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§1. Introduction

Let us consider the following Cauchy problem

(1.10) ut = -(u*)xx, t > 0, xeR,

(1.16) w(0, x) = M0(x), xeR,

for given α > 1. The equation (1.10) is called a porous medium equation. The
equation was studied by Kalashnikov, Oleinik, Yui-lin, Aronson, Kamenomo-
stskaya, Peletier and so on. They studied weak solutions of the Cauchy
problem (!.!)( = (1.10) + (1.16)) that are functions u = u(t, x) satisfying

(1.20) weZΛCO, T] x R)p|L°°([0, Γ] x R) for all T> 0 and

Γ00 Γ i Γ(1.26) at (φtu + -φxxu*)dx + φ(0, x)u0(x)dx = 0
Jo JR 2 JR

for all φeQ?([0, oo) x R).
Our interest is in a diffusion process (X = (X(t)}, P) such that P(X(t)edx)

= u(t, x)dx for all ί > 0 and the density function u = u(t, x) is a weak solution of
the Cauchy problem (1.1). We call it a diffusion process associated with
(1.1). But such a diffusion process is not unique. In this paper, we will
construct a class of diffusion processes associated with (1.1). Our main result is
the following

THEOREM. Assume the following conditions for the initial function u0:
(AΛ) uQ is a probability density,
(A.2) MO is a function of bounded variation,

(A3) \x\u0(x)dx is finite and

(AΛ) (UQ)Λ has a derivative of bounded variation.

Then there exist a unigue weak solution u of (1.1) and a diffusion process (X
= (X(t)}, Pλ)for each λε [0, 1] such that u(t, - ) is the probability density of the
distribution of X(t) under Pλ for all ί ^ 0 and the generator of (X, Pλ) is
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ί >0

In the previous paper [6], we introduced a story of the construction of the
diffusion process when λ = 1. Our purpose in this paper is not only to
propose this theorem as an existence of diffusion processes but also to explain
the construction of the processes as a limit theorem in the probability theory.

§2. Construction of diffusion processes

In this section we explain the outline of our construction of diffusion
processes associated with (1.1). The details are postponed to the subsequent
sections. The essential idea of the construction is due to Khintchine [9]. He
proved a central limit theorem which appeared in a difference approximation of
the heat equation. We shall extend his method to the porous medium
equation. That is, we define the diffusion processes as limits of some Markov
chains.

In §3 we consider the difference approximation of the porous medium
equation. Let h be a positive number and τ = hΛ + 1. We consider the mesh
{(ί, x) = (nτjh)\n = 0, 1, , jeZ} in [0, oo) x R. Denote u" = u(nτjh) for any
function u on the mesh. We consider the following difference scheme

(2.1.)

(2Λb) u? =

where u0(x) is an initial function of the Cauchy problem (1.1) with the condition
(AA) ~ (A A) and ch = Σjezuo(Jtyh *s a normalized constant which converges to 1
as /ι->0.

Let uh be the function on [0, oo) x R defined by

(2.2) uh((n + ΘJτ, (j + Θ2)h)

uj + βiίujΐί - uj+ 0 + Θ2(u"j+ 1 - φ if 0 < Θ1 < Θ2 < 1,

uj + ΘM + 1 - ul) + Θ2(u"jtt - un

}

 + ί\ if 0 < Θ2 < θ, < 1.

PROPOSITION 1. Assume (A.\) and (A.2), then there exists a unique weak
solution u o/(l.l) such that

(2.3β)

and

(2.3*)
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pr
\u(t,:

J -N

for each N > 0 where \\u\\ N = sup0< r<N \u(t,x)\dx. Moreover if u0 satisfies
J -N

the condition (A A) too, then uh converges to u uniformly in any bounded domain of
[0, oo ) x R and UΛ has a bounded derivative (ua)x satisfying

(2.4α) lim

and

(2.46) lim.,^ . || («°%( + e, + δ) - (if), \\N = 0

for each N > 0.

