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Introduction

We consider second order quasilinear ordinary differential equations of
the form

(A) (\yfrlyj + q(t)\y\β-ly = v,
where α and β are positive constants, and q : [α, oo) -» R is a continuous
function. Note that (A) can be written as

The purpose of this paper is twofold. First, we discuss the question of
global existence and uniqueness of solutions of (A) subject to the initial
condition

(B) y(to) = y<» y'(t0) = yι.

By a solution of (A) on an interval / c [α, oo) we mean a function yeC1^)
which has the property l/ leC 1 ^) and satisfies the equation at all points
tel. A solution is said to be global if it exists on the whole interval
[α, oo). It will be shown in particular that the initial value problem (A)-(B)
has a unique global solution for any given values of y0 and y± provided q(i)
is positive and locally of bounded variation on [α, oo). Secondly, we
investigate the oscillatory (and nonoscillatory) behavior of solutions of (A)
which are defined in a neighborhood of infinity. Such a solution is said to
be oscillatory if it has an infinite sequence of zeros clustering at infinity;
otherwise it is said to be nonoscillatory. Thus a nonoscillatory solution must
be eventually positive or eventually negative.

Oscillation theory of equations of the type (A) was first developed by
Mirzov [10-13] and Elbert [3, 4]. A considerable amount of addition to
their theory has been given in the recent papers [2, 5-8]. It has thus turned
out that the oscillatory character of (A) is to a large extent in common with
that of the Emden-Fowler type equation

(Q y"
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to which (A) reduces when α = 1. Here we concentrate on the case where
the function q(i) in (A) may change its sign infinitely often on [α, GO), since
the equation (A) with positive q(t) has been studied in great detail in the
above-mentioned papers. Our aim is to answer (at least partially) the question
whether the delicate oscillation results of Butler [1] and Naito [14, 15] for
(C) with oscillating q(i) can be generalized to (A) with α Φ 1.

Part 1. Initial value problem

1. Local existence and uniqueness of solutions

The objective of this paper is to study the question of existence and
uniqueness of global solutions to the initial value problem (A)-(B). For
simplicity we introduce the notation

(1.1) ξ"* = \ξΓίξ = \ξ\*sgnξ, ξeR, α > 0,

in terms of which the equation (A) can be written as

((/Γ)' + <zW/* = o.

We first note that the problem (A)-(B) has a local solution for any values
of y0 and y{. This follows from the Peano theorem applied to the two-
dimensional initial value problem

(A') y' = zα , z' = — q(t)yβ*9

which is equivalent to the original problem (A)-(B). Since the vector function

(/(ί, y, z), g(t, y, z)) = (zα*, - q(t)yβ*) satisfies a local Lipschitz condition on
the set D:

D = [α, oo) x R x IR if α ̂  1 and β ^ 1,

D = [a, oo) x (R\{0}) x IR if α g 1 and β < 1,

D = [α, oo) x [R x (IR\ {0}) if α > 1 and β ^ 1,

D = [a, oo) x (R\ {0}) x (R\ {0}) if α > 1 and j8 < 1,

from the Picard theorem it follows that the local solution of (A)-(B) is unique
for any y0eIR and yίeU if α 5Ξ 1 and /? ^ 1

for any y06IR\ {0} and y1eR if α ̂  1 and β < 1;

for any y0eU and j ^ e l R X l O } if α > 1 and β^l; and
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for any y0eR\ {0} and y^ e U \ {0} if α > 1 and β < 1.

In order to complete the discussion of uniqueness we have to examine

the following two cases: (i) β < 1 and y0 = 0; and (ii) α > 1, β ^ 1 and j^ = 0

THEOREM 1.1. Let β < 1. The solution of the initial value problem

(A) (\y'Γ1yy + q(t)\y\β-ly = V,

(Bi) y(t0) = 0, j/(ί0) = 3Ί * 0

w unique in a small neighborhood of ί0.

PROOF. Let ^(ί) and y2(ί) be two local solutions of (AHBJ. Integrating

(A) with y = yi twice from ί0 to ίedom(>y1)ndom();2), we have

'ι(t) = (/ι*- Γ
\ Jίo

and

Γt / Γs \a*

yM = ( y ΐ * ~ <?(r)(.yi(r)/*^r) ds, i = i, 2,
Jίo \ Jίo /

which implies

1 (0 - y2(0 - [(yϊ* -
ίo

where

By the mean value theorem we then have

(1.2)

where η(t) lies between y}* - /ι(ί) and y"* - /2(ί).

