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Introduction

Let a be a fixed positive constant and let Ωb = {x e RNι a <\x\ < b}9 where
N ^ 2 and b is a positive constant with a < b. And we put Ω = Ω^ =
lim^^ Ωb. Consider the problem:

(*)b Au = (\x\ - a)~λG(x)uβ in Ωb, u = 0 on \x\ = a ,

where β is a real constant, λ is a positive constant and G(x) is a locally Holder
continuous function satisfying some conditions stated below. Note that since
λ > 0, the coefficient of uβ is unbounded on the boundary dΩ. So, in general,
it is not clear that the problem (*)b has a solution. When b = oo, the problem

(*)oo = (*) with λ = 0 has been studied by many authors and various results on
the existence and asymptotic behavior as \x\ -> oo of positive solutions have

been obtained. Among them we refer to [2, 3, 6-12, 14]. The first aim of this
paper is to obtain global positive solutions of (*) belonging to C2(Ω)r\C(Ω)

under the condition λ < β + 1. We note that the condition λ < β + 1 is neces-
sary for the existence of solutions of (*) when G(x) = G(\x\). More exactly, we
show the existence of infinitely many positive solutions of (*) with some growth
properties under λ < β + 1 and the integral conditions

ί
θO

r^flog (r/a)YG*(r) dr < oo (N = 2),
I

(* 00
l-*G*(r)dr< oo (N ̂  3 ) ,

Γ00
rί~Ja

where G*(r) = maxw=r|G(x)|.
The second aim is to show that for any given b (a < b ^ oo) there exists a

solution u(x) of (*)*, belonging to C2(Ωb) which blows up (when b = oo, we say
that it grows up.), that is u(x) -> +oo(|x| -> b\ when β > 1 and G(x) > 0, x ε Ωb.

Our plan in this paper is as follows. In Section 1, we construct global
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positive solutions for the Cauchy problems of related ordinary differential
equations. In Section 2, applying the results in Section 1, we obtain solutions
of (*) such that if N = 2, they have logarithmic order at oo and if N ^ 3, they
are bounded. In the final section, we discuss the existence of solutions of (*)b

which blow up or grow up as \x\ -> b faster than the solutions as in Section 2.

1. Initial value problem for related ordinary differential equations

We consider the following Cauchy problem:

= (r-aΓλq(r)yβ

9 r>a,

where ' = d/dr, β is a real constant, λ is a positive constant, p(r) e C1^, oo),
p(r) > 0, r 6 [a, oo ), and q(r) e C[α, oo), q(a) ̂  0. We call y(r) a solution of (1.1)
if y(r) belongs to C2(α, oo) n C*[α, oo) and satisfies (1.1). Then we have:

THEOREM 1.1. Let R(r) = ds/p(s) -» oo (r -» oo) and

(1.2) M = f °° (r - aΓλ\q(r)\(R(r)Y dr < oo .
J Λ

(i) // β > 1, ί/ieπ ί/iere exjsίs η0 > 0 SMC/I ί/zαί for any η (0 < η < η0), (1.1)
has a solution y(r) with the condition

(1.3) cιηR(r)^y(r)^c2ηR(r), r^a

for some c^ > 0, c2 > 0 w/iic/i are independent of η.
(ii) / //?<! , ίfcen f/iere exists f/0 > 0 such that for any η (η > η0), the same

conclusion as in (i) holds.
(iii) / / / ? = ! and M < 1/2, then for any η > 0 the same conclusion as in (i)

holds. Moreover, if q(r) is of definite sign, we can replace M < 1/2 by M < 1.
(iv) For each solution y(r) in (i) ~ (iii), lim,.^ y(r)/R(r) exists and is

positive.

PROOF OF (i). Let us put η0 = (l/p(a))(2β+1M)ί/(1~β\ where M is the num-
ber in (1.2). Here we denote by C the set of all continuous functions on [α, oo)
which is a Frechet space equipped with the usual metric topology, and for η
(0<η<η0) we set Y = {y e C; (l/2)p(a)ηR(r) ^ y(r) ^ 2p(a)ηR(r\ r^a}.
Then we can easily verify that Y is a closed convex subset in C. Define
^: Y -> C by

(1.4) (&y)(r) = p(a)ηR(r) + Γ (R(r) - R(t))(t - aΓλq(t)(y(t))β at, r ̂  a .
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Then, we show for 0 < η < η0 that (P)1 &\ Y -+ Y9 (P)2 & is continuous,
(P)3 &Ύ is relatively compact in C. First of all, from (1.2) it follows that
λ< β +1. In fact, since p(a) Φ 0, we have (r - a)/2p(a) ^ R(r) g 2(r - ά)/p(a\

0 < r — a < p, for some p > 0. Therefore, M^ (r — a)'λ\q(r)\((r — a)/
rp'+a

, M^ (r —
Ja

(r - a)β~λ dr for some 0 < p' ^ p because q(a) Φ 0.
z

This implies β - λ > - 1, i.e., λ < β + 1.
Now we prove (P)^ Since 0 < R(r) g Const(r — a) near r = a and