In §4 we consider the following Markov chains. Put ZN = {ω =(ω0,
ω1,...)|ωπ6Z} and Sn(ω) = ωn for all ωeZN. For each Ae[0, 1] and ft > 0, let
PK be the Markov measure on ZN characterized by

(2.50) Pλ

h(Sn + i=j±l\Sn=j)

S _m.-ι , I"* {(Pλ

h(Sn=j))"-(Pλ

h(Sn=j±l)r} +

n -j)) + — -̂— - - ,

n+1 =j\Sn =j) = 1 - Pλ

h(Sn + ί =j + l\Sn =j) - Pλ

h(Sn + 1 =j - l\Sn =j)

and

where {x}+ = max{x, 0} and ch =

then the sequence |w"} satisfies the difference equation (2.1) for all Λe[0, 1].
Therefore u] = P^(Sn =j)h~1 is independent of A.

We will show the convergence of the law of the Markov chains. Let ̂  be
the metric space of all continuous functions w: [0, oo) -̂  R with the metric d(w,

w') = Σ^=ι2~"{suPo<ί<2"MO- w'(ί)l A 1} and & be the σ-field generated by
all cylinder sets in .̂ Let Xh be the ^-valued random variable on (ZN, Pfy
such that, for each ωeZN, Xh(ω) is the polygonal function whose value at a
point ί > 0 is

X&, ω) = ΛS[f/t](ω) + h((t/τ) - [ί/τ]){S[f/τ] + 1(ω) - S[f/t](ω)},

where [x] is the integer part of x. Let Pχh be the probability measure on (<#,
&) such that Pλ

Xh(A) = Pλ

h(XheA] for all

PROPOSITION 2. Assume (Al) ~ (^4.4), then the family of probability

measures {Pjjft > 0} on (<&, 3?) is tight for each Ae[0, 1].
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By the tightness of {Pχh\h > 0}, there exist a sequence {hn} of {h} and a

probability measure Pλ on (<g, ^) such that Pχhn converges to Pλ weakly. Let

X(t) be the function on <β defined by X(t, w) = w(t) for all w E ̂ .

In §5 we will prove that the density function of the distribution of X(t)

under Pλ is a weak solution of (1.1) given in Proposition 1 and consider a

martingale problem about the process X = (X(t)} on (#, J ,̂ Pλ).

PROPOSITION 3. Assume (AΛ) ~ (A.3), then we have

(2.6) Pλ(X(t)εdx) = u(t, x)dx

and

(2.7) Eλl\X(t)\-] < \x\u0(x)dx + ( || W o | | Q0«-1ί)I* \x\u0(x)dx
J

« - 1 1 / 2

for all t > 0 and λε [0, 1] vv/zere w = w(ί, x) w α wtffc solution of (IΛ) which is

constructed in Proposition 1. Further if u0 satisfies the condition (A A) too, then
we have

for all t > 0 and λe [0, 1] where V(f) denotes the total variation of a function f

on R.

PROPOSITION 4. Assume (AΛ) ~ (A A). Then, for each /ίe[0, 1] and

/e C^(R ̂  R), the process

(2.9) Wί)) - \ ί'φ, X(s)Γif"(X(s))ds + ̂
I 2 Jo 2 o MS, s

w α« {^t

A} — martingale on (%>, Pλ) where 3?^ is the σ-field generated by

{X(s)\s < ί} and all Pλ-null sets.

COROLLARY. Assume (AΛ) ~ (AA). For each le[0, 1], the process X

= (X(t)} on (Ή, J ,̂ Pλ) satisfies the following stochastic differential equation

(2.10) X(t) = X(0)+ fW X(s)Γ1}ll2dB(S) - ̂  ΓUΎS'Y* if ds
Jo * Jo wls? Λ(s))

Finally in §6 we will show the Markov property of the process X on (̂ , ̂ ,

PROPOSITION 5. Assume (AΛ) ~ (AA). For each λe [0, 1], the process X

= {X(t)} on (Ή, ^, Pλ) is a diffusion process with the generator
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Thus we obtain our main theorem.

REMARK, (i) In case of λ = 1, we can show our theorem without the
assumption (A4). (ii) In case of λ = 0, the process X = (X(t)} is a
deterministic flow satisfying

rχ(n rχ(Q)
u(t, x)dx = u0(x)dx

J — oo J — oo

with probability 1 for all ί > 0.