Let ί ̂  ί0. Since yj — /f(ί) -> yf 7^ 0 as ί ̂  ί0, there is a (5 > 0 such that

(1-3) ly^ =

Combining (1.2) with (1.3) and using the notation



324 Motohiko KITANO and KUSANO Takasi

1) = \yl\* for α ^ l , M(yl) = \yl\* for α > 1,

we obtain for ίe[ί0, ί0 4- <5]

(1.4) g - M(̂ )̂  Γ ( Γ |fl(r)| IMr)/* - (y2(r)Y*\drds
<* J ί o V J ί o

= -M(yi)^ Γ (t-
α Λo

Define the continuous functions z^ί) by

for i^i 0, *,(*<>) = 3Ί, i = l , 2.
ί-t

Then we see from (1.4) that

\ Z l ( t ) - z2(t)\ ^-M(y^ Γ !—^-(s - t0)
β\q(s)\ \(Zl(s)Y* - (z2(s))β*\ds

α J ί o ί- ίo

(1-5) ^ - M(y^ Γ (5 - t0Y\q(s)\ KZ^S)/* - (z2(s)/*| ώ
ίo

for ίe[ί0> ^o + <5] We now observe that a constant (5' < ^ can be chosen so
that

(1.6) (Mi))** - (^2(ί)/Ί ^ J? y kiW - z2(t)\

for ίe[ί0, ί0 + δ']. This follows from the relation

^ β\ζ(t)\p~ : 1^(0 - z2(ί)|,

ζ(t) being a number lying between zt(ί) and z2(ί)» and the fact that, since

zt(t)-*yi 7^0 as ί->ί0, i = 1, 2, C(0 can be made to satisfy l j ^ l / 2 ^ |C(ί)l ^
3 1^! |/2 if ί is taken sufficiently close to ί0. It follows from (1.5) and (1.6) that

B l n α / I V i l Y " 1 P

^-M^) « 1̂1 (5 -ίoy |̂ (α V 2 / Jίo
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for f£[ί 0 > to + <5']. Applying GronwalΓs lemma, we conclude that z ί ( t ) = z 2 ( t )
on [ί0, ί0 H- <5'], which clearly implies that y l ( t ) = y 2 ( t ) on [ί0, ί0 4- δ'~\. That

y t(i) and y 2 ( t ) coincide in a small left neighborhood of ί0 can be verified in
a similar fashion. This completes the proof.

THEOREM 1.2. Let α > 1 and β ^ 1. #* g(ί0) Φ 0, /λe« //ze solution of the
initial value problem

(A) (\y'Γiy')'

(B2) j>(ί0) = >>o ^ o, y(ί0) - o

is unique in a small neighborhood of ί0.

PROOF. Let y^t) and y2(0 ^e two solutions of (A)-(B2). Integration of
(A) with y = yt gives

f (- Γ '
J to \ Jίo

ds, i = 1, 2.
J t o \ Jto '

Defining

(0 = — — ί '
t - £0 Jro

* rfs for t / t0, J;(ί0) = - «(ί0)3^*, » = 1, 2,

we have for ίedom (3;1)ndom(y2)

which implies

I f '
(1.7) ^(ί) - y 2 ( t ) = - (5 - ίo)** Ws)| a (Jι(s) - J2(s)) ds,

a J r o

where ^(ί) is a number lying between J^ί) and J 2 ( t ) . Let ί ^ ί0 and choose
^ > 0 such that

(1.8) — |g(f 0 )l l ^ o l ^ = 1^(01 ^ — k(ίo)l \yo\β f°r ^[ίoj ^o + <5]>
2 2

which is possible because of the fact that Ji(t)-+— q(t0)y$* ^Q as ί-^ί0,
i = 1, 2. From (1.7) and (1.8) we see that

1 l-q Γt 1

bι(0-y2(OI ^-K(y0)
 α (5-ί 0)αl

α Jίo
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(1.9)

^ -K(y0)^ Γ (s - ί0)-^( Γ |4(r)| \ ( y i ( r ) f * - (y2(r))β*\dr}ds
« Λo Vλo /

^ -X^o)^ Γ (T (r - ίo^lίWI l ίy iWΛ - (y2(r)y*|dr)d5
« Λ o V Λ o /

^ 1 K(y0)^ Γ (ί - 5) (5 -
« Λo

for ίe[ί0, ί0 + <5]» where K(ί0) = |g(ί0)| |^0|^/2. In view of the fact that
yt(t) -> y0 ^ 0 as ί -> ί0, i = 1, 2, we can choose, by the mean value theorem,
a δ' < δ so that

This inequality combined with (1.9) gives

l j > ι W - J > 2 ( f ) l

B ι-«/3 y-1 π
^-κ(y0)* u l JΌl (ί-5)(5-

« \ 2 / Jίo

for f e[J0, ί0 + δ'], from which it follows that

/3 y-ι Γ
-bol (ί-s)(5-ί0)

\2 / Jίo

where t (ί) = max {|>Ί(S) — y2(s)\'. to ̂  s g ί}, ίe[ί0, ί0 + <5']. This gives a
contradiction in the limit as f - > f 0 unless t (ί) = 0 on [ί0, ί0 4- δ']. Similarly
it can be shown that t (ί) = 0 on an interval of the form [ί0 — δ', ί0,]. This
completes the proof.

It remains to deal with the case where β < 1 and ,y0 = j^ = 0. The
question is therefore whether zero is the only solution of (A) with β < 1 that
satisfies y(t0) = yf(t0) = 0. An answer to this question is the following.

