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1. Introduction

We shall be concerned with the oscillatory behavior of solutions of the

parabolic equation with oscillating coefficients

W
ut(x, t) - (a(t)Δu(x, ί) + Σ bi(t)Δu(x9 t - σ<))

i = l

+ c(x, ί, u(x9 t), u(x9 τ ί ( t ) ) 9 . . . 9 u ( x 9 τ m ( t ) ) ) = f ( x 9 ί), (x, t)eΩ = G x (0, bo),

where G is a bounded domain of R" with piecewise smooth boundary dG and
Δ is the Laplacian in R". We assume throughout this paper that:

(HO α(ί)_εC([0, oo); [0, oo)), Mf)eC([0L oo); Ri)(, = 1, 2,...,/c), /(x, t)e

C(fl; R1) and c(x, ί, ξ, ηl9...,ηJeC(Ω x R1 x Rm; R1);

(H2) c(x, ί, ξ9ηl9...9η^^0 for (x, ί)εί2, ξ > 0, ^>0 (i = 1, 2,...,m), and
c(x, ί, ί, ίh,...,>?J<0 for (x, ί)εfl, ξ < 0, ̂  < 0 (i - 1, 2,...,m);

(H3) σ , (i = 1, 2,...,/c) are nonnegative constants, τi(ί)eC([0, oo); R1) and

lim T;(ί) = oo (i = 1, 2,...,m).
ί-^oo

We consider two kinds of boundary conditions:

(BJ u = ψ on dG x (0, oo),

(B2) — = φ on dG x (0, oo),
dv

where ,̂ ^ are continuous functions on 5G x [0, oo) and v denotes the unit
exterior normal vector to dG.

There has been much current interest in studying the oscillation of

solutions of parabolic equations with deviating arguments. We refer the reader
to [1, 3, 5] for linear parabolic equations, and to [1, 2, 4, 6-8] for nonlinear
parabolic equations. Parabolic equations of neutral type were considered in
the papers [2, 4, 5, 8]. All of them, however, assume that the coefficients b^t)
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are nonnegative in [0, oo).
The purpose of this paper is to present conditions which imply that every

solution u of some boundary value problems is oscillatory in Ω in the sense

that u has a zero in G x [ί, oo) for any t > 0. We note that b^t) (i = 1, 2,...,/c)
are not required to have a constant sign, that is, b^t) are allowed to be
oscillatory. In Section 2 we reduce the multi-dimensional oscillation problem
to a one-dimensional problem for delay differential inequalities. Sufficient
conditions are given in Section 3 that a delay differential inequality has no

eventually positive solution. In Section 4 we derive oscillation criteria for the
boundary value problems for (1) by combining the results obtained in Sections

2 and 3.

2. Reduction to a one-dimensional problem

The object of this section is to reduce the boundary value problems (1),
(B ) (i = 1, 2) to functional differential inequalities with delays.

It is known that the first eigenvalue λί of the eigenvalue problem

zfw + /lw = 0 in G,

w = 0 on dG

is positive and the corresponding eigenfunction Φ(x) is positive in G. Associ-
ated with every function ue@(Ω) = C2(Ω)Γ\C1(Ω), we define

U(t)= ! u(x,t)Φ(x)dx, ί>0,
JG

U(t) = u(x, t)dx, t > 0.
JG

The following notation will be used:

F(t) = f /(*, t)Φ(x)dx, t > 0,
JG

F(t) = f /(x, t)dx, t > 0,
JG

Γ dΦ
Ψ(t}= ψ(x,t)--(x)dS9 ί>0,

J0G <3v

ψ(t)= i ψ(χ,t)dS, ί>0.
JδG

THEOREM 1. Assume that (H^H^) hold. Every solution ue@(Ω) of the
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problem (1), (B^ is oscillatory in Ω if the delay differential inequalities

(2) y'(t) + λ, Σ bt(t) exp φ)<ίs - σ,) < β(ί),Γ
Jί-σί

(3) /(ί) +Λ fr,(ί) exp λ1 «(«)& y(ί - σt) < - Q(t)
»=1

1 Γ
Jί-σ.

are oscillatory at t = oo in the sense that neither (2) nor (3) has a solution
which is eventually positive, where

ί P V fc

β(f) = exp λ1 a(s)ds F(t) - a(t) Ψ(t] - Y bfc) Ψ(t
\ Jo Λ i=ι

PROOF. Suppose to the contrary that there is a solution u of the problem
(1), (BJ which is nonoscillatory in Ω. First we assume that u > 0 in
G x [ί0, oo) for some ί0 > 0. There exists a number T>ί 0 such that
w(x, Ti(i)) > 0 in G x [T, oo) (i = 1, 2,...,m). The hypothesis (H2) implies that

c(x, ί, M(X, ί), w(x, τ^f)),...,^, τw(f))) > 0 in G x [T, oo)

and hence

(4)
wt(x, ί) - [a(t)Δu(x, ί) + Σ bi(t)Au(x, t - σf)] </(x, ί) in G x [T, oo).

