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Introduction

Let C be the field of complex numbers. Let V = Vl *(C) (n ^ 1) denote
the vector space Cπ+1, together with the unitary structure defined by the

Hermitian form

Φ(Z*, W*) = — zjH# -f Zfwf + ' + Z*W*

for z* = (zj, z?, . . . , zj) and w* = (w£, wf , . . . , w*) in V. An automorphism g
of F, that is, a linear bijection such that Φ(g(z*\ 0(w*)) = Φ(z*, w*) for z*,
w* e F, will be called a unitary transformation. We denote the group of all
unitary transformations by 17(1, n; C). Let F0 = {z* e K|Φ(z*, z*)= 0} and

K_ = {z* e F|Φ(z*, z*) < 0}. It is clear that K0 and K_ are invariant under

17(1, n; C). Set K* = V_ u F0 - {0}. Let π: F* -> π(V*) be the projection

map defined by π(zg, z? , . . . , zn*) = (z*z*-χ, zj z*"1, , zJzS'1)- Set H"(C) =
π(7_). Let Hn(C) denote the closure of Hn(C) in the projective space π(V*).
An element gf of 17(1, n; C) operates in π(7*), leaving H"(C) invariant. Since
HΠ(C) is identified with the complex unit ball Bn = Bn(C) = {z = (zl9 z2, ...,zn)

e Cw| ||z||2 = ΣJ=1 \zk\
2 < 1}, we regard a unitary transformation as a transforma-

tion operating on Bn. We introduce the Bergman metric

2 2
gg(z) = <50 (1 - HzpΓ1 + ziz/1 - ||z||2

for z = (zl9 z2, . . . ,z w )e Bn. Using this metric, we see that the holomorphic

sectional curvature is —4. The distance d(z, w) for z, w e Bn is defined by the

use of the Hermitian form Φ as follows:

d(z9 w) = cosh'1 [|Φ(z*, w*)|{Φ(z*, z*)Φ(w*, w*)}~1/2] ,

where z* 6 π-1(z) and w* e π-1(w) (see [3; Proposition 2.4.4]).

Many results on Mόbius transformations and discrete groups are shown in

[1] and [6]. Our purpose of this paper is to find analogous results for

elements of £7(1, n; C) and discrete subgroups of 17(1, n; C). In Section 1 we
shall prove that an element of (7(1, n\ C) can be decomposed into two special
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elements. Using this fact, we obtain a distortion theorem for unitary transfor-

mations in Theorem 1.3. Elements of 17(1, n\ C) and 17(1, n\ C) are classified

into three types (see Section 1 for the definition of [7(1, n; C)). We discuss the

properties of elements of each type. In Section 2 we shall study the properties

of elements of discrete subgroups of 17(1, n; C) and (7(1, n\ C) and show in

Theorem 2.2 the existence of a domain where the action of a discrete subgroup

is equal to the action of the cyclic group generated by a translation. Using the

G-duality, we shall state in Theorem 2.16 that the fixed points of loxodromic

elements of a discrete subgroup of (7(1, n; C) are dense in L(G) x L(G).

1. Elements of 17(1, n; C)

We define the norm of an element g = (αί/)i,./=ιi2i....ιι+ι m (7(1, n; C) by
I I 0 H = (Σ?^ |00.|

2)1/2. Noting that Φ(z*, w*) is invariant under [7(1, n\ C\ we

see that

(1) H*ιιl2 + Σ ί i 2 l a * ι l 2 = - l ,

(2) ~ Ifli/ + ΣΐΆ l% l2 = 1 for j = 2, 3, . . . , n + 1 ,

(3) -flϋflu + Σl=2 Wkj = 0 for i Φj, i, j = 1, 2, . . . , n + 1 ,

(4) Hβιιl2 + ΣZi

(5) -|02il2 + ΣZ;

PROPOSITION 1.1 (cf. [2; Theorem 2]). For g e [7(1, n; C),

where I is the unit matrix.

PROOF. First we note that d(0, 0(0)) = cosh"1 |αn| by (1) and ||/||2 =

n + 1. Therefore we have

I I / H 2 + 4 sinh2 d(0, 0(0)) = 4|α11 |
2 + (n - 3) .

It follows from the equalities (1), (2) and (4) that

I I 0 I I 2 = ΣZ=ϊ Kil 2 + ΣZϋ k2l
2 + - + Σϊ=l Kn+il 2

= (-1 + 2|α11 |
2) + (1 + 2|α12|

2) + - + (1 + 2|α1,n+1|
2)

Thus we complete the proof.
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Next we shall show that any element of £7(1, n; C) can be expressed as the
product of two special elements. Before stating our theorem, we shall give

notation. We denote by 17(1 C) x U(n; C) the subgroup

AeU(n;C)\oϊ 17(1, n; C).

THEOREM 1.2. Let g = (0^)1,^=1,2 «+ι be an element of £7(1, n; C) and let p
be a point of Bn such that g(p) = 0. Then the element g is decomposed into two
elements fp and u in £7(1, n; C) such that

2) fp(p) = 0, fp(0) = p and f2 = identity;
3) ti e £7(1; C) x £7(n; C).

PROOF. Without loss of generality, we may assume that p = (a, 0,..., 0) e
Bn. Set

(*ii —aoίii 0

ααn -αn 0

0 0 /„_;

where (X2

ll = (1 — lαl2)"1. It is easy to show that fp is an element of £7(1, n; C)
such that fp(p) = 0, /p(0) = p and f2 = identity. Next we shall show that
there exists an element u e £7(1; C) x £7(n; C) such that g = ufp. To prove this,
we have only to show that gf~l belongs to £7(1; C) x £7(n; C). We denote

K )i=ι,2j=3f...,»+ι and K)i=3,...,»+ιj=3f....n+ι
seen that

α α2 1 n

\ and ^2, respectively. It is

-α22αn

Then g(p) = 0 implies an + ai2a = 0 for i ̂  2. Therefore the (i, l)-component
of u is equal to 0 for i ̂  2. By (1), |αnαu + α12ααn| = 1. It follows from (4)
that the (1, y>component of u equals 0 for j ^ 2. Using (2) and (3), we see that

gf~l has the form , where \b\ = 1 and B 6 U(n; C). Thus u belongs to

£7(1; C) x £7(n; C).