THEOREM 1.3. Let β < 1. Suppose that q(t) is positive and locally of
bounded variation on [α, oo). Then y(t) = 0 is the only solution of the initial
value problem

(A) (\y'Γ1yy

(B3) y(t0) = o, /(ίo) = o.
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The proof of this theorem requires an approach different from those of
the foregoing theorems. The details will be given in the next section.

2. Global existence and uniqueness of solutions

2.1. The case where q(t) is of class C^[a, oo)

For a solution y(t) of (A) defined on an interval / c [α, oo) we define the
functions K|>](i) and WΊ>](f) by

(2.1)

and

(2.2)
α + 1 q(t) β + 1

A simple computation shows that

and

— VF[y](f)= l/Ml α + 1 > tel.
dt α + 1 (q(t))

It follows that

(2.3) _ «1Φ κ[y] (ί) ̂  y Π>] (t) ̂  F[y] (t), ί 6 /,
q(i) at q(t)

and

(2.4) - ± P^M (ί) ̂  [y] (ί) ̂  H^[y] (ί), te I,
q(t) dt q(t)

where q+(t) = max {^(ί), 0} and qL(t) = max {- q'(t)9 0}.

Integrating the first order linear differential inequalities (2.3) and (2.4), we have
the following basic inequalities for K[>;](ί) and

LEMMA 2.1. Suppose that qeC^la, oo) and q(t) > 0 on [α, oo). Let y(t)

be a solution of (A) on I. Then we have
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f*ί ' / \

( i ) V[y](t)£V[y](t0)exp(\ ^ds], t^t0,tel;
Jro «(*)

(ϋ)

(iii)

(iv)

LEMMA 2.2. Suppose that qeC1^, oo) and q(t) > 0 on [α, oo). Let y(t)

be a solution of (A) on I. Then we have

( i )

(ϋ)

(iv) W[y] (t) ^ W[y] (ί0) exp )
fo

From Lemmas 2.1 and 2.2 it readily follows that zero is the only solution

of the problem (A)-(B3), that is, the conclusion of Theorem 1.3 holds (for any

values of α and β) if g(ί) is supposed to be of class C1 and positive on

[α, oo ). Another important implication of the above lemmas is the global
existence of solutions of (A). In fact, a standard argument shows that, for
any given y0 and yl9 a local solution of the initial value problem (A)-(B) can

b continued to the entire interval [α, oo) provided q(t) is of class C1 and

positive on [a, oo).

Combining the above observations with the results of Section 1 we have
the following theorem.

THEOREM 2.1. Suppose that qeC1^, oo) and q(t)>0 on [α, oo). Then,
for any y0 and yly the solution of the initial value problem (A)-(B) exists on
[α, oo ) and is unique.
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2.2 The case where q(i) is locally of bounded variation

Our aim here is to show that the global existence and uniqueness of
solutions of the problem (A)-(B) can be eatablished under less restrictive
assumptions on q(i). More specifically, we want to prove several theorems

including the following.

THEOREM 2.2. Suppose that qeC[a, oo), q(t)>Q on [α, oo) and q(t) is

locally of bounded variation on [a, oo). Then, for any y0 and yl9 the solution

of the problem (A)-(B) exists on [a, oo) and is unique.

We use the symbols

(2.5) fV/(t), fV/(ί) and Γ|d/(ί)|
Ja Ja Ja

to denote, respectively, the positive variation, the negative variation and the
total variation for a function f ( t ) defined on a finite interval [α, i?].

LEEMA 2.3. Let y(t) be a solution of (A) on a finite interval [ίl5 £2]

Suppose that q(t) is continuous and positive on [tί9 f2]

Γί2

(i) If d+\ogq(i) exists, then
J ίi

(2.6) KM (ί2) g V[y] (ti) exp ( fV log q(t)\.
VJίi /

(ii) If d~logq(t) exists, then
J f i

(2.7) V[y](t2) ^ V[y~\(ίjexp ( - Γ V l o g q ( t ) \ .
\ J ίi /

PROOF. Let ε > 0 be given arbitrarily. Since q(t) is uniformly continuous,
there is a δ > 0 such that

\q(τ'} - q(τ")\ < ε if |τ' - τ"\ < δ, τ', τ"E^, ίj.