Multiplying (4) by Φ(x) and integrating over G yield

d Γ Γ fc Γ
(5) — uΦdx — a(t) Au(x,t)Φdx— Y b:(ί)

ί/ί I I • — i 1

x, ί)Φdx, ί > T.1JG

From Green's formula it follows that

(6)
I I \ /Hit s-l tt I

Γ Γ / % %/f* \ Γ
Δu(x,t)Φdx= \—φ-u — }dS+\ uΔΦdx

JG JsG\8v dv ) }G

= - I <l> — dS-λΛ
Jeo δv JG

uΦdx
eo G

= -Ψ(t)-λ1U(t), t>T.

Analogously we obtain

(7) i Δ u(x, t - σf)Φ dx = - Ψ(t - σt) - λ1 U(t - σt), t > T.
Jc
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Combining (5)-(7), we have

(8) l/'(ί) + λ, a(t) U(t) + £ λ, bt(t) U(t- σD
i=l

< F(t) - a(t) Ψ(t) - £ bt(t) Ψ(t - σ(), t > T,
i=l

which is equivalent to

where

P
Jo

Hence, y(t) is an eventually positive solution of (9), which contradicts the

hypothesis. If u < 0 in G x [ί0, oo), v = — u satisfies the problem

k
vt(x, t) - [_a(t)Av(x, ί) + Σ bi(t)Aυ(x9 t - σ,)] < -/(x, ί) in G x [T, oo),

i = l

v = — φ on dG x (0, oo).

Proceeding as in the case where u > 0, we are led to a contradiction. The
proof is complete.

THEOREM 2. Assume that (HJ, (H3) hold. Assume, moreover, that the
following hypothesis holds:

(H'2) there is a number je{\, 2,...,m} such that c(x, ί, ξ, ηι,...,ηm) > p(t}r\j for

(x, t)eΩ, ξ > 0, ηt > 0 (i /;)5 and c(x, t, ξ, ηi9...,ηj < p(t)ηj for (x, ί)e
fl, ί^O, ^<0

Le/ τ7 (ί) = t — τj9 where ij is a nonnegative constant. Every solution
of the problem (1), (B2) is oscillatory in Ω if the delay differential inequalities

(10) /(ί) + p(t)y(t - τj) < Q(t)9

(11) y(t) + p(t)y(t-τj)£-Q(t)

are oscillatory at t = oo, where

Q(t) = F(t) + a(t) Ψ(t) + Σ bt(t) Ψ(t - σ,).
i = l

PROOF. Suppose that there is a solution u of the problem (1), (B2) which
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has no zero in G x [£0, oo) for some ί0 > 0. First we assume tht u > 0 in

G x [ί0> oo). Then we see that u(x, τ^ί)) > 0 in G x [T, oo) (i φ j) for some
T> t0. It follows from the hypothesis (H^) that

c(x, ί, u(x, t), u(x, τ1(ί)),...,u(x, τm(ί))) > p(t)u(x9 t - τ, ) in G x [T, oo)

and therefore

k
) + Σ frί(0^w(*> £ — σi)] + p(t)u(x, t — ij) </(x, ί)

in G x [Γ, oo). Integrating (12) over G and using Green's formula, we obtain

d Γ , Γ , , r su ( Λ * f Γ a« , , i
(13) — udx - a(t) — (x, ί)dS + Σ fciW — (x, ί - σ^dS

+ p(t) i M(X, t - τj)dx < f /(x, ί)dx, ί > T.
J G J G

Taking account of (B2), we find that (13) reduces to

U'(t) + p(t) U(t - τj) < F(t) + a(t) Ψ(t) + Σ ^

and hence U(t) is an eventually positive solution of (13). This contradicts

the hypothesis. In the case where u < 0 in G x [ί0, oo), the same arguments
as in the case where u > 0 lead us to a contradiction. The proof is complete.