Given any points z, w € Bn, define d*(z, w) by

d*(z, w) = {|*8Γ1|wJΓ1|Φ(z*, w*)!}1/2 ,

where z* = (zj, z?,..., z*)e π~l(z) and w* = (w£, wf, . . . , w*) e π'^w). Note

that d*(z, w) does not depend on the choice of z* and w*.
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THEOREM 1.3 (cf. [1; Theorem 3.6.1]). If ge 17(1, n; C\ then

After showing a lemma, we shall prove Theorem 1.3.

LEMMA 1.4. Let fp be defined as in the proof of Theorem 1.2. Then

•UP....*..,. ̂  gW)) = exp (d(0,

PROOF. It is seen that

£2=2 z?wk*|

= |α ι lΓ
2 |zg(l - aziz*'1)!'1^! - άw^r1)!'1!-^ + £*

= (1 - |α|2)|l - άz.Γ1!! - awJ-V*^, w)2 .

Since |1 - αzj ^ 1 - |α| and |1 - άwj ^ 1 - \a\, {(1 -f |α|)(l - lαl)"1}1/2 is the

supremum of d*(fp(z\ /p(w))/d*(z, w) over z, w e Bπ. We observe that

exp (d(0,/p(0))) = exp (log (|αn| + (|αιl|
2 - I)1/2)

= {(l + |α|)(l-|α|Γ1}1/2,

and conclude our lemma.

PROOF OF THEOREM 1.3. Let g be an element of 17(1, n\ C) and let p

be a point of Bn such that g(p) = 0. As in Theorem 1.2 we decompose 0

into ufp. It is easy to check d*(u(ζ), u(ω)) = d*(ζ, ω) for any C, ω e £". Hence

</*(0(z), 0(w)) = rf*(w/p(z), M/P(W)) = d*(/p(z),/p(w)). Therefore it follows from

Lemma 1.4 that

= exp (rf(0,/p(0))) = exp(d(ii(OX 1

Thus our theorem is proved.

Now we set K = exp (d(0,0(0))). It follows from Proposition 1.1 that

I I 0 H 2 = I I / H 2 + (K - 1/K)2. If H 0 I I 2 = I I / H 2 , then K = 1. This equality together

with (1) implies that the absolute value of the (1, l)-component of g is 1.
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Hence it follows from (1), (2), (3) and (4) that g e 17(1; C) x U(n; C\ Assume

that g is an element of 17(1; C) x U(n; C). Then we see that \\g\\2 = \\I\\2.
Thus we have

PROPOSITION 1.5 The following statements are equivalent to one another:

1) I I 0 I I 2 = I I / I I 2 ;
2) g e 17(1; C) x I7(n; C);

3) 0(0) = 0.

Elements of 17(1, n; C) are classified into three types by S. S. Chen and

L. Greenberg [3]. We shall discuss the properties of these types.

DEFINITION 1.6. Let g be an element of 17(1, n\ C) which is not the

identity. We shall call g elliptic if it has a fixed point in Bn and g parabolic if it

has exactly one fixed point and this lies on dBn. An element g will be called

loxodromic if it has exactly two fixed points and they lie on dBn. If g is

conjugate to an element having the form

'λ cosh t λ sinh t 0

λ sinft t λ cosh t 0

0 0 /„_!

= ±UeR-{0}),

then g is called hyperbolic. Hyperbolic elements are special kinds of loxo-

dromic elements.

Now we state properties of each kind of element.

PROPOSITION 1.7 ([3; Proposition 3.2.1]). Let g be an elliptic element in

17(1, n C). Then:

(a) g is conjugate to an element in £7(1; C) x U(n; C).

(b) g is semisimple with eigenvalues of absolute value 1.

PROPOSITION 1.8 (cf. [3; Proposition 3.2.3]). Let g be a loxodromic element

of £7(1, n\ C\ Then:

(a) There exist a unique hyperbolic element h and a unique elliptic element e

such that g = he = eh.
(b) Any element in 17(1, n\ C) which commutes with g also commutes with h

and e.

(c) g is semisimple with exactly n — 1 eigenvalues of absolute value 1.

(d) g leaves the geodesic connecting the two fixed points, invariant. We call

this geodesic the axis of g and denote it by Ag.

(e) g moves every point z in Ag the same distance T(g) = d(z9 g(z)). This

T(g) is called the translation length of g.

(f) T(g) = mmzeBnd(z,g(z)).
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PROOF. Since (a), (b) and (c) are proved in [3; Proposition 3.2.3], we have

only to prove (d), (e) and (f ).

(d) Using [3; Proposition 2.1.2], we may assume that the fixed points of g

are (1, 0, . . . , 0) and (- 1, 0, . . . , 0). By [3; Lemma 3.2.2], g has the form

cλ sλ

sλ cλ

0 0

where c = cosh ί, s = sinh t for some teR — {0}, |Λ,| = 1 and A G U(n — 1; C).

Let {eθ9ei9...9en} be the standard basis in V. Let X = e0R + e^R. Since

g(z*) = ((cz$ + sz?μ, (szj + cz*μ, 0, . . . , 0) for z* = (zj, zf , 0, . . . , 0) in X n K_,

π(#(z*)) is contained in the geodesic π(X n F_) (see [3; Proposition 2.4.3]).

(e) A direct computation shows that

d(z9 g(z)) = cosh"1 [|(-z*2 + z*2)cΛ|{(-z*2 + z*2)2}"1/2]

= cosh"1 c

for z e 4,,.

(f ) Let z* = (zj, zf , . . . , z*) and let w* = 0(z*). We shall show that

minz*eK </(π(z*), π(w*)) = cosh'1 c. As Φ is invariant under t/(l, n; C),

Φ(z*, z*) = Φ(w*, w*). Therefore it suffices to prove that |Φ(z*, w*)| ;>

c|Φ(z*,z*)|.

