HIROSHIMA MATH. J.
19 (1989), 281-297

Construction of diffusion processes associated with
a porous medium equation

Masaaki INOUE
(Received June 21, 1988)

§1. Introduction

Let us consider the following Cauchy problem

1
(1.1a) u, = E(u"‘)xx, t>0, xeR,

(1.1b) u(0, x) = ug(x), x€eR,

for given o > 1. The equation (1.1qa) is called a porous medium equation. The
equation was studied by Kalashnikov, Oleinik, Yui-lin, Aronson, Kamenomo-
stskaya, Peletier and so on. They studied weak solutions of the Cauchy
problem (1.1)( = (1.1a) + (1.1b)) that are functions u = u(t, x) satisfying

(1.2a) ue LY([0, T] x R)ﬂL“’([O, T] x R) for all T> 0 and

(1.2b) j dt J (pu + %qo,xu"‘)dx + f @0, x)ug(x)dx =0
0 R R

for all e C3([0, ) x R).

Our interest is in a diffusion process (X = {X(t)}, P) such that P(X(t)edx)
= u(t, x)dx for all t > 0 and the density function u = u(t, x) is a weak solution of
the Cauchy problem (1.1). We call it a diffusion process associated with
(1.1). But such a diffusion process is not unique. In this paper, we will
construct a class of diffusion processes associated with (1.1). Our main result is
the following

THEOREM. Assume the following conditions for the initial function u:
(A.1) uo is a probability density,
(A.2) uo is a function of bounded variation,
(A.3) f | x|ug(x)dx is finite and
R
(A.4) (uo)* has a derivative of bounded variation.

Then there exist a unigue weak solution u of (1.1) and a diffusion process (X
= {X(t)}, P?) for each A€ [0, 1] such that u(t, - ) is the probability density of the
distribution of X(t) under P* for all t 2 0 and the generator of (X, P?) is
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gt =Zu(t, xp i — 2R

A 11— W)t x) 9
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> of

In the previous paper [6], we introduced a story of the construction of the
diffusion process when A= 1. Our purpose in this paper is not only to
propose this theorem as an existence of diffusion processes but also to explain
the construction of the processes as a limit theorem in the probability theory.

§2. Construction of diffusion processes

In this section we explain the outline of our construction of diffusion
processes associated with (1.1). The details are postponed to the subsequent
sections. The essential idea of the construction is due to Khintchine [9]. He
proved a central limit theorem which appeared in a difference approximation of
the heat equation. We shall extend his method to the porous medium
equation. That is, we define the diffusion processes as limits of some Markov
chains.

In §3 we consider the difference approximation of the porous medium
equation. Let h be a positive number and © = h**!. We consider the mesh
{(t, x) = (n7, jn)|ln =0, 1,---, jeZ} in [0, o) x R. Denote u]j = u(nz, jh) for any
function u on the mesh. We consider the following difference scheme

ittt —uf W) =20+ W)
2.1a) —— s . n

(2.10) ud = ug(jh)/cy, jeZ

= Oa 1""’ jEZ,

where uy(x) is an initial function of the Cauchy problem (1.1) with the condition
(A4.1) ~ (A.4) and ¢;, = Y jczuo(jh)h is a normalized constant which converges to 1
as h-0.

Let u, be the function on [0, o0) x R defined by

22 u((n + 0,)t, (j + 6,)h)
wj + 0,551 — ufey) + 0,5, —u), f0<0,<0,<1,
ui+ 0, —u) + 0, —uitY), f0<6,<0,<1.
PROPOSITION 1.  Assume (A.1) and (A.2), then there exists a unigue weak

solution u of (1.1) such that

(2.30) lim,_ollu, —ully =0
and

(2.3b) lim, soollu(- +¢& -+ ) —ully=0
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N
for each N > 0 where |u| y = SUPOstNJ |u(t, x)|dx. Moreover if u, satisfies
-N

the condition (A.4) too, then u, converges to u uniformly in any bounded domain of
[0, ©) x R and u* has a bounded derivative (u%), satisfying

(2.4a) lim, o || (u)x — W)slln =0
and
(2.4b) lim, 5o (W) (- + & -+ 0) — W)lly =0

for each N > 0.