§3. Difference approximation

The difference approximation of the porous medium equation was studied
by Baklanovskaya, Nakaki and so on. We shall use their results. For each h
> 0, let uh be the function on [0, oo) x R defined by (2.2). In this section, we
prove that uh converges to a weak soluton of (1.1) (i.e. Proposition 1).

Firstly we see the stability of uh. By the conditions (Al) and (A.2) in §1, w0

is bounded and ch = Σjez u0(jh)h -> 1 as h -» 0. Hence there exists a constant
h0 > 0 such that

1/2 < ch < 2

for each fte(0, Λ0). Put M = α(2||w0 | | J"'1 and h^ = min{/ι0, M'1^"1}.

LEMMA 3.1. Assume the conditions (A.I) and (A.I). For each h < hί9 let
[u"} be a sequence satisfying (2.1). Then we have

(3.1) 0<unj<\\u0\\Jch9 n = 0, 1,-

and

(3.2) Σ,ez I un

j+ ,-unj\< V(ιι0)/cΛ, n = 0, 1, - - - ,

where V(/) is the total variation of a function f: R -» R.

PROOF. The estimate (3.1) were introduced by Baklanovskaya [2]. The
estimate (3.2) is easily shown by the relation

where r = h"'1 and

+i - «pe(0, M).
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LEMMA 3.2 (T. Nakaki [11]). Assume the conditions (A.\\ (A.2) and
(A A). For each h < hl9 we have

(3.3) supj6Z|K+1)
α - (u»Y\h < IKiiJXJ JcJ-",

(3.4) Σ;ezlK+ι)α - KTI < V(ιO(cΛΓα and

(3.5) τ-1ΣJeZ|(u^ + 1)α - (nJ)«|A < MV«)(cΛ)-α, for all n = 0, 1, -

Next we prepare the compactness of a function space.

LEMMA 3.3. Let U be a set of functions u: [0, oo) x R -> R. Suppose

sup t t 6 l 7(| |M||Loo ( [ 0 f Q O ) X R ) + sup^oVMί,-))) < oo

{(/•**)(*, x) = ί
(. J»

and < ( f * u ) ( t , x ) = f(x — y)u(t,y)dy: uεU> is equicontinuous for each

R). If U ia an infinite set, then there exists a sequence {un} c= U and a
function u^\ [0, oo) x R -> R such that

<5-»0

N>0 where \\u\\N is as in Proposition 1. Especially if

Ua,k = {we t/|sup r>o|w(ί,x) - w(ί,y)| < K\x - y\a}

is an infinite set for some a, K > 0, then there exists a sequence {un} c Ua κ such
that un converges uniformly in any bounded domain of [0, oo) x R.

PROOF. Let peCf be a probability density function on R satisfying
supp(p) <=(—!, 1). Put pn(x) = np(nx), then {w*p / l |wel/} is uniformly bounded
and equicontinuous for each neN. We can choose a sequence {un} c U such
that {un*pn\n > N} is a Cauchy seqeunce with respect to the norm || \\N for each
ΛΓeN. Putting

we get Lemma 3.3, because

for any u e U and

xeR

for any u e (7α κ.
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LEMMA 3.4. Assume the conditions (AΛ) and (A.2). Then there exist a
weak solution u of (1.1) and sequence {/?„} such that \\uhn — u\\ N -» 0 as n -> oo
and || u( - + ε, + δ) — u \\ N -> 0 as ε, (5 -> 0 /or each N > 0.

PROOF. By the definition of wft and the estimate (3.1), we see

\(f*uj(t9x) - (f*uj(s9y)\ < l l/ΊIJx ~y\+

for all ί, s > 0, x e R and /e QftR -> R) where C0 = 2 1| MO || „ and

(ΔΛ/)(x) = {/(x + A) - 2/(x) + /(x - h)}h~2.

