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Introduction

Let C be the field of complex numbers. Let V = V!*(C) (n = 1) denote
the vector space C"*!, together with the unitary structure defined by the
Hermitian form

D(z*, w*) = —zFwd + zFwf + -+ + ZFw¥

for z* = (2§, z%,...,z¥) and w* = (wg, wf,...,w)) in V. An automorphism g
of V, that is, a linear bijection such that ®(g(z*), g(w*)) = d(z*, w*) for z*,
w* e V, will be called a unitary transformation. We denote the group of all
unitary transformations by U(l,n; C). Let V, = {z*e V|®P(z*, z*)=0} and
V. ={z*e V|®P(z* z*) < 0}. It is clear that V;, and V_ are invariant under
U(l,n;C). Set V* = V_uV,—{0}. Let n: V*—>rn(V*) be the projection
map defined by n(z¥%, z¥,...,2¥%) = (z¥z8 7%, 23257, ..., z*2z¢"!). Set H'(C) =
n(V_). Let H*(C) denote the closure of H*(C) in the projective space n(V*).
An element g of U(l, n; C) operates in n(V*), leaving H"(C) invariant. Since
H"(C) is identified with the complex unit ball B" = BY(C) = {z = (z,, 25, ...,2,)
€ C"||z||* = Zi-, |z|* < 1}, we regard a unitary transformation as a transforma-
tion operating on B". We introduce the Bergman metric

94(z) = 051 — lzI*)™" + Zizy(1 — [|z]1*)~?

for z =(z,, z,,...,2,) € B". Using this metric, we see that the holomorphic
sectional curvature is —4. The distance d(z, w) for z, w e B" is defined by the
use of the Hermitian form & as follows:

d(z, w) = cosh™ [1D(z*, w*)|{¢(z*, )P (w*, w*)}—llz] ,

where z* € n7!(z) and w* € n~!(w) (see [3; Proposition 2.4.4]).

Many results on Mobius transformations and discrete groups are shown in
[1] and [6]. Our purpose of this paper is to find analogous results for
elements of U(1, n; C) and discrete subgroups of U(l,n; C). In Section 1 we
shall prove that an element of U(1, n; C) can be decomposed into two special
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elements. Using this fact, we obtain a distortion theorem for unitary transfor-
mations in Theorem 1.3. Elements of U(1, n; C) and U(1, n; C) are classified
into three types (see Section 1 for the definition of U(1, n; C)). We discuss the
properties of elements of each type. In Section 2 we shall study the properties
of elements of discrete subgroups of U(1,n; C) and U(1, n; C) and show in
Theorem 2.2 the existence of a domain where the action of a discrete subgroup
is equal to the action of the cyclic group generated by a translation. Using the
G-duality, we shall state in Theorem 2.16 that the fixed points of loxodromic
elements of a discrete subgroup of U(l, n; C) are dense in L(G) x L(G).

1. Elements of U(1, n; C)

We define the norm of an element g = (a;); j=1,2,..n+1 in U(l,n; C) by
gl = (Z75L, la;1?)2. Noting that @(z*, w*) is invariant under U(1, n; C), we

see that

(1) ~lay;1* + Z"ﬂ lag, 1> = —1,

V) —layl? + Yt la,* =1 forj=2,3,...,n+1,

(3) —aga+ Yt aga,; =0 fori#ji,j=1,2,...,n+1,
“) —lay >+ Yt lan)? = -1,

®) —laz >+ Yt lanl? = 1.

PropOSITION 1.1 (cf. [2; Theorem 2]). For g€ U(1, n; C),
llgh? = I1]I* + 4 sinh? d(0, g(0)),

where I is the unit matrix.

Proor. First we note that d(0, g(0)) = cosh™* |a;,| by (1) and |I||* =
n + 1. Therefore we have

|1]|? + 4 sinh? d(0, g(0)) = 4|a,,|> + (n — 3).
It follows from the equalities (1), (2) and (4) that
Igl® = Y il lael® + LRit lal® + - + 2Rit @y e
=(—=1+2la; )+ 1 +2la,?)+ -+ 1+ 2lay 4441?)
=(m—1)+23 lanl?
=mn—1+2Qlay > -1
=4lay,|*+(n—3).

Thus we complete the proof.
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Next we shall show that any element of U(1, n; C) can be expressed as the
product of two special elements. Before stating our theorem, we shall give

notation. We denote by U(l; C) xU(n; C) the subgroup {[g 3]“04 =1,
AeU(n; C)} of U(1, n; C).

THEOREM 1.2. Let g = (a;); j=1,2,....n+1 e an element of U(1, n; C) and let p
be a point of B" such that g(p) = 0. Then the element g is decomposed into two
elements f, and u in U(1, n; C) such that

1) g=ufy

2) f,(p) =0, £,(0) = p and f} = identity;

3) ueU(1;C) x U(n; C).

Proor. Without loss of generality, we may assume that p = (q,0,...,0) e
B". Set
al 1 - Eal 1 0
1, p—| A%y  —O0yy 0 1,
0 0 I,

where af; = (1 —|a|?>)". It is easy to show that f, is an element of U(1, n; C)
such that f,(p)=0, f,(0)=p and f?=identity. Next we shall show that
there exists an element u € U(1; C) x U(n; C) such that g = uf,. To prove this,
we have only to show that gfp“ belongs to U(1; C) x U(n; C). We denote
(@)i=1,2,j=3,...n+1 ADd (@y)i=3,.. n+1,j=3,..n+1 DY Ay and A,, respectively. It is
seen that

1%y +ag,a0, —@y100;; — A58, A
_ 1
S Ay1%y1 + G3,00, —0Q310A0; — G0
u=gf,"' =
+ a 42
Ani1,1%11 T Qpy1,28%11  —CQpyq,10%11 — Qpiq,2%1y

Then g(p) = 0 implies a;; + a;;a =0 for i = 2. Therefore the (i, 1)-component
of uis equal to O for i = 2. By (1), |a; 0,4 + ay,a0,,| = 1. It follows from (4)
that the (1, j)-component of u equals 0 for j = 2. Using (2) and (3), we see that

b 0
gf;‘ has the form [O B:I, where |b| =1 and Be U(n; C). Thus u belongs to
U(; C) x Un; C).
Given any points z, w € B", define d*(z, w) by

d*(z, w) = {Iz8| 7 Iw§ 17! D@, w)I}'2,

where z* = (2% z¥, ...,z¥) en !(z) and w* = (w¥, wi,...,wHen'(w). Note
that d*(z, w) does not depend on the choice of z* and w*.
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THEOREM 1.3 (cf. [1; Theorem 3.6.1]). If g e U(1, n; C), then

U D = exp (40, g 0).