In §4 we consider the following Markov chains. Put ZN = {® =(w,,
Wy,...)|w,eZ} and S, (w) = w, for all weZN. For each Ae[0, 1] and h > 0, let
P} be the Markov measure on ZN characterized by

(2.50)  PiSyy=j£1]S,=))
1—24 {(Pi(S, =) — (PKS, =j + 1))},

2 Pi(S, =) ’
PI);(Sn+1 :jISn =J) =1- P;}(Sn+1 =j+ 1|Sn =J) _P;;'.(Sn+1 =j— 11§, =J)

A
= S(PiS, =)y +

and
(2.5b) Pii(So = J) = uo(jh)h/cy,
where {x}, = max{x, 0} and ¢, = ¥ ;,uo(jh)h. Put

uj = Py(S, =jh~%,

then the sequence {u}} satisfies the difference equation (2.1) for all 1€[0, 1].
Therefore u} = P;(S, = j)h~' is independent of 1.

We will show the convergence of the law of the Markov chains. Let € be
the metric space of all continuous functions w: [0, c0) —» R with the metric d(w,
w) =Y 127Msupg <, <onIW(t) — W(t)| A 1} and & be the o-field generated by
all cylinder sets in 4. Let X, be the #-valued random variable on (ZN, P})
such that, for each weZN, X, (w) is the polygonal function whose value at a
point t > 0 is

Xut, w) = hS[t/r](w) + h((t/7) — [t/7]) {S[t/r]+ (@) — S[t/t](w)}’

where [x] is the integer part of x. Let P}, be the probability measure on (%,
&) such that P% (A) = Py(X,€A) for all AeZ.

PROPOSITION 2. Assume (A1) ~(A.4), then the family of probability
measures {P%,|h > 0} on (€, F) is tight for each Ae[0, 1].
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By the tightness of {P},|h > 0}, there exist a sequence {h,} of {h} and a
probability measure P* on (¥, #) such that P}, converges to P* weakly. Let
X(t) be the function on € defined by X(t, w) = w(t) for all we®.

In §5 we will prove that the density function of the distribution of X(t)
under P* is a weak solution of (1.1) given in Proposition 1 and consider a
martingale problem about the process X = {X(t)} on (¥, &, P%).

PROPOSITION 3. Assume (A.1) ~ (A.3), then we have

(2.6) PHX(t)edx) = u(t, x)dx

and

2.7 E*[1X(0]] < J | x[uo(x)dx + (Il uoll *~ 2)*/?
R

for all t >0 and A€[0, 1] where u = u(t, x) is a weak solution of (1.1) which is
constructed in Proposition 1. Further if u, satisfies the condition (A.4) too, then
we have

28) E[H(_X(»

u(t, X(t))

} < o1 2)s | )Y Vi1to)

for all t > 0 and A€ [0, 1] where V(f) denotes the total variation of a function f
on R.

PROPOSITION 4. Assume (A.1) ~ (A.4). Then, for each Ae[0, 1] and
feCP(R — R), the process

Al a—1¢n 1—2 t(ua)x(ss X(S)) "
o x5 [ s, X0ty xons + 152 [0 KO )

is an {F}} — martingale on (¢, P*) where F} is the o-field generated by
{X(s)|s <t} and all P*-null sets.

COROLLARY. Assume (A.1) ~ (A.4). For each A€[0, 1], the process X
= {X(t)} on (¢, #, P* satisfies the following stochastic differential equation

: L= [l XE)
2.10) X(t) = X(0) + fo{lu(s, XEP 1Bl — —5— | s

Finally in §6 we will show the Markov property of the process X on (¢, %,
P,

PROPOSITION 5. Assume (A.1) ~ (A.4). For each A€[0, 1], the process X
={X(®)} on (¢, #, P* is a diffusion process with the generator
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21— 4 W)t x) 9

A
A __ a—1 .
(2.11) {g, = —2u(t, X) p) > ut, ) 0 [t > 0}

Thus we obtain our main theorem.
REMARK. (i) In case of A =1, we can show our theorem without the

assumption (4.4). (i) In case of 1=0, the process X ={X()} is a
deterministic flow satisfying

X() X(0)
J u(t, x)dx = J ug(x)dx

— 0 — oo

with probability 1 for all ¢t > 0.

§3. Difference approximation

The difference approximation of the porous medium equation was studied
by Baklanovskaya, Nakaki and so on. We shall use their results. For each h
> 0, let u, be the function on [0, o) x R defined by (2.2). In this section, we
prove that u, converges to a weak soluton of (1.1) (ie. Proposition 1).