Put C7 = {wJO < h < /ix}, then (7 satisfies the conditions of Lemma 3.3. Hence
there exist a function u and a sequence {hn} of {/i} such that || uhn — u \\ N -» 0 as

n-> oo. Note ΣΓ=oow"^ = 1 and (3.1), then we get

QtX€ΈL\υ(t9 x)\ < C0

which implies weL^CO, T] x R)ΠL°°([0, T] x R) for all T> 0. Note that, for

r r ι
each φeCf(R), < φ(ί, x)wΛ(ί, x)ί/x 1 0 < /i </i! > is equicontinuous on [0,oo) and

UR J
φ(t,x)uh(t,x) is a function of bounded variation with respect to xeR for all
t > 0. Put φ" = φ(nτjh), u" = uh(nτjh). From the difference equation (2.1), we
have

Γdt t u(t,x)φt(t,x)dx = lim
Jo JR

-lim τ^V0 0 V r ^ α i - -i Λ V f.0/no
- limΛ^o^ — τ"Ln = θLjez(Uj> - ̂  -- "ΣjeZUj<Pj

= -\ dt\ ua -φxxdx- \ u0(x)φ(Q,x)dx.
Jo JR ^ JR

It follows that u is a weak solution of (1.1).

Using Lemma 3.2, Nakaki [11] proved the following

LEMMA 3.5. Assume the conditions (A.I), (A.2) and (AΛ). Then there exist
a weak solution u of (I. I) and a suquence {hn} such that uhn converges to u
uniformly in any bounded domain and \\ (u%n)x — (UΛ)X \\ N — > 0 as n — > oo and \\ (u*)x

(- + ε, + δ) - (u")x\\N -» 0 as ε, δ -> 0 for each N > 0.

By Lemmas 3.4, and 3.5 and [14], Proposition 1 is proved.
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§4. Markov chains and tightness

Let Λe[0, 1] and h > 0. In this section we consider the Markov chain
{Sn} on (ZN, P£) defined in §2 and we prove Proposition 2. Firstly we consider
the martingale property of the Markov chain. Let u" = Ph(Sn = j)h~1 and &n

be the σ-field on ZN generated by {St: ί<n}. Put

Remember the definition of the Markov measure P% and the relation u" = uh(nτ,
jh), then we can show the following

LEMMA 4.1. For each function f: Z -»R, the process

+ d?(Sύ(f(St + 1) -ASM-1 + dΓ(Si)(f(Sί - 1) -f(SL

is a {&„}-martingale on (ZN, P£).

Put

and

By Lemma 4.1, the process {Mn} is a {^π}-martingale on (ZN, P^) satisfying

(4.1) £Λ

Λ[|MΠ - Mt|
2] = £έ[Σι"-* W«*(«. ^))""1 + Dΐh ~ ΦΓ)2τ}τΛ-2].

Moreover we have

LEMMA 4.2. Assume (A.\) and (A.2). Then there exists a constant K1 > 0
depending only on α, A #«£/ || w0 1| ^ .swcΛ that

(4.2) ££[|Mn - MJ4] < ̂ {(n - k)2τ2 + (n - k)3/2τ3/2h + (n - k)τh2}h~*

for all n > k > 0. If we assume (AA) too, then

(4.3) £ί [IdίίSJΠ < αίlKiiS),!! J^'VίwoK-^-1^1

/or α// n > 0.

PROOF. Let vn = λuh(m, Snh)Λ~lτh~2 + D^τ/i"1 and dn = D~τh~2. For

each weN, we see
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iLΣ?-* ((Mi - dt - Mk)
2m - (Mt - Mk)

2m

»<Σ7-ι 2mC2ί(M i - dt - Mk)
2m-2e

Put m = 2, then we have (4.2). By Lemma 3.2, we get

,,«1 II --«γ»-iv {(»")" — (""±1)"}+ i n „ i
«θ)» II ocC, ) Σ, eZ » - l _ I UJ ~ UJ ±1 1

which implies (4.3).

Now we consider the convergence of the Markov chains. Let Pχhbe the
probability measure on (#, &) defined in §2. We show the tightness of

PROOF OF PROPOSITION 2. It is enough to show

(4.4) lim^.limsup^oPj.d Jf(0)| > N) = 0

and

(4.5) lim^0limsup^0P^h(max0<f,s<Γ|^(ί) - X(s)\ > ε) = 0
|f-s|<<5

for each ε > 0 and T> 0. By the definition of Pχh, we have

By the assumption (A3), limΛ_>0E;;[|S0|] = \x\u0(x)dx is finite, which implies

(4.4). Next we show (4.5). Fix ε > 0, T> 0 and δ > 0. For each
(ε/2) Λ fcj, put

ε' = (ε - 2/0/2/1, N = [2T/<5]

kt = [iδ/2τ~] and mi = [(i + 2)<5/2τ] + 1.