Let Δ denote the partition of [ίl5 ί2]

Δ\ ίi = τ 0 < τ 1 <•-.<!„_! <τ n = ί2

such that max (^ — τ^i: 1 ̂  z ^ «} < δ. We rewrite KQ^fo) as
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α -h α + 1

and use the fact that

p +

q(s)(y(s)f*y'(s)ds

and

We then have

(2.8)

Since log q(τt) — log ι < P +
J Tj - 1

logήf(ί), it follows that

, ) ̂  ε f ̂
« ^ t f - 1

^̂  l^ίt,- ι)Γ' exp dog q(τύ - log(τ(
P + 1

α + 1

—-Γ l
P + 1

Multiplying the above by exp f^- d+

Jίl

d+ log g(ί)
ι

l o g ^ f ( ί ) , we see that
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Γτί \ Γτί

- d+ l o g q ( t ) \ ^ε \y(s)\β\y'(s)\ds
Jίi / Jτi-i

/ pτ<
/(τ i_ 1)Γ + 1 exp I - d+logq(t)

\ v ίl

- f*~Vlo g ί(f))
Jίi /

^e f* Ms)l'iy(s)l«is+ K[y](t£_1)exp(- [V
J τ f - i \ Jίi

logg(f)
/

Addition of the above inequalities with respect to z then yields

\y(s)\^yf(s)\ds

which, in view of the arbitrariness of ε, establishes (2.6). In order to verify
(2.7) it suffices to derive from (2.8) that

α +

and use the relation

fτf

d~\ogq(t).,-ι)^- Γ
J τ, - i

This completes the proof.

LEMMA 2.4. Le/ y(t) be a solution of (A) on [tί9 ί2]. Suppose that q(i)

is continuous and positive on [tί9 ί2].

Γί2

(i) If d logq(t) exists, then

logg( f ) ) .
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Γ2 d+
Jti

(ii) If d+logq(t) exists, then

W\y\ (f 2) ̂  W\y\ (ί0 exp - d + log <?« .
'ί2

ίl

The proof is essentially the same as that of Lemma 2.3, and so it is left

to the reader.

On the basis of Lemmas 2.3 and 2.4 one can easily prove the following

uniqueness theorem which is more general than Theorem 1.3.

THEOREM 2.2. Suppose that q(i) is continuous and positive on [α, oo). Let

y(t) be a solution (A) satisfying the initial condition y(t0) = y'(t0) = 0.

Γto + δ fto + δ

(i) If d+ log q(i) or \ d~ log q(i) exists for some δ > 0, then
J to J f o

y(t) Ξ Ξ O on [ί0, ί0 + (5].

Γto ΓtQ

(ii) If d+logq(t) or d~logq(t) exists for some δ > 0, then
J ίo - δ J to - δ

y(i) = 0 on [ί0 - δ, ί0]

As is easily seen, Lemmas 2.3 and 2.4 can be used to prove the

continuability to the right or to the left of a local solution of the initial value

problem (A)-(B).

THEOREM 2.3. Suppose that q(i) is continuous and positive on [α, oo). Let

y(t) be a solution of the initial value problem (A)-(B). Then the following

statements hold for any y0 and y±.

rto+δ rto+δ
(i) If d+ log g(ί) or d log q(i) exists for some δ > 0, then

J to * ίo

y(i) exists on [ί0, ί0 + δ].

i t f*t
d+ log q(t) or d~ log q(t) exists for some δ > 0, then

o-δ Jto-δ

y(i) exists on [ί0 — δ, ί0].

From Theorems 2.2 and 2.3 and what was observed in Section 1 we obtain

the following theorem which is one of the main results of this paper, by using

the fact that if q(i) > 0 has finite positive (or negative) variation, then so does
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logg(ί).

THEOREM 2.4. Suppose that q(t) is continuous and positive on [a, oo) and
that q(i) has either finite positive variation or finite negative variation on any
compact subinterval of [α, oo). Then, for any y0 and yl9 there exists a unique
solution of the initial value problem (A)-(B) defined on the entire interval [a, oo).

It is clear that Theorem 2.4 covers Theorem 2.2 stated at the beginning
of this subsection.

Part 2. Oscillation and nonoscillation of solutions

3. An oscillation theorem

We now turn to the study of the oscillatory and nonoscillatory behavior
of solutions of the equation (A) defined in a neighborhood of t = oo. Such
a solution y(i) is said to be proper if sup {|y(£)l t ^ T} > 0 for any
Tedom(j ). As was stated in the introduction, we focus our attention on the
case where the coefficient function q(t) may be oscillating in the sense that it
may change its sign infinitely often on [α, oo).

Out first result in this part is the following theorem which generalizes
Waltman's oscillation theorem [16] for the Emden-Fowler equation y" +

THEOREM 3.1. All proper solutions of (A) are oscillatory if

Γ00 P
(3.1) q(t)dt= lim q(t)dt= oo.

LEMMA 3.1. Let yeCl[tθ9ao) be a function such that y(t)^0 on
[ί0, oo). Then, for any α > 0, β > 0 and T> £0, we have

)α*
(3.2) lim sup > + β

τ \y(*)\β+1

PROOF OF LEMMA 3.1. Suppose that (3.2) is false for some α, β and
T. Then, there exist constants k > 0 and T' > T such that

(yW* |

or equivalently

PSI 1\ 1 i O I 1^ V V I J > V^ V / 7 , v. m,
(3 3) fc + ̂  , ..,^1 ds£- ——-, t^T.
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This implies that y(t)y'(t) < 0 for ί |> T. Divide (3.3) by its left-hand side
and multiply it by — y'(t)/y(t). We then have

> r.
y(t)

'ίJr

An integration of the above inequality on [T', ί] yields

(3.4) <k + β~ — ds, t^T.