Firstly we see the stability of u,. By the conditions (4.1) and (4.2) in §1, u,
is bounded and ¢, = Yz uo(jh)h —» 1 as h > 0. Hence there exists a constant
ho > 0 such that

12<c¢,<2
for each he(0, hy). Put M = a2||ugll )*~* and h, = min{hy, M~ 1271},

LeMMA 3.1. Assume the conditions (A.1) and (A.2). For each h < hy, let
{u}} be a sequence satisfying (2.1). Then we have

(3.1) 0<uj<|luollw/chy n=0,1,,j€eZ
and
(3.2) Yiezltje1 — Uil < V(ug)/c,, n=0, 1,---,

where V(f) is the total variation of a function f: R - R.

Proor. The estimate (3.1) were introduced by Baklanovskaya [2]. The
estimate (3.2) is easily shown by the relation

r r
u;lill - “;+1 =[1- ra?](“;+ 1 — U+ ’2“‘1;+ (W —ujey) + Ea?— [ —uj_y)

where r = h*~! and

aj = {(uj ) — @))}/(Wj, — uf)e(0, M)
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LemMmA 3.2 (T. Nakaki [11]). Assume the conditions (A.1), (A.2) and
(A.4). For each h < h,, we have

(3.3 Supjez| (Uj+ )" — W))*|h < | Wd)x |l wlcn) ™%
(34 Yiezl W )" — W))*| < V(ug*)cy)™* and
3.5) T Y el — W) h < MV(uo*) (c)) ™% for all n=0, 1,---.

Next we prepare the compactness of a function space.

LemMMa 3.3. Let U be a set of functions u: [0,0) x R—> R. Suppose

sup,cu(flu ||L°°([0,oo)xn) + sup,, o V(u(t,*))) < ©

and {( fru)(t, x) = J Sx —yu(t, y)dy : ueU } is equicontinuous for each
R

feCPR). If U ia an infinite set, then there exists a sequence {u,} = U and a
Sfunction uy: [0, ©) x R— R such that

limn—'oo“un — Uy ”N =0

and

lim, Lo llue(- +& -+ 0) —uylly=0
-0

for each N > 0 where ||ul|y is as in Proposition 1. Especially if
Uai = {ueUl|sup, ol u(t, x) — u(t, y)| < K|x — y|“}

is an infinite set for some a, K > 0, then there exists a sequence {u,} < U, x such
that u, converges uniformly in any bounded domain of [0, 0) x R.

PrOOF. Let peC§ be a probability density function on R satisfying
supp(p) = (—1, 1). Put p,(x) = np(nx), then {uxp,|lue U} is uniformly bounded
and equicontinuous for each neN. We can choose a sequence {u,} = U such
that {u,*p,|n > N} is a Cauchy seqeunce with respect to the norm | ||y for each
NeN. Putting

uoo = limn—'ooun*pn

we get Lemma 3.3, because
1
lukp, —ully < ;SUPOStsNV(u(t’ *))

for any ue U and

SUPo <r< o [(Ukp,) (1, X) — u(t,x)| < Kn™*
xeR
for any ueU, k.
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LEMMA 34. Assume the conditions (A.1) and (A.2). Then there exist a
weak solution u of (1.1) and sequence {h,} such that |u, — ul|y—0 as n— o
and |u(-+¢ -+ ) —ul|ly—0 as e 6 >0 for each N> 0.

Proor. By the definition of u, and the estimate (3.1), we see

1
() (t, %) = (Fu (s 9 < 1 o lx = v+ S 1AW «Co Mt — s

for all t, s >0, xeR and fe C¥(R - R) where C, = 2|y, , and

(AN)X) = {f(x + h) — 2f(x) + f(x — W}h™2.