Let A = (fli/)i,j=2,3,...,w Noting that A e U(n — 1; C), we obtain

(6)

It is seen that

(7)

Using (6) and (7), we have

|Φ(z*. w*)|

Λ r <
J=2 akjzj )\ = IV"

\2-ιJJ=2

ιk=2 \ k

|zf |

!2 - {c(|z?|2 - |zf |2)}2

2si Im (z*z?)|2 - {c(|zg|2 - |z?|2)}2

j=2 akjz
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This implies that

\Φ(z*, w*)|-c|Φ(z*,z*)|

^ c(|z*|2 - |z*|2) -

29

2 - |z*|2 -

Thus minz*eκ_ </(π(z*), π(g(z*))) = cosh"1 c.

To discuss some properties of unitary transformations, it may be more
convenient to use another matrix representation for £7(1, n; C). By changing

the basis of V, we introduce the group 17(1, n; C) as follows.
Let

1/72 1/72 o
-1/72 1/72 o

0 0 /„_;

and define 17(1, n; C) by IT117(1, n; C)D. We see that £7(1, n; C) is the group

of linear transformations which leave D~l(V-) invariant and that £7(1, n; C) is
the automorphism group of the Hermitian form

Φ(z*, w*) = — (zjwf + zf w£) + z^wf + + z*w*

defined for z*, w*eD~1(K). We can regard the linear transformation D'1 as

a mapping of complex unit ball Bn to the domain Hn = {z e Cn|Re (zt) >

(l/2)Σ£=2|zk|
2}. The action of £7(1, n; C) in Bn is converted by D"1 into the

action of £7(1, n; C) in Hn. The distance d(z, w) for z, w e HΠ is defined by

2(z, w) = cosh'1 [|Φ(z*, w*)|{Φ(z*, z*)Φ(w*, w*)}"1/2] ,

where z* e π-1(z) and w* e π-1(w). We note that d(z, w) = d(D(z\ D(w)) for z,

we/P.

Let gf = (flij)i,j=i,2,...,ii+i be an element of £7(1, n; C). Noting that

" 0

-1

0

-1

0

0

0 "

0

4-1

9 =

' 0

-1

0

-1

0

0

0

0

4-1 _

we see that

(8)

(9)

(10) -2 Re (^βu) + ΣZίi |αίfc|
2 = 1 for i = 3, 4, . . ., n + 1 ,
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(11)

(12)

(13)

-2 Re (aΓ2a22) = 0 ,

DEFINITION 1.9. Let g be an element of U(19 n; C) which is not the
identity. We shall call g elliptic if it has a fixed point in Hn and g parabolic if
it has exactly one fixed point and this lies on dHn. A unipotent parabolic
element will be called strictly parabolic and in particular the element which is
conjugate to an element having the form

" 1 0 0

(s φ 0 and Re (5) = 0) ,5 1

0 0

0

will be called a translation. An element g will be called loxodromic if it has
exactly two fixed points and they lie on dHn. If g is conjugate to an element
having the form

0 0t

0 ί

0

then g is called hyperbolic.

1

o
o

/.-I

PROPOSITION 1.10 ([3; Proposition 3.4.1]). Let g be a parabolic element in
U(l,n-,C).

(a) There exist a unique strictly parabolic element p and a unique elliptic
element e such that g = pe = ep.

(b) Any element of U(l, n; C) which commutes with g also commutes with p
and e.

(c) g is not semisίmple. All absolute values of the eigenvalues of g are 1.

PROPOSITION 1.11. Let /i and f2 be elements of (7(1, n; C). Assume that
these two elements have one and only one common fixed point and it lies on
dHn. Then the commutator g of /i and f2 is either elliptic, parabolic or the
identity. However, if both elements f± and f2 are elliptic, or, if at least one
element of f^ and f2 is loxodromic, then g can not be the identity.

PROOF. We may assume that the common fixed point is oo. Then the
forms of ft(i = 1, 2) are as follows:

~ ί 0 0

fi =
a, 0 A,
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where ah bh At are (n — 1) x 1, 1 x (n — 1), (n — 1) x (n — 1) matrices respec-

tively, ξiηi = 1, Re({Λ) = (l/2)||fl,||2, 6, = ffcαfo and A, e U(n - 1; C). The
commutator g of /i and /2 is of the form

1 0 0

G 0 AλA2A~[lA2

This implies that all absolute values of the eigenvalues of g equal 1. By (b) in

Proposition 1.7, (c) in Proposition 1.8 and (c) in Proposition 1.10, g is either
elliptic, parabolic or the identity.

Next let /x and /2 be elliptic elements of (7(1, n; C). We may assume that

the common fixed point is oo and another fixed point of /2 is 0. Then in the
form of /Ί, ξ1 = η± and a1 Φ 0. In the element /2, ξ2 = f/2, s2 = 0, a2 = 0 and

b2 = 0. Therefore we see that α21 = al(In_i — ξ2

1A1A2A^ί)a1 in the commu-

tator g. Suppose that g is the identity. Then α21 = α^(/n_! — ξ2

ίA1A2Aϊί)a1 =

0 and A^A2A^A2

l = In.^. It follows that A2 = ξ2/n-ι- This implies that /2

is the identity. This is a contradiction. Thus g is not the identity.

Lastly let /x be a loxodromic element with fixed points α and oo. If

the commutator g is the identity, then /ι/2=/2/ι We see that Λ/2(α) =

/2/ι(α) = /2(α) and ΛW is a fixed point of /t. Then either /2(α) = oo or
/2(α) = α. The former does not occur. In the latter case /Ί and /2 have two

fixed points in common. This contradicts our assumption. Hence if /t is
loxodromic, then the commutator g of fλ and /2 is not the identity.

REMARK 1.12. The following table describes all the possible type for

9 = /ι/2/f Vi"1- There exist examples that demonstrate the table.

y>^
E

P

L

E

E,P

E,P,I

E,P

P

E,P,I

E,P,I

E,P

L

E,P

E,P

E,P

(The symbols E, P, L and I denote ellip-

tic, parabolic, loxodromic type and the

identity, respectively.)