After showing a lemma, we shall prove Theorem 1.3.
LEMMA 1.4. Let f, be defined as in the proof of Theorem 1.2. Then

d* ,
Supz,weB",z#w ——(%:(ZZ)_,“{;F)(W—)) = CXp (d(os j;a(o))) .

Proor. It is seen that

d*(£,(2), f,(w))?

= oty 128 — @0ty 2F| 7 oy W — oy W T — (001 28 — Gog  2F) (o0  WE — Gy W)

+ (aotyy 2§ — oy z¥)(aoy  wE — g W) + D nes zFw|

= layy|72128(1 — @ztzg ™) 7wl — awlwg )| - z8ws + Thoy 2w

= (1 —|a]?)|1 — az,|71 — aw,| " 'd*(z, w)?.
Since |1 —az,| =2 1 —|a| and |1 —aw;| 21— |al, {(1 + |a])(1 —|a])™*}"* is the
supremum of d*(f,(z), f,(w))/d*(z, w) over z, we B". We observe that

exp (d(0, £,(0))) = exp (log (Jog; | + (g4 1> — 1)'?)
= {(1 +lah)(1 —la)7*}"2,

and conclude our lemma.

ProoF OF THEOREM 1.3. Let g be an element of U(l,n;C) and let p
be a point of B" such that g(p) =0. As in Theorem 1.2 we decompose g
into uf,. It is easy to check d*(u({), u(w)) = d*({, w) for any {, w € B". Hence
d*(g(z), gw)) = d*(uf,(2), uf,(w)) = d*(f,(2), f,(w)). Therefore it follows from
Lemma 1.4 that
w d*(g(z), g(w)) _ d*(f,(2), £, W)
pz,weB",z#w d*(Z, W) z,weB",z#w d*(Z, W)
= exp (d(0, £,(0))) = exp(d(«(0), uf,(0)))
= exp (d(0, 9(0))) .

Thus our theorem is proved.

Now we set K = exp (d(0, g(0))). It follows from Proposition 1.1 that
Igl® = I1)|*> + (K — 1/K)%. If |g|* = |I||% then K = 1. This equality together
with (1) implies that the absolute value of the (1, 1)-component of g is 1.
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Hence it follows from (1), (2), (3) and (4) that ge U(1; C) x U(n; C). Assume
that g is an element of U(l; C) x U(n; C). Then we see that |g|? = |I|>
Thus we have

PROPOSITION 1.5 The following statements are equivalent to one another:
1) llgl* = 1113

2) geU(1;C) x U(n; C),

3) g(0)=0.

Elements of U(1, n; C) are classified into three types by S. S. Chen and
L. Greenberg [3]. We shall discuss the properties of these types.

DeriNITION 1.6. Let g be an element of U(1l,n; C) which is not the
identity. We shall call g elliptic if it has a fixed point in B" and g parabolic if it
has exactly one fixed point and this lies on dB". An element g will be called
loxodromic if it has exactly two fixed points and they lie on 0B". If g is
conjugate to an element having the form

Acosht Asinht O
Asinftt Acosht O (A= +1teR—{0}),
0 0 1

n—1

then g is called hyperbolic. Hyperbolic elements are special kinds of loxo-
dromic elements.

Now we state properties of each kind of element.

ProrosiTiON 1.7 ([3; Proposition 3.2.1]). Let g be an elliptic element in
U(l,n; C). Then:

(a) g is conjugate to an element in U(1; C) x U(n; C).

(b) g is semisimple with eigenvalues of absolute value 1.

ProprosITION 1.8 (cf. [3; Proposition 3.2.3]). Let g be a loxodromic element
of U(1,n; C). Then:

(@) There exist a unique hyperbolic element h and a unique elliptic element e
such that g = he = eh.

(b) Any element in U(1, n; C) which commutes with g also commutes with h
and e.

(c) g is semisimple with exactly n — 1 eigenvalues of absolute value 1.

(d) g leaves the geodesic connecting the two fixed points, invariant. We call
this geodesic the axis of g and denote it by A,.

(e) g moves every point z in A, the same distance T(g) = d(z, g(z)). This
T(g) is called the translation length of g.

(f) T(g) = min, g d(z, g(2)).
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Proor. Since (a), (b) and (c) are proved in [3; Proposition 3.2.3], we have
only to prove (d), (e) and (f).

(d) Using [3; Proposition 2.1.2], we may assume that the fixed points of g
are (1,0,...,0) and (—1,0,...,0). By [3; Lemma 3.2.2], g has the form

cA sA 0
sA ¢ 0],
0 0 A4

where ¢ = cosh t, s =sinh ¢t for some te R — {0}, [A|=1 and Ae U(n— 1; C).
Let {ey,e;,...,e,} be the standard basis in V. Let X =¢, R + ¢;R. Since
g(z*) = ((cz§ + sz})A, (sz§ + ¢z, 0,...,0) for z* = (z%,z$,0,...,0) in XN V_,
n(g(z*)) is contained in the geodesic n(X N V_) (see [3; Proposition 2.4.3]).

(e) A direct computation shows that

d(z, g(2)) = cosh™ [|(—zg? + z1?)cAl{(—z3* + z1?)*} ]
=cosh™! ¢

forze A,.

(f) Let z* = (z% 2%, ...,2F) and let w* =g(z*). We shall show that
min,._, d(n(z*), t(w*)) = cosh™'c. As & is invariant under U(l, n; C),
D(z*, z*) = &(w*, w*). Therefore it suffices to prove that |D(z*, w*)| =
c|D(z*, z¥)|.

