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1. Introduction

The so-called integer linear programming problem is described as follows;
Given integers

(1.1) a;, band ¢;, 1 Si<m, 1 <j<n,

find non-negative integers x,,..., x, such that )_, c;x; takes the maximum
value under the constraints

(1.2) z" aijx < bi, i = 1, P /(B

j=1 ji=

Various methods for solving this problem have been discussed in
[3, 5, 11, 18, 20, 22, 24]. Especially, useful methods are exploited in
[9, 10, 13, 14, 17, 35] for 2-valued problems in which a;;, x; are supposed to
belong to {0, 1}. The 2-valued problems can be applied to various problems
concerning graphs, networks, and so on.

In this paper we are concerned with the following four types of integer
problems:

Integer Selection Problem, or shortly ISP: Let n, k, m,, ..., m, be positive
integers and let aj;, b}, ¢c;, 1<i<m, 1<r=<k 1=<j<n and z be given
integers. Find an integer r with 1 < r < k and non-negative integers x,, ..., X,
satisfying

n _ n r , .
Yioicxj=zand Y'_ aix; b} for 1 <i<m,

3-valued Problem: Given integers a;e{— 1,0, 1} and b; stated in (1.1),
find x,,..., x,€{0, 1} satisfying (1.2).

Indeterminate Coefficient Problem, or shortly IDCP: Let m, n, p and g be
positive integers, a;;, b; integers given in (1.1), and let g;, d;;e{ — 1, 0, 1} and ¢,
1<s<p, 1<t=<gq be given integers. Find non-negative integers x; and
y:;€{0, 1} satisfying

Z-';=1 aijyinjé bi’ l= 1,..., m and

Z;';l Z;=l gsiyijdjt é gst’ S = 1,..., p, t= 1,..., q.
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IDCP with boundedness conditions: Given integers u; 2 0, 1 < j < n, solve
the IDCP under the boundedness conditions x; S u;, j=1,..., n.

The first problem is a modification of the problem of “selection from
several regions” due to Dantzig [11].

The main objective in this paper is to show that the two problems ISP and
IDCP are equivalent, and that any IDCP with boundedness conditions is
reduced to a 3-valued problem, as stated below:

THEOREM A. Any solution of a given ISP (resp. IDCP and IDCP with
boundedness conditions) is derived from solutions of the associated IDCP (resp.
ISP and 3-valued problem) and vice versa.

This is proved by combining Theorems 1 and 2 given in Section 2 and
Theorem 3 stated in Section 3.

In order to state the second result on the 3-valued problem for given
integers a;;e{—1,0,1} and b;, 1 £i<m, 1 £ j < n, we introduce two notions:
We say that a subset J' of J = {1,..., n} is weakly (resp. strongly) removable, if
for each jeJ’ there exists ie{l,..., m} satisfying

a; 20 (resp. a;;=1) and Y, ;.. a3 > b, — a;;;

ij =
and we say that J’ is maximal if J'U{k} for any ke J — J' is not weakly (resp.
strongly) removable. Using the above terminologies, we may state the
following result which provides useful necessary conditions for the existence of
solutions of 3-valued problems:

THEOREM B. Let x,..., x, be a solution of the 3-valued problem formulated
for a;; and b, '

() If there are no solutions y,, ..., y,€{0, 1} such that {j|y; =1} = {jlx;
= 1} U{k} for k with x, = O, then the subset {j|x; =0} is maximal as a weakly
removable set and also maximal as a strongly removable set.

(ii)) If b; <O for any i and the inequality

Zje.l- - Z:n=1 a;; > Z:n=1 b, J_= {]IZ:"=1 a; < 0}
holds for a subset J' of {1,...,n}, then x;=1 for some jeJ'.

We note that we may assume b; < 0 in (i) without loss of generality. See
the first part of Section 4.

An indeterminate coefficient problem with boundedness conditions arose in
the study of the problems of inventory controls, production planning problems
and so on. Theorem A shows that these problems can be treated as special
cases of the 3-valued problem. In the forthcoming paper we shall discuss these
problems by applying Theorem B.



Reduction of some integer programming problems 429

This paper is organized as follows. In Section 2 the relationship between
the integer selection problem and the indeterminate coefficient problem is
discussed. In Section 3 indeterminate coefficient problems and 3-valued
problems are treated. Finally, various conditions for the existence of solutions
of the 3-valued problems are investigated in Section 4.

2. Integer Programming Problems

In this section, we consider a problem of finding an integer vector satisfying
various integer constraints which we call IEP (see Definition 1 below). We
show that any integer selection problem ISP introduced in Section 1 can be
regarded as a special case of the IEP. We also introduce a kind of non-linear
integer problem called an indeterminate coefficient problem, or shortly IDCP,
and consider the relationship between IDCP and ISP.

We introduce some notation which we employ throughout this paper. We
denote by [p;,..., p.] the m-dimensional row vector x, and x' stands for the
transposed vector of x. For the same dimensional vector x and y, x-y denotes
the usual inner product of x and y.

For a given integer p and two positive integers m and n, [p],,, and [p],
denote the m x n matrix whose components are all equal to p and m-
dimensional row vector such that all the components are equal to p,
respectively. For an m x n matrix 4 and an m X k matrix B, [4 B] denotes the
m x (n + k) block matrix. Similarly, for an m x n matrix 4 and a k x n matrix

A
B, we denote by [B:l the (m + k) x n block matrix: the first m rows form the

matrix A and the last k rows form the matrix B.
We denote by Z and Z, the set of all integers and the set of all non-
negative integers, respectively.

DeFINITION 1. Let X be a subspace of n-dimensional space Z", f
=[f1s...,fm] @ Z™-valued function on X and let g be an integer-valued
function on X. The integer existence problem 1EP(n, m, X, f, g), or shortly
IEP, is a problem of finding a vector x of X such that g(x) = 0 and f;(x) < 0 for
i=1,...,m. The function g is called an objective function.

In what follows, we denote the class of all the integer existence problems
introduced above by . For IEP (n, m, X, f, g), we write & (IEP(n, m, X, f, g)),
or shortly &% (IEP), for the set of all solutions of IEP(n, m, X, f, g).

REMARK 1. An integer existence problem represented by IEP (n, m, X, f, g)
is equivalent to a problem of finding a feasible solution of an integer
programming problem such that the constraints are given by fi(x) <0,
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i=1,..., m, where f; is the i-th component function of f, and such that the
associated objective function is g.(x) = g(x) — ¢ for some integer c.

We here give two typical examples of the integer existence problems.

ExaMpLE 1. Consider IEP(n, m, X, f, g) in which
X=2Z",f=[f1,..c.fud ) =) ayx;— by for i=1,..,m,

and

glx) =" cx;—c,

where a;;, b, ¢, i=1,...,m,j=1,..., n and c are given integers and x; denotes
the j-th component of x. Then any element xe ¥ (IEP(n, m, X, £, g)) is a
feasible solution of the linear integer programming problem to find an element
xeZ" at which g(x) is maximized subject to the constraints fi(x) < b, i
=1,...,m.

ExaMpPLE 2. Take the same region X and functions f,,...,f, as in
Example 1, and define a new objective function g(x) given by

g(x) =25y &% — (/) 30, Yoy dxix; — ¢

where g;; are integers. In this case the associated problem IEP(n, m, X, f, g)
corresponds to so-called quadratic programming problem.

DeriNITION 2. Consider two integer existence problems P and P’ in the
class . We say that P is stronger than P’, and write P <P’, if the existence of
a solution of P implies that of a solution of P’

In particular, P’ < P and P < P’ are valid for a pair of problems P and P’
in the class 2, then P and P’ are said to be equivalent and, in this case, we write
P~ P.

Let 2, and 2, be two subclasses of 2. If there is a mapping ¢ from 2,
into 2, such that P ~ ¢(P) for any problem P in the class £, we write

P Pa-

The following is a modification of the problem of “selection from several
regions” due to Dantzig [11, 12].

DEerFINITION 3. Let n, k, mq,..., m, be positive integers. Given integers
2.1) a;, b, c, 1=i<m, 1=5r<k 1<j<n and z,

the integer selection problem, or shortly ISP, is a problem of finding an integer r
with 1 <r < k and non-negative integers x,,..., X, satisfying
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n _ n , ,
YioiCxj=zand }7_ aix; <b; for i=1,..,m,.

