA 34. Let A, § and q(r) be as in Lemma 3.1. Then,

(i) there exists n,, > 0 such that if n > n,,, T, is finite,

(ii) lim,_ .o T, = +00 holds, where n* = inf {n > O; T, is finite},
(i) lim,,,, T, = a.

PrROOF. We put 4 = {n > 0; T, is finite}. As we have shown in the proof
of Lemma 3.3, it suffices to prove the assertions for the solution z(t; n) of (3.7),
that is, to prove that (i) A # &, (i) T,» = +o0, and (iii) lim, T,=0.

(i) We fix to > 0. If there exists n >0 with lim,,, _z(t; #) = co, then
T, < t, and this implies 4 # J. Therefore we assume here that for any # > 0,
T,, >t, holds. Then, from Lemma 3.2, there exists M >0 such that any
solution z(t) of the problem: Z(t) = ¢(t)(z(t)), z(to) = M, 2(t,) = M, has a finite
right maximal interval of existence, where ¢(t) is the same as in (3.7). Put
o = max {M/p(a), M/(p(a)t,)}. Then, from (3.7) we have Z(to; ) = p(a)n = M,
z(to; ) 2 pla)nty 2 M for n > n,,. Thus, when > 1, the value T, for z(t; ) is
finite, i.e., when n > #,, 1 € A holds.

(ii) By (ii) of Lemma 3.3, T,, is continuous in # and so A4 is open in [0, 00).
Hence, we have n* ¢ A and T« = +00.

(i) We fix t; > 0 arbitrarily and put t; =t,/2. We choose ¢ > 0 such
that 0 < e < ty, ¢(t) > efor t e [t},t;]. Then for the solution z(t; ) of (3.7), the
values z(t;n), Z(t;;n) can be made as large as possible by choosing n > 0
sufficiently large. Therefore, from Lemma 3.2, we see that for n > 0 large
enough, T, <t, should hold. From the arbitrariness of t; >0 we conclude
that T, - 0 (3 > o0). Q.E.D.

Now, we are ready to state our theorem.

THEOREM 3.1. Let A<f+1,>1and q(r)>0,a<r < .
(i) For any b > a, there exists n > 0 such that

T,=b and lim, ,,_o ¥(r;n) = oo .

r

(i) If R(r) = ‘[ ds/p(s) » o0 as r —» oo and

a

(3.8) f q(r)(r — a)"*(R())P dr < o0,
then there exists n, > 0 such that, for any n (0 <n <n,), T, = c© and y(r; n)/R(r)
converges to a positive constant as r — o0.

(iii) Under the same assumptions as in (ii), for some n >0, T, = co and
y(r; n)/R(r) tends to oo as r — co.
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Proor. The statement (i) follows from (ii) of Lemma 3.3 and Lemma 3.4;
(ii) is a consequence of (i) and (iv) of Theorem 1.1. For the proof of (iii), put

A = {n > 0; T, is finite} ,
B={n>0; T, = co and lim,_,, y(r; n)/R(r) exists and is positive} .

Then, by Lemma 3.4 and (3.3), we have 4 = (*, o) for some #* > 0. We now
prove that B is open in (0, o). Let ne B and denote I, = lim,_,, y(r; n)/R(r).
Then by the monotonicity of y(r; n) in n > 0, we have ' € B for ' <#n. Since
(p(r)y'(r; n)Y > 0 for r > a the limit of p(r)y’(r; n) as r - oo exists and is equal to
I, by L’Hospital’s rule, and hence

3.9 0<py'(rsm<i,, a<r<ow.

Take a,(>a) such that

(3.10) r q(r)(r — a)"*(R(n) dr < (1/2)(31,/2)7"1, .

Then, we can choose J, > 0 satisfying
p)y'(r;n)<l,, asr=a
for ' € (n, n + 6,) by (i) of Lemma 3.3 and (3.9). Furthermore, we have

(.11 p)y' rsn) <G/ 2ly, r>ay, nemn+d).

In fact, assume that there is an a,(>a,) with the property

p)y'(r;n) <B/2L,, asr<a,; pay)y'(az;n)=03/2)l,.

Noting that y(r;n’) = Jr y'(t;n') dt < (3/2)l, JV dt/p(t) = (3/2)[,R(r) for a<r <

a a

a,, by the integration of (1.1) from a, to a, and by (3.10) we obtain

a

G/, = plaz)y'(az; ') = play)y'(as; ') + f T - a)~H(y(t; 7)) dt

a

a

<1, +(3/21,) f "q0(t — @ HROY de < (3/2)1, .