Let A = (a;);,j=2,3,....- Noting that A e U(n — 1; C), we obtain

© 1Yrz 200 @izl < (Ciez 1221220, 1202 ayyzk ()M
= Z:=2 |Zlf|2 .
It is seen that
lc(z84z8 — z¥AzY) + s(z§Azt — z2FAz8)? — {c(1z8)* — |21 )}
7 = |c(lz&1? — |2%2) + 2si Im (28232 — {c(28]* — |25 %)}
= 4s*{Im (z4z%)}> 2 0.
Using (6) and (7), we have
|®(z*, w¥)|
= | —2§(cAz§ + saz1) + 2 (sAzl + chzt) + Liey 2 (L2 @42}
2 |c(z¥Azy — 2¥AzY) + s(z§azt — 2¥2z8)) — |Y0os 2H (X2 a2}

2 c(|z81* — 12t7) — Yi=a 128
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This implies that
|P(z*, w¥)| — c|D(z*, z*)|
2 c(lz8” — 1231) — Yh=2 |28 — clz81? — |231* — Y=z 12E1?)
=(c— I)Zk 21z 20.
Thus min,., d(n(z*), n(g(z*))) = cosh™ c.
To discuss some properties of unitary transformations, it may be more

convenient to use another matrix representation for U(1,n; C). By changing
the basis of V, we introduce the group (7(1, n; C) as follows.

Let
12 12 0
p=|-142 1, /2 0©
0 0

In—l

and define U(1, n; C) by D™'U(1, n; C)D. We see that U(1, n; C) is the group
of linear transformations which leave D™!(V_) invariant and that U(1, n; C) is
the automorphism group of the Hermitian form

B(z*, w*) = —(zow1 + zlw X+ zzwz +- 4+ z_,’:‘w,’,“

defined for z*, w* e D™}(V). We can regard the linear transformation D!

a mapping of complex unit ball B" to the domain H" = {zeC"IRe (z) >
(1/2) 2= 2|zk| }. The action of U(1, n; C) in B" is converted by D! into the
action of U(1 n; C)in H". The distance d(z, w) for z, w e H" is defined by

d(z, W) = cosh™! [|¢(z*, w*)|{¢(z*, z*)¢(w*, W*)}—l/z] ,

where z* e n7!(z) and w* e n '(w). We note that d(z, w) = d(D(z), D(w)) for z,
we H"
Let g = (a;); j=1,2,....n+1 b€ an element of U(1, n; C). Noting that

0 -1 0 0 -1 0
g"l -1 0 0 |g=|—-1 0O 0 |,
0 0 I, 0 0 I,
we see that
(8) —2 Re (allalz) + Zn+l Ialkl - 0
9) —2Re (@37a5;) + Y3t layl? =0,

(10 —2Re (@qa;,) + Ytk lagl*=1 fori=3,4,...,n+1,
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1) —2Re (ﬁTIa21)+ZEZ%Iak1|2 =0,
12) —2Re (aza,,) + Z;:%s lag,|> =0,
(13) —(@11852 + T31015) + YL Gaa, = — 1.

DEFINITION 1.9. Let g be an element of U(1,n; C) which is not the
identity. We shall call g elliptic if it has a fixed point in H" and g parabolic if
it has exactly one fixed point and this lies on oH". A unipotent parabolic
element will be called strictly parabolic and in particular the element which is
conjugate to an element having the form

1 0 O
s 1 0 (s # 0 and Re (s) = 0),
0 0 I,

will be called a translation. An element g will be called loxodromic if it has
exactly two fixed points and they lie on dH". If g is conjugate to an element
having the form

t 0 0
0 t' 0 (teR-{0,1}),
0 0 I,

then g is called hyperbolic.

ProrposiTION 1.10 ([3; Proposition 3.4.1]). Let g be a parabolic element in
U, n; C).

(@) There exist a unique strictly parabolic element p and a unique elliptic
element e such that g = pe = ep.

(b) Any element of U(1, n; C) which commutes with g also commutes with p
and e.

(c) g is not semisimple. All absolute values of the eigenvalues of g are 1.

PROPOSITION 1.11. Let f, and f, be elements of U(l,n; C). Assume that
these two elements have one and only one common fixed point and it lies on
0H". Then the commutator g of f1 and f, is either elliptic, parabolic or the
identity. However, if both elements f, and f, are elliptic, or, if at least one
element of f, and f, is loxodromic, then g can not be the identity.

ProorF. We may assume that the common fixed point is co. Then the
forms of f;(i = 1, 2) are as follows:

LAY

fi =

a S o

R
o= o
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where a;, b, A; are in —1)x1, 1 x(m—1), (n—1)x (n— 1) matrices respec-
tively, &m; = 1, Re (&s)) = (1/2)llaill?, b, = n,a]4; and A4;€ U(n — 1;C). The
commutator g of f; and f, is of the form

1 0 0
g =f1f2f1_1f2_1 =lay 1 F
G 0 A A,A7'A;!

This implies that all absolute values of the eigenvalues of g equal 1. By (b) in
Proposition 1.7, (c) in Proposition 1.8 and (c) in Proposition 1.10, g is either
elliptic, parabolic or the identity.

Next let f, and f, be elliptic elements of U(1, n; C). We may assume that
the common fixed point is co and another fixed point of f, is 0. Then in the
form of f;, £, =, and a; # 0. In the element f,, &, =1#,, s, =0, a, =0 and
b, =0. Therefore we see that a,, = ai(I,_, — £;'A;A,A7")a, in the commu-
tator g. Suppose that g is the identity. Then a,, = al(I,_; — &34, A,ATY)a, =
0 and 4,A4,A7'45"' =1,_,. It follows that A, = £,I, ;. This implies that f,
is the identity. This is a contradiction. Thus g is not the identity.