We shall consider the displacement function z -+ sinh2 d(z, g(z)) for an

element g of 17(1, n; C). Before stating our proposition, we distinguish between
the fixed points α, β of a loxodromic element g in 17(1, n; C). If liπifc^^ gk(z) =

α for a point z e Hn, then α is called an attracting fixed point of g. This
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definition does not depend on the choice of z. For a loxodromic element g we
can define the axis Ag and the translation length f(g) in the same manner as in
Proposition 1.8.

PROPOSITION 1.13 (cf. [1; Theorem 7.35.1]).
(a) Suppose that g is a hyperbolic element of 0(1, n\ C). Let α = (a.l9 α2,

..., αj be the attracting fixed point of g. We denote the shortest distance from a
point z in Hn to the axis Ag by d(z, Ag). Let z* = (1, z l 9 . . . , zj e π~1(z) and
α* = (1, α l 5 α 2,..., απ) e π'̂ α). Set k = -Re (Φ(α*, z*))/|Φ(α*, z*)|. Then

sinh2 d(z, g(z)) = 8(1 + k)~2 cosh2 d(z, Ag) sinh2 (l/2)f(g)

x {2 cosh2 (1/2) f(0) cosh2 d(z9 Λ,)

(b) // g is a translation with a fixed point ζ, then sinh2 d(z, #(z)){P(z, C)}2/n

is constant, where P(z, ζ) is the Poisson kernel defined by

p^ ζ) = I l^(z*' z*)l" tf C = oo , z* = (1, z l 5 z2,..., zj e π'V,

\{\Φ(z*,z*)\\Φ(z*9ζ*)Γ2}* i / C ^ o o , z* = (l,z l 5 z 2 , . . . ,zje

PROOF, (a) Without loss of generality, we may assume that

'α 0 0

0 a'1 0

0 0 /„_!

where a > 1. Then it is seen that Ag = {w = (ί, 0,..., 0) e Hn\t > 0} and f(g) =
log a. We shall compute d(z, Ag). Let w* e π"1^) c π"1^). We see that

d(z, A.) = minπ(w*)6Jiβ (cosh"1 [|Φ(z*, w*)|{Φ(z*, z*)Φ(w*, w*)}'1/2]}

= minί>0 {cosh'1 [|ί + zj{2ί(2 Re (zj - Σ"«2 k/)}~1/2]}

= cosh'1 [{(IzJ + Re (z1))(2 Re (zj - Xjβ2 Iz/)'1}1/2] .

Write W = 2 Re (zx) - ΣjL2 |z/ and let z t = |zt |β
ίβ. We note that

|Zi | = (1 + cos flΓ^cosh2 d(z, 1,),

X"=2 |z/ = W sinh2 d(z, ̂ ) - (1 - cos 0)(1 + cos Θ)~1W cosh2 d(z, X f f ),

4 sinh2 f (flf) = (fl - 1/α)2 ,

4sinh2(l/2)T(0) = α + I/a - 2 .



Notes on elements of 17(1, n\ C) 33

From the above equalities it follows that

sinh2 d(z, g(z))

= W~2\-(azl + (1/φJ + ΣJ=2 |z/|2 - 1

= W~2{\z,\2(a - I/a)2 - 2\Zl\(Σnj=2 \Zj\2)(a + I/a - 2) cos 9}

= 8(1 + cos 0Γ2 cosh2 d(z, Ag) sinh2 (ί/2)f(g){2 cosh2 (1/2) f(g) cosh2 2(z, Ag)

- 2 cos2 0 cosh2 d(z, Ag) + cos 0 + cos2 0} .

Noting that cos θ = fe, we have the desired equality.
(b) Let g be a translation with a fixed point ζ e dHn. There is an element

/ = (aij)ij=ι, 2, ...f«+ι of ί/(l, n; C) such that Λ = fgf~l has the form

h =

1 0 0

Ϊ 1 0

0 0 /,,_>

where teR- {0}. It follows that gf'1 = f~lh and hence gΓ\<x>) = f~lh(ao) =
/~1(oo). Thus /^(oo) is a fixed point of gf. Since ζ is the only fixed point of

9, /~1(oo) = C so that /(f)=oo. Hence βkl -f Λ fc2d + ••• 4- aktΛ+ίζn = 0 for
k + 2 and ^0 for k = 2. Write /(z) = w = (wl5 w2, . . . , wn) and let /(z)* =
(1, w l 5 w2, . . . , wn) e π"l(f(z)). Then

Therefore

{P(z, C*)* 4

By using this equality, we have

= sinh2a(/(z))A/(z)){P(z,C)}2/»

= sinh2 d(w, h(w)){P(w, oo)}2/«|α21
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= {2 Re K) - Σϊ=2 K|2}-V{2 Re K) -

X |021 + 022d + ' + 02,,,+lU~4

|w fe |
2}2 2

Thus sinh2 d(z, g(z)){P(z, ζ)}2/n is equal to a constant which does not depend
on z.

REMARK 1.14. If g is a hyperbolic element of t/(l, 1; C), then we have

sinh d(z, g(z)) = cosh 2<5(z, Ag) sinh f (g).

If g is strictly parabolic and of the form

" 1 0 0

s 1 aτ

_a 0 In_,

where Re(s) = (l/2)||α||2, then sinh2 d(z9 g(z)){P(z9 0}2/π is not necessarily
constant.

2. Elements of discrete subgroups of U(19 n; C) and 17(1, jι; C)

First we quote one theorem from [5].

THEOREM 2.1 ([5; Theorem 3.2]). Let G be a discrete subgroup of
U(19 n\ C\ Assume that g is a translation of G having the form

1 0 0

s 1 0

0 0 /„_!

where s ^ O and Re (s) = 0. /// = (α0 )i, 7=1,2 n+i is an element of G, then

either al2 =0 or |α12| ^ IsΓ1.

Using this theorem, we shall show the existence of a domain where the
action of G is equal to the action of the cyclic group generated by g.