λ < β + 1, it is apparent that ^y e C if y e Y. For simplicity we put p(a)η = ή,
p(a)η0 = ή0. From (1.4), if y E 7, 0 < η < η0, we have

fJα

(1.5) Py(r) ^ ήR(r) + (R(r) - R(t))(t - a)-λ\q(t)\(2ηf(R(t) f at

Λo

Ja

- aΓλ\q(t)\(R(t)f at \R(r)

= (ή + 2'Mή')R(r) ^ (3/2)//R(r),

using η0 = (l/p(α))(2"+1M)1/(1~ί>. On the other hand, we have

(1.6) &y(r) Z ήR(r) - (R(r) - R(t))(t - aΓλ\q(t)\(2ήf(R(t)f at
Ja

>(ή- (2ηfM)R(r) ^ (l/2)ήR(r) .

This shows that &y e Y.
Next, we prove (P)2. Let {yn} c= Y be a sequence converging to some

y e Y. Then for each fixed r0(>α) and for any ε > 0, there exists nQ such that
supα^r^ro \yn(r) - y(r)\ < ε for n ̂  n0. We take δasQ<δ<β — λ+l. Then
we can verify that

(1.7) \(yn(t)Y - (y(t)Y\ ^ β(4ήR(t)f-δ\yn(t) - y(t)\* , t>a.

Hence we get for n ̂  n0, a < r ̂  r0,

f'
Ja

(R(r) - R(t))(t - aΓλq(t)((yn(t))β - (y(t)f) dt

< R(r0) max.s,Sro \q(t)\β(4ήγ-d Γ (t - aΓ^R^Y^lyM - y(t)\s dt
Ja
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where Mfa) = R(r0)maχa^ro\q(t)\β(4ήγ-d Γ (t - aΓλ(R(t))β-3 dt < oo.
Jα

This implies that 3F\ Y -» Y is continuous.
We next prove (P)3. Let y e Y and r0 > a. Since 0 g (^y)(r) ^ 2ίyΛ(r) ̂

2ήR(r0), a ̂  r ̂  r0, y e 7, J^T is locally uniformly bounded. Furthermore, we
have for y e Y

W(r) = \ή+\(t- aΓλq(t)(y(t))β dtl I p(r) ,
I Ja )l

and so

(2η)β Γ° (t - aΓλ\q(t)\(R(t)Y dtl I mma^,o p(r) ,
Ja } I

a ^ r g r0 .

Thus, ^y is locally equi-continuous. By the Ascoli-Arzela theorem, we see
that ̂  Y is relatively compact in C.

Consequently, from (P^ ~ (P)3 applying the Schauder-Tychonoίf fixed
point theorem, we can assert that there exists y e Y such that ^y(r) = y(r\
r ^ a. This function y(r) satisfies (1.1), (1.3) with cx = p(a)/2, c2 = 2p(a).

PROOF OF (ii). Putting η0 = (2β+1M)l/(1-β}/p(a) if β > 0 and ̂  =
if j5 < 0, setting for fy > ηθ9 C, 7 and ̂  the same as in (i), we can prove

(1.5), (1.6) and then (P)l9 (P)2, (P)3. The remaining part of the proof is the
same as in (i).

PROOF OF (iii). Let C be as in (i). Now let us put

Y0 = {ye C; (1 - 2M)(1 - MΓ1p(a)ηR(r) ^ y(r) g (1 - M)~l p(a)ηR(τ\ r ̂  a}

in the general case of q(r\

Y- = {ye C; (1 - M)p(a)ηR(r) ^ y(r) ^ p(a)ηR(r)9 r ̂  a}

if q(r) ^ 0, r ̂  α, and

Y+ = {y e C; p(a)ηR(r) ^ y(r) g (1 - MΓ^p(a)ηR(r\ r ̂  a]

if q(r) ^ 0, r ^ a.

We define & by (1.4) with β = 1. Then, for any η > 0 & satisfies
(P): ~ (P)3 for each case Y = 70, 7+, 7_. We prove these facts in the case of
7 = y0. Here we note that M < 1/2.

Putting p(d)η = ή, we have for y e Y0
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^ ήR(r) + R(r)\q(t)\(t - α)"A(l - M
Ja

^ ήR(r){ί + M/(l - M)} = (1 - M)~^R(r) , r ̂  a ,

£ ήR(r) - Γ Λ(r)|^(ί)|(ί - αΓΛ(l - M)'1^) dt
Ja

^ ήR(r){l - M/(l - M)} = (1 - 2M)(1 - M)-lήR(r) , r ̂  a .

This shows that ĵ; 6 Y0. The proofs of (P)2, (P)3 are completely the same as

in (i).
In the cases of Y = Y+ and Y = Yl under the condition M < 1, we can

examine necessary properties to apply the Schauder-Tychonoίf theorem.