Put U = {u,|0 < h < h,}, then U satisfies the conditions of Lemma 3.3. Hence
there exist a function u and a sequence {h,} of {h} such that ||u, — u|y—0 as
n—oo. Note YL, uth=1 and (3.1), then we get

lull Liao,rxry < T and  sup,, o xeplult, x)| < Co

which implies ue L}([0, T] x R)\ L*([0, T] x R) for all T> 0. Note that, for

each ¢ e CP(R), { J o(t, x)u,(t, x)dx|0 < h <h1} is equicontinuous on [0,00) and

R
o(t, x)u,(t,x) is a function of bounded variation with respect to xeR for all
t > 0. Put ¢} = ¢(nt,jh), uj = uy(nt,jh). From the difference equation (2.1), we
have

n+1

‘[ dtj u(t, ) (t, x)dx = lim;, Lo th Y 26> icz u;'?’—T_&
o R

. © me@i+1 — 205 + @
= llmh—»o{ - Th2n=02jel(uj) it thj =t thez “?(P?}

® 1
= —J dtj Ut =@ dx — f uy(x)(0, x)dx.
o R 2 R

It follows that u is a weak solution of (1.1).
Using Lemma 3.2, Nakaki [11] proved the following

LEMMA 3.5. Assume the conditions (A.1), (A.2) and (A.4). Then there exist
a weak solution u of (1.1) and a suquence {h,} such that w, converges to u
uniformly in any bounded domain and | (u;,), — (U*),|ly >0 as n— oo and |(u%),
(“+e  +3)—W)llyn—0as e >0 for each N> 0.

By Lemmas 3.4, and 3.5 and [14], Proposition 1 is proved.
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§4. Markov chains and tightness

Let A€[0, 1] and h > 0. In this section we consider the Markov chain
{S,} on (ZN, P}) defined in §2 and we prove Proposition 2. Firstly we consider
the martingale property of the Markov chain. Let u} = Pi(S,=jh~ ! and %,
be the o-field on ZN generated by {S;: i <n}. Put

1—
2

+ A
dy () = {@)) — Wi51)"} 4/ (W5h).

Remember the definition of the Markov measure P; and the relation u} = w(nt,
jh), then we can show the following

LeEMMA 4.1. For each function f: Z — R, the process

A
{f(S..) — Y% [E(uh(ita SIS + 1) — 2f(S) + f(S; — D)h™?2

+d7 (SHSSi+ D) = fSPh™ +d7 (SH(f(S: — 1) —f(S,-))h_‘}f}

is a {#,}-martingale on (Z~N, P}).
Put
D = d; (S,) % d; (S,)
and
M,=S8,—So—Y'=dD; th™1.
By Lemma 4.1, the process {M,} is a {#,}-martingale on (Z~, P}) satisfying
(@.1) E?[|M, — M|2] = EA[Y028 {Awy(ir, SH)*~ + Dith — (D7)?t}th™2].
Moreover we have

LEMMA 4.2. Assume (A.1) and (A.2). Then there exists a constant K; > 0
depending only on o, A and |uyl , such that

42)  Ei[IM, — M|*] < K {(n — k)*>t*> + (n — k)*?t32h + (n — k)th*}h~*
for all n >k >0. If we assume (A.4) too, then
(4.3) Ef[ldy (S)I“] < o | @)x [l )* ™ * Vo) =~ V71

for all n > 0.

PROOF. Let v, = Au,(nt, S,h)* ‘th~2 + Dfth~' and d,= D, th™2. For
each meN, we see
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Ei[IM, — M,|*"]
= E;’}[ZI';,} {(M. —d;— Mk)zm - (M; — Mk)zm
+ 000 =1 2mCa o (M; — d; — M;)*" 2!
+ a3 =1 2mCay —1(M; — dy — My)*m =20+ 137,
Put m = 2, then we have (4.2). By Lemma 3.2, we get
{0 — ays
W)7h® j
{(“;)a — (U], D)+
W)~ uf — |

< o] (). o V(g)e eV

Ei[1dy (S)IF1 < Yoy

< (10g)ell wen ™' Ljez uf —uj

which implies (4.3).

Now we consider the convergence of the Markov chains. Let P} be the
probability measure on (¥, %) defined in §2. We show the tightness of
{P%.|h > 0}.