Lastly let f; be a loxodromic element with fixed points « and co. If
the commutator g is the identity, then f,f, =f,f;. We see that f,f,(a) =
/i@ = f,(@) and f,(x) is a fixed point of f;. Then either f,(a)= oo or
fa(@) = a. The former does not occur. In the latter case f; and f, have two
fixed points in common. This contradicts our assumption. Hence if f; is
loxodromic, then the commutator g of f; and f, is not the identity.

RemMArRk 1.12. The following table describes all the possible type for
g=fifoaf{f5'. There exist examples that demonstrate the table.

£ 1 E P L
E E P E P11 E P
P E,P,I1 | E,PI E P
L E P E P E P

(The symbols E, P, L and I denote ellip-
tic, parabolic, loxodromic type and the
identity, respectively.)

We shall consider the displacement function z - sinh?d(z, g(z)) for an
element g of U(1, n; C). Before stating our proposition, we distinguish between
the fixed points «, § of a loxodromic element g in U1, n;C). Iflim,, g"z) =
o for a point ze H", then o is called an attracting fixed point of g. This
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definition does not depend on the choice of z. For a loxodromic element g we
can define the axis A, and the translation length T(g) in the same manner as in
Proposition 1.8.

ProrosiTiON 1.13 (cf. [1; Theorem 7.35.1]).
(a) Suppose that g is a hyperbolic element of U(l, n; C). Let a = (xy,a,,
..., 0,) be the attracting fixed point of g. We denote the shortest distance from a
point z in H" to the axis ffg by d(z, /‘fg). Let z*=(1,z4,...,2,) € (2) and
a* =(1,a,0,,...,a,)en (). Set k= —Re(P(a*, z%)/|P(o*, z*)|. Then
sinh? d(z, g(2)) = 8(1 + k)2 cosh? d(z, A,) sinh? (1/2)T(g)
x {2 cosh? (1/2) T(g) cosh? d(z, A4,)
— 2k? cosh? d(z, A,) + k + k*} .
(b) If g is a translation with a fixed point {, then sinh? d(z, g(2)){P(z, {)}*"
is constant, where P(z, {) is the Poisson kernel defined by
|B(* 24" if (=00, z*=(1, Zyy 22y, Z,) ET N2
{15(2*3 Z*)Hé(Z*s C*)l—Z}n lfc;é ©, z* =(1, 21’223"~’zn)e
Tc—l(z), C* = (1: Cl’ C29 (KX} cn) € n_l(c) .

PrOOF. (a) Without loss of generality, we may assume that

P@z,0) = {

a 0 0
g=|0 at' 0 |,
0o 0 I,

where a > 1. Then it is seen that 4, = {w = (,0,...,0) € H"|t > 0} and T(g) =
loga. We shall compute d(z, 4,). Let w*en™'(w)=n'(4,). We see that

d(z, A,) = ming, . 3, {cosh™ [|B(z*, w*)|{B(z*, z*)B(w*, w¥)} 2]}
= min,,, {cosh™ [|t + z,|{2t(2 Re (z,) — Y }-, |1z;|*)} "1}
= cosh™ [{(|z,] + Re (z;))(2 Re (z1) — Y }=2 |z;|*) 7} 7]
Write W = 2 Re (z,) _ 27, lz|? and let z, = |z,|e”. We note that

z,| = (1 + cos 0) W cosh? d(z, /Tg) ,

Y, lz|? = Wsinh? d(z, 4,) — (1 — cos )(1 + cos §)7*W cosh? d(z, 4,) ,

4 sinh? T(g) = (a — 1/a)?,

4sinh? (1/2)T(9)=a+ 1/a — 2.



Notes on elements of U(1, n; C) 33

From the above equalities it follows that
sinh? d(z, g(z))
= W72 —(az; + (1/a)zy) + Y2 Iz*1* — 1
= W™ 2{|z,|%(a — 1/a)* — 2|z,|(} =, |1z;1*)(a + 1/a — 2) cos 6}
= 8(1 + cos 0)~2 cosh? d(z, A,) sinh? (1/2) T(g) {2 cosh? (1/2) T(g) cosh? d(z, 4,)
— 2 cos? 6 cosh? d(z, Xg) + cos 0 + cos? 6} .

Noting that cos 6 = k, we have the desired equality.
(b) Let g be a translation with a fixed point { € dH". There is an element
f =(ay); j=1.2....nr1 of U(1, n; C) such that h = fgf ™ has the form

1 0 0
h=|t/—-1 1 o0 |,
0 0 I,

where t € R — {0}. 1t follows that gf ' = f~'h and hence gf ~*(c0) = f 'h(c0) =
f7Y(00). Thus f~*(c0) is a fixed point of g. Since { is the only fixed point of
g, [ (0)={ so that f({)=oco. Hence ay; + a,{; + " + G p41{n =0 for
k#2 and #0 for k=2. Write f(z)=w=(w;,w,,...,w,) and let f(z)* =
(1, wy, wy, ..., w,) e }(f(z)). Then

1B(f(2*), f*)| = (F*)o I B, f@)*)
1B(f(2*), ST = 1(FE*Nol @21 + az281 + - + Gznarlal
Therefore
{B(z, ()} = | B(z*, 2%)2| B(z*, ()7
= |B(f(*), f)PIB(f(2*), fC*)I*
= |B(f@)*, f@*)agy + azsly + + g par Lol
= {B(w, 0)}2"ay, + a2l 4+ + Ay e Gl
By using this equality, we have
sinh? d(z, g(2)) {P(z, )}
= sinh? d(z, f ' hf(2)) {P(z, )} "
= sinh? d(f(2), i (2)){P(z, )} "
= sinh? d(w, h(w)) {P(w, 00)}"|ay; + ay50; + *** + Gy i1 Gl ™*
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= {2 Re (w;) — Zz=z IWklz}_ztz{z Re (w;) — Z::: 'Wklz}z
X |ayy + ay0; + 0+ Ay s Gl
=t?ay + a0+ + ay Gl

Thus sinh? d(z, g(z)) {P(z, {)}?" is equal to a constant which does not depend
on z.

REMARK 1.14. If g is a hyperbolic element of U(1, 1; C), then we have
sinh d(z, g(2)) = cosh 2d(z, 4,) sinh T(g) .