PROOF OF (iv). Finally we prove the existence of lim,^ y(r)/R(r) for each
solution y(r) obtained above. Since

y(r)/R(r) = p(a)η + (l/Λ(r)} (R(r) - R(t))q(t)(t - aΓλ(y(t))β dt ,Γ
Ja

= p(a)η +
Ja

]im,^ y(r)/R(r) = p(a)η + q(t)(t - aΓλ(y(t)f dt

holds from LΉospitaΓs rule.
The right-hand side is finite from (1.2) and (1.3). The positivity of this

limit follows from (1.3) in each case (i) ~ (iii). Q.E.D.

REMARK 1.1. The condition λ < β + 1 is necessary for the existence of
solution of (1.1). In fact, integrating over [rlf r2] (a < rx < r2) both sides of the
equation in (1.1), and letting r1 -> α, we have

P(r2)y'(r2) ~ P(a)η = limr_β Γ q(r)(r - aΓλ(y(r))β dr .

ΓJa

Therefore, by this and q(ά) / 0, the integral (y(r))β(r — a) λ dr should exist.
Ja

And since y'(ά) = η > 0, we can assert that there exists p > 0 such that

η(r - a)/2 ^ y(r) ̂  3η(r - a)/2, a < r < a + p. Thus,

iΛ P (r - df~λ dr^K Γ P (y(r))β(r - a)~λ dr < oo ,
Ja Ja

where K = (2/η)β if β ^ 0 and K = (2/3η)β if β < 0. This shows that λ < β + 1.
Q.E.D.
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We apply Theorem 1.1 to the following Cauchy problem:

l)/r}y' = G(r)(r-arλyβ, r >a, α > 0 ,
(1.8)

where N is a positive integer with N g; 2. Then we get:

COROLLARY 1.1. Suppose N = 2. Assume G(r) e C[α, oo), G(α) ̂  0,

Γ00

(1.9) M = r|G(r)|(r - α)"λ(log (r/α)/ dr < oo .
Ja

Then (i) ~ (iv) in Theorem 1.1 /zo/d. Moreover the solution y(r) satisfy

(1.10) c x f y log (r/α) ̂  y(r) ̂  c2^y log (r/α), r ^ α

for some constants c1 > 0, c2 > 0, and

(1.11) lim^oo y(r)/log r exists and is positive .

COROLLARY 1.2. Suppose N ^ 3. Assume G(r) e C[a, oo) G(a) ̂  0, and

Λao

(1.12) M = {1/(N - 2)} r(l - (a/rf-2/|G(r)|(r - a)~Λ dr < oo .
Ja

Then (i) ~ (iv) in Theorem 1.1 hold. Moreover the solution y(r) of (1.8) satisfy

(1.13) Clη{l - (a/r)N~2} ^ y(r) ^ c2η{\ - (a/r)N~2}, r ̂  a

for some constants c1 > 0, c2 > 0 and

(1.14) liπi^oo y(r) exists and is positive .

PROOF OF COROLLARIES 1.1 AND 1.2. By the change of variable z = rN~2y,
problem (1.8) reduces to

z(a) = 0 , z'(a) = aN~2η .

Thus, putting p(r) = r3~N and

R(r) = log (r/α) (N = 2), = (l/(N - 2))(rN'2 - α^2) (N ̂  3)

and applying Theorem 1.1, we have the assertions. Q.E.D.

REMARK 1.2. The condition (1.12) in the cases (i), (ii) in Corollary 1.2 can

Γ00

be replaced by λ < β + 1 and r1 A|G(r)| dr < oo. In fact, from
Ja
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(1 - (a/r)N-2)β(r - a)~λ = O((r - a)β~λ) (as r -> a)

= 0(r~λ) (as r -» oo),

we see the condition (1.12) directly.

2. Dirichlet problem for semilinear elliptic equations in the exterior domain

Let a > 0 and put Ω = {x € RN; \x\ > α}, where N ^ 2. In this section we
consider the problem:

(2.1) Au = G(x)(|x| - a)~λuβ in Ω, w = 0 on δί2,

where /? is a real constant and λ is a positive constant. We call u(x) a positive
solution of (2.1) if u(x) belongs to C2(Ω)c\C(Ω\ satisfies (2.1) and u(x) > 0,
xeίλ In what follows we use the notation G*(r) = maxw=Γ|G(x)|. Now we

have:

THEOREM 2.1. Let β Φ 1 ana λ < β + 1. Λsswme that G(x) e Cfoc(β) (0 <
0< 1), G(x) ̂  0, x e dίλ

(i) If N = 2 and

Γ"Jα

(2.2) r x -A(log (r/e))*G*(r) rfr < oo ,

there exist infinitely many positive solutions of (2.1) with the condition

(2.3) Cl log (|x|/α) g M(X) g c2 log (|x|/α) , x 6 Ω ,

/or some c l 9 c2 > 0.
(ii) If N^l and

(2.4) r1-AG*(r)dr< oo,
Λcx,

rl-Λ (

Jα

there exist infinitely many positive solutions of (2.1) with the condition

(2.5) Cl {1 - (a/\x\)N~2} ^ u(x) ί c2{ί - (a/\x\)N'2} , x 6 Ω

for some c1? c2 > 0.