THEOREM 2.2. Let G, g and s be the same as in Theorem 2.1. Assume that

the stabilizer G^ = {h e G|Λ(oo) = 00} is generated by g. Let Σ be the set

{z e £"|Re (zj > (1/2) Σ£=2 |zk|
2 + |s|}. Then

f(Σ) = Σ if /eG,,

f(Σ)r\Σ = 0 if / e G - G ^ .
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PROOF. Assume that / is an element of G^ and that z is a point in Σ.
Noting that / has the form

1 0 0

ms 1 0 (m 6 Z),

0 0 /„_

we see that /(z) = (zί + ms, z2, . . . , zw). It follows that

Re (Zl + ms) = Re (zj > (1/2) £?=2 |zk|
2 + |s| .

Thus Σ ID f(Σ\ If we replace / by f'1, then we have f(Σ) = Σ.

Next we suppose that / = (tfy)i,j=i,2,...,n+i is an element of G — G .̂
Then α 1 2 7*0 so that |α12| ^ IsΓ1 by Theorem 2.1. Take ze^ and z* =

(1, zl9 z2, . . . , zj e TΓ^z). Write /(z*) = (w0*, wf, . . . , w*) and let t = Re (zx) -
(1/2) Σ£=2 |zk|

2. Then ί > |s|. Noting that Φ(z*, z*) = Φ(/(z*), /(z*)), we have

Re (w*/w0*) = |w0*Γ2 Re (vv*wf) = (1/2) Σ»k=2 |wk*/w0*|2 + |w0*Γ2ί .

It follows from (8) in Section 1 that

\a^al2-^ + Zi 4- α13α12~
1z2 + ••• + a^n+lal2~

lzn\ - t

^ Re (flnfl^ 1) + Re (zj + Re (α13α12~
1z2) + •

+ Re (fl^fliΓ1*,) - Re (zj + (1/2) XZ= 2 |zk|
2

= |α12Γ
2 Re (flna^) -f Re (a13ai2~

lz2) + + Re (altn+ίa12-
lzn)

= |a12Γ
2{(l/2)(|a13|

2 + |a14|
2 + - + |a l fB+1 |

2)}

+ Reίa^a^-^) + - + ̂ e(altn+lal2-
lzH) + (1/2) Σ»k=2 \zk\

2

= (ί/2)(\Γ2 + al3al2~
l\2 + |Z3 + a^fl^-1!2 + - + Iζ + fli.^iflii'1!2) ^ 0 .

Therefore

It follows that Re(w?/w£) ^ (l/2)ΣJ5=2|wfc*/w3ί|2 + |s|, which shows /(z)φΓ.
Thus, if / e G - G,,, then f(Σ) n Σ = 0.

PROPOSITION 2.3 (cf. [1; Theorem 5.4.3]). Let G, g and s be the same
as in Theorem 2.1. Let f= (aij)ij=1 >2 t... f Π + 1 be an element of [7(1, n; C) SMC/I that
/(oo) 7^ oo. Suppose that the group </, 0> generated by f and g is discrete.
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Then:

(a) \\f — I\\ \\9 — I\\ = l
(b) /// is strictly parabolic, then sinh d(e, f(e)) sinh d(e, g(e)) ^ 1/4,

where β = (1, 0,..., 0) e Hn.

/// is of the form
Ί s-1 0

0 1 0
0 0 /„_,

ί/ien the equalities are satisfied in (a) and (b).

To prove Proposition 2.3 we need a lemma.

LEMMA 2.4 (cf. [Proposition 1.1]). For g e U(l, n; C),

\\g\\2 = \\I\\2 + 4 smh2d(e,g(e)).

PROOF. Let g = K )u=1,2,...,π+1 e t/(l, n; C). By making use of (11), (12)
and (13) in Section 1, we obtain

d(e, g(e)) = cosrΓ1 (l/2)|an -h fl12 + α21 + α 2 2 | .

From this it follows that

4 sinh2 d(e, g(e)) = |αu + α12 + a21 + a22\
2 - 4 .

Using (8), (9), (10), (11), (12) and (13), we see that

+ I f l ι 2 l 2 + l«2 i l 2 + \<*22\2 + 2 Re (δΠfl12)

+ 2 Re (5Πέi21) + 2 Re (a^a22) + 2 Re I

4- 2 Re (0^2^22) + 2 Re (^2i«22) 4- w — 3

= 4 sinh2 <ί(e, gf(^)) + 4 + n - 3

2 =

PROOF OF PROPOSITION 2.3. Since \\g - I\\ = \s\ and \\f - I\\2 ^ |α12|
2 Φ 0,

it follows from Theorem 2.1 that \ \ f - I \ \ \\g - I\\ ̂  1. Assume that all eigen-
values of the element /are 1. By Lemma 2.4,

\\f - 1\\2 = - 2 Σι=ι Re (%

= 4 sinh2 d(e, f(e)) .

Therefore \\g — I\\ = \s\ = 2 sinh d(e, g(e)) implies sinh d(e, f(e)) sinh d(e, g(e)) ^
1/4.
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It is easy to show that the equalities are satisfied if

1

0

0

0

Next we shall consider loxodromic elements of a discrete subgroup.

THEOREM 2.5. Let G be a discrete subgroup of 17(1, n; C). Let f and g be
elements of G. Suppose that f is loxodromic and that f and g have fixed point
sets {x, y} and {x', y'}, respectively in dBn. Then either these sets are disjoint or

they are identical. Moreover, if the latter occurs, then there is an integer m such

that fmg = gfm.