If g is strictly parabolic and of the form

1.0 O
g=|s 1 aT |,
a 0 I,_,

where Re(s) = (1/2)lall? then sinh?d(z, g(z)){P(z, {)}¥" is not necessarily
constant.

2. Elements of discrete subgroups of U(1, n; C) and U(1, n; C)
First we quote one theorem from [5].
THEOREM 2.1 ([5; Theorem 3.2]). Let G be a discrete subgroup of
U(1,n; C). Assume that g is a translation of G having the form
1 0 O
g=|s 1 0 [,
00 I,,
where s #0 and Re(s)=0. If f=1(ay)ij=1,2,..,n+1 iS an element of G, then

either a,, = 0 or |a;,| = |s|™..

Using this theorem, we shall show the existence of a domain where the
action of G is equal to the action of the cyclic group generated by g.

THEOREM 2.2. Let G, g and s be the same as in Theorem 2.1. Assume that
the stabilizer G, = {he G|h(c0) = o0} is generated by g. Let X be the set
{ze H"Re (z,) > (1/2) Zi=3 |2,/ + |s|}. Then

f@)=2 i feG,,
J@)n2=g if feG-0G,.
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PrROOF. Assume that f is an element of G, and that z is a point in X.
Noting that f has the form

1 0 O
ms 1 O meZ),
0 0 I,

we see that f(z) = (z, + ms, z,, ..., 2,). It follows that
Re (z; + ms) = Re (z;) > (1/2) Y 5=z |zi)* + 5] .

Thus X o f(X). If we replace f by f~*, then we have f(X) = Z.

Next we suppose that f = (a;);j=1,2,..n+1 IS an element of G — G,.
Then a,, #0 so that |a,,| =|s|™* by Theorem 2.1. Take ze X and z* =
(1,z4,22,...,2,)€n }(z). Write f(z*) = (w§, wf,...,w*) and let t =Re(z;) —
(1/2)Z:_,|zJ?. Thent>|s|. Noting that B(z*, z*) = B(f(z*), f(z*)), we have

Re (wf/wg) = |w§|™2 Re (wgwl) = (1/2) Yies IW/WEI? + wi| 72t .
It follows from (8) in Section 1 that
lag a1, + 2y + a13a1, 2z, + 0+ Ay a2, — 8
> Re(a;,a,,7!) + Re(z;) + Re (a;3a,,7'2,) + -
+ Re (a1,41a127'2,) — Re (z,) + (1/2) Y k=2 |z, [?
=|a;,|7% Re (ay,a5;) + Re (ay3a,,7'2;,) + -+ + Re (ay 4101, "2,)
+(1/2) Z;=2 |24l
= la, | 2{(1/2)(lags > + |agal® + - + |a1,n+1|2)}
+ Re(a13a,,7'2;) 4+ + Re (g 511a12772,) + (1/2) Y i 2]
= (/2172 + a138,,7' 1 + 73 + @40, 7 P+ 4 12+ 4y a7 P) 20,
Therefore
IW§1? = laal?laya17" 4 + Gy a1 015712,
2 a2 [s| 722 2 s 7't
It follows that Re (w¥/wd) < (1/2)Zi_,|w¥/w&|?> + |s|, which shows f(z) ¢ X.
Thus, if f € G — G, then f(X)n 2 = .

ProrosiTION 2.3 (cf. [1; Theorem 5.4.3]). Let G, g and s be the same
as in Theorem 2.1. Let f=(a;j); j=1,2,..n+1 be an element of U(1, n; C) such that
f(o0) # 0. Suppose that the group {f,g) generated by f and g is discrete.



36 Shigeyasu Kamiya

Then:

@ If=1Illlg—1II=1 3 3

(b) If f is strictly parabolic, then sinh d(e, f(e)) sinh d(e, g(e)) = 1/4,
where e = (1,0, ...,0) e H"

If f is of the form
1 s 0
0 1 o |,
0o 0 I,

then the equalities are satisfied in (a) and (b).
To prove Proposition 2.3 we need a lemma.
LEMMA 2.4 (cf. [Proposition 1.1]). For g e U(1, n; C),
lgl* = 111> + 4 sinh* d(e, g(e)) -

PROOF. Let g = (ay); j=1....n+1 € U(l,n; C). By making use of (11), (12)
and (13) in Section 1, we obtain
d(e, g(e)) = cosh™ (1/2)|a,, + ay; + ay; + ay,| .
From this it follows that
4sinh? d(e, g(e)) = |ay; + ay, + a5, + a5,1* — 4.
Using (8), (9), (10), (11), (12) and (13), we see that
Igl? = lay1 > + |a;2|* + a1 + 021> + 2 Re (@17a,4,)
+ 2 Re (a;;a,,) + 2 Re (G ;a,,) + 2 Re (a2a,,)
+ 2 Re(aza,,) + 2Re (a3;a5,) +n—3
= 4sinh? d(e, gle)) + 4 +n—3
= 4 sinh? d(e, g(e)) + |1]|*.

PROOF OF PROPOSITION 2.3. Since ||g — I| = |s| and | f — I||*> = |a,,]* #0,
it follows from Theorem 2.1 that |[f — I|||lg — I|| = 1. Assume that all eigen-
values of the element f are 1. By Lemma 2.4,

If =112 = 1I£1%+ II* — 2 Y12} Re(ay)
=[fI%+ > = 2(n + 1) = | fII* — |1||?
= 4sinh? d(e, f(e)) .

Therefore ||g — I|| = |s| = 2 sinh d(e, g(e)) implies sinh d(e, f(e)) sinh d(e, g(e)) =
1/4.
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It is easy to show that the equalities are satisfied if

st 0

1
f=10 1 0

0o 0 I,
Next we shall consider loxodromic elements of a discrete subgroup.