We write ISP(n, k, m, U, b, ¢c,z) for the integer selection problem
associated with

m=[my,...,m], W=[A4,,..., 4], A, = [aj],
b=[by,....0], b =1[b},....0,], c=I[cy,....cnl,

22)

where m,, aj;, bi and c; are integers appearing in (2.1). By means of these
symbols the ISP is rewritten as the problem of finding an integer r and a vector
xeZ" satisfying

c-x=z and A,x' < b.

In what follows, the symbol 2 stands for the class of all integer selection
problems. For ISP(n, k, m, A, b, ¢, z) we write & (ISP (n, k, m, A, b, ¢, z)), or
shortly & (ISP), for the set of all pairs of an integer r and an n-dimensional
vector x which provides a solution of the ISP.

We here give a simple example of the integer selection problem and its
solutions.

ExampLE 3. Let A,, A,, b,, b, and ¢ be defined by

1 -1 0 -1 1 0
A;=|-1 1 -1 |, A,=| 1 -1 -1,

1 -1 1 11 1
b, =b,=1[0,0,0], c=[1,1,0].

Then
y(ISP (37 2’ [3’ 3]a [Al: A2]9 [bla b2]’ c, Z))
={[u,z—u,|z—2ul]|lueZ,, u<z}.

PROPOSITION 1. An integer selection problem is an integer existence
problem.

Proor. Consider an ISP for the integers given in (2.1). One can define a
subspace D, of n-dimensional space Z" by

D, ={[xy,.... X d€Z Y @, S b, 1<i<m}, r=1,..,k,

and formulate a problem IEP(n, 1, U*-, D,, [f], g) for the function f(x) =0
and g(x) =c-x —z. Then we have

& (ISP) = {(r, x)|xe ¥ (IEP), xeD,} and



432 Masahide OHTOMO

& (IEP) = {x|(r, x)e & (ISP)}.

This shows that the ISP with respect to (2.1) is regarded as the
IEP(n, 1, Y*-, D,, [f], g). This proves the proposition.

DErFINITION 4. Let m, n, p and g be positive integers. Take the integers
(2.3) a;j, b, g4€{—1,0,1}, d;e{—1,0,1} and ¢,eZ

forl1<i<ml1=<j<n1<s<pand1<t<q. The indeterminate coefficient
problem, or shortly IDCP, is a problem of finding integers x; > 0 and y;;€ {0, 1}
satisfying

Z;=1 a;;yiiX; = b; and Z?:l Z;=1 gsiyijdjt <4,
for 1<i<m, 1<s<pand 15t=<q.

The IDCP for the integers given in (2.3) may be formulated in terms of
integer matrices in the following way: Find an n-dimensional vector x of non-
negative integers and an m x n 0-1 matrix Y = [y;;] satisfying

(AeY)x' < b and GYD £ L,

where
(24) A= [aij]’ b= [bly LR bm]’ G= [gsi]s D= [djt], L= [est]

and A°Y denotes the m x n matrix [a;y;].

In what follows, we write IDCP (n, m, p, g, A, b, G, D, L) for the IDCP with
respect to (2.4). We denote by # (G, D, L) the set of all 0-1 matrices which
satisfy the inequality GYD < L, and by & (IDCP(n,m,p, q, 4, b, G, D, L)), or
shortly & (IDCP), the set of all pairs x and Y which give solutions of the
IDCP. The symbol £, stands for the class of all indeterminate coefficient
problems.

The following is an example of the indeterminate coefficient problem and
its solutions.

ExampPLE 4. Consider the problem IDCP(3,4,5,8, A, b, G, D, L) for the
matrices and the vector

(1 1 0 0
1 1 -1
0 0 1 1
-1 -1 1
A= , b=1[0,0,0,0], G=|1 -1 0 01,
1 -1 0
0 1 -1 0
-1 1 0 J
L O 0 1 0
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1 -1 0 1 0 —1 0 0
D={|1 -1 0 -1 1 0 1 -1
1 -1 -1 0 —1 1 0 0

r4 —4 =2 2 2 2 2 0
3 -3 -1 0 0 0 1 -1
L=| 0 0 0 0 0 0 0 o0
2 1 0 1 0 1 0 0
L 3 0 0 0 0 0 1 0 -
Then
1 0 1 0 1 1
1 0 1 0 1 1
%(G, D, L) = )
0 o0 0 1 1 1
1 1 1 0 0 0
and

#(IDCP(3,4,5,8, 4,b,G, D, L))
={(x, Y)|x = [u, v, max {u, v}], u, veZ,, Ye¥(G, D, L)}.

PROPOSITION 2. An indeterminate coefficient problem is an integer existence
problem.

Proor. Consider an IDCP for the integers given in (2.3). One can
formulate the integer existence problem IEP (n', m’, W, f, g) for the integers n’
=n+ mn and m' = m + pq, the subspace W= Z" x {0, 1}™ of Z", the Z™-
valued function f=[fo1,..., fom f11>-->Sf1g5-->fp15---»fpq] and the function
g(w) = 0, where

Joiw) = Z?:l AijWin+jW; — b; for 1<si<m,
fst(w)= ?:1 Z;=1 gsiwin+jdjt_€st fOI' 1 §S§P and 1 étéq

Suppose that a pair of a vector [x;,..., x,] and an m x n matrix [y;;] is a
solution of the IDCP. Then the vector [Xi, ..., Xp Vi1s-ers Yinseevs> Ymisoevs> Ymnl
is a solution of the IEP. Conversely, for a solution [wy,..., W, ..] of the IEP,
the pair of the vector [wy,..., w,] and the matrix [y;;] with y; =w;,,; is a
solution of the IDCP. This shows that the IDCP with respect to (2.3) is
regarded as the IEP(n', m’, W, f, g). The proof is now complete.
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In order to state the relationship between the class of ISPs and the class of
IDCPs, we introduce the modified problem called IDCPs associated with
ISPs. To formulate the problem, we introduce some notation: We write I,
for the n x n identity matrix. We also write J, = [j,,] for the n x n matrix
such that

—1 fu=v forv=1,...,n,

1 fu=v+1forv=1,...,n—1,

1 fu=1and v=n,
0 otherwise.

For a positive integer n, Z(n) denote the vector [ — 1, [0],_,]. For k positive
integers m,,..., m;, and m = Zle m;, I'(m,,..., m;) denotes the (2m + 5) x (m
+ 4) matrix of the form

[ I'y(my,..., m) (01,4 ]
Li(my, ..., m) [0)mes |»
- Im+4
L B(m,) ... B(my) 0], .

where I;(m,,...,m)=[I;(m,...,m) ... [y(my,...,m)] and

I om; if i=j,

25) Fv('”l""’""‘)={[01,..,.,m i)

Given an integer n we write A(n) for the matrix [I, J,]. Furthermore, for any
pair of positive integers m and n, 4 (m, n) denotes the (2m + 5) x 2n matrix of
the form

(012, [0]2m,n
[—1sn  [Olsn
E(n) (01,
We now state the definition of the IDCP associated with an integer selection

problem.

DerFiniTION 5. Consider the problem ISP(n, k,m, U, b,c,z) for m
= [ml’ tees mk]’ A= [Ab cees Ak]9 b= [bl, ) bk]a A, = [aztj]a br = [brl’ ey b:n,-]
and ¢ =[c,,..., ¢,). The indeterminate coefficient problem associated with the
ISP is the problem IDCP(n’,m', p,q, A, b, G, D, L) in which
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(1) m=2f=1m,, n=n+l,m=m+4,p=2m+5,q=2n+2,
(2) A is the m’ x n' matrix whose i-th row a;, is given by
(@y,...,d —b] fi=Y;_im+ul<r<k 1Zus<m,
[cys...s ¢ O] fi=m+1,
a,=y[—c,..., —¢,, 0] fi=m+2,
L[0],, 1] ifi=m+3,
[[0]11., — 1] ifi=m+4,
B) b=[00]p 2z, —z 1, — 1],
@ G=TI(my,..,m),
(5 D=4d@n+1),
6) L=A(m,n+1).

The IDCP associated with an ISP is an indeterminate coefficient problem
in the sence that A can be taken as the m’ x n’ matrix of integers, b as the n’-
dimensional vector of integers, G as the p x m' matrix I'(m,,..., m,) of {
—1,0, 1}, D as the n’ x g matrix 4(n + 1) of { — 1, 0, 1} and Lcan be taken as
the p x q matrix A(m, n + 1) of integers.

The following lemma is particularly important for proving Lemmas 2 and
3.