PROOF. Assume that / and g have only one fixed point, say x e dBn, in

common. It follows from [5; Theorem 3.1] that the subgroup </, 0> generated
by / and g is not discrete. Hence {x, y} = {x', y'} or {x, y} n {x', y'} = 0.
Without loss of generality, we may assume that {x, y} = {(1,0, ...,0),
(-1,0,..., 0)}. If {x, y} = {x', /}, then it follows from (1), (2), (3), (4) and (5)

in Section 1 that / and g are of the form

/=
λ cosh t

λ sinh ί

0

λ sinh ί

λ cosh t

0

and g =

μ cosh 5 μ sinh 5 0

μ sinh s μ cosh s 0

0 0 B

where \λ\ = 1, \μ\ = 1, ί, 5 G R and A, B e U(n - 1; C). Therefore

1 0 0

0 1 0

0 0 AjBA~jB~l

Let F = {fjgf~jg~l\jεZ}. Assume that F is an infinite set. Noting that

U(n — 1; C) is compact, we see that there exists a sequence {hk} of different
elements of F which converges to some element h of £7(1, n; C). Since
linifc.^ hk(z) = h(z) for z E Bn, G is not discontinuous at h(z) in Bn. This is a

contradiction. Hence F is a finite set, so AmBA~mB~1 = In_{ for some integer
m. Thus fmg = gfm.

For the remainder of this section G denotes a discrete subgroup of
17(1, n; C). We shall give the definition of G-duality.

DEFINITION 2.6. Let x and y be any two not necessarily distinct points in

dBn. If there exists a sequence {gk} of elements of G such that lim^^ gk(p) = x
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and limk^aogk~
i(p) = y for any point p in Bn, then we say that x and y are

G-dual and denote this duality by x ~ y.

PROPOSITION 2.7. Two points x and y in dBn are G-dual if and only if there

exists an element g of G such that g(Bn - V) c £7, where U (resp. V) is any open

neighborhood of x (resp. y) in Bn.

We need the following lemma for the proof.

LEMMA 2.8. Let ε be any positive number. If d*(z, w)2 < ε for z =

(z1,z2,...,z l l), w = (wl5 w2,...,wje5w, then \\z - w||2 = Σ?=1 |zέ - wj2 < 2ε.

PROOF. If z = w = 0, then ||z — w||2 = 0. Hence we may assume that one
of z and w, say z, is not zero. Without loss of generality, we may assume

that z = (r, 0, . . . , 0), where 0 < r < 1. Noting that inf {Re (w1)|d*(z, w)2 < ε} =
(1 — εjr'1, we see that

II* - w||2 = |r - Wl |
2 + Σ?=2 N2 = r2 - 2r Re (wj + ||w||2

^ r2 - 2r Re (wt) + 1 < r2 - 2r(l - fijr'1 + 1

= 2ε - (1 - r2) < 2ε .

Let us go back to the proof of Proposition 2.7. We shall prove that if

part first. Let Uk (resp. Vk) be a sequence of open neighborhoods of x (resp. y)

in Bn such that Uk ID I7t+1 and Q^ Uk = {x} (resp. Vk =? t^+1 and

Γ\kzι Vk = {y}) By OUΓ assumption, there exists a sequence {#k} of elements in
G such that gk(B" - Vk) c t/fc and gk~^(Bn - Uk) c Vk for each fc. Let p be a

point in Bn. If k is sufficiently large, then pε(Bn — Uk) n (Bn — Vk). Therefore

we see that gk(p) e l/fc and ^"^P) e Ffc. Thus gffc(p) -> x and gfΓMp) -̂  >;

Conversely we assume that x and y are G-dual. Let 17 (resp. F) be an
open neighborhood of x (resp. y) in Bn. By our assumption, there is a sequence

{gk} c G such that 0fc(0) -> x and fl^ίO) -* y as ^ ̂  °° Since limfc..^ ^^(O) =
y, there exist δ > 0 and an integer N > 0 such that H&'HO) — z|| > 5 for all
z e ΪΓ - V and all fc ̂  N. Fix z e ΪΓ - V. Then (̂̂ (̂O), z) ̂  5/2 for all

k^Nby Lemma 2.8.

We can find an element vk of £7(1; C) x U(n\ C) which carries gk~
l(0) to

(αk, 0, . . . , 0), where \ak\ = \\gk~
lm. Set pk = (αk, 0, . . . , 0). By Theorem 1.2,

we have two elements uk and /Pk which satisfy the following conditions:

2) /Λ(Λ) = 0, /Λ(0) = pfc and fPk

2 = identity:

3) ι ι k el7(l;C)xl7(ιι;C),
where fPk is defined in the same manner as in the proof of Theorem 1.2.
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Write vk(z) = (vί

(k\v2

(k\...,vn

(k)). Using ii^O) = 0 and the fact that d* is

invariant under 17(1; C) x U(n; C), we see that

P(9*-1V\ z)2 = d*(υk-ifPk-iuk-\Q\ z)2 = d*(υk-ifpk-^\ z)2

= d*(fPk-
l(V\ vk(z))2 = d*(pk, vk(z))2 = \1- akv^\ .

Therefore

(14) 1 1 - a-kvιw\ ^ δ2/4 for all k ̂  N .

It follows from the proof of Lemma 1.4 that

<**(Λ(Oλ gk(z))2 = d*(ukfPkvk(Q\ ukfPkvk(z))2

= d*(fpk(vkmfpk(vk(z)))2

\-ld*(vk(0), vk(z))2

Using (14), we see that

X gk(z))2 ^ 4(1 - \\gk-
l

for all k ̂  N. Let ε > 0 be given. Since lim^^ gk~
l(Q) = y e 35n, there exists

an integer M > 0 such that

4(1 - Hflf^O)!!2)^2 < ε for all k ̂  M .

Lemma 2.8 implies that

Il0fc(0) - gk(z)\\2 < 2ε for all k ̂  max {N, M} .

Since lim^^^^ίO) = x, {gk} uniformly converges to x on Bn — V. Thus

gk(Bn — V) d U for sufficiently large fc.

PROPOSITION 2.9. Suppose that ίwo points x and y are G-dual. Let U and

V be open neighborhoods in Bn of x and y, respectively. If U π V — 0, then

there exists a loxodromίc element of G that has one fixed point in U and another

fixed point in V.

PROOF. We may take U and V to be convex. It follows from Proposition

2.7 that there exists an element g of G such that g(Bn — V) <= U. Therefore

g(U n dBn) c= U n dBn. By the Brouwer fixed point theorem, we see that g has

a fixed point in UndBn. Similarily we have that g~l(Vr\dBn) c VndB".