THEOREM 2.2. Let β = 1, /I < 2 and G satisfy the same assumption as in
Theorem 2.1.

(i) If N = 2 and

(2.6) r(log(r/α))(r-ΓJα



386 Yukiyoshi EBIHARA and Yasuhiro FURUSHO

then the same conclusion as (i) in Theorem 2.1 holds.
(ii) // N ^ 3 and

ΓJα

(2.7) I r(l - (a/rf~2)(r - a)'λG*(r) dr < N - 2 ,
Jα

ί/ie same conclusion as (ii) m Theorem 2.1 holds.

Since the proofs of Theorems 2.1 and 2.2 are essentially the same, we only
prove Theorem 2.1.

PROOF OF THEOREM 2.1. It suffices to prove in the case β > 1.
(i) By Corollary 1.1, there exist ηQ > 0, C0 > 0 such that for any η

(0 < η < ηQ\ ζ (0 < ζ < Co) the problems

(2.8) // + (l/r)/ + G*(r)(r-flΓV = 0, r>a y(ά) = 0 , y'(a) = η,

(2.9) z'' + (l/r)z'-G*(r)(r-α)-V = 0, r > α ; z(a) = 0 , z'(a) = ζ

have solutions y(r; 77), z(r; £), respectively, with the conditions

(2.10) Λιη log (r/α) ^ y(r; η) ̂  A2η log (r/a) , r > α ,

(2.11) BiC log (r/α) ^ z(r; ί) ̂  52C log (r/a) , r > α

for some At > 0, B{ > 0, i = 1, 2, with X j ^ B2.
Let ^ = min {η0, ζ0}. Then for any η (0 < 77 < ή\ putting ζ = A^B^η, we

see that 0 < ζ < ή. Now for y(r; η\ z(r; ζ) the solutions of (2.8), (2.9) in this
case, we get

(2.12) (A,BJB2)η log (r/a) ^ z(r; ζ) ̂  A,η log (r/a)

^ y(r; η) ̂  A2η log (r/a) , r > a .

We put t (x) = y(\x\; η\ w(x) = z(|x|; C), x e ίλ Then ι;, w e C2(Ω) n Cx(ί2), and
we have

(2.12') (A.BJB^η log (|x|/ f l) ^ w(x) ^ φ) ^ A2η log (|x|/f l) , x E Ω ,

and

f^(x) + G*(|x|)(|x|-αΓA(ι?(x)y> = 0, x e Ω ι?(ξ) = 0 , ξ e dΩ ,
j * | ) ( | x | - a ) - A ( w ( x ) / = 0, xe ί2 ; w(ξ) = 0 , ξ e 5ί2 .

Therefore,

(2.14) Av(x)^G(x)(\x\-aΓλ(v(x))^ x e Ω ι (ί) = 0 , ί e d

(2.15) Jw(x) ̂  G(x)(|x| - α)"λ(wW/ , x e ί2 w(ξ) = 0 , ξ e
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This shows that v(x) is a supersolution and w(x) is a subsolution of (2.1). Now
for n = 1, 2, ..., if we put

Ωn = {x e fl2; a + l/(rc + 1) < |x| < a + n} ,

then Ωn-*Ω as n->oo. From Theorem 1 in H. Amann [1], there exists a
maximal solution w* e C2+θ(ί2J(0 < 0 < 1) of a problem

(2.16), AU = G(x)(\x\-aΓλUβ, xeΩn; U(ξ) = υ(ξ), ξedΩn

such that

(2. 1 7) w(x) g iiΛx) g tι*(x) ̂  t (x) , x 6 Ωn

for every solution wπ of (2.16)π with the condition

w(x) ̂  MΠ(X) ̂  φ) , x e ί2π .

Now we define ύn(x) = u*(x) for x 6 Ωn, ύn(x) = v(x) for x e Ω\Ωn. Then since
Ωn ci ί3π+1, we have

4un+l(x) = G(x)(\x\ - aΓλ(ΰH+ι(x)Y , x ε ®n I un+1(ξ) ^ υ(ξ) , ξedΩn.

This shows that un+l(x) is a subsolution of (2.16)M with w(x) ^ un+ί(x) ^ f(x),
x e Ωn. Thus, again from the result of [1; Theorem 1] there exists a solution
ύn(x) of(2.16)π such that

w(x) ̂  MΠ+I(X) ̂  wn(x) ^ y(x) , x e Ωn .

From this and the maximality of w* in (2.17) we can assert that MΠ+I(X) ̂
ύn(x\ x e Ωn. Thus, we get

(2.18) w(x)^ύn+1(x)^un(x)^v(x), xεΩ.