THEOREM 2.5. Let G be a discrete subgroup of U(1,n; C). Let f and g be
elements of G. Suppose that f is loxodromic and that f and g have fixed point
sets {x, y} and {x', y'}, respectively in OB". Then either these sets are disjoint or
they are identical. Moreover, if the latter occurs, then there is an integer m such

that f™g = gf™

Proor. Assume that f and g have only one fixed point, say x € 0B", in
common. It follows from [5; Theorem 3.1] that the subgroup {f, g) generated
by f and g is not discrete. Hence {x,y} ={x",y'} or {x,y}n{x,y'}=@.
Without loss of generality, we may assume that {x,y} = {(1,0,...,0),
(-1,0,...,0)}. If {x,y} = {x',y'}, then it follows from (1), (2), (3), (4) and (5)
in Section 1 that f and g are of the form

Acosht Asinht O ucoshs psinhs O
f=| Asinht Adcosht 0| and g=| usinhs pcoshs 0]},
0 0 A 0 0 B

where |A| =1, |y =1,t,se Rand A, Be U(n — 1; C). Therefore

10 0
flaf 77 =10 1 0 (jeZ).
0 0 ABATB™

Let F={fJgf 7g~'|je Z}. Assume that F is an infinite set. Noting that
U(n — 1; C) is compact, we see that there exists a sequence {h,} of different
elements of F which converges to some element h of U(l,n;C). Since
lim, _, , h(z) = h(z) for z e B", G is not discontinuous at h(z) in B". This is a
contradiction. Hence F is a finite set, so A"BA™™B~! = I,_, for some integer
m. Thus f™g = gf™

For the remainder of this section G denotes a discrete subgroup of
U(1,n; C). We shall give the definition of G-duality.

DEFINITION 2.6. Let x and y be any two not necessarily distinct points in
0B". 1If there exists a sequence {g,} of elements of G such that lim,_, , g,(p) = x
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and lim,_,, g, '(p) = y for any point p in B", then we say that x and y are
G-dual and denote this duality by x ~ y.

PROPOSITION 2.7.  Two points x and y in 0B" are G-dual if and only if there
exists an element g of G such that g(B" — V) < U, where U (resp. V) is any open
neighborhood of x (resp. y) in B".

We need the following lemma for the proof.

LemMA 28. Let ¢ be any positive number. If d*(z,w)> <e¢ for z=
(21> 22y eevs Zn), W= (Wy, Wy, ..., W,) € B", then |z — w|? = Z, |z; — w;|® < 2e.

ProoF. If z=w =0, then |z —w||?> =0. Hence we may assume that one
of z and w, say z, is not zero. Without loss of generality, we may assume
that z = (r,0,..., 0), where 0 <r < 1. Noting that inf {Re (w,)|d*(z, w)*> < &} =
(1 — &)r™t, we see that

lz = wli? =r —wy|*> + Y1 Iw|* = r* — 2r Re (wy) + [lw]?
SrP—2rRe(w)+1<r?=2r(1 —e)r* +1
=2—(1-r¥)<2e.

Let us go back to the proof of Proposition 2.7. We shall prove that if
part first. Let U, (resp. V;) be a sequence of open neighborhoods of x (resp. y)
in B" such that U,> U, and ()is;Ui={x} (tesp. V>V, and
(k=1 Vi = {¥})- By our assumption, there exists a sequence {g,} of elements in
G such that g,(B"— V) < U, and g,”'(B"— U,) c V, for each k. Let p be a
point in B". If k is sufficiently large, then p € (B" — U,) n(B" — V,). Therefore
we see that g,(p) € U, and g, '(p) € V;. Thus g,(p) = x and g, (p) - y.

Conversely we assume that x and y are G-dual. Let U (resp. V) be an
open neighborhood of x (resp. y) in B". By our assumption, there is a sequence
{gx} = G such that g,(0) > x and g, (0) > y as k > 0o. Since lim,_, g, (0) =
y, there exist 6 >0 and an integer N > 0 such that |g,"1(0) — z|| > ¢ for all
zeB"—V and all k= N. Fix ze B*— V. Then d*(g,"'(0), z) = §/2 for all
k = N by Lemma 2.8.

We can find an element v, of U(l; C) x U(n; C) which carries g, *(0) to
(@, 0,...,0), where |a,| = |lg,"*(0)|. Set p, =(a,0,...,0). By Theorem 1.2,
we have two elements u, and f, which satisfy the following conditions:

) gt = U fps

2) fp(P) =0, f, (0) = p, and f, > = identity:

3) weU(; C)x Un;C),
where f, is defined in the same manner as in the proof of Theorem 1.2.
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Write v,(z) = (0,®, v,®, ..., v,®). Using u,7'(0) =0 and the fact that d* is
invariant under U(1; C) x U(n; C), we see that
d*(g, 7' (0), 2)* = d*(v, ' fp,, w71 (0), 2)° = d*w ', 71 (0), 2)°
= d*(f,, ' (0), v(2))* = d*(ps, 04(2))* = |1 — G, ¥ .
Therefore
(14) 1 — @, ®| = 6%/4 forallk = N.
It follows from the proof of Lemma 1.4 that
d*(94(0), 64(2)* = d*( S, 00(0), 1S (D))
= d*(£,,(0:(0)), £, (0:(2)))?
=1 —la?)I1 — 3o, © 7' d* v (0), vi(2))?
=1 = a1 = Zv,®7'd*(0, 2)
= — a1 — Go,®™.
Using (14), we see that
d*(g,(0), gi(2))* < 4(1 — llg, "' (0)]1?)02

for all k> N. Let ¢ >0 be given. Since lim,_,, g,”1(0) = y € 6B", there exists
an integer M > 0 such that

41 — g~ 0)1*)0"2<e  forallk= M.
Lemma 2.8 implies that
lg.(0) — g (2)II* < 2¢ for all k > max {N, M} .

Since lim,_,g,(0) = x, {gi} uniformly converges to x on B"— V. Thus
gi(B" — V) < U for sufficiently large k.

PROPOSITION 2.9. Suppose that two points x and y are G-dual. Let U and
V be open neighborhoods in B" of x and y, respectively. If UnV = &, then
there exists a loxodromic element of G that has one fixed point in U and another
fixed point in V.