LEMMA 1. Let m,,..., m, and n be positive integers, m = Z:=1 my, and let Y
be an (m + 4) x (n + 1) matrix. Then Ye% (I'(my,...,m), A(n+1), A(m, n
+ 1)) if and only if Y is of the form

[P s s

(2.6) Y= : ,
[pk]mk,n+l
[(Jan+1

where p,€{0,1}, 1 <h <k, and p, =1 for some r with 1 <r=<k.

Proor. Since Yis a (Yr_, m, +4) x (n + 1) matrix, we can write it as the
block matrix

@7 Y=1: |,
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where Y, is an m, x (n + 1) matrix for h=1,...,k and Y., isa 4 x(n+1)
matrix. In view of the definitions of I'(m,,..., m,) and 4(n + 1), we have

I'(my,...,m) Y4(n +1)

B JM1 Yl JM1 Yl‘]n+1 ]
Jkak JkakJn+1
—_ Yl - }’1‘]”4‘1
- Y;‘ - Yk'In+1
b T = Yer1Jne1
DY UR) A YN A D AN

Hence, Y belongs to % (I'(m,,..., my), A(n + 1), A(m, n + 1)) if and only if the
submatrices Yj,..., Y., satisfy the following inequalities;

(2.8) T Yo S [0] s 1 for h=1,..., k,
(2.9) T YT s 1 S [0]pms 1 for h=1,..., k,
(2.10) — Y, S [0]pn+1 for h=1,..., k,
(2.11) — Y Jui1 S [0Jmyme s for h=1,..., k,
(2.12) — Yerr S[— amess

(2.13) — Yer1Jues S [0desss

(2.14) Yhe1 Em) Y, < E(n + 1),

(2.15) Yhe1 Em) Yy Juiy £ [014ss-

Let y!; denote the (i, j)-component of the matrix ¥,. We first suppose that ¥,
= [Plmpn+1 for L Sh <k and Y,y = [1]4,+,, where p,e{0, 1} and p, = 1 for
some r with 1 =r < k. From the simple calculation for J,, Y,, we have

—Y'{;+,V',;.,,j=—p,,+p,,=0 for j=1,...,n+1, and
y?—l,j_y?j=ph_ph=0 for i=23,...,m, j=1,...,n+ 1.

This shows that J,, Y, = [0],, .+, for h=1,..., k. Similarly, we have Y, J,,,
= [0]m,n+1 for h=1,..., k + 1. Therefore, the inequalities (2.8), (2.9), (2.11),
(2.13) and (2.15) hold. Since any element of Y is 1 or 0, it follows that the
inequality (2.10) is valid. From Y,,, =[1],,+;, we immediately obtain the
inequality (2.12). Recalling that p, = 1 for some r, we have
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Y i <S—-p=—1

This implies that the inequality (2.14) is valid. Thus, Ye% (I'(m,,..., m),
An+ 1), A(m, n + 1)).

Conversely, we suppose that a matrix Y is an element of & (I"(m,, ..., m,),
An+ 1), A(m,n + 1)). Then, Y;,..., Y, satisfy the inequalities (2.8) through
(2.15). From (2.8), we see that

h h h h
VYmnj = V1j <. = Vmn—1,j = Ymnj

for 1<j<n+1and 1 <h<k These inequalities together imply that any
column of ¥, is equal to [0],, or [1];,,. On the other hand, by (2.11), we have

h h h h
Vit £Vin S - S Vi S Vit

fori=1,...,myand h=1,...,k+1, ie, any row of Y, is equal to [0],,, or
[1],+;. Therefore, it follows that either Y, = [0],, ,+; O [1],, .+, for h
=1,..., k. Moreover, the inequality (2.14) implies that at least one element in
{yi1,.... Y1}, say i, is equal to 1. Thus, we have Y, = [1],, .+, for such an
r. Finally, Y%, =[1]4,+1, since Y., satisfies the inequality (2.12). This
completes the proof of Lemma 1.

LEMMA 2. Let a pair of an integer r and a vector x be a solution of
ISP(n, k,m, W, b, ¢, z), where m, U, b and c are given by (2.2). Put w =[x, 1]
and let the matrix Y be given by (2.6) in which p,=1and p;=0 for 1 i<k

with i #r. Then the pair of w and Y gives a solution of the IDCP associated
with the ISP.

Proor. Let the IDCP associated with the ISP be specified by IDCP
m+1,m+4,2m+52n+2,4,b, I'(my,...,m), 4(n + 1), A(m, n + 1)), where
the matrix A4 is given in Definition 5 and m = Z:zl m,. Let a;, and y;, be the
i-th row of A and Y, respectively. Then it follows from Lemma 1 that
Ye¥ (I'(my,...,m), 4(n + 1), A(m,n + 1)). Moreover in view of the definition
of Y, we have

(@ °yi)w=0 for i<sors+m+1<i<m, and
(ai*oyi*)-w=ai*-w=a§_s,*~x—b§_s§0 for s+1<Zi<s+m,,

where s = ;;11 my, and aj, is the j-th row of 4,. On the other hand, fori = m
+ 1, the equations ¢-x = z and w = [x, 1] imply the four inequalities below :

(am+1,*°ym+1,*)‘w =c-x=z,

@ns2,5°Pmr2,4)W=—CX= —2,
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(am+3,*oym+3,*)'w é 13
(am+4,* oym+4,*)' W é - L

Since b = [[0],,, z, — 2, 1, — 1], it follows that (A° Y)w' < &’. Thus, the proof
of Lemma 2 is completed.

LeMMA 3. Let m, A, b and ¢ be given by (2.2), and let IDCP(n + 1,m + 4,
2m+52n+2, A b, I'(my,..,m), An+1), A(mn+1)) be the IDCP
associated with ISP(n, k,m, W, b,¢,z). If a pair of w=[wy,..., W,+,] and a
matrix Y is a solution of the IDCP, then there is an integer r such that 1 <r < k,
r is determined by Y, and a pair of r and x = [wy, ..., w,] gives a solution of the
ISP.

Proor. Since Ye#¥(I'(my,...,m), A(n+1), A(m,n+1)), Lemma 1
implies that there exists an integer r such that Yis of the form (2.6) in which p,
=1 Let s=Y,_1m, Since (4°Y)w' <¥, we get

(216) Og(as+j,*°ys+j,*)'w=as+j,*'w=a"

r
jx X — bjwn+1’

for 1 <j<m,, where a;,, @}, and y;, denote the j-th row of 4, 4, and Y,

respectively. Comparing the (m + 1)-th and (m + 2)-th components of the both
sides of (A° Y)w' < b, we have

2.17) 22 (s 1.9 mr1,4) W = Gi1q W =% and
(2.18) 22 (@ 2y Fmr20) W = g W= — X

Similarly, taking the (m + 3)-th and (m + 4)-th components of the both sides of
(A° Y)x' £ b into account, we have

(2.19) Warp = L.
Hence, combining (2.16) through (2.19), we have
Ax'<b, and c-x=z.
This completes the proof of Lemma 3.
Combining the above-mentioned results we obtain the first main result.

THEOREM 1. Any integer selection problem is equivalent to some
indeterminate coefficient problem.

Proor. For each problem P in the class 25 we assign @(P) in the class
2,p which is associated with the problem P. Then ¢ defines a mapping from
Ps into ;. In view of Definition 5, the mapping ¢ is well-defined. It then
follows from Lemmas 2 and 3 that both P<¢(P) and ¢(P)<P are



Reduction of some integer programming problems 439

valid. This completes the proof of Theorem 1.

Let (r, x) be a solution of an ISP. By Lemma 2, we get a solution (w, Y)
of the IDCP associated with the ISP. Lemma 3 shows that the solution (r, x)
can be constructed from (w, Y). This implies that any solution of an ISP is
obtained through a solution of the associated IDCP. On the other hand, for
any solution (x, Y) of an IDCP, the matrix Y is given by (2.6) (and so Y is of
the form (2.7)) and there exist ry,..., ryin {1,..., k} such that p, = 1,i=1,...,s.
Hence the solution (x, Y) is constructed from solutions (r,, x), ..., (r,, x) of the
ISP associated with the IDCP. Hence, any solution of an IDCP which is
associated with an ISP is constructed from solutions of the ISP. This is
nothing but the first assertion of Theorem A stated in Section 1.

In order to show the converse of Theorem 1, we formulate a problem ISP
associated with an IDCP. The following notation is used to state the problem.