This shows that {un(
x)}™=ι is monotone decreasing and locally uniformly

boundeded in Ω. Then by the standard theory of Schauder estimates and
//-estimates (cf. [11]) to such a sequence of solutions, we can conclude that
u(x) = lim,,^ un(x) exists in Ω and by choosing a suitable subsequence {unk} c=
{£„} we get

(2.19) ϋm^oo \\unk-u\ c2(D)

for any bounded domain Dccίλ Therefore u(x) e C2(Ω)r^C(Ω). From
(2.16)π, (2.18) and (2.19) we have

Λu = G(x)(|x| - ά)~λuβ , w(x) ̂  u(x) ^ ι (x) , x 6 ί2 .

From the definition of f, w this function w is a solution of (2.1) with the
condition (2.3). Now the existence of infinitely many solutions of (2.1) is seen



388 Yukiyoshi EBIHARA and Yasuhiro FURUSHO

as follows. For the above η > 0, we put 0 < ηί = (l/2)(AίBί/A2B2)η. Then
replacing η by η^ in the above arguments, we have a solution u^x) of (2.1) such
that Mi(x) g (l/2)w(x), xeΩ. Continuing this procedure and argument, we
have a sequence {un} of solutions of (2.1) with the property un+l(x) ^ (l/2)wn(x),

x e Ω, n = 1, 2, . . .. The assertion will follow apparently.
(ii) The proof is the same as in the case (i). Q.E.D.

3. Blow-up and grow-up of positive solutions

In this section we consider the problem (*)fc when G(x) > 0 (x e Ωb) and
β > 1. We first prepare some lemmas.

LEMMA 3.1. Suppose that λ < β + 1, β > 1 and q(r) > 0 (r ̂  α) in (1.1).
Then for any η > 0 there exists a unique solution of (1.1) in some interval
la, a + <$,].

PROOF. For the existence we note that since λ < β + 1, we can take ^ > 0

such that

fl+ * at ̂fJα

Γfor any 77 > 0, where R(r) = ds/p(s) (r ̂  α). Let us put
Jo

Y={ye C[fl, α + 5,]; p(fl)ιyΛ(r) ^ y(r) ̂  2p(α)ιyΛ(r), α ̂  r ^ α +

= p(a)ηR(r)

Then from Schauder's fixed point theorem, SF has a fixed point y(r) in Y. This
function y(r) is a solution of (1.1) in [α, α + i^].

To prove the uniqueness, let y^r) (i = 1, 2) be solutions of (1.1) in

[α, α -f 5,]. Then there exists Af x > 0 such that (^.(r)) ^ MiΛ(r), α ̂  r ^ α + δη

(i= 1, 2). Therefore we get

- y2(r)\ , a £ r g α + δη ,

hence,

" D^W - y2(ί)| Λ ,f "
Jα

^ r ^ fl +
Now, if we put Ψ(r) = ly^r) - y2(r)\/R(r), a < r ^ a -f δη, Ψ(a) = 0, then we see

that Ψ(r) e C[α, a 4- δ,] and
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(3.1) Ψ(r)^βM{-1 I q(t)(t-aTλ(R(t))βΨ(t)dt, a^r^a + δη.
Ja

Here we choose δ (0 < δ ̂  δη) such that

q(t)(t - aΓλ(R(t))β atί
Thus, by (3.1) we can assert that 0 ̂  Ψ(r) ^ (1/2) maxa^t^a+δΨ(t)9 (a g r ̂
α + <5). This shows that <P(r) = 0, i.e., y^r) = y2(r) for a^r<>a + δ. Q.E.D.

In what follows we denote by y(r\ ή) the solution of (1.1) obtained in

Lemma 3.1 and by [α, 7^) the right maximal interval of existence for y(r; ή).

LEMMA 3.2. Let β > 1, φ e C[0, oo) am/ 0 < tl < t2 < oo. Suppose that

φ(t) > ε m [ίl9 ί2 + ε] /0f 50m^ ε > 0. T/ien, there exists a positive constant
M > 0 such that the solution z(t) of the equation z = φ(t)zβ satisfying z(t) > M

and z(t) > M for some te[tί9 ί2] Λfls the finite right maximal interval [ί, t+) of
existence, where a dot denotes differentiation with respect to t. Moreover,
t+ — t ^ ε/2 and lim f^ί+_0z(ί) = oo hold.

This lemma is essentially the same as [13; Lemma 3.1]. So the proof is
omitted. Here, we note that the constant M > 0 does not depend on t in

[ίι,ί2]

LEMMA 3.3. Let λ, β and q(r) be as in Lemma 3.1, and ή > 0 be fixed.

Then,
(i) y(r; η)->y(r'9 ή), /(r; η)-+y'(r; ή) uniformly in any bounded closed interval

I c [α, TJf) asη-+ή,
(ii) lim^ήf T; = Γ .̂

PROOF. Sί̂ p 7. We prove the following assertion:

Assume that a < f < Tή for some ή > ή. Then, y(r; η) exists in [α, /*] for
each η in (0, ή]. Furthermore, y(r; η) and y'(r; η) converge to y(r, ή) and /(r; //)
uniformly in [α, f] as ^ -> //, respectively.

We first note that by [13; Lemma 0.2]

(3.2) y(r; ιy') ̂  y(r; η") if they exist in some interval [α, rj and η' > ff.