Therefore g has another fixed point in V. Assume that g is elliptic. It follows
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from [3; Lemma 3.3.2] that g must fix any point in the geodesic connecting x
to y. This is impossible, because g(Bn — V) a U. Thus g is a loxodromic
element of G.

We shall derive some properties of G-dual points. Before stating our
theorem, we give the definition of the limit set. Let G(p) = {g(p)\g e G} for a
point p e Bn. Define the limit set L(G) of G by L(G) = G(p) n dBn. Note that
L(G) does not depend on the choice of p (see [3; Lemma 4.3.1]). By definition,
L(G) is a G-invariant closed set.

THEOREM 2.10. Let G be a discrete subgroup of 17(1, n; C).
(a) G-dual points x and y belong to the limit set L(G).
(b) If x E L(G), then there is some point y e L(G) such that x ~ y.
(c) Denote {yeL(G)\x ~ y} by D(x). The set D(x) is closed and G-invariant.

If #(D(x)) ^ 2, then D(x) = L(G).
(d) The set D(x) is contained in the derived set dG(y) of G(y) for any

yedBn- {x}.
(e) // #(L(G)) = 1, then the point in L(G) is G-dual to itself. If #(L(G)) ̂

2, then any ίwo points in L(G) are G-dual.

PROOF, (a) This is immediate.
(b) If x e L(G), then there exists a sequence {#,-} a G such that g^p) -> x

as j-> oo for any point p. If we take a subsequence {^/^(p)}, then there is a
point y such that gjk~

ί(p) -> y as jk -> oo.
(c) Suppose that there is a sequence {yj in D(x) such that yj-+y as

;'->oo. Since L(G) is closed, y e L(G). We shall show that >; is G-dual to
x. For each j, there is a sequence {gm

(j)} <= G such that gm

u\p) -> x and

(0m(J'))~1(p)~>}'./ as m-» oo for any point p. There exists a sequence {#(m)} <= G
such that #(m)(p) -> x and (flr^ΓHp) ~» y Hence >> is G-dual to x. If y e D(x\
then there is a sequence {gm} in G such that #m(p)->x and 0m~1(p)-*j>.
Let g be an element of G. Replace p by ^(p). By [3; Lemma 4.3.1],

gm(g~1(p))^x. Consider the sequence {gmg~1} in G. Since gmg~1(p) ^x and
tem^"1)"1^) -»^(Λ ^(y) is contained in D(x). Assume that D(x) contains more
than one point. Then it follows from [3; Lemma 4.3.3] that D(x) => L(G).
Thus we conclude that D(x) = L(G).

(d) Before showing this, we define an angle and prove a lemma.
Let x, y e Bn and p e Bn. Set

ΨP(X*> y*) = -Re [Φ(p*, p*)'2{Φ(χ*, y*)Φ(p*> p*) - Φ(x*, P*)Φ(P*, y*)}] ,

where p*eπ~1(p), x*eπ- 1(x) and /Έπ"1^). We define the angle £p(x, j)
(0 ̂  ̂ (x, y) ̂  π) at p between two geodesies xp and yp by
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cos*,(x, y) = Ψp(x*9 y*){Ψp(x*9 x*)Ψp(y*9 )>*)Γ1/2 .

We note that cos £p(x, y) is invariant under [7(1, n; C).

LEMMA 2.11. Let p be a point in the geodesic γ having the end points x, y.
Then

<z(p, y) ̂  *p(z, x) for any point z e #" .

PROOF. Without loss of generality, we may assume that x = (1, 0, ...,0),
y = (-1,0,. ..,0), p = (ί,0,...,0), where ίe(- 1,1). Write z = (z l 5...,zn).
Setting s = 1 - Σ?=1 \z{\

2 and x1 = Re (zj, we see that

cos *,(p, y) = -[Re {(1 + t)s - (1 - ίzjα + zϊ)}]

and

cos^rp(z, x) = (Re (zj - ί){-(l - t2)s + |1 - ίzj2}'1/2 .

Let

F(ί) = 1 - s - si + Xi - ίXi - ίlzj2 - |1 + Z i K X i - ί)

for ί e [- 1, 1]. We observe that

and

F(ί) = -s - Xl - |zj2 + |1 + zj ^ -1 - Xi + |1 + x x | ^ 0 .

These facts imply that F(t) ^ 0 in [- 1, 1]. Therefore

cos £z(p, y) ̂  cos *p(z, x) .

Thus we have

Now we are ready to prove (d).

PROOF OF (d). Take y e dBn — {x}. Let y be the geodesic with the end
points x and y, and let p be a point on y. Suppose that z is a point in
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D(x). Then there is a sequence {gk} in G such that gk(p)-+z and

as fc -> oo. Using Lemma 2.11, we have

Hence <p(gk(p\ gk(y)) -» 0 as fc -> oo. Therefore 0fc(y) -> z as fc -> oo. Thus

Z)(x)

(e) To prove this, we prepare two lemmas.

LEMMA 2.12. Let x and y be two points of dBn. Let G be a discrete

subgroup of [7(1, n; C) consisting only of elliptic elements all of which leave the

set {x, y} invariant. Then G is a finite group.

PROOF. By [3; Proposition 2.1.3], we may assume that x = (1, 0, ..., 0)

and y = (— 1, 0, . . . , 0). We write UXtV for the subgroup of all elliptic elements g

in 17(1, n; C) such that g fixes x and y. It follows that an element in UXtV is of

the form

~α 0 0"

0 α 0

0 0 A

where |α| = 1 and A e U(n - 1; C). Let Gx>y = {g e G\g(x) = x and g(y) = y}.

Since 17̂  is compact, we see that Gxy is a finite group in the same manner as

in the proof of Theorem 2.5. Therefore we have only to prove that G — Gxy

is a finite set. Assume that G — Gx y is not a finite set, say, G — Gx>y =

{Λ1 9 Λ2, .- . , hk, ...}. Since each element of G — Gxy interchanges x and y, the

set [hlhl, fti/12, ..., Λι/ι f c, ...} is contained in Gxy. Hence [h^h^ hih2,..., h^,

...} is a finite set. This is a contradiction. Therefore there exist at most a

finite number of elements in G — Gx>r Thus G is a finite group.