3. Delay differential inequalities

We deal with the delay differential inequality

(14) y'(t) 4- Σ Pi(t)y(t — σi) ̂  4(0> f ^ ^^

where ί0 is a positive number. It is assumed that σ{ (i = 1, 2,...,/c) are

nonnegative constants, g(ί)eC([ί0, oo); R1), pj(i)eC([io, oo); R1) (i= 1, 2,...,/c)
and

OO

Pί(t)>0 on U I..ι,
n = l

where IM t ί = (ίπ — 2σ ί5 ίn) and the sequence {ίn}^°=ι is chosen so that {IΠ)l }^°=ι
are disjoint intervals for each i = 1, 2,...,/c.
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THEOREM 3. Assume that there is a subsequence {fnk}£°=ι c {ίπ}^°=1 with
the properties that:

lim nk = oo,
-

i: Pj(s)ds>

C(ί J < 0,

cr/ = min ίσ,} > 0
J Λ *? ί ^" ]r

Γr P
Ξ= <z(s)rfs +

J t-σj J t-σj

, (14) /zα^ no eventually positive solution.

PROOF. Suppose that y(t) is a solution of (14) which is positive on [ίl5 oo)

for some ίt > ί0 Then y(ί - σt ) > 0 on [ί2, oo) for some t2 > t1. We note
that lim^^ίί,, — 2σt ) = oo, and hence there is an integer NeN such that

tn — 2σi>t2 for any n > N. Letting ξn = tn — 2σj9 we find that (ξn, tn) c
(tn - 2σh ίj (ί = 1, 2,...,/c). Therefore, p£(ί) > 0 in (ξn, tn) and j;(ί - σt ) > 0 in

(ξn, ίj for any n > N. Hence, it follows from (14) that

y'(t) < q(t) in ({„, ίj.

By continuity we obtain

y'(t)<q(t) on Kn,ίJ.

For any £e[fn — σ7 , ίj we see that [ί — σ, , tn — σj c= [^π, f j, and therefore

ί
ί π - f f j f ίn-σj

y(s)ds <

— βΓj J ί — σ7

q(s)ds, te[tn-σj9 ίj,

or

pn-f f j

(15) y(t-σj)>y(tn-σj)- q(s)ds, te[ta - σp ίj.
J ί - <Γj

It is easily seen that

(16) /(ί) + pj(t)y(t - σj) < y'(t) + Σ P*Wy(ί ~ *ι)
(=1

-σj, ίj.
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Combining (15) with (16) yields

Γt«- t
y'(t) + Pj(t)y(tn - σj) < q(t) + Pj(t) q(s) ds, t e [ίπ - σ,, ίj.

J t - a j

Integrating the above inequality on [tπ — σ,, rj, we obtain

(X Γ'n Γ ft,-,, Ί

y(tn) ~ y(tn - σj) + y(tn - σ,) pj(s)ds<\ \q(s) + PJ(S) q(r)dr ds,
J tn — <τ j J tn — σ j L J s — σj J

which is equivalent to

(17) y(tn) + y(tn - σj)( Γ Pj(s)ds - l) < G(tn)9 n > N.

Since lim^oo nfe = oo, there exists a fc0eN such that nk > N for any
k > k0. Letting tn = tnk(k > k0) in (17), we conclude that the left hand side
of (17) is positive and the right hand side of (17) is nonpositive. This
contradiction establishes the theorem.

4. Oscillation of parabolic equations

We are now ready to state oscillation theorems for the boundary value
problems (1), (Bf) (i = 1, 2).

THEOREM 4. Assume that (H1)-(H3) hold, and that the following hypothesis

(H4) holds:

00

(H4) bi(t) > 0 on U I«,i» where \nί are defined in Section 3.
π = l

Every solution ue@(Ω) of the problem (1), (B^ is oscillatory in Ω if there is

a subsequence {ίMj£°=ι <= {ίπ}^°=ι with the properties that:

lim nk = oo,
-

Γtnt / Γs \
A! fysJexpU a(r)dr\ds>\,

Jί n k -σj \ J s - f f j /

H1(tnk) = 0)

where σ. = min {σf) > 0 and
3 1 < i < f c

^ι(ί)= Q(s)ds+ i λ.b^expίλl a(r)dλ( \' Q(r)dλds.
Jt-σj Jt-ffj \ Js-σj / \ J s - σj /
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PROOF. Theorem 3 implies that the delay differential inequalities (2) and
(3) have no eventually positive solutions. Hence, the conclusion follows from

Theorem 1.
By combining Theorem 2 with Theorem 3, we can obtain the analogue

of Theorem 4.

THEOREM 5. Assume that (Hi), (H'2)9 (H3) hold. Let τ^t] = t — τ j 9 where
ij is a positive constant. Assume, moreover, that:

00

(H5) p(ί)>0 on U !„> where ln = (tn-2τp tn) and {Iπ}π°°=1 are disjoint
w = l

intervals.