This implies that

(3.3) Tη.£Tη,. for ^>^>0.

Hence we have Tη ^ 7^ > r for every 77 e (0, ?}]. Furthermore, by (3.2) we can
choose a constant K{ > 0, which is independent of η in (0, /J], such that
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0 ̂  y(r\ η) ̂  y(r; ή) ̂  /^(r), a^r^r. Now define Φ(r) by Φ(r) = \y(r\ η) -
y(r\ ή)\/R(r) for a < r < r and Φ(a) = p(a)\η — ή\. Then, we obtain analogously
to (3.1)

Φ(r) ^ Φ(a) + βK{~1 q(t)(t - a)'\R(t}fΦ(t) at, a^r^r.
Ja

Hence, by the Gronwall inequality,

Φ(r) ̂  p(a)\η - //lexpjVr Γ *(f)(ί - flΓW))* dt] , a ^ r ̂  ̂ .
\ Jα /

This shows that

IXr; η) - y(r, ή)\ ̂  p(a)\η - ή\^βK{^ q(t)(t - aΓλ(R(r))β dt\R(f) ,

and so

(3.4) lim^^ y(r; η) = y(r\ ή) uniformly in [α, r] .

Next, integrating (1.1) over [α, r] and choosing v such that 0 < v < β + 1,
we get

\y'(r; η) - y'(r; ή)\

ί (p(a)\η - ή\ + f Γ q(t)(t - aΓλ\(y(t'9 η))β - (y(t'9 ή))β\ dt I p(r)

^ (P(a)\η -ή\ + V-*βK.{-1 q(t)(t - aΓλ(R(t)Y-v dt
\ Jα

x maxα^r^; \y(r; η) - y(r\ ή)\v p(r) , a^r^f.

From this and (3.4), we conclude that lim^/ίr; η) = y'(r\ ή) uniformly in

[*, f]
Step 2. We show that Tη is right continuous at η = ή.
Since lim^+o Tη g T^ by (3.3), it is enough to show that lim^+0 Tη ^ T^.

Let now (η(k)} be an arbitrary sequence such that η(k) > ή and lim^^^ η(k) = ή.
Take ή such that ή > sup^ η(k\ and put r = (a + Tή)/2. Then a < r < Tη(k}

for k ̂  1. Applying the assertion in Step 1, we have

lim^ y(f-9 η(k)) = y(f; ή) and lim^ y'(f\ η(k)) = /(r; ή) .
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Hence, by [5; p. 14, Theorem 3.2], there is a function y(r) and a subsequence

(η'(k)} of {η(k)} such that

f3 5)1 ' ]

(3.6) r+ ^liminf Tη.(k},
k-

where [r, r+) is the right maximal interval of existence for y(r). On the other
hand, since y(r; ή) is a solution of (3.5) in [r, 7~), by the uniqueness of
the solution of (3.5) we have y(r) = y(r; ή) and r+ = 7~. Therefore, by (3.3) and

(3.6), we have lim^+o Tη = liming «, Tη,(k} ^ 7 .̂ Thus we get lim^+o Tη = 7 .̂
Step 3. We now prove the assertion (i). Let / be a bounded closed

interval in [α, 7~). Then, since by (3.3) and Step 2 we can choose η0 > ή such
that I ci [α, 7^) for 0 < η < η0, the assertion follows from Step 1.

Step 4. Finally, we prove the continuity of Tη at η = ή. By Step 2, it
is enough to show that lim^_^_0 Tη = 7~. Moreover, we may assume that
0 < TJ < oo. In fact, if 7J = +00, then by (3.3) Tη = +00 for every η e (0, ή).

ΓBy the change of variable t = ds/p(s\ a ̂  r < oo, the function z(ί; η) =
Ja

y(r(t); η) satisfies

0 < ί < fη ,

0; η) = 0, z(0; ι/) =

where φ(t) = p(r(t))q(r(t))/(r(t) — α)Λ, r(t) is the inverse of ί = ί(r) and fη =

ds/p(s). Furthermore, the right maximal intervals of existence for y(r; η)

and z(ί; η) are [Λ, T^) and [0, 7^), respectively. Therefore, it is enough to show
that the left continuity of fη at η = ή. For any ε 6 (0, 7 )̂, choose BI e (0, ε) such

that <^(ί) > £ι for ί e [f^ - ε l 9 7^ 4- εj. Then, by Lemma 3.2, we can find
K2 > 0 such that for any function z(ί) satisfying the equation in (3.7)
Iim f^ ί2_0z(ί) = oo holds for some ί2 e [tl9 ίx + ε1/2], provided z(ίx) > K2 and
z(ίj) ^ X2 f°Γ some t1 in [7^ — ε1? 7 ]̂. On the other hand, since z(ί; ή) -> oo
and z(ί; //) -* oo as t -> f^ - 0, there is ίj e [f^ - ε1? 7^) such that z(ίf; //) > K2

and z(ί.f; ή) > K2. By the assertion (i), choosing (5 > 0 small enough, we
have z(ίf η) > K2 and z(ίίf; η) > K2 for every η in (ή — δ, ή). Hence,
Iimt^ i2_0z(i; η) = oo for some t2 < if + βι/2, and so we see that fη = t2 ^ if +
εί/2 <fη + εί/2 < f^ + ε for ή - δ < η < ή. Thus we obtain lim^^_0 fη = 7 .̂

Q.E.D.
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LEMMA 3.4. Let λ, β and q(r) be as in Lemma 3.1. Then,
(i) there exists η^ > 0 such that if η > η^, Tη is finite,
(ii) limη^η*+0 Tη = +00 holds, where η* = inf {η > 0; Tη is finite},
(iii) lim^+00 Tη = a.