For a positive integer m, we denote by B, the set of all sequences of
integers IT = (iy,..., i,) where 1 <i; <--- <i, <m. The sumbol |*B,| means
the number of elements of B,,, | 77| is the length of the sequence 71. The length
of the sequence which has no elements is defined to be 0. Two sequences I7,
=(iy,..., ip) and IT, = (jy, ..., jm-p,) of B, are said to be complemented if
{iys.oes i} U{j1s-sJm-p} = {1,..., m} holds. The complement of IT is denoted
by IT*.

For k x m matrix A and ITe*B,,, II1(A) denotes that

[0] if |I7) =0,
[a*il...a*,—p] ifH-_—(il,...,ip), 1 §p§m,

1I(A) = {

where a,; is the i-th column of A.

For three positive integers j, m and n, we write @,,, for the sequence
(G,n+j,...,n(m—1) + j) with length m. For T =(I1,,..., I1,)e(B,)", we
denote by IT* and || the sequence (IT%,..., IT¥) and ) , max{|IT], 1},
respectively. The symbols &(T) and ¥Y(I) denote |T| x mn matrices of the

forms
?,(3)
: } and

)

7,3

9

Tn(i)

respectively. Here T = (ITy, ..., I1,), and ®;(I) and ¥;(I) are defined to be
[0],., if |1I;| = O, otherwise they are defined as follows:

18 jun(P{)) = J 15
1T} (0 jun(@4(D)) = [O) pm— gy if [1T] <m,
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63n(P4(T)) = [0 1, men - 1)>

116 (D) = 1) 5

1T} (0 n(¥§(D) = [0) gyym— 1y 1 LT < m,
8 7n(¥(D) = [0], gy, men - 1)-

In particular n =1 and T = (II), we write @,(IT) and ¥,(IT) for the matrices
?(3) = [D,(F)] and ¥(T) = [¥,(T)], respectively.
The following two propositions can be checked easily.

ProPOSITION 3. For any T =(II,,..., IT)e(B,)" and j=1,...,n,
Ojmn(Pj(T) = ®,(IT) and O, (¥;(T)) = ¥,(II)).
PROPOSITION 4. Let ITeB,, and x be m-dimensional vector. Then
D,(IN)x' = II(D,(I)(I1(x)) and

¥, (Ix' = (¥, (IN)IT(x))".

DEerFiNITION 6. Consider the problem IDCP (n, m, p, q, A, b, G, D, L), where
A=[a;], G=[g94), D=1[d;] and L=[¢,] are given in (2.4). The integer
selection problem ISP associated with IDCP is ISP (2mn, k(m, n), m, 2, b, [0],,n
0) for k(mn)=|B,I", m=[mg,...,mq, 1 U=[Ag,..., Ayp) P
= [bg,,..., by, ] Here mg, =m+pq+3|F,| + 2|T¥|, Ay, is the mg,
x 2mn matrix of the form

A’ [O]m,mn
gD - gD
(0] pg,mn : :
gpiD' - gpmD'
D(Ty) )
P (0] + 1231, mn
Y(TF)
[0]2|z,.| + ||, mn g’(zh)
L - ¥

A’ is the m x mn matrix whose i-th row is given by
[[O]ni—m iy .o Qipy [O]mn—ni]’
bIh = [b, el*’ ooy ep*’ [OJI%I‘*leil’ [l]lzhl’ ["" 1]|Ih|J’ Es*, §= 1, Y p, are the S-
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th rows of L, and {Z,,..., Tyemm) = (B

The ISP associated with an IDCP is an integer selection problem in the
sense that n can be taken as the integer 2mn, k as the integer k(m, n), 4, as the
mq_ X 2mn matrix A, b, as the mg -dimensional vector by, ¢ as the 2mn-
dimensional zero vector, m as the vector [mg,,..., mq, 1, U as the vector
[Ag,s ..., Ag,,ny)> b as the vector [bg,,..., by, ] and z can be taken as O.

The following lemma is important for proving Lemmas 5 and 6.

LEMMA 4. Let x and y be an m-dimensional vector of non-negative integers
and an m-dimensional 0—1 vector, respectively. Then there exists a non-negative
integer w such that x = wy, if and only if there exists a sequence II of B,
satisfying

®,(INx' < (I([0],)), ¥,(T*)x" < (IT*([0],)),
= Y,(y' = (II([—1]w), ¥.(T*)y' = (IT*([0].)-

Proor. We first suppose that x = wy holds for some non-negative integer
w. Define a sequence I7 belonging to B, by II(y)= II([1],) and IT*(y)
= IT*([0],). Then II(x)=wll(y) and IT*(x) = II*(y) = IT*([0],). Let |II|
= k. If k=0 then x = y = [0],,, and hence the inequalities listed in (2.20) are
valid. We next assume that k > 0. It follows from Propositions 3 and 4 and
the definition of @ that

@, (INx' = H(®(IN)(H(x)) = I1(© 1, (P, (M) (x))
= wJ JI(y) = ([0]y)'.

Similarly, we have Y (Il)y'=([11), ¥P.{[T*)x'=([0],-,) and ¥,(IT*)y
= ([0],,—4)- These four equalities together imply that the inequalities listed in
(2.20) are valid.

Conversely, we suppose that the inequalities stated in (2.20) hold for some
ITePB,, with length k. In the case that k=0, it is clear that x=y
= [0],.. Hence, x = wy for any non-negative integer w. In the case of k = m,
we obtain @ (I)x' = J,x' <[0],, and — P,(IN)y' = — I,y' <[ —1],,. These
two inequalities imply that y = [1],, and all components of x are equal to some
constant integer, say w. So we can take the integer w in this case. Finally, we
assume that 0 <k <m and IT =(iy,..., i) Then we have J (II(x))} <[0];
from the inequality in (2.20). This shows that x; =w, p=1,..., k, for some
integer w, where x; is the i,-th component of x. Also, we see that IT*(x)
< I1%([01,), IT*(y) < IT*([0],,) and — I(y) < II([ — 1],)). Therefore, we have

(2.20)

yio=1p=1,...,kand x;=y;=0 for j¢{iy,..., ir}.
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Hence, x = wy holds for the integer w = x;,. This proves the lemma.

LEMMA 5. Suppose that a pair of w = [w;,..., w,] and a matrix Y = [y;;]
gives a solution of IDCP(n,m,p,q, A, b,G,D,L). Then there is an integer r
such that 1 £r < k(m, n), r is determined by w and Y, and the pair of r and x
= [u, v] gives a solution of the ISP associated with the IDCP, where u
= [xl*an-a xm*]’ V= [yl*a--~5ym*]a Xix = [leilw--a wnyin] and Yix =
[itseoos Yinds i=1,..., m.

Proor. It follows from the definitions of the vectors u and v that 6;,,(u)

= W;0;,,(v), j=1,..., n. Therefore, by Lemma 4, there exist sequences II;, j
=1,..., n, belonging to B,, such that

(2.21) D, (I1))(O jmn(w)) < (IT([0]))'s
222 (1Y) jma(w)) < (ITF([0].)),
(2.23) ¥, (TF)( jmn()) = (ITF([0]5))'s
(2.24) — Y1) (O jma(v))' = (T([ — 11W)"-

Since {I,,..., Tymm} = (Po)" there exists r such that I, =(I1,,..., IT,).
Hence, it is sufficient to show that

(2.25) Agx' < b .

In view of the definitions of Ay and b, , we can decompose the inequality (2.25)
into the following seven inequalities;

(2.26) a,-x;<b, i=1,....,m,

2.27) il Vi Sl s=1,...,pt=1..,q,
(2.28) (T < [0]ix,,

(2.29) P(T)u' < [Ojay,

(2.30) YTV < [0]jan,

(231) (I = [0]ja,

(2.32) —YE W <[ iz,

where a;,, b;, g,;, d,; and ¢;; are the i-th row of A, the i-th component of b, the
(i, j)-component of G, the j-th column of D and the (i, j)-component of L,
respectively. It follows from Proposition 3 and the definitions of @; and ¥;
that

¢)(zr)u! = @jmn(¢j(zr))(@jmn(u))t = d51(17j)(@jmn(u))t and
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V(T = 0 jun(PHTONO jrn(W))' = ¥, (ITF)(O jpun(®))'

for j=1,...,n. Therefore, we obtain the inequalities (2.28) and (2.29) from
(2.21) and (2.22). Similarly, we have (2.30) and (2.32) from (2.23) and
(2.24). Since v is a 0-1 vecotr, the inequality (2.31) is valid. Finally, recalling
the assumption that the pair of x and Yis a solution of the IDCP, we obtain
(2.26) and (2.27). Thus, we conclude that (2.25) is valid. This completes the
proof of Lemma 5.