Then we have

\t-s\<δ

π<m ί |Mπ - Mki\ > ε'/2
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< ΣΓ=o1{(2/εr^[|Mmί - MJ4] + C/εT

< Σf=V {(2/β')4 KΛίm, - /cf)V + (m, - fcj3

+ (mt- - ki)τh2)h-4 + (2/ε')α

< N{(2/hε')* K^δ + 2τ)2 + (<5 + 2τ)3/2fc + (5 + 2τ)h2) + (2/hε')Λ K2(δ + 2τ)α},

where K2 = α( || (uj), || „)«- 1V(w0)2α(α- 1) + x. It follows that

limsup^o^h(max0<M<Γ|^(ί) - X(s)| > ε) < 2Γ{(4/ε)4K1(5 + (4/ε)αX2^-1},
|f-s|<d

which implies (4.5).

§5. Martingale problem

By the tightness of {Pχh}, there exist a sequence {hn} of {/ι} and a
probability measure Pλ on (#, ^} such that P^h converges to Pλ weakly. In

this section we shall prove Propositions 3 and 4.

LEMMA 5.1. Assume (A.I) ~ (A3). Then we have

(5.1) Pλ(X(t) E dx) = w(ί, x)dx

and

(5.2) ί |χ|«
JR

all t > Q and Ae[0, 1] >v/zerβ w(ί, x) w fl weαA: solution of (1.1).

PROOF. Firstly we show (5.1). For each/eCj(R), we have

Eλlf(X(t)}] = Hmh^E

o 7(x)wΛ([ί/τ])τ, x)dx - /(x)w(ί, x)dx,
^R JR

which implies (5.1). Next we show (5.2). Take an increasing sequence of

functions {/„} c Cj(R) satisfying fn(x) 1 1 x \ as n-^ oo. By (5.1), we have

where k = [ί/τ]. By (4.1) at λ = 1. we have

It follows that
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:«>(χ)dx +(dm, || J -
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'•
JR

as was to be proved.

LEMMA 5.2. Assume (AΛ) ~ (A.4). Then we have

(5.3)

for all t>0 and λe[0,1].

PROOF. By the uniform convergence of uh, we have

(u")x(t,X(t))

u(t,X(t))

c lim supA^

Ίu(t,

o*ί[

X(t)) > εl

(u<t,)x(m,Snh)

uh(m, Snh)
\uh(m,Snh)>B/2 =(*)

for each ε >0 where n = [ί/τ]. By Lemma 4.2, we have

for each ε > 0. Letting ε -» 0 we have (5.3).

Lemmas 5.1 and 5.2 together imply Propostion 3.

PROOF OF PROPOSITION 4. Fix /e C^(R -> R) and g e Cfc(R -> R).
We show that

(5.4)

-ί
for each t > s > 0. By Lemma 4.1, we get

where n = [ί/τ] and /c = [s/τ]. By the uniform convergence of uk, we have
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= E λ f ( X ( s ) ) + Γ ̂ u(θ, X(Θ)Y - V" (X(θ))dθ }g(X(s))\.
Js z J J

Next we put

where

and

e, =

for each ε > 0. Then we have

|ε, | < (1 -

By the uniform convergence of uh, we get

lim sup^olX^^U ||/Ί|00||3||00|ί-s|α(2εr-1V(«0).

On the other hand, we have

ί - E{ - (^%f/>(s'fc)3 '̂'>>>
where

By the || \\N -convergence of (u%)x and the uniform convergence of uh, we get

lim^oΣ?-*^ + /f * = 0.

By the uniform continuity of u, we have

where τθ = [0/τ]τ. By the continuity of (wα)x with respect to the norm || ||N(see
Lemma 3.5), the above limit is
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Eλ\ -

It follows that

for each ε > 0. Letting ε ->0 we have (5.4), because

(U*)M x(θ))

1 YJ;

-»• 0(as ε -* 0). Using the same method as above, we have the same formula as
(5.4) for g(X(s))βl(X(s1)) gβίiX(S^) in place of g(X(s)) for any s1;--, sm€[0, s)
and g !,..., gmeCb(R->R). Therefore we have

= EλΠf(X(s)) + u(0, X(θ))"-1f"(X(θ))dθ

for all ί > s > 0. Thus the process (2.9) is an {&$} -martingale on (#, & , Pλ).