PROOF OF PROPOSITION 2. It is enough to show

4.4) limy_, o limsup,_,P%,(1X(©0)| > N) =
and
4.5) limawlim suph_,on(h(maxo <ts<7|X({@) — X(5)| > &) =

|t—s|<é

for each ¢ >0 and T>0. By the definition of P},, we have

h
Py (X0 > N) < ZE; [1Sol]-

By the assumption (4.3), lim,_ o Ef[|So|] = I | x|ug(x)dx is finite, which implies

(4.4). Next we show (4.5). Fix ¢>0, T>0 and 6 >0. For each he(0,
(¢/2) A hy), put

= (¢ — 2h)/2h, N = [2T}d]
k; = [i6/2t] and m; = [(i + 2)6/27] + 1.
Then we have

P%,(maxg o< 7| X() — X(5)| > &) < YiTo! Pa(maxy, <psm|Sn — Si| > ¢)

lt—sl<d

< Z?=_01P£(maxk.-5n<m-|M - Mkl > 8’/2
+ YN Phmaxy, cpom | Yy =k Dy th™ | >€/2)
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< Y {2V ER[IM,, — M, |*] + (/Y ER[(X75,: 1Dy th™ ')}
< TN Qe Ky ((m; — k)Pe® + (m; — k)?2c%2h
+ (m; — k)yth*)h™* + (2/¢')* Ky(m; — k;)*t*h ™%}
< N{(2/he'}* K((6 + 27)* + (8 + 21)*h + (8 + 20)h?) + (2/he')* K,(6 + 27)},
where K, = o || (8), |l )* *V(up)2**~V*1 1t follows that

lim sup;, .o P%,(maxo <, < 7| X(t) — X(5)| > ¢) < 2T{(4/e)*K 0 + (4/e)*K,0°" '},
lt—s] <o

which implies (4.5).

§5. Martingale problem

By the tightness of {P%,}, there exist a sequence {h,} of {h} and a
probability measure P* on (¢, &) such that P} converges to P* weakly. In
this section we shall prove Propositions 3 and 4.

LeEMMA 5.1. Assume (A.1) ~ (A.3). Then we have

(5.1) PHX(t)edx) = u(t, x)dx

and

(5.2) E*|X(0)I] < j Ix uo(x)dx + ([l uoll o)*~ )2
R

for all t >0 and A€[0, 1] where u(t, x) is a weak solution of (1.1).
Proor. Firstly we show (5.1). For each fe Ci(R), we have
E*Lf(X(®)] = lim_.oE%, [ f (X(0)] = lim,, - o EALf(X([t/7]7))]

= limy, .o Y jez f(jR)us([t/7]7, jh)R

= limh*OJ\ JXu([t/e])r, x)dx = ff (Ju(t, x)dx,

R R
which implies (5.1). Next we show (5.2). Take an increasing sequence of
functions {f,} = C}R) satisfying f,(x)1|x| as n—» co. By (5.1), we have
E*Lf(X(®)] = E'[f(X(#)] < lim sup,_.o E;[|S;h]]
where k = [t/tr]. By (4.1) at A =1. we have
Ei[1S:hI] < EqLISohl] + (ERLIM,h|*]1?
< Yjez lihluoGhh/ey + (Il uoll )*~ tkr)! 2, @7 172

It follows that
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E*[1X(®)] = lim, ., E*[f(X(®)] < f |x[ug(x)dx + (1o ll )~ ')''2,
R

as was to be proved.

LeMMA 5.2.  Assume (A.1) ~ (A.4). Then we have

()2, X(2))

(5.3) E‘I: e, X(0)

] < ol [l @)l )* ™" Vi(uo)

for all t >0 and Ae[0,1].

Proor. By the uniform convergence of u,, we have

f

< lim sup,.o E,’}|:

()2, X (1))
u(t, X(¢))

al u(t, X(t)) > 8]

(up)u(n, S,h)
uy(nt, S,h)

|z, S,h) > e/z] -

for each ¢ >0 where n = [t/r]. By Lemma 4.2, we have
(%) < o[ @g)ell o)™ ' Vi(1to)
for each ¢ > 0. Letting ¢ >0 we have (5.3).
Lemmas 5.1 and 5.2 together imply Propostion 3.

Proor oF ProrosiTION 4. Fix fe CF(R — R) and ge C,(R - R).
We show that

54 /(X)X ()]
- ] {roxon + [ o xor - rroxoms

S

"1—2 (u"),(0, X(0)
)2 we, X(0)

1'(X (9))d9}g(X (S))J
for each t >s>0. By Lemma 4.1, we get

E*Lf(X(0)g(X(s)]

291

= lim,,_,oE,’}[{ SSh) + 3024 %u,,(ir, Shyr = f"(Shyr — YiZ D f ’(S,-h)r}g(Skh):l,

where n = [t/r] and k = [s/r]. By the uniform convergence of u,, we have
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limh*OE};;I:{f (Seh) + Y72y 2“" it, S;hy* 1S, h)f}g(Skh)]