Every solution uε@(Ω) of the problem (1), (B2) is oscillatory in Ω if there is

a subsequence {ίnk}fc°=ι <= {tn}™=ι such that:

lim nk = oo,
-

L p(s)ds > 1,
i

H2(tnk) = 0,

where

Γ ~ P / f'~ t j' ~ \
H2(t) = β(s)rf5+ p(5) ρ(r)ίίr Ids.

J ί - TJ J ί -1 j \ J s - tj /

REMARK 1. Let gt(s) (ie{0, l,...,m} \ {7}) be continuous, odd functions
in R1 which are nonnegative for s > 0, and let

(18) φ, ί, u(x, ί), u(x, τ1(ί)),...,ι/(x, τm(ί)))

where c,(x, ί)eC(fl), c,(jc, ί) > 0 in ί2 (ie{0, l,...,m} \ {7}). Then, c(x, ί, &

f / ι , . . . , * / m ) defined by (18) satisfies the hypothesis (H^).

REMARK 2. The hypothesis (H4) is satisfied if bt(t) = cos iί, σf = — (z =
4i

1, 2,...,fc) and ίπ = 2nπ(n = 1, 2,...). In the case where b^t) — — sin iί,

σf = — (i = 1, 2,...,/c) and ίπ = 2nπ(n = 1, 2,...), the hypothesis (H4) is also
2i

satisfied.
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REMARK 3. Our theorems hold true even if a(t) is not necessarily
nonnegative.

EXAMPLE 1. We consider the problem

(19) w,(x, 0 - uxx(x, t) + (- sin t)uxx( x, t - ^ \ + (- sin 2t)uJx, * - Π

+ 2 w ( x , £ - - )
V 4/

= 4 sin 2x - sin 2t (1 + sin t + cos 2ί), (x, ί)e(0, π) x (0, oo),

(20) u(Q, t) = u(π, ί) = 0, ί > 0.

Here n = 1, G = (0, π), k = 2, m = 1, 0(0 = 1, MO = - sin ί, MO = - sin 2ί,
π π π

<TI = τ> σ2 = -> *i(0 = ί - T and

/(x, 0 = 4 sin 2x sin 2ί (1 + sin ί + cos 2ί).

Since

OO

M0= -sinί >0 on (J IΠ>1,
n = l

c»

ί>2(0 = - sin 2ί > 0 on \J IΠr2,

where IΠ ι l = (2wπ — π, 2«π) and IΠί2 = (2ππ , 2 n π j , we find that the

hypothesis (H4) is satisfied. It is easily seen that λ^ = 1, Φ(x) = sin x, Ψ(t) = 0

in (0, oo) and α,- = σ2 = min {σ l 9 σ2} = - > 0. An easy computation shows

that

F(0 = /(x, 0 sin xdx = 0, te(0, oo).
Jo

Hence, we see that Q(0 = 0 in (0, oo), and therefore H^t) = 0 in (0, oo). For
tn = 2nπ (n = 1, 2,...), we obtain

ί:(— sin 2s)e*ds = — e* > 1.

Hence, Theorem 4 implies that every solution we^((0, π) x (0, oo)) of the
problem (19), (20) is oscillatory in (0, π) x (0, oo). One such solution is
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u = sin 2x sin2ί.

EXAMPLE 2. We consider the problem

(21)

w,(x, ί) - uxx(x, t) + sin t uxx(x, ί - J ) + w(χ, t - π) - sin t - u(x, ί - - )
L V 2/J V 2/

= cos x cos ί, (x, ί)e(0, π) x (0, oo),

(22) - u,(0, t) = wx(π, ί) = 0, ί > 0.

Here w = 1, G = (0, π), /c = 1, m = 2, α(ί) = 1, 61(ί) = sinί, τ1(ί) = ί-π,

τ2(ί) = ί - -, τ,. = τ2 = -, p(ί) = - sin t and /(x, ί) = cos x - cos ί. Since

00

p(t) = - sin ί > 0 on (J !„,

where IΠ = (2ππ - π, 2wπ), the hypothesis (H5) is satisfied. We easily see that

(- sin s)ds = 1 for tn = 2ππ.

Since Ψ(t) = 0 in (0, OQ), we observe that

Γπ

ι= cosx cosίdx = 0, ίe(0, oo),
Jo

ί"Jfn

and hence H2(t) = 0 in (0, oo). Therefore, it follows from Theorem 5 that
every solution ue@((Q, π) x (0, oo)) of the problem (21), (22) is oscillatory in
(0, π) x (0, oo). For example, u = cos x sin t is such a solution.
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