PROOF OF COROLLARY OF PROPOSITION 4. We prove the stochastic
differential equation (2.10). Put

o s9

and

Λf(ί) = X(t) - X(0) -

then M(ί) is an {Ĵ ;1} -martingale on (#, J ,̂ PA) satisfying
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Eλ[_\M(i) - M(s)|

and

2] = Eλ\ P/lw(0,

If λ ± 0, then

B(t)= Γμφ,
J o

is an {J^J-Brownian motion on (<g, &, Pλ) and

M(t) = Γμφ,
J o

which implies (2.10) for each λe(0, 1]. If /I = 0, then, by the equation (4.1), we
have

^Λ - S0h

i'̂ '1^* - (Df )2Φ]

< lim^02ί{α(||(«S)JLr"1V(M0)}1/αΛ = 0.

It follows that the process X on (#, J ,̂ P°) satisfies (2.10) with probability 1.

§6. Markov property

In this section we show that the process X on (̂ , &, Pλ) is a Markov
process. Let p^ and Sn be as in §2. Firstly we prepare the following.

LEMMA 6.1. Let f be a function of bounded variation on R into R. Fix an
integer n > 0. Put

for k < n and meZ. Then we have

(6.1) Σ m β z l P m - Λ - i l <V(/)

/or all 0 < Jk < n.

PROOF. By the definition of pjj,, it satisfies the following backward
difference equation
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Pm~ l - Pm λ fc_lw/?!Ul -2pk

m + pk

m_ί

τ = 2(Um ) ϊ?

+ ̂ U" 1 Pkm + \~ Pkm + ft" 1 A-\~ pkm\Λ<n, meZ,2 I h h }

and

Pn

m=f(mh), meZ,

where

and

<4 = {("m)α - (uί,+1)
α}+/("^), &JS, =

Put cj, = pk

m+l - pk

m, then we have

where r = τh~2. Using the estimate 0 < («J,)α~1τ/ι"2 < 1, we get

which is (6.1).

PROOF OF PROPSITION 5. For simplicity of the notation, we write h > 0 in
stead of hn > 0 in §5. Fix feC$(R) and ί > s > 0. For each fc > 0, let

where n = [ί/τ] and k = [s/τ]. By Lemma 6.1, we see

Σmezl/>m + l -pJ<V(/) .

Let ph be the continuous function on R defined by

Ph(x) = P[X/h] + (Vft -

Then we have

By Lemma 3.3, there exist a function p(x) and a sequence {hn} of {h} such that

ΓN

limn ̂  ̂  I phn (x) - p(x) I dx = 0,
J -N
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and

•J'N

\p(x + ε) - p(x)\dx = 0
-N

for each N > 0. Let g be a bounded continuous function on R with compact
support and gί9'"9 gm be bounded continuous functions on R. For any s > sx

> > sm > 0, we have

Eλtf(X(t))g(X(s))g,(X(Sl)) gm(X(smm

where ^ = [ί/τ], A; = [s/τ], /ct = [>ι/τ], , /cm = [sm/τ]. By the Markov
property of {£„} and the convergence of phn, the above limit is equal to

J^iίSfc, ΛJ - ̂ (S^ΛJ]

XίsJ) - - - £m(*(s J)] .

It follows that

Eλ[f(X(t))\X(s)9 X(sJ9:.9 X(SHfi = p(X(s)) = Eλίf(X(t))\X(s)l

for any sl9 s2,~ , sme[0, s)(meN) and /eCJίR ̂  R). Therefore the Markov
property of the process X on (#, J ,̂ PA) has been proved. Next we calculate
the generator of it. Fix /e CQ (R) and t > 0. By Proposition 4, we get

Eλ[f(X(t + B))\X(t) = x]

= Eλϊf(X(t))

for each ε > 0. Therefore the generator of X is

= x] -

as was to be proved.
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