LemMmaA 6. Suppose that a pair of an integer r and a 2mn-dimensional vector
x is a solution of ISP(2mn, k(m,n), m, W, b, ¢, z) associated with the problem
IDCP(n,m,p,q, A, b,G,D,L). Put x=1_[u,v], u =[x, ..., Xpu s V= [P14--->»
Ymsl» Where x;, and y,,, i=1,..., m, are the n-dimensional vectors. Then

(@) There exists a non-negative integer w; satisfying
@jmn(u) = Wj@jmn(v)a J = 1, .oy I

(b) A pair of w = [wy, ..., w,] and the m x n matrix Y whose i-th rows, i
=1,..., m, are given by y,,, gives a solution of the IDCP.

Proor. By the hypothesis, the inequality (2.25) is valid. Hence, the
inequalities (2.26) through (2.32) hold. Using an argument similar to the proof
of Lemma 5, we have (2.21) through (2.24) for each component II; of I,. This
shows that ©;,,(w) and 0,,,(v) satisfy the hypotheses of Lemma 4. Therefore,
we can determine non-negative integers w;, ..., w, such that @;,,(@) = w;0;,,(v),
j=1,...,n. Thus, assertion (a) is verified.

We now show the second assertion (b). Let w=[w,,..., w,] be a vector
determined by (a). Since x;; = w;y;; for such w;, we have a;, - x;, = (a;, °yi,) W,
i=1,...,m, where a;, is the i-th row of A. Therefore, we have (4° Y)w'
< #. The left and right hand sides of (2.27) are the (s, t)-component of GYD
and L, respectively. Hence we have GYD < L, and the lemma is proved.

Combining Lemmas 5 and 6, and using the same argument as in the proof
of Theorem 1, we obtain the second main theorem:

THEOREM 2. Any indeterminate coefficient problem is equivalent to some
integer selection problem.

Let (r, x) be a solution of an ISP which is associated with an IDCP. Since
the sequence I, stated in the proof of Lemma S is uniquely determined by w
and Y, it is easily to show that the solution of the ISP constructed from (w, Y) is
equal to (r, x). Also, we see easily that any solution (w, Y) of the IDCP can be
constructed from (r, x) which is obtained by the application of Lemma 6 for
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(w, Y). Hence, any solution of an IDCP is obtained through a solution of the
associated ISP and vice versa. This is the second assertion of Theorem A
stated in Section 1.

3. Indeterminate Coeflicient Problem and Three-valued Coefficient Problem

In this section, we consider the relationship between indeterminate
coefficient problems and linear 0-1 problems. We begin by giving a precise
statement of the linear 0—1 problems. In the Introduction we called them 3-
valued problems. However, in order to emphasize that the coefficients take
their values in {— 1,0, 1}, we rephrase the 3-valued problems as follws:

DErFINITION 7. Let
3.1 a;e{—1,0,1}, b, i=1,...,m j=1,...,n.

The three-valued coefficient problem, or shortly TCP, is a problem of finding
Xy,..., X, belonging to {0, 1} and satisfying
(3.2) 2;;1 a;x;<b, i=1,...,m.

A three-valued coefficient problem is the same as a 3-valued problem
introduced in the Introduction. It is sometimes more convenient to formulate
the problem in a matrix form. Let A =[aq;] and b =[by,..., b,] for the
integers a;; and b; given in (3.1). Then the TCP is rewritten as the problem of
finding a 0-1 vector x satisfying Ax' < §'. In what follows, we denote this
problem by TCP(n, m, A, b).

A TCP is clearly regarded as an IEP. In what follows, the symbol 2,
stands for the class of all three-valued coefficient problems and
& (TCP (n, m, A, b)), or shortly & (TCP), for the set of all solutions of the TCP.

We now formulate three types of IDCPs called a three-valued IDCP, an
IDCP with boundedness conditions and an IDCP with 0-1 variables.

DEFINITION 8. A three-valued indeterminate coefficient problem is an
indeterminate coefficient problem for the integers given by (2.3) in which a;;,
i=1,...,m j=1,...,n, are supposed to belong to {— 1,0, 1}.

Let uy,..., u, be non-negative integers. Then an indeterminate coefficient
problem with boundedness conditions for u,, ..., u, is an indeterminate coefficient
problem with the additional conditions x; <u; j=1,...,n The integers
uy,..., u, are called the upper bounds of the IDCP.

An indeterminate coefficient problem with boundedness conditions for
Uy,..., U, such that u; =1, j=1,...,n, is called an indeterminate coefficient
problem with 0-1 variables.
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Since an IDCP is regarded as an IEP, any problem defined above is also
regarded as an IEP. In what follows, we denote by 2,, 2, and 2, the class
of all three-valued indeterminate coefficient problems, the class of all
indeterminate coefficient problems with boundedness conditions and the class of
all indeterminate coefficient problems with 0—1 variables, respectively.

Let u,,...,u, be the upper bounds of an IDCP with boundedness
conditions. Then we can determine the minimum integer u satisfying

(3.3) u; <24 j=1,...,n

We write u(P) for the integer u, where P stands for the IDCP. For an m x n
integer matrix A = [a;;], we denote max{max{|a;||1 <i<m,1 <j<n}, 1} by
r(A). The symbol J¥, denotes the nr x nr matrix defined by

J, ifj=kj=1,..,n,

Osm{(Bural T2 = { [0, ifj#k1<jk<n

We now state the definitions of a three-valued IDCP associated with an IDCP

and an IDCP with 0-1 variables that is associated with an IDCP.

DErFINITION 9. Let A = [a;;]. The three-valued IDCP associated with the
problem IDCP(n,m,p,q, A, b,G,D, L) is IDCP(n',m',p’,q', A", b, G, D', L) for

1) r=r(A),n=nr,mM=m+nr,p=p+m+nr, q =2nr+ gr,
(2) A’ is the m' x n’ matrix of the form

E, E, - E,
"5
() b =1[b, [0],],

(4) G’ is the p’ x m" matrix of the form
[G [O]p,,,,]
S—
(5) D’ is the n’ x ¢’ matrix of the form
or J3, —IL.,
(6) L is the p’ x ¢’ matrix of the form
Ly O01pm  [mlpm
(MImer  [Omwr  [OJmmr ,
(Margr [Odwrwr  [— 1armr

where E, = [ef;] is the m x n matrix whose components are defined by
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- 1 lf aij<0 and kélaijla

D¥ is the nr x qr matrix defined by

(Q(n(j— 1)+1)n1 ((@(q(k— 1)+1)q1 (Df))‘))'
_ D if j=kj=1..,4q,
~ [0, if j#k 1) k=g,
and L} is the p x gr matrix of the form [L... L].

DerFmnITION 10.  Consider two problems P = IDCP(n,m,p, q, A, b, G, D, L)

1" "

with boundedness conditions for u,,...,u, and Q = IDCP(n", m", p",q", A", b",
G",D",L"). We say that Q is an IDCP with 0—1 variables whch is associated
with P if

(1) u=u(P), n"=un+nm =m+np"'=p+m+n,
q" = qu+ q + 2nu + 2n,
(2) A" is the m” x n” matrix of the form

24 214 - 244
201, 2, - 21, |

(3) b” = [b’ ul’ u29 ceey un]’
(4) G” is the p” x m” matrix of the form

G [0],.
Im+n ’
(5) D" is the n” x q” matrix of the form
[D:+1 J:‘,u+l - Inu+n:l7
(6) L' is the p” x q” matrix of the form
L:+ 1 [O]p,nu +n [m]p,nu +n
[n]m,qu+q [0]m,nu+n [O]m,nu+n ’
[n]n,qu+q [O]n,nu+n [_ 1]n,nu+n
where Df,,, J¥,., and L}, are the matrices stated as in Definition 9.

The following lemma shows a relationship between solutions of an IDCP
and its associated three-valued IDCP.
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LemMa 7. Consider the problem P = IDCP(n,m,p,q, A, b, G, D, L) and its
associated  three-valued  problem Py = IDCP(nr,m + nr,p + m + nr, 2nr
+qr,A,¥,G,D',L). Then

(@) If a pair of a vector x and a matrix Y is a solution of P, then a pair of
the nr-dimensional vector z =[x,...,x] and the (m+ nr) x nr matrix Y’

W W
(b) Suppose that a pair of a vector T =[2y,,..., %,,] and a matrix Y’

Y. Y
=[ ] gives a solution of P,, where W=[1],,,.

Y, Y . ) )
= " | is a solution of P,, where z,, is an n-dimensional vector, Y, is an
W, - W,
m X n matrix and W, is an nr x n matrix for k=1,...,r. Then a pair of z,,

and Y, gives a solution of P.