ProoF. We may take U and V to be convex. It follows from Proposition
2.7 that there exists an element g of G such that g(l_37' — V)< U. Therefore
g(UN0B") = U 0dB". By the Brouwer fixed point theéorem, we see that g has
a fixed point in U dB" Similarily we have that g~'(V noB") < V ndB".
Therefore g has another fixed point in V. Assume that g is elliptic. It follows
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from [3; Lemma 3.3.2] that g must fix any point in the geodesic connecting x
to y. This is impossible, because g(B" — V)= U. Thus ¢ is a loxodromic
element of G.

We shall derive some properties of G-dual points. Before stating our
theorem, we give the definition of the limit set. Let G(p) = {g(p)lg € G} for a
point p e B". Define the limit set L(G) of G by L(G) = G(p) ndB". Note that
L(G) does not depend on the choice of p (see [3; Lemma 4.3.1]). By definition,
L(G) is a G-invariant closed set.

THEOREM 2.10. Let G be a discrete subgroup of U(1, n; C).

(a) G-dual points x and y belong to the limit set L(G).

(b) If x € L(G), then there is some point y € L(G) such that x ~ y.

(c) Denote {ye L(G)|x ~ y} by D(x). The set D(x) is closed and G-invariant.
If #(D(x)) = 2, then D(x) = L(G).

(d) The set D(x) is contained in the derived set dG(y) of G(y) for any
y€edB" — {x}.

(e) If #(L(G)) = 1, then the point in L(G) is G-dual to itself. If #(L(G)) =
2, then any two points in L(G) are G-dual.

Proor. (a) This is immediate.

(b) If x € L(G), then there exists a sequence {g;} = G such that g;(p) > x
as j— oo for any point p. If we take a subsequence {g; ~'(p)}, then there is a
point y such that g; ~'(p) - y as j, - c.

(c) Suppose that there is a sequence {y;} in D(x) such that y;—y as
j— . Since L(G) is closed, y € L(G). We shall show that y is G-dual to
x. For each j, there is a sequence {g,’} = G such that g,”(p)—> x and
(gm?)"'(p) > y; as m > oo for any point p. There exists a sequence {g™} = G
such that g™(p) - x and (¢™)!(p) » y. Hence y is G-dual to x. If y e D(x),
then there is a sequence {g,} in G such that g,(p)—>x and g, '(p)—y.
Let g be an element of G. Replace p by g '(p). By [3; Lemma 4.3.1],
gm(g~1(p)) » x. Consider the sequence {g,,g~'} in G. Since g,,9~'(p) > x and
(Gmd )" 1(p) = 9(»), g(y) is contained in D(x). Assume that D(x) contains more
than one point. Then it follows from [3; Lemma 4.3.3] that D(x) > L(G).
Thus we conclude that D(x) = L(G).

(d) Before showing this, we define an angle and prove a lemma.

Let x, ye B" and peB". Set

Z,(x*, y*) = —Re [D(p*, p*) > {D(x*, y*)D(p*, p*) — B(x*, p*)D(p*, y*)}]1,

where p* e n7!(p), x*en!(x) and y*en~'(y). We define the angle x,(x, y)
(0 £ %,(x, y) < m) at p between two geodesics xp and yp by
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cos%,(x, y) = W (x*, y*) { ¥, (x*, x*) W, (y*, y*)} 2.

We note that cos ¥ ,(x, y) is invariant under U(1, n; C).

LEmMMA 2.11. Let p be a point in the geodesic y having the end points x, y.
Then

X.(p, y) £X,(z, %) for any point z € B".

Proor. Without loss of generality, we may assume that x =(1,0,...,0),
y = (-10,...,0), p = (,0,...,0), where te(—1,1). Write z = (zy,..., z,).
Setting s = 1 — X7, |z;]* and x; = Re (z,), we see that

cos %,(p, y) = —[Re {(1 + t)s — (1 — tz;)(1 + Zz})}]
X [{—=(1 =)+ |1 =z, P} P21 + 2,17
and
os %,(z, x) = (Re (z;) — ){—(1 — t*)s + |1 — tz,|*} 7"~
Let
Fit)=1—s—st+x; —tx; —t|z4]> = |1 + z,](x; — 1)
forte[—1,1]. We observe that
F(=D)=1—=s4+s+x;+x; +|z;2 = |1+ z,|(x; + 1)
=1+42x, +|z,> = |1 + z,](1 + x,)
=|14z,2 =14z + x,)

=[1+z;[{Il+2z]-0+x)}20

and
Fi)=—-s—x, — |z, + 1 +2z|2 —1—x; + |1l +x,/20.
These facts imply that F(t) = 0in [—1,1]. Therefore
€Os ¥,(p, y) 2 €os ¥,(z, x) .
Thus we have
(P, y) £%,(z, %)

Now we are ready to prove (d).

PrOOF OF (d). Take ye dB" — {x}. Let y be the geodesic with the end
points x and y, and let p be a point on y. Suppose that z is a point in
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D(x). Then there is a sequence {g,} in G such that g,(p) >z and g,"*(p) > x
as k —» oo. Using Lemma 2.11, we have

£ p(9x(D), 9k () = X po-1(y(D> ¥)

< %,(g¢7 ' (p), ) 0.

Hence ¥ ,(gx(p), gi(y)) = 0 as k — co. Therefore g,(y) - z as k - co. Thus
D(x) = dG(y).

(e) To prove this, we prepare two lemmas.

LEMMA 2.12. Let x and y be two points of 0B". Let G be a discrete
subgroup of U(1, n; C) consisting only of elliptic elements all of which leave the
set {x, y} invariant. Then G is a finite group.

Proor. By [3; Proposition 2.1.3], we may assume that x =(1,0,...,0)
and y=(—1,0,...,0). We write U, , for the subgroup of all elliptic elements g
in U(1, n; C) such that g fixes x and y. It follows that an element in U, , is of
the form

0
0,
A

S O R
S R O

where |¢| =1 and Ae U(n—1;C). Let G, , = {geGlg(x) =x and g(y) = y}.
Since U, , is compact, we see that G, , is a finite group in the same manner as
in the proof of Theorem 2.5. Therefore we have only to prove that G — G, ,
is a finite set. Assume that G — G, , is not a finite set, say, G — G, , =
{hy, hy, ..., hy,...}. Since each element of G — G, , interchanges x and y, the
set {hyhy, hih,, ..., hihy, ...} is contained in G, ,. Hence {hihy, hih,,..., hih,
...} is a finite set. This is a contradiction. Therefore there exist at most a
finite number of elements in G — G, ,. Thus G is a finite group.