From (3.3) and (3.4) we see that

y(T') (y'(t)
y(t)

which implies

(3.5) |/(

Integrating (3.5), we obtain a contradition:

t> T'

lim y(t) = - oo if y(t) > 0; lim y(t) = oo if y(t) < 0.
r-»oo ι->oo

Therefore (3.2) must be true.

PROOF OF THEOREM 3.1. Assume to the contrary that (A) has a
nonoseillatory solution y(t). Suppose that y(t) ̂ 0 for t ^ ί0. Dividing (A)

by (y(t)Y* and integrating it over [ί0, ί]> we obtain

(3.6)
ro MM

β+1 -£•
which implies because of (3.1) that

= — 00.

This, however, contradicts Lemma 3.1, and the proof is complete.

4. Nonoseillatory solutions

In what follows we assume that q(t) is (conditionally) integrable on [α, oo),

that is,
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poo f Γ

(4.1) q(t)dt= lim q(t)dt exists and is finite,
Γ->oo

•I a *> a

in which case the function

(4.2) Q(t)=\q(s)ds

is well-defined on [α, oo).

LEMMA 4.1. If y(t) is a nonoscίllatory solution of (A) such that y(t) + 0
on [f0, oo), then

PROOF. Let t ^ ί0 be fixed arbitrarily and integrate the equation (A)
divided by (y(t))β* over [ί, τ]. Then we have

We claim that

(4 5)

In fact, if (4.5) does not hold, then there is Γ > t such that

(/(or ,

It then follows from (4.4) that

which contradicts Lemma 3.1. Consequently, (4.5) holds as claimed. Letting

τ -> oc in (4.4), we see that the finite limit η = lim [(/(τ))α*/(y(τ)/*] exists and
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To establish (4.3) it suffices to prove that η = 0 in (4.6). Suppose the contrary:

either η > 0 or η < 0. Let η > 0. Then, (4.6) shows that there is 7\ > ί0

such that

(4.7) y(t)y'(t)>0 and | / ( f ) I V I . y W I = *7/2 for t^.Tί.

Integrating the inequality |/(ί)| ^ (η/2)1/cx\y(T1)\β/Λ, ί^T 1 ? following from

(4.7), we see that lim | y(ί)| = oo. It follows that
f->oo

i; ,10+1 =
ds = — log

y(t) oo as t -> oo,

τ>t>T2.- -

which contradicts (4.5). Now let η < 0. Take T2 > ί0 so that

(y'(f))α* f τ w

~ (y(t)Y* +]t

q(s)ds-~2'

In view of (4.4) we then have

(/(τ)Γ β
α+1

τ > t > T 2 ,
- -

a contradiction to Lemma 3.1. Thus we must have η = 0. This completes

the proof.

REMARK 4.1. Lemma 4.1 is a generalization of a useful identity obtained

by Kwong and Wong [9] for the Emden-Fowler equation (C).

We now prove a theorem which provides information about the possible

asymptotic behavior of nonoscillatory solutions of the equation (A).

THEOREM 4.1. Suppose that Q(t) ^ 0 for t ^ a. If y(i) is a nonoscillatory

solution of (A), then there exist positive constants c1? c2 and ί0 = α sucn ^nal

PROOF. We may assume that y(t) is eventually positive: y(t) > 0 for
t ^ ί0. Since Q(i) ^ 0 by hypothesis, Lemma 4.1 implies that y'(t) ^ 0, and

hence y(i) ^ y(t0) for t ^ ί0. Thus, the first inequality y(t)^cl9 t ^ ί0, in
(4.8) holds with c1 = y(t0).

To prove the second inequality in (4.8) we first observe from (4.3) that
(y'(t)Y/(y(t))β ^ Q(t)9 t ̂  ί0, i.e.,

(4.9) ^ Q(t)(y(t)Y,
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We now integrate (A) over [ί, τ], τ ̂  ί ̂  ί0, obtaining

(4.10) (y'(t))« = (y'(τ)γ - Q(τ)(y(τ)Y + Q(t)(y(t)f + β Γ Q(s)(y(s)y-V(s)ds
Jί

Γ*
for τ ^ ί ^ ί 0 . Note that Q(s)(y(s))β 1y'(s)ds<ao, since otherwise it

would follow from (4.10) that (/(τ))α - Q(τ)(y(τ))β -> - oo as τ -> oo, which is
inconsistent with (4.9). Therefore, letting τ -̂  oo in (4.10), we obtain

(4.11) (y'(t)Y = η + Q(t)(y(t))β + βΓ Q ( s ) ( y ( s ) f - l y ' ( s ) d s , t ^ ί0,

where η denotes the finite limit

Let us define the functions K^t) and K2(t) by

(4.12) K^t) = Γ Q(s)(y(s)γ-lϊ(s)ds9 t ̂  ί0,

(4.13) K 2 ( t ) =

From (4.9) and (4.12) we see that K^t)^ K 2 ( t ) , so that K 2 ( t ) is well-defined
for t ̂  ί0.