Proor. First, we show the assertion (a). In view of the definition of E,,
we see that A=Y, _, E,. Therefore we get

([Ey -+ EJo[Y - YD)z = (U= E)o Y)x' = (4°Y)x".

We have observe that the first m components of (4'°Y’)z' form the vector
(A°Y)x'. Let ¢}, and t;, be the i-th rows of J ¥, and J,, respectively. Then we
have

O it —1)+j.9) = Lises k=1,...r, j=1,..,n,
(3.4) J (k—1)+j,% J%
@;n(t:(k—l)‘f'j,*) = [O]"(r_l), k = 1, cees 1y J= 1, PP (N

where 6, is an element of B,,. The expressions listed in (3.4) together imply
that J ¥ z* = [0];,. Therefore, we obtain (4’ Y")z' < (#). On the other hand,
in view of the definitions of G, Y’ and D', we have

GYD
@(q(k— 1)+ 1)q1 (Gl Y’D’) = YD |,
WD
GY - GY
@(qr+n(k—1)+ 1)n1 @YD)=| Y-Y and
wW—w
- GY
9(qr+nr+n(k—1)+ 1)n1 (G' Y'DI) = -Y
e 4

fork=1,...,r. Since G and D are the matrices of the integers — 1,0, 1 and Y
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is a 0-1 matrix, we see easily the following three inequalities:
GY = [, m[1]mn = [m]p,n;

(-5 YD = [1nl1]nq =[]m,q>
WD = 1 nll)sg = [1]arq-

Combining the above inequalities and Ye% (G, D, L), we conclude that
Y'e#% (G,D’,L). Thus, the first assertion (a) is established.

Next, we prove the assertion (b). Since z is an nr-dimensional vector, one
can decompose it as [z;,,..., Z4], Where z;,, k=1,..., r, are n-dimensional

. Y, ---Y,

vectors. We also write | .1 "
W, - W,
and W, k=1,...,r, are m x n and nr x n 0—1 matrices, respectively. Since

Y'e% (G, D', L), we have

] for the (m + nr) x nr matrix Y, where Y,

GY,D L -
Out-1+ 10t GYD)=| YD | | [nlng |,
W,D [M,q

GY, — GY,, - [0,

IIA

Our+nk-1)+ 1)n1(Gl Y'D)= Yo— Yeut (0], and
VVk - I/Vk+1 L [O]nr,n

- GYk [m]p,n
@(qr+nr+n(k— 1)+ 1)n1 (Gl Y,D’) = - Yk é [O]m,n H
- VVk [_ 1]nr,n

for k=1,...,r, where Y,,;, =Y, and W,,, = W,. The above inequalities
imply that €% (G,D,L), Y, =Y, and W, =[1],.,for k=1,...,r. Hence we
infer that Y=Y, e% (G, D, L). On the other hand, it follows from (A4’ Y')z'
< (¥y that J},z* <[0];,. By (3.4), we have
k-1 +jx° 2= Ojnltrg—1)+j5) Ojm(2)
=ty [9,'11(31*), ooy @ju(zr*)] = 9;11(zj—1,*) - @jll(zj*) <0

for 1<j<nand 1 <k<r, where z,, =z,,. Therefore, it follows that z,,
=214 k=1,...,7r. Put x=7g,,, then

B2 Y, (B X)g = Tae, (Beo V) = (The, EoY)x' = (40 V)’

holds. Thus, the lemma is proved.
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We also give the similar assertion for an IDCP with boundedness
conditions and its associated IDCP with 0-1 variables.

LemMa 8. Consider two problems P, = IDCP(n,m,p,q, A, b, G, D, L) with
boundedness conditions in which upper bounds are u,,...,u, and P, = IDCP
(mu+nm+np+m+nqu+q+ 2nu+2n, A", ", G", D", L") with 0-1 varia-
bles. Assume that P, is associated with P,. Then we have the following.

(@) If a pair of a vector x and a matrix Y gives a solution of P,, then a pair
of (nu + n)-dimensional vector 7 = [Zoy, Z14>---» Zux] and the (m + n) x (nu + n)
i ¥ = I::V );V] gives a solution of P,, where W=/[1],, and z,,
Zigs--> Zuy are n-dimensional 0-1 vectors defined through the binomial
decomposition Y, _ 2z, = x.

(b) Assume that a pair of a vector T = [Zoy> Z1 4 .--» Zuy] and a matrix Y”
[%Y -y,
- [Wo W W,
an m x n 0-1 matrix and W, is an n x n 0-1 matrix for k =0, 1,...,u. Then a
pair of x =Y, _, 2%, and Y, is a solution of P,.

] is a solution of P, where 2, is an n-dimensional vector, Y, is

Proor. First, we show that assertion (a) holds. Let ai,, a;,, yi, and y;,

be the i-th row of A”, A, Y” and Y, respectively. Then the i-th component of
(A"~ Y")z' is given by
(@ oyiy) 2= ZZ=0 (O i+ 1)n1 @iy ° Vix)) " ik
= Z;=o 2k(ai* Oyi*)'zk* = (ai* Dyi*)'x-
This implies that the first m components of (4”°Y")z’ form the vector
(Ao Y)x'. Since Oy s 1yn1(@p+ ;) is equal to the product of 2* and the j-th row
of I,, we have
(a;:n+j,*oy;:1+j,*)'z = Z:=0 2 @jll(zk*) =0;,(x)=Su;, j=1,...,n

Therefore, we have (4" Y")z' < (b"). In view of the definitions of G”, Y” and
D", we have

GYD
O+ 1) (G"Y' D)= | YD |,
WD
GY - GY
O g+ 1) +nk+ 1yn1 (G"Y"D") = Y-Y and

w—-w



450 Masahide OHTOMO

- GY

@(q(u+1)+n(u+ 1)+nk+1)n1(G”Y”D") = -Y
-w

for k=0,1,...,u. Hence, we see that Y"e%(G",D",L’), because
Ye% (G, D, L), W=[1],, and three inequalities in (3.5) are valid. This proves
the first assertion (a) of the lemma.

Next, we show the second assertion (b). It follows from Y”e% (G", D", L")

that

GY,D L
Oq+11(G"Y'D)=| YD = | [#lmg | >
WD [(7]nq
GY, —GY, 4, ~ [01,.,
O gu+1)+n+1yn1 ('Y "D") = Y, = Yivr | S| [Omn and
Wi — Wit - [0]5
- GY, rmlpn
@(q(u+1)+n(u+ 1)+nk+ l)nl(G" Y"D") = - Y =| [Olmn
- Wi LL— 1],

for k=0,1,...,u, where Y,,, =Y, and W,,, = W,. The above inequalities
together imply that

Ye¥%(G,D, L), Y, =Yy, W,=[1],, for 0=k =< u.
Since x =Y, _, 2"z, and Y=Y, it follows that Ye% (G, D, L) and
bi 2 (@2 ¥i) 2= Ys— 0 Opmes 1yn1 (@1 ° Vi) T
=Y 02y Gy =a,-x, i=1..,m,

where b; is the i-th component of b, 4, a;, and y;, are the i-th row of 4", 4
and Y”, respectively. In the case of i > m, we have

u; 2 (a:;.+j,* °y:;.+j,*)'z = Z:=o (@(nk+ l)nl(a;:l+j,* °[1],) Zky
= Z:=o 2“9,'11(7-1:*) = @jll(x), i=1..,n

Thus, the pair of x and Yis a solution of P,. This shows that assertion (b) is
valid. This completes the proof of Lemma 8.

We now introduce a TCP associated with a three-valued IDCP with 0-1
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variables.