LEMMA 2.13. // #(L(G)) ̂  3, then there exists a point in L(G) which is not

fixed by some element of G.

PROOF. It is easy to show our statement in the case where G contains a

loxodromic or parabolic element. Therefore we have only to consider the case

where all elements of G except the identity are elliptic. Assume that any point

in L(G) is fixed by all elements of G. Using Lemma 2.12, we see that G is

a finite group. This contradicts our assumption that L(G) Φ 0. Thus our

lemma is proved.

We now come to the proof of (e).
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PROOF OF (e). If L(G) = {x}, then x is G-dual to itself by (b).
Next assume that L(G) = {x, y}. Since all elements of G leave the set

{x, y} invariant, there are no parabolic elements in G. Suppose that G
contains only the identity and elliptic elements which leave {x, y} invariant.
Lemma 2.12 implies that G is a finite group. This contradicts our assumption
that L(G) 7^ 0. Therefore G contains a loxodromic element with fixed points
x and y. Thus x and y are G-dual.

Lastly assume that #(L(G)) ̂  3. By Lemma 2.13, there exists a point C in
L(G) such that some element / of G does not fix ζ. By (b), ζ has a dual point η
in L(G). It follows from (c) that ζ and /(ζ) are contained in D(η) and hence

that D(η) = L(G), that is, η is G-dual to every point in L(G).
Choose x and y in L(G) such that η, x and y are all distinct. Let W, U

and F be disjoint open neighborhoods of η, x and y, respectively. Using

Proposition 2.9, we can find two elements g and ft in G such that 0 has fixed

points in U and W and /ι has fixed points in V and W. Two elements 0 and h
do not have a common fixed point in W9 otherwise G would be non-discrete by
[5; Theorem 3.1]. Therefore either g or h does not fix η. Let g(η) φ η. This
implies that D(x) contains at least two points η and g(η). Using (c) again, we

see that D(x) = L(G). Hence any two points in L(G) are G-dual.

REMARK 2.14. (1) According to Theorem 2.10 (c), D(x) = L(G) for any
x e L(G) in case #(D(x)) ̂  2. In case #(D(x)) = 1 it may happen that D(x) Φ
L(G). In fact, let g be a loxodromic element with fixed points x and y, and
let G be a cyclic group generated by g. Then D(x) = {y}, D(y) = {x} but

(2) The argument in the proof of (e) shows that, if #(L(G)) ̂  3, then there
exist at least two loxodromic elements in G without a common fixed point.

Next we shall state the properties of the limit set L(G).

THEOREM 2.15. Let G be a discrete subgroup of 17(1, n; C).

(a) L(G) = dG(y) for any y e &1 if #(L(G)) ̂  3.
(b) Either L(G) = dBn or L(G) is nowhere dense on dBn.

(c) L(G) is a perfect set if #(L(G)) ̂  3.

(d) L(G) is the closure of the set of points fixed by some loxodromic

elements of G if #(L(G)) ̂  3.

PROOF, (a) Since G is discontinuous in Bn, L(G) = dG(y) for any y e Bn.
Therefore we have only to show that </G(0) = dG(y) for any y e dBn.

First we shall prove that dG(0) c dG(y). By (2) in Remark 2.14, there
exists a loxodromic element h of G such that h(y) φ y. Let C be a point of
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dG(0). Take a point z of Bn in the geodesic connecting y to h(y). Then

there exists a sequence {#fc} of elements of G such that #fc(z)->£ as fc->oo.

By taking a subsequence, if necessary, we may assume that gk(y) -> Ci and

9k(h(y)) -> C2 as k -> oo. If Ci = C2> then C = Ci = C2- Hence dG(0) c dG(y).
On the other hand, assume that ζ1 ^ ζ2. It follows from [3; Lemma 4.3.3] that

dG(0) c= dG(y).

Next we shall show that dG(0) => dG(y). Let ζ be a point of dG(y). Then
there exists a sequence {#fc} of elements of G such that #fc(y) -> ζ, 0k(0) -> Ci and

9k~l(Q)-*ζ2 Suppose that y τ£ ζ2. It follows from the proof of Proposition
2.7 that 0k(.y)-»ίι Hence C = d, so £ belongs to dG(0). Assume therefore
that y = ζ2 Since dG(0) is invariant under G, #fc(C2) is included in dG(0), hence
gk(y) 6 dG(0). As ί/G(0) is closed, ζ belongs to </G(0). Thus rfG(O) ID dG(y).

(b) If #(L(G)) ̂  2, then L(G) is nowhere dense on dBn. Therefore we

may assume that #(L(G)) ̂  3. Let ζ be a point in L(G). Suppose that there
is a point z in dBn — L(G). By (a), there exists a sequence {0fc} of elements of G
such that gk(z) ->ζ as fc -> oo. Every neighborhood of ζ contains points in the
complement of L(G), so L(G) is nowhere dense on dBn.

(c) This statement is an immediate consequence of (a).

(d) By (2) in Remark 2.14, there is a loxodromic element in G with fixed
points ζί9 ζ2 Let M be the set of points fixed by some loxodromic elements of
G. It follows f r o m a ) that L(G) = rfG(d). Since L(G) is closed and L(G) =D
M => GKJ, L(G) ̂  M => G(C7) ID dGίd). Thus L(G) = M.

The groups for which L(G) = dBn are called groups of the first kind', those

for which L(G) / 35" are called groups of the second kind.

Proposition 2.9 and (e) in Theorem 2.10 lead to

THEOREM 2.16 (cf. [4; Proposition 12]). // #(L(G))^3, then the fixed

points of the loxodromic elements of G are dense in L(G) x L(G), that is, for any
points x, y e L(G) and open neighborhoods U, V of these points in dBn, there is a
loxodromic element in G which has one fixed point in U and the other in V.

COROLLARY 2.17. // G is of the first kind, then the fixed points of the

loxodromic elements of G are dense in dBn x dBn.
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