PROOF. We put A = {η > 0; Tη is finite}. As we have shown in the proof
of Lemma 3.3, it suffices to prove the assertions for the solution z(ί; η) of (3.7),
that is, to prove that (i) A φ 0, (ii) f^* = +00, and (iii) lim^^ fη = 0.

(i) We fix ί0 > O If there exists η>Q with lim f_ f o_ 0z(t; η) = oo, then
fη^t0 and this implies A Φ 0. Therefore we assume here that for any η > 0,
fη > t0 holds. Then, from Lemma 3.2, there exists M > 0 such that any
solution z(t) of the problem: z(ί) = φ(t)(z(t))β, z(ί0) ̂  M, z(ί0) ̂  M, has a finite
right maximal interval of existence, where φ(t) is the same as in (3.7). Put
f/oo = max (M/p(a), M/(p(a)t0)}. Then, from (3.7) we have z(ί0; η) ̂  p(a)η ^ M,
z(ί0; f/) ^ p(a)ηt0 ^ M for η > η^ Thus, when η > η^, the value fη for z(ί; ^) is
finite, i.e., when η > η^, η e A holds.

(ii) By (ii) of Lemma 3.3, fη is continuous in η and so A is open in [0, oo).
Hence, we have η* φ A and fη* = +00.

(iii) We fix ίx > 0 arbitrarily and put t( = tί/2. We choose ε > 0 such
that 0 < ε < f i , φ(t) > ε for ί e [ί'l5 tj. Then for the solution z(ί; */) of (3.7), the

values z(ίi τy), z(tΊ;η) can be made as large as possible by choosing η > 0
sufficiently large. Therefore, from Lemma 3.2, we see that for η > 0 large
enough, fη < t1 should hold. From the arbitrariness of t1 > 0 we conclude
that fη -» 0 (η -> oo). Q.E.D.

Now, we are ready to state our theorem.

THEOREM 3.1. Let λ < β + I, β> \ and q(r) > 0, a ̂  r < oo.
( i ) For any b > a, there exists η > 0 such that

and limr_^_0 y(r; η) = oo .

(ii) // R(r) = I ds/p(s) -* oo as r -> oo and

(3.8)

•Γ
Γ

βxί'sίs f/^ > 0 such that, for any η (0 < η < η^, Tη = oo and y(r\ η)/R(r)
converges to a positive constant as r -» oo.

(iii) (7nrfβr ί/iβ same assumptions as in (ii), for some η > 0, 7^ = oo and

y(r; η)/R(r) tends to oo as r -> oo.
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PROOF. The statement (i) follows from (ii) of Lemma 3.3 and Lemma 3.4;
(ii) is a consequence of (i) and (iv) of Theorem 1.1. For the proof of (iii), put

A = {η > 0; Tη is finite} ,

B = {η > 0; Tη = oo and lim^^ y(r; η)/R(r) exists and is positive} .

Then, by Lemma 3.4 and (3.3), we have A — (η*, oo) for some η* > 0. We now

prove that B is open in (0, oo). Let η e B and denote lη = lim,.̂  y(r\ η)/R(r).
Then by the monotonicity of y(r; η) in η > 0, we have η' e B for η' < η. Since
(p(r)y'(r\ η))' > 0 for r > a the limit of p(r)y'(r\ η) as r -> oo exists and is equal to
lη by LΉospitaPs rule, and hence

(3.9) 0 < p(r)y'(r; η)<lη, a<r<ao.

Take ax(>a) such that

(3.10) f °° q(r)(r - aΓλ(R(r))β dr < ( ί / 2 ) ( 3 l n / 2 Γ f l n .

Then, we can choose δ1 > 0 satisfying

p(r)y'(r; η')<lη, a^r^a,

for η' e (η, η + <5t) by (i) of Lemma 3.3 and (3.9). Furthermore, we have

(3.11) p(r)y'(r, η') < (3/2)/,, r > a,, η'e^η + δj.

In fact, assume that there is an α2(>flι) with the property

p(r)y'(r; η') < (3/2)lη, α g r < α2 P(α2)/(α2; η') = (3/2)/,.