In order to estimate y(t) from above we derive the inequality

i i i β. , i i

from (4.11) and integrate it over [ί0, ί]:

(4.14) y(t) ^ y(t0) + (3η)«(t - ί0) + 3« ί (Q(s))«ϋ;(s))« ds

Using the inequalities
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which follows from the decreasing property of K^i), and

Jίo

which is a consequence of Holder's inequality, we find from (4.14) that

y(t) ^ y(t0) + [(3/0° + (KΛto))"] (ί - ί0) + (^(foJ

^ y(t0) + [(3/7)* + (Kiίfo))"] ί +

for t ̂  ί0. It follows that

-J-/V(ί)\ίTT

OI+1 yu > t ^ t o >

ί /

which means that the function z(t) = y(t)/t satisfies the inequality z(ί) ^

^ + β(z(ί))1/(α+1), ί^ί0 ?

 for some positive constants A and 5. It is
elementary to verify that the values of z(ί) is bounded from above by a positive
constant depending on A and B, or equivalently that y(t)^c2t, t^t0, for
some positive constant c2. This is the desired inequality, and the proof is
complete.

REMARK 4.2. Theorem 4.1 is a partial generalization of a result of Naito
[15] for the Emden-Fowler equation which asserts that, under the condition
Q(t) ^ 0, each nonoscillatory solution y(t) of (C) has one of the following three

types of asymptotic behavior as t -> oo : (I) lim y(t) = const Φ 0; (II) lim y(t) =
ί-*oo ί-*oo

± oo, lim [y(t)/ί] = 0; (III) lim [y(t)lt] = const / 0. We conjecture that the
ί->oo ί-*oo

same is true of the nonoscillatory solutions of (A).

5. Existence of nonoscillatory solutions

This section is concerned with the existence of nonoscillatory solutions
of (A). More specifically, we want to construct (i) nonoscillatory solutions
which behave like nonzero constants as ί -» oo, and (ii) those which behave
like constant multiples of ί as t -> oo. In view of Theorem 4.1 a solution of
type (i) [respectively type (ii)] may be referred to as a minimal [respectively
maximal'] nonoscillatory solution of (A).



On a class of second order quasilinear ordinary differential equations 339

We first give a criterion for the existence of minimal nonoscillatory
solution of (A).

THEOREM 5.1. Suppose that Q(t) ^ 0 for t ^ a. A necessary and sufficient
condition for (A) to have a nonoscillatory solution which tends to a nonzero

constant as t -> oo is. that

I (Q(t))*dt < oo and (Q(s)) «ds\dt«v.Γ(ΓJ a \Jt

PROOF. (Necessity) Let y(t) be a nonoscillatory solution of (A). We may

suppose that y(t) > 0 for t ^ ί0. Then, by Lemma 4.1, y'(t) ^0, t ̂  ί0, and

This shows that (y'(t)T/(y(t))β ^ Q(t), t ^ t0, or y'(t)/(y(t))β/* ^ (Q(t))llx, t ̂  t0.
Integrating the last inequality, we have

> dv

which, in view of the boundedness of y(ί), implies that

(5.3) Γ (β(ί))«Λ < oo.
poo i

(δ(θ)α

Jίo

We now use the inequality

*, ,ίto,ϊ + l

which also follows from (5.2). From (5.4) and the inequality

+1 (y'(t)Y /(t)

c being a positive constant, we see that

\Q(s))1 + *dsί
Γ°

Jί
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or equivalently

(5.5)

Integrating (5.5) from ί0 to £ and letting ί -> oo, we conclude that

(5.6) I I I (Q(s))1 +idsYdi<oo.Γ(ΓJ ίo \ •/ ί

The inequalities (5.3) and (5.6) clearly imply (5.1).
(Sufficiency) Assume that (5.1) holds. Define

(5.7) R(t)

Note that

-fJί

(5.8) Γ Q(s)(R(s))*ds^R(t)(!' (R(s))*ds) , t ^ a.
Jί \ Jί

In fact, by Holder's inequality, we have

ι+ι V π / f - 1.1 Vπ

^_/ f1
+ 1 ( R ( t ) \

\ Jί

«ίl

Take any constant A > 0 and let it be fixed. Put

μ = ί-λ] λ = -λiϊβ>ΐandλ = -
μ V 2 J 2 μ- 2

Choose v > 0 so that

(5.9) βλ*-

and let T > a be large enough so that
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(5.10)

(5.11)

and

l / f 0 0 i \^ϊ v
(5.12) βλβ-l(2v)*[ (R(s))«ds) g-.

\ J r / 2

We now define Y to be the set of functions yeC[Γ, oo) satisfying

(5.13) \y(t)-λ\^-, ί^Γ,

and

(5.14) lyί ί j) - y(ί2)| g (μβ(T) 4- vK(T))« \tί - t2\, tl9 t2 ^ T,

where β(T) = sup {β(ί): t ^ T}, and define Z to be the set of functions
zeC[T, oo) satisfying

(5.15) |z(ί)| ^ μβ(ί) + vR(t)9 t ^ T.