DermniTioN 11, Let IDCP(n,m,p,q, A, b,G,D,L) be a three-valued
problem with 0-1 variables and let 4 =[a;], G =[g4], D=1[d;] and L
=[¢4,] The three-valued coefficient problem associated with the IDCP is
TCP(n', m', A, ¥), where n' = 2mn, m' = m + pq + mn + 2|B,,,, ,|, A" is an m’
x n’ matrix whose i-th rows a;,, i=1,..., m + pq + mn, are given by

[[O]m‘—m Ai1s .5 Aips [0]2mn-m'] fOI‘ 1 é i § m,
[[0]mm gsldlr’ seey gsldnr’ seey gsmdlr’ s gsmdnr]

a;, = fori=m+qg(s—1)+rwith1<s<p, 1<r<yq,

[[O]r—la 1, [O:Imn—ls - 13 [0]mn—r]

fori=m+pqg+r with 1 <r < mn,

and for i=m+ pg + mn + r with 1 <r < 2|B,,. 2], the i-th rows are defined
by

[1, - 1, 15 1] lf r é I‘BZmn,2l’

I} (a;,) = [0]2mn-4 and I(a;,) = { [—LL1L,1] if r> By,

and finally,

b= [ba ell, EERX] elq, seey epl’ ser epq’ [O]mn’ [2]2|$)z,,.,,,z|]’

with B2 = {T = (i, j, mn + i, mn + j)€ Pyp,li = j mod n} and {II,|r =1,...,
|‘Bzmn,2|} = ‘BZmn,Z'

A TCP associated with a three-valued IDCP with 0-1 variables is clearly a
TCP, and so it is regarded as an IEP. The following Lemma shows that a
solution of a three-valued IDCP with 0-1 variables is obtained from the
associated TCP and vice versa.

LEMMA 9. Let IDCP(n,m, p, q, A, b, G, D, L) be a three-valued problem with
0-1 wvariables and let TCP(n',m', A", b') be the TCP associated with the
IDCP. Then we have:

(@) If a pair of x =[x,,..., x,] and Y =[y;;] is a solution of the IDCP,
then z=1[Zi4 ..., Tng> Vigrooor Ymaed With Zy =[X1 Vi1, ..., X, Vi) and  y;,
= [Yi1s...» Yim)s i =1,..., m, gives a solution of the TCP.

B If 2=1[Z14 > Img>Vix>--+» Yma] i a solution of the TCP, where z,,
= [Zi1s...s Zin) and Yy = [Vi1,...» Yind» i=1,...,m, then there exist integers
X1,...5 X, €{0, 1} satisfying

z;=Xyipi=1...,mand j=1,...,n,
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and a pair of x =[X,..., x,] and Y = [y;;] is a solution of the IDCP.

Proor. To prove the first assertion (a), we write a;, and aj, for the i-th
row of A and A’, respectively. Let G = [g,] and D = [d;]. It follows from
the definition of A’ that

@y 2=y 2y = @iy [X1 V15005 XnVinl = @iy °Yiy) - X,

for i=1,...,m. Hence the i-th component of A'z' is equal to the i-th
component of (AeY)x' for i=1,..., m. We also have the relations

a;',+q(s_1)+t’*‘z = :’;1 Z;=1 gsiyijdjt’ S = 1, ceny p, t= 1, ceey q.
This is nothing but the (s, t)-component of the matrix GYD. Finally, we have
i pg+ix 850 for i=1,...,mn, and
a:n+pq+mn+i,*'z§2 for i= 1’---’ 2|“B2mn,2|-

Thus, we obtain A'z' < (§). This completes the proof of assertion (a).
Next, we show the second assertion (b). The hypothesis of the lemma
implies A'z" < (b')'. Therefore, we immediately get

(3.6) Q% = b; for 1<i<m
and Ye% (G, D, L), where b; is the i-th component of b. We also have
(3.7) Zig SVig» i=1,...,m and
(3.8) Zi— i+ y+mi<2 Lk=1..,m j=1,..,n
Thus, it is sufficient to show that there exist x,..., x,€{0, 1} such that
3.9) Zi; = X;Yij for i=1,...,m.
In fact, once (3.9) is obtained, then we infer from (3.6) that
@iy °Yip) X = @y 24 = b;.
This shows that the pair of x and Yis a solution of the IDCP. Define x;, j

=1,...,n by

X = 0 ifZij=O,i=1,...,m,
T otherwise.

If x; = 0 for some j, then (3.9) holds for j and for all i with 1 <i <m. We now
suppose that x; = 1, and that z;; # x;y,; for some k. Since x; = 1, there must
exist i such that z; =1. From the inequalities in (3.7), we have
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O0szj<y;<land 1 <z;<y;< 1.

iy =

From this it follows that y;=1, i#k and z;—z;+ y;; + »;=3. This
contradicts the inequalities in (3.8). This means that (3.9) holds. This proves
the lemma.

THEOREM 3. Any indeterminate coefficient problem with boundedness
conditions is equivalent to some three-valued coefficient problem.

Proor. For each P in the class #,, we assign a problem ¢,(P) in the class
2, which is associated with the problem P. Then ¢, defines a mapping from
2, into P,,. In view of the definition 10, the mapping ¢, is well-
defined. Likewise, we can define two mappings ¢; from £,, into #; and ¢
from 2,nP,, into #;. Let ¢ be the composite mapping @;-¢5-¢,. Then ¢
is a mapping from £, into 2, and it follows from Lemmas 7, 8 and 9 that

gbm g01ng3 and 9’010.?3? ‘?T‘

Thus, Theorem 3 is established.

The transformations described in assertions (a) of Lemmas 7, 8 and 9 are
the inverse transformations given in assertions (b) of Lemmas 7, 8 and 9,
respectively. Thus, the above theorem proves the third assertion of Theorem A
stated in Section 1.

4. Conditions for the Existence of Solutions of TCP

In this section we investigate various conditions for the existence of
solutions of the three-valued coefficient problem for the integers

41 n>0,m>0,a;6{—1,0,1} and b; for 1 <i<mand 1<j<n.

Without loss of generality, we can assume that b; <0 for 1 <i<m. In
fact, if b, =0 for some h with 1 <h<m, we can formulate an equivalent
problem P’ for the integers ' = n + b, + 1, m" =m + b, + 1, a;; and b; given by

a;;

; f1<i<mand 1 <j<n,

—1 fi=hand n+1=<j<n+b,+1,

a;.:
! -1 fm+1<Zi<m+b,+1and j=i—m+n,
0 otherwise,
and
b= b; if 1<i<mandi#h,
1l =1 ifi=horm+1Zi<m+b,+ 1.
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Clearly, P’ is a TCP and equivalent to the original TCP.
Thus, we consider TCP(n,m, 4, b) in which A =[a;], b= [b;] for the
integers

(42) n>0,m>0, g;e{—1,0,1} and b;<0for 1<i<mand 1 <j=<n.

We write I and J for the sets {1,2,..., m} and {1,2,..., n}, respectively.
Given an n-dimensional 0-1 vector x, the symbol J(x) denotes the subset
{jeJ|x;j=1} of J.

DerFINITION 12. Let TCP (n, m, A, b) be formulated for (4.2). A subset J’
of J is called a weakly removable set for the TCP, if for each j in J' there exists i
in I such that

a;20 and Y, ,_, az > b, —a;.

ij =

DeriNiTION 13. Let TCP (n, m, A, b) be formulated for (4.2). A subset J'
of J is called a strongly removable set for the TCP, if for each j in J’ there exists
i in I such that

a;j=1and Y, ,_ , a;2b,.

ExaMPLE 5. Consider the problem TCP (3,2, 4, b) in which the matrix 4
and the vector b are given by

-1 -1 1
A=l: 0 1 _1] and b=[—-1, —1].

Then {2} and {2, 3} are the strongly removable sets for the TCP, and {1}, {2},
{1,3}, {2,3} and {1,2,3} are weakly removable sets for the TCP.

DerFINITION 14. A weakly (resp. strongly) removable set J' for a TCP is
said to be maximal if for any k in J — J' the set J'U{k} is not a weakly (resp.
strongly) removable set for the TCP.

In order to investigate removable sets for TCPs, we consider maximal
solutions of TCP.

DEFINITION 15. A solution x of TCP (n, m, A4, b) is said to be maximal, if
there are no solutions y such that J(y) = J(x)u{k} for k in J —J(x).

In what follows, we denote by &*(TCP (n, m, A, b)), or shortly #*(TCP),
the set of all maximal solutions of the TCP. The following example shows the
sets of & (TCP) and &*(TCP) of a TCP.

ExampLE 6. Consider the problem TCP (6, 4, 4, b) in which
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0 1 -1 1 -1 -1
-1 1 1 1 -1 -1
A= and b=[—-1, —1, —1, —1].
-1 1 -1 0 -1 0
1 -1 0 -1 0 —1
Then
& (TCP) = {[0,0,0,0,1,1], [0,0,0,1,1,1], [0,0,1,0,1, 1],
[1,0,0,1,1,1], [1,0,1,1,1,1], [1,1,0,0, 1,17,
[1,1,1,0,1,17}
and
F*(TCP)={[1,1,1,0,1,1], [1,0,1,1,1,1], [0,0, 1,0, 1, 17}.