Noting that y(r; η') = Γ y'(t; η') dt < (l/2)lη Γ dt/p(t) = (3/2)lηR(r) for α g r <
Ja Ja

a2, by the integration of (1.1) from al to a2 and by (3.10) we obtain

f«2

(3/2)/, = p(a2)y'(a2; η') = p(a1)y'(a1; η') + q(t)(t - a)~λ(y(t; η'))β dt
Jal

^lη + ((3/2)lη)
β Γ q(t)(t -aΓλ(R(t))β dt < (3/2)lη .

Ja\

This contradiction means that (3.11) holds. Therefore, combining the
monotonicity of p(r)y'(r; η') in r > α and (3.11), we have the existence of
lim^^ p(r)y'(r\ η') = lim,.^^ y(r; η')/R(r) > 0. This implies that η' e B if η' e
(η, η + (5J. Thus B is open.

Now, putting η* = inf A and η# = sup J3, we get η^ η^ φ A u B, η# ^ ^7*,

Γ% = T,* = oo, and Hrn^^, j(r; ijJ/Λίr) = lim^ y(r; η*)/R(r) = oo. Q.E.D.
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We apply Theorem 3.1 to the problem (1.8) with β > 1. In the following
corollary y(r; η) and [α, Tη) denote the solution of (1.8) and the right maximal
interval of existence for y(r; η), respectively.

COROLLARY 3.1. Let λ < β + 1, β > 1 and assume that G(r) e C[α, oo) and
G(r) > 0, r e {a, oo).

( i ) For any b > a, there exists η > 0 such that

Tη = b and lim^^o y(r, η) = GO .

(ii) Suppose moreover that

ΓJα

r1 ~λ(log (r/α)/G(r) dr < oo (N = 2),
Jα

(3.12)

rl~λG(r)dr< oo (N ̂  3).

ί/iere ex/sis n0 > 0 such that, for any η e (0, η0), Tη = oo

lim,.^ y(r; η)/log r exists and is positive, if N = 2 ,
(3.13)

lim^^ y(r; η) exists and is positive, if N ^ 3 .

(iii) Under the same assumptions as in (ii), there exist η^, η*(η* ^ η^ > 0)

such that, for any η e [η^, η*~\, Tη = oo and

(3.14) lirn^ y(r; η)/\og r = oo (N = 2), lim^^ y(r; η) = oo (N^3).

PROOF. Using the same change of the dependent variable as in the proofs
of Corollaries 1.1 and 1.2, we can prove the assertions by Theorem 3.1.

Q.E.D.

Finally, we consider the problem (*)fc.

THEOREM 3.2. Let β > 1 and λ < β + 1. Assume that G(x) e Cfoc(Ω)
(0 < Θ < 1), G(x) > 0, x E Ω.

(i) For any b > a there exists a solution u(x) of (*)b w/zicn belongs to
C2(Ωb) and satisfies

u(x)>Q, xεΩb and lim^i^.o u(x) = oo .

(ii) Suppose moreover that maX|x|=rG(x)/min|x|=rG(x) (r ̂  α) is bounded
and
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r1~A(log (λ/a))PG*(r) dr < oo (N = 2),

(3.15)
1~λG*(r)dr< oo (N ̂  3)

Γ00
r"Jα

w/zerβ G*(r) = max^,. G(x). Then, there exists a positive solution u(x) e
C2(Ω) n C(Ω) of (*) such that

lim|xHoo w(x)/log |x| = 00 (N = 2),
(3.16)

lim î-.a, w(x) =00 (Λf ^> 3).

PROOF. We give the proof of (i) in the case of N = 2. By (i) of
Corollary 3.1, for any b > α, there exists a function y(r; 77) 6 C2(α, b) n Cx[α, b)
such that

, y(r;η)>Q9 a< r < b ,

j>(έi; η) = 0 , /(α; η) = η > 0 and limr^fc_0 y(r; fy) = oo ,

where G^(r) = minw=ΓG(x). Putting v(x) = y(\x\; η), a ̂  |x| < b, we have

^ G(x)(\x\ - aΓλ(υ(x)Y , x e Ωb ,

v(x) = 0 , |x| = 0 and lim^^^.o ι (x) = oo .

Now, take a constant τ such that

0 < τ < l and G*(r) ̂  τ^GJr), α ^ r g f e .

So, the function w(x) = τt (x) satisfies w(x) ^ t (x), x e Ωb, and

'zlw(x) = τAv(x) = τ^^dxDdxl - α)-λ(τt;(x)/

^ G*(|x|)(|x| - aΓλ(w(x))β ^ G(x)(|x| - a)~A(w(x)/ , x 6 Ωb ,

w(x) = 0 , |x| = a , and limw^b_0 w(x) = oo .

Therefore, we get a solution u(x) of (*)6 satisfying w(x) ̂  w(x) ̂  ι (x), x e Ωb, by
the similar supersolution-subsolution method in the proof of Theorem 2.1.

This function u(x) is a desired solution of (*)b.
The rest of the assertions are proved by essentially the same method as

above, so the proof of it is omitted. Q.E.D.

REMARK 3.1. Recently, Usami [14] has proved the existence of entire
positive solutions of Δu = G(x)uβ in RN satisfying (3.16). We have used the
same idea as in [14].
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