Let F! and F2 denote the mappings from Yx Z to C[Γ, oo) defined by

Γ* i*
(5.16) Fι(y,z)(t) = λ- \ (z(s))α ds, ί ̂  T,

Jr

and

Γ°° i*
(5.17) F2(y, z)(ί) = Q(t)(y(t)Y + j8 β(s)(y(s/~1(z(s))α ds, ί ^ Γ,

•/ ί

respectively. Finally we define the mapping F: Yx Z-»C[Γ, oo) x C[Γ, oo)
by

(5.18) F(y, z) = (Fi();, z), F2(y, z)), (y, z)e 7x Z.

It can be shown that F maps Y x Z continuously into a relatively compact
subset of Yx Z.

(i) We first show that F maps Yx Z into itself. Let (y, z ) e 7 x Z .

From (5.15) we see that
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\z(t)\ ^ (2μY(Q(t)Y + (2v) (R(t)) t t ^ Γ,

so that, using (5.10) and (5.11), we have

Γ (z(s)Y* ds ί (2μY Γ (Q(s)) as + (2v)« Γ (R(s)) ds g ^,
Jt Jr Jt 2

t> T.

In view of (5.16), it follows that IF^v, z) - λ\ g λ/2 for t ̂  T. Also,

\Fί(y,z)(t1)-F1{y,z)(t^\ = P2(z(s))°'
Jti

ds

(μQ(s) + vR(s)Yds

for t1,t2*z T. This implies that

/ 3 \β C'U')«»+*"ί
', z)eY. Next, using (5.17), we compute:

oo L

i C"1(2μγ\
Jt

1
1 + -i i f °

J,

R(ί)

= μQ(t) + vR(t), t ̂  T,

where (5.8), (5.9) and (5.12) have been used. This shows that F2(y, z)eZ.
Therefore, by (5.18), we conclude that F(y, z)eYx Z as desired.

(ii) We then show that F is continuous. Let {(yk9 zk)} be a sequence
in 7x Z converging to (y, z )eFx Z in the topology of C[T, oo) x C[T, oo).
From the inequalities

^ ί°
JT

and

\F2(yk, zk)(t) - F2(y,

+ βΓ β(s)l(y*(s)y-1(zt(s))i<

Jr
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holding for t ^ T, it follows by the Lebesgue convergence theorem that

{FiCVk, zk)(t)} converges to F^y, z)(t) uniformly on [T, oo) and that

{F2(yk, zk)(t)} converges to F2(y, z)(t) uniformly on any compact subinterval
of [T, oo ). The applicability of the Lebesgue convergence theorem follows

from the inequalities

)« - (z(ί))' ^

Q(t)\(yk(t))β-l(zk(t))** -

^ 2#-1eW[(2μ)«(β(0)« + (2v)W))']

This shows that {F(yk9 zk)} converges to F(y, z) in C[Γ, oo) x C[T, oo),

establishing the continuity of F.
(iii) We finally show that F(Yx Z) is relatively compact in C[T, oo) x

C[T, oo). For this purpose it suffices to prove that F^Yx Z) and F2(Yx Z)

are relatively compact in C[T, oo). The equicontinuity of Fl (Y x Z) on [T, oo)

is a consequence of the inequality

followsholding for all (y, z)eYx Z. The local equicontinuity of F2(^x

from the inequalities holding for all (y, z)eYx Z:

y - (y(t2)Y) + (Q(tJ - Q

q(s)ds
^^-^(T)!̂ )-^)! ( 1 \β f1

I'M

- ί

and

Since F^Yx Z) and F2(^x Z) are uniformly bounded on [T, oo), we conclude
that they are both relatively compact in C[T, oo).

All the hypotheses of the Schauder-Tychonoff fixed point theorem have

thus been verified, and so there exists an element (y, z) e Y x Z such that
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Cy, z) = F(y, z). By (5.18), (5.16) and (5.17) the functions y(t) and z(t) satisfy

for t ̂  T

(5.19) y(t) = λ- Γ(z(s))**ds9

1.
(5.20) z(t) = Q(t)(y(t)f + ]8 Q(s){y(s)Y'1(z(s) ds.

Differentiating (5.19) and (5.20), we see that y'(t) = (z(ί))1/α* or (y'(t))"* = z(ί),
and

z'W = - q(t)(y(t))β + βQ(t}(y(t))β-ly'(t) -

which shows that y(t) is a solution of the equation (A) on [T, oo). Since

(5.19) implies lim y(t) = λ > 0, the construction of a minimal nonoscillatory
f-» oo

solution of (A) has been complete. This finishes the proof of Theorem 5.1.

REMARK 5.1. Theorem 5.1 generalizes a theorem of Naito [14] regarding

the Emden-Fowler equation (C).

A criterion for the existence of a maximal nonoscillatory solution of (A)

is given in the following theorem.