LemMA 10. Let x be a maximal solution of TCP(n,m,A,b). Then the
subset J — J(x) of J is maximal as a strongly removable set for the TCP.

Proor. Let A =[a;] and b=[b,,...,b,]. We first assume that J
— J(x) is not a strongly removable set for the TCP. In view of Definition 13,
there exists an element h in J — J (x) such that ) e ij < b; for any iel with
a;, = 1. This implies that
4.3) Yjswma;+1<b;,  for iel with a;=1.

Let y be the n-dimensional 0-1 vector satisfying J(y) = J(x)u{h}. Then we
have

Zje](y) a;; = Zje.l(.:) a;; +1= bia for iel with Ay = 1.
Since xe #(TCP), we also have
Vet % S Vjer Wi S by, for iel with a, <0.

The above inequalities together imply that the vector y is a solution of the
TCP. This contradicts the fact that x is a maximal solution. We now assume
that J — J (x) is not maximal. Then there exists an element h in J (x) such that
(J—J(x))u{h} is a strongly removable set for the TCP. It follows from
Definition 14 that there exists i in I satisfying

ap=1and Y, sanun) % 2 bi-

We then have

Yiere 8 = Ljeser- 1m %5t G = Djes——swpo (h) G + 1> by
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This is a contradiction, since x is a solution of the TCP. Thus, J — J(x) is
maximal as a strongly removable set for the TCP. This proves the lemma.

LeMMA 11. Let x be a maximal solution of TCP(n,m, A,b). Then the
subset J — J(x) of J is maximal as a weakly removable set for the TCP.

ProofF. It follows from Definitions 12 and 13 that a strongly removable
set is a weakly removable set. Hence we see from Lemma 10 that J — J(x) is a
weakly removable set for the TCP. Accordingly, it is sufficient to show that J
— J(x) is maximal as a weakly removable set. Let A =[a;] and b
= [by, ..., b,], where a;; and b; are integers given in (4.2). Suppose then that
there exists an element h in J(x) such that (J —J(x))u{h} is a weakly
removable set for the TCP. Then there exists an element i in I satisfying

a; 2 0 and ZjEJ_W_J(x»U(h”a,.j > b; — a,

Hence, we have
Zje.l(x) ai; = Zje]—(.l—J(x))u oy Gij T Gin > b;.

This contradicts the fact that x is a solution of the TCP. Therefore, J — J (x)
is maximal as a weakly removable set for the TCP. This completes the proof
of the lemma.

The first assertion of Theorem B stated in Section 1 is obtained by
combining Lemmas 10 and 11. In addition, we obtain the following result.

THEOREM 4. If there exists a solution of TCP(n, m, A, b), then there must
exist a subset J' of J such that J' is maximal as a weakly removable set and, at
the same time, maximal as a strongly removable set for the TCP.

ExampLE 7. Take the same problem TCP (6,4, 4,58) as in Example
6. Then the strongly removable sets for the TCP are {2}, {3}, {4} and {1, 2, 4},
and the weakly removable sets are {2}, {3}, {4}, {1,3}, {1,2,4}, {1,3,6},
{2,4,5}, {1,3,4,6}, {2,3,4,5}, {3,4,5,6} and {1,2,3,4,5,6}. Therefore, {2},
{3}, {4} and {1,2,4} are maximal as a strongly removable set and {2}, {4},
{1,2,4}, {1,3,4,6}, {2,3,4,5}, {3,4,5,6} and {1,2,3,4,5,6} are maximal as a
weakly removable set. Hence, {2}, {4} and {1, 2, 4} are the maximal sets which
are both strongly and weakly removable sets. On the other hand, as seen in
Exampe 6, we have

{J = J@lxes*(TCP)} = ({2}, {4}, {1,2,4}}.

The second assertion of Theorem B gives a condition for checking whether
or not a given 0-1 vector is a solution of a TCP.
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THEOREM 5. Let TCP(n,m, A, b) be formulated for the integers given by
4.2) and let J_ = {jeJ|Y, a; <O0}. If the inequality

ZjeJ_ -y Ziel a;; > Ziel b;
holds for a subset J' of J, then J(x)NJ' # @ for any solution x of the TCP.

ProoF. Suppose that J(x)nJ' = @ for some solution x of the TCP. Since
x€F (TCP), ) i ya; < b; for each iel. Hence, we have

(44) Ljestey uier 91 S ey bi-
Since J(x)nJ' =@, it follows that
J@)NJ_o=J)=JxnJ- —Jx)nJ' =J@x)nJ_.
Therefore, we obtain
Vs Loier %ii Z Vjescerns Luier % = Djescones- -1y et s
2 Yer_ -5 Lier %ij > ey bi-

This contradicts the inequality (4.4). Thus, J(x)nJ' # @ is valid for any
solution x of the TCP. This completes the proof of Theorrem 5.

The next assertion is an immediate consequence of Theorem 5 in the case
of J'=0.

COROLLARY 1. Let TCP be formulated via (4.2). If the inequality

Yier. Dier %> Yier b
holds, then there are no solutions of the TCP.
Let J’' be a subset of J and p a positive integer. Put
D(4, V', p) = {ielle; 2 29;" (4, J') + g(4, J")},

where

e,-=

bi+p if p=|J,
bi+J' if p>|[J,

61 (4, 7)) = |{jeJ'lay=1}| and g%(4, J') = |{jeJ'|a; = O}|.
Then the following two propositions can be easily checked.
ProOPOSITION 5. D(A4, J', p;) @ D(4, J', p,) for p; = p,.

PROPOSITION 6. For any J, < J’ such that |J,| = p,
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Yjes, @S bi  for any ieD(4, J', p).

REMARK 2. Since b; < 0 for ie I, we have |J(x)| = max{|b;| |ieI} for any
solution x of TCP(n, m, A, b). Hence, Propositions 5 and 6 imply that if
ieD(A, J', max{|b;| |ieI}) then the i-th inequality of Ax’ < b’ is trivial and we
can neglect these rows under the conditions x; =0, jeJ — J".

By using Remark 2 and Theorem 5, we can obtain a simple condition to
test the existence of a solution x = [x;] such that x; =0 for jeJ’ and some
subset J' of J.

COROLLARY 2. Let TCP be formulated through (4.2), J' a subset of J and
let I'=D(A, J', max{|b;| |ieI}). If the inequality

Zje.l_ Qe a;; — Zjel_ —r Der a;; > Ziel—l’ b;
holds, then J(x)NJ' # @ for any solution x of the TCP.
The following result is easily obtained.
THEOREM 6. For any solution x of TCP(n, m, A, b),
jesey Duier Bii — Ljese) Loierr Wi S Dier -1 bi
holds, where I' = D(A, J (x), max{|b;| |ieI}).

It is clear that |J(x)| > max{|b;||liel} for any solution x of
TCP (n,m, A, b). Conversely, the following Proposition is valid for the case in
which |J'| < max{|b,]| |iel}.

PROPOSITION 7. For any subset J' of J with |J'| < max{|b;||i€l}, the
inequality

Dier Doier Bij = 2. jeJ’ Yier G > s —p by

holds, where I' = D(A, J', max{|b;| |ieI}).

Proor. Since |J'| < max{|b;||iel} and b; <0 for i in I,
|J'] + b; < 29" (4, J') + g?(4, J)

holds for any i in I —I'. Set g; (4, J')=|{jeJ’'|a;j= — 1}|. Then we have
|J'| =g (4, J) + g7(4, J') + ¢/ (4, J'). Hence,
Yier @ = =07 (A4, J)+ g (4, )
= —|J'|+ 29/ (4, )+ g?(4, ) > b;
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holds for each i in I — I'. Thus, we have

Zje]’ Yier % — Zje]’ Yier 4ij = ZjeJ’ Dier-1 a;; > Ziel—l’ b;,
and the proof is now complete.

ReMARK 3. If there exists a maximal solution x of TCP (n, m, A, b), then
the following two facts are derived from Theorems 4 and 6:

(@) J— J(x) is maximal as a weakly and strongly removable set,

(b) Zje](x) Ziel aij — Zje.l(x) Ziel’ a; = Ziel—l’ b;,

where I' = D (A4, J', max{|b;| |ieI}). It is not known yet whether the converse
is true. However it is easily seen that x is a solution of the TCP if (b) holds for
an 0-1 vector x with |J(x)| = max{|b;||iel}.
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