- E‘I:{f(X(s)) + f gu(e, X))y~ f" (X(e))de}g(X(s»]-

Next we put
ER[{YI=¢ Di f'(Siytig(Sih)] = TiZi (i + &),
where
Ji = E3[D; (S ugie,simy>09(Skh)]
and

& = E;} [D; f l(Sih)X(u(it,Sih)5£)g(Skh)]
for each ¢ > 0. Then we have
| < 1- A)Zjezl(ui * — (uj'+ l)allf’(jh)lxm(it,jh)s & gl w
<A =ADlfMNolgl ooneZ “(“j‘ \ uj'+ N |“; - uj‘+1 |X(u(it,jh)sa)'
By the uniform convergence of u,, we get
lim sup,_ol Y7oy &t < [f 1w llgllolt — slo(26)* ™1 V(uo).
On the other hand, we have
(ua)x(it, Slh) ’ —
lJi - Eﬁ[ - Wf (St tuiie.sm>ad(Skh) || < I + 17,

where

=5

By the | ||y-convergence of (uf), and the uniform convergence of u,, we get

lim, o Y2 dIF + 17y =

{s) —us, )+ {F W)l Sh)}
ush u(it, S;h)

|fl(Sih)|X(u(it,S.'h)>e) Ig(Skh)l]'

By the uniform continuity of u, we have

: -1
limy, o} 72y Jit

. 1 — 4 ["(u%)ltg, X(zg)) ,
= hmh—'OE;}[ I L u(0,3((0))6 f(X(e))X{u(O.X(O))>e)d0g(X(S))
where 1, = [0/t]t. By the continuity of (u*), with respect to the norm || || (see
Lemma 3.5), the above limit is
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1 — A [*(u9,(6, X(6
B 15 [COED X O tren- o005 |

It follows that
E*f(X(2)g(X(s))]
= E‘[{f (X(s) + J%u(f), X(0))* " f"(X(6))do

1 — 4 [*(u)6, X(6))
2 ), u6,X(0)

0. ¢ (0))X(u(0.x(6))>e)d0}g(x (S)):l + limh—»oZ?;kIEiT

for each ¢ > 0. Letting ¢ -0 we have (5.4), because

[ J (0, X(6))

u®, X(0)) — (X(G))X(u(o X(9))> &) ng(X(S)):I

“(u")0,X(0)) .,
- El[ me (X (9))d9g(X(s))]

t a 1/a (@a—1)/a
<llgllollf Haof d0<El|: :|> (El[X(u(G,X(G))Ss}J>

—0(as ¢ » 0). Using the same method as above, we have the same formula as
(5:4) for g(X(s))g1(X(s1)) - gm(X(sm)) in place of g(X(s)) for any s,,--, sm€ [0, )
and g¢4,..., gn€ Cy(R > R). Therefore we have

E*f(X©)|#}]
= E[ {f(X(S)) + j ' guw, XO) " f"(X(6))d0
12 f’(u“)x(e, X(0)) 9]

2 ), ud, X(0))
for all t > s >0. Thus the process (2.9) is an {#}}-martingale on (¥, #, P%).

(u
u(6, X(6))

J'X (9))d9}

ProOF OF COROLLARY OF PrOPOSITION 4. We prove the stochastic
differential equation (2.10). Put

1 — 2 [" @)uls, X(5))

DUy = =37 "uts, X0

and
M) = X(2) — X(0) — D(z),
then M(t) is an {#}}-martingale on (¥, #, P%) satisfying
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E*[IM(t) — M(s)*] = E1|: j ', X(O))“"d@]
and

E*LIM®)1*] < 3(lluo Il )@ Ve2.
If A#0, then

B(t) = J t (s, X(s)*~ 1}~ 12dM(s)
0o
is an {#}}-Brownian motion on (4, #, P*) and
M(t) = ft {Au(s, X(s))*~*}'/2dB(s),
(4]

which implies (2.10) for each 1€(0, 1]. If 1 = 0, then, by the equation (4.1), we

have
2
E"[ ds :I

. 1
= lim,o E} [ Sugh — Soh + Y¥Y™ li(df (8) —di (S))y

1 [ @0, X(5)

XO=XO0+3] " x6)

]
= lim,, o Ep [YY0 (D h — (D7) 1)r]
< limy,, o 2t{oc (|| (ug)x Il o)* ™ 'V (40) } /0 = 0.