LeMMA 2.13.  If #(L(G)) = 3, then there exists a point in L(G) which is not
fixed by some element of G.

Proor. It is easy to show our statement in the case where G contains a
loxodromic or parabolic element. Therefore we have only to consider the case
where all elements of G except the identity are elliptic. Assume that any point
in L(G) is fixed by all elements of G. Using Lemma 2.12, we see that G is
a finite group. This contradicts our assumption that L(G) # &J. Thus our
lemma is proved.

We now come to the proof of (e).
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ProoF oF (e). If L(G) = {x}, then x is G-dual to itself by (b).

Next assume that L(G) = {x, y}. Since all elements of G leave the set
{x,y} invariant, there are no parabolic elements in G. Suppose that G
contains only the identity and elliptic elements which leave {x, y} invariant.
Lemma 2.12 implies that G is a finite group. This contradicts our assumption
that L(G) # &&. Therefore G contains a loxodromic element with fixed points
x and y. Thus x and y are G-dual.

Lastly assume that #(L(G)) = 3. By Lemma 2.13, there exists a point { in
L(G) such that some element f of G does not fix {. By (b), { has a dual point 7
in L(G). It follows from (c) that { and f({) are contained in D(n) and hence
that D(n) = L(G), that is, n is G-dual to every point in L(G).

Choose x and y in L(G) such that 5, x and y are all distinct. Let W, U
and V be disjoint open neighborhoods of 1, x and y, respectively. Using
Proposition 2.9, we can find two elements g and h in G such that g has fixed
points in U and W and h has fixed points in ¥V and W. Two elements g and h
do not have a common fixed point in W, otherwise G would be non-discrete by
[5; Theorem 3.1]. Therefore either g or h does not fix n. Let g(n) #n. This
implies that D(x) contains at least two points # and g(n). Using (c) again, we
see that D(x) = L(G). Hence any two points in L(G) are G-dual.

ReMARK 2.14. (1) According to Theorem 2.10 (c), D(x) = L(G) for any
x € L(G) in case #(D(x)) = 2. In case #(D(x)) =1 it may happen that D(x) #
L(G). In fact, let g be a loxodromic element with fixed points x and y, and
let G be a cyclic group generated by g. Then D(x) = {y}, D(y) = {x} but
L(G) = {x, y}.

(2) The argument in the proof of (¢) shows that, if #(L(G)) = 3, then there
exist at least two loxodromic elements in G without a common fixed point.

Next we shall state the properties of the limit set L(G).

THEOREM 2.15. Let G be a discrete subgroup of U(1, n; C).

(@) L(G) =dG(y) for any ye B" if #(L(G)) = 3.

(b) Either L(G) = 0B" or L(G) is nowhere dense on dB".

(c) L(G) is a perfect set if #(L(G)) = 3.

(d) L(G) is the closure of the set of points fixed by some loxodromic
elements of G if #(L(G)) = 3.

Proor. (a) Since G is discontinuous in B", L(G) = dG(y) for any y e B".
Therefore we have only to show that dG(0) = dG(y) for any y € dB".

First we shall prove that dG(0) = dG(y). By (2) in Remark 2.14, there
exists a loxodromic element h of G such that h(y) #y. Let { be a point of
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dG(0). Take a point z of B" in the geodesic connecting y to h(y). Then
there exists a sequence {g,} of elements of G such that g,(z) »{ as k— oo.
By taking a subsequence, if necessary, we may assume that g,(y) » {, and
gi(h(y)) > ¢, as k> oo. If {; =(,, then { ={, =(,. Hence dG(0) < dG(y).
On the other hand, assume that {, # {,. It follows from [3; Lemma 4.3.3] that
dG(0) < dG(y).

Next we shall show that dG(0) > dG(y). Let { be a point of dG(y). Then
there exists a sequence {g,} of elements of G such that g,(y) - {, g,(0) > {, and
g (0) > {,. Suppose that y # {,. It follows from the proof of Proposition
2.7 that g,(y) > {,. Hence { ={,, so { belongs to dG(0). Assume therefore
that y = {,. Since dG(0) is invariant under G, g,({,) is included in dG(0), hence
9:(») €dG(0). As dG(0) is closed, { belongs to dG(0). Thus dG(0) > dG(y).

(b) If #(L(G)) <2, then L(G) is nowhere dense on dB". Therefore we
may assume that #(L(G)) = 3. Let { be a point in L(G). Suppose that there
is a point z in 0B" — L(G). By (a), there exists a sequence {g,} of elements of G
such that g,(z) - { as k > oo. Every neighborhood of { contains points in the
complement of L(G), so L(G) is nowhere dense on 0B".

(c) This statement is an immediate consequence of (a).

(d) By (2) in Remark 2.14, there is a loxodromic element in G with fixed
points {;, {,. Let M be the set of points fixed by some loxodromic elements of
G. It follows from (a) that L(G) = dG({,). Since L(G) is closed and L(G) >
M > G(), L(G) > M > G(;) > dG({;). Thus L(G) = M.

The groups for which L(G) = dB" are called groups of the first kind; those
for which L(G) # 0B" are called groups of the second kind.

Proposition 2.9 and (e) in Theorem 2.10 lead to

THEOREM 2.16 (cf. [4; Proposition 12]). If #(L(G)) = 3, then the fixed
points of the loxodromic elements of G are dense in L(G) x L(G), that is, for any
points x, y € L(G) and open neighborhoods U, V of these points in 0B", there is a
loxodromic element in G which has one fixed point in U and the other in V.

COROLLARY 2.17. If G is of the first kind, then the fixed points of the
loxodromic elements of G are dense in 0B" x 0B".
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