This contradiction means that (3.11) holds. Therefore, combining the
monotonicity of p(r)y’(r;n’) in r>a and (3.11), we have the existence of
lim,_, p(r)y'(r; n') = lim,_, , y(r; n')/R(r) > 0. This implies that n' e B if n' e
(n,n + 6;). Thus B is open.

Now, putting n* =inf A and n, =sup B, we get n,, n, ¢ AUB, n, <n*
T,, = T,» = o0, and lim, ., y(r; n,)/R(r) = lim,_,, y(r; n*)/R(r) = 0. Q.ED.
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We apply Theorem 3.1 to the problem (1.8) with > 1. In the following
corollary y(r; ) and [a, T;) denote the solution of (1.8) and the right maximal
interval of existence for y(r; #), respectively.

COROLLARY 3.1. Let A< B+ 1, B> 1 and assume that G(r) € C[a, o) and
G(r) > 0, r e [a, ).
(i) For any b > a, there exists n > 0 such that

T,=b and lim,_,_o y(r;n) = oo .

(ii) Suppose moreover that

fw r*~*(log (r/a))’G(r) dr < oo (N=2),

(3.12) 3
J ' *G(r) dr < (N=3).

a

Then there exists no > 0 such that, for any n € (0, n,), T, = o and

lim,_, y(r; n)/log r exists and is positive, if N =2,
(3.13)
lim,_,,, y(r; n) exists and is positive, if N = 3.
(ili) Under the same assumptions as in (ii), there exist n,, n*(n* = n, > 0)
such that, for any n € [n,, n*], T, = oo and

(3.14) lim,.q y(r;m)flogr=0c0 (N =2), lim,_,y(r;n) =0 (N2=3).

Proor. Using the same change of the dependent variable as in the proofs
of Corollaries 1.1 and 1.2, we can prove the assertions by Theorem 3.1.
Q.E.D.

Finally, we consider the problem (x),.

THEOREM 3.2. Let B>1 and A <P+ 1. Assume that G(x)e Cl.(Q)
0<0<1),Gkx) >0,xeQ.

(i) For any b > a there exists a solution u(x) of (x), which belongs to
C?(R,) and satisfies

ux)>0, xeQ, and limy, o u(x) = o0 .

(i) Suppose moreover that max-, G(x)/miny -, G(x) (r = a) is bounded
and
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Iw r'~*(log (1/a))’G*(r) dr < oo (N=2),

(3.15) 3
‘[ ri=*G*(r) dr < © (N=3)

a

where G*(r) = max-, G(x). Then, there exists a positive solution u(x)e
C%(Q) N C(2) of (%) such that
limy_., u()log|x| =0 (N =2),

(3.16)
lim, ., u(x) = (N =3).

Proor. We give the proof of (i) in the case of N=2. By (i) of
Corollary 3.1, for any b > a, there exists a function y(r; ) € C%(a, b) n C'[a, b)
such that

y'(rsn) + (1/ny'(rsn) = G, — a) *(y(r; M), y;n)>0, a<r<b,
y@an) =0, y(@n=n>0 and lim,,, ¢ y(r;n) =00,
where G, (r) = miny-, G(x). Putting v(x) = y(|x|; 1), a < |x| < b, we have

{AD(X) = G (IxD(Ix] = @ * (X)) = GX)(Ix| — a) *(x)Y, xeQ,,
v(x)=0, |x|=a and lim,_o v(x) = o0 .

Now, take a constant 7 such that
O0<t<1 and G*r)=<t'"%G,(r), a<r<bh.
So, the function w(x) = tv(x) satisfies w(x) < v(x), x € 2,, and
Aw(x) = tdv(x) = ' PG, (Ix])(Ix] — @) *(zo(x))?
= G*(|x)(Ix] — @) *wx)) = G()(Ix| — AT W)Y, xe,,
w(x) =0, [x|=a, and limy_,_ow(x)= .

Therefore, we get a solution u(x) of (%), satisfying w(x) < u(x) < v(x), x € 2,, by
the similar supersolution-subsolution method in the proof of Theorem 2.1.
This function u(x) is a desired solution of (x),.

The rest of the assertions are proved by essentially the same method as
above, so the proof of it is omitted. QED.

REMARK 3.1. Recently, Usami [14] has proved the existence of entire
positive solutions of Au = G(x)u? in RN satisfying (3.16). We have used the
same idea as in [14].
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