It follows that the process X on (¢, &, P°) satisfies (2.10) with probability 1.

§6. Markov property

In this section we show that the process X on (¥, &, P*) is a Markov
process. Let p} and S, be as in §2. Firstly we prepare the following.

LEMMA 6.1. Let f be a function of bounded variation on R into R. Fix an
integer n > 0. Put

P = EL (SIS, = m]
for k <n and meZ. Then we have
(6.1) Yomez! P — P-1l < V(f)
for all 0 <k<n.

ProoFr. By the definition of pk, it satisfies the following backward
difference equation
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Pr ' = P _ & ayePrss = 2n F Do
T 20" h?
+1;_/1{a,;_1p’;.+1h— Ph b,';_lp‘,‘,.-lh— p’,‘n}, k<n meZ

and
Pm = f(mh), meZ,

where
ut = PHS, =mh~!

and

ap, = {(up)* — (s 1)*} 4/ (Umh), bl = {(us)® — (U= 1)} 1 /(unh).
Put c* = p* ., — pk, then we have
k—1 A k—1ya—1 k—1ya—1 1-42 k—1 k—1 k
Cm =[1- 5{(“m+1) + (um ) }r - T{am + bm+1}rh Cm

A 1—-21 A 1—4
+ {E(“:‘n_*rll)a_ b+ ) anh h}rc’,‘,,+ 1+ {E(ufn_ Tyt 4+ Tb’,‘,,_ t h}rcf,,_ 1

where r = th™2. Using the estimate 0 < (u*)*"'th™2 < 1, we get
ZmeZIcfn_ll S Zmellcfnl S ZmeZlc:'nl = Zmellf((m + l)h) _f(mh)l S V(f)
which is (6.1).

PRrROOF OF PROPSITION 5. For simplicity of the notation, we write A > 0 in
stead of h, >0 in §5. Fix feCF(R) and t >s>0. For each h > 0, let

Pm = Ei[f(S,)|S, = m]
where n = [t/t] and k = [s/tr]. By Lemma 6.1, we see
Zmellpm+1 - pml < V(f)
Let p, be the continuous function on R defined by
Pu(x) = Ppym + (x/h — [X/h])(Prjmy+ 1 — Prxymp)-
Then we have

V(b < V().

By Lemma 3.3, there exist a function p(x) and a sequence {h,} of {h} such that

N
limn-»mf |Ph,(x) — p(x)|dx = 0,
N



296 Masaaki INOUE

and

N
lims_,of Ip(x + &) — p(x)|dx =0
—N

for each N > 0. Let g be a bounded continuous function on R with compact
support and g,,-:*, g,, be bounded continuous functions on R. For any s > s,
> ... > s, =0, we have

E*LA(X(0))9(X())g1(X(51)) -+~ gm( X (s)]
= lim,_,E; Lf (S ng(Sim)g1(Sk, h) -+ Gm(Sk,. 1]
where ¢ = [t/r], k= [s/t], k= [s:/t],--*, kn = [s./t]. By the Markov
property of {S,} and the convergence of p, , the above limit is equal to
Bim, . EZ, [P, (St (Sihn)g s (S, )+ (S, )]
= E*[p(X(9)g(X(5))g1(X(51)) - Gl X () ]-
It follows that

E*Lf(X))IX(s), X(51),-+, X(s5w)] = P(X(5)) = E*[f(X())|X(s)]

for any s;, S5,-**, s,€[0, s)(meN) and fe C¥ (R > R). Therefore the Markov
property of the process X on (¢, &%, P*) has been proved. Next we calculate
the generator of it. Fix feC§(R) and ¢t > 0. By Proposition 4, we get

ELS(X(t + 9)|X(0) = x]
- El[f(xa» + J L e)uts, X ts

(*)«ls, X(s))

1— 2 [t*e :
-5 J; J'(X(s) (s, X) dS‘X(t)=Xj|

for each ¢ > 0. Therefore the generator of X is

(@ f)x) = limwoé{E‘[f(X(t + &)1 X() = x] — f(x)}

1

— A " a— — 4 ’ (ua)x(t’ X)
=2t et~ 15

u(t,x) ’

as was to be proved.
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