THEOREM 5.2. Suppose that Q(i) ^ 0 for t ^ a. A necessary and sufficient

condition for (A) to have a nonoscillatory solution y(i) such that

(5.21) Clί

for some positive constants clf c2 and ί0 ̂  a is that

Γ β °t '- 1 ρ(t)Λ<oo and Γ
J a J a

(5.22)

PROOF. (Necessity) Assume that (A) has a nonoscillatory solution y(t)

satisfying (5.21). We may suppose that y(t) is positive, so that cίt rg y(t) ^ c2t

for t ^ ί0. We will combine the equation

(5.23) (/(ί)r = Q(t)(y(t))β + β(y(t)Y Γ "* + 1 ds, t ^ ί0,jt
which follows from (4.3) with the equation
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(y'(t)T = (/(£<>))' - <2(to)(y(t0)y + Q(t)(y(t)Y -
lO

which is an integrated version of (A). We then obtain

(5.24)

β(y(t))β p + ι ds = (y'(to))Λ - Q(to)(y(to))β ~ β Q(s)(y(s))β~ly'(s)ds
Jt (y(s))β Jίo

for t ^ ί0 The second inequality in (5.22) is an immediate consequence of
(5.23) and (5.24). In fact, we obtain

y w ̂
and

(5.25) ί°°
Jίo

from (5.23) and (5.24), respectively, and so

(5.26) (Q(s))1+^(y(s)f+^β~1ds < oo.Γ
Jίo

The second inequality in (5.22) then follows from (5.26) and (5.21).
To derive the first inequality in (5.22) we first observe from (5.24) that

there exists a finite limit

(5.27) η=l^β(y(t)f\ ^-^ds^O.

An integration of the equation

(cf. (5.23)) gives

s, t ̂  τ £ to,
Γ' /

=
Jτ \
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which, in view of (5.21), leads to

(5.28)

i Γ i β- i Γ/ Γ°° (y'M,
Clί - y(τ) < 2* (Q(s))*(y(s))*ds + 2« jS(y(s)y . , ^r ) ds

" J τ J τ \ Js (yW)

for ί ̂  τ ̂  ί0. From (5.26) we have

liminf— I (β(s))«0;(s))«έis

(5-29)

2* p L
iminf- (Q(s))«(
«-« t J τ

* lim "'-*> - lim 21 f ' f/,^)/ f ̂ ^
-«-*» ί '-« t JΛ J, <y(r)Ϋ+1

°° (v'(s\Y+ί

= Cl - 2^ lim

where (5.27) has been used. On the other hand, using the inequality

Y^VP 1

ds\ (y(s))«ds
Γ i

(Q(s))α

Jτ

(cf. the proof of Theorem 4.1), (5.21) and (4.13), we find

1 1 1
2α Γr 1 £ 2α / Γ°° 1+1 π + i ϊ f l - i λ"
- (β(s)Hy(s))*ds^- (Q(s)) «(y(s))

( ?' ds
t Jτ t V J τ /

JL_Γ 1 α «±1 α±J,Ί«
^|cS— ̂ -(ί α -τ - )J

where £ = (2c2)
1/α(α/(α + l))α/(α+1), and hence

(5.30) lim sup - Γ (Q(s)) (y(s)fds ^
ί-oo t Jτ

i
From (5.29) and (5.30) it follows that c1 - (2η)Λ ^ 0, that is, the constant η
defined by (5.27) is positive. Letting t -> oo in (5.23), we see that
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liminf(/(ί))α ^ η, so that there is tί>t0 such that y'(t)^η/2 for ί^ί x .
f-> 00

Combining the last inequality with (5.25) shows that the first inequality in
(5.22) is true. Thus the proof of the necessity of (5.22) is complete.

(Sufficiency) Assume that (5.22) holds. Define

(5.31)

Observe that for

s, j si + *}β~l

Jί

« d s \ I \ s*ds
J \ J r

(5.32)

,α + l .

(i) Suppose first that α ^ 1. Let A > 0 be fixed arbitrarily, and put

/ 3 lY ~ 3 i ~ 1 i
μ = — Aα , A = — Aα for β > 1 and A = — Aα for β < 1.
μ \ 2 / 2 2

Take a constant v > 0 such that

~Λ t i i v
(5.33) βλft~l(λ* + μα)^-

2

and choose T> a so large that

^ Γ 1 i
(5.34)

α + I/ 4

(5.35) 2

and

(5.36) /J

For these A, μ, v and Γ define 7 to be the set of functions yεC[T, oo) such that

(5.37)

and
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ϊ Γ
Jίl

(5.38) \y(t,) - y(t2)\ ϊ (λ + μs*ρ(s) + vS(s)) ds, t^t^ T,

and define Z to be the set of functions zeC[T, oo) such that

We now define the mapping F: Yx Z->C[T, oo) x C[T, oo) by

(5.40) F(y, z) = (Fifr, z), F2(y, z)), (y, z)e 7x Z,

where

i P i*
(5.41) F ,̂ z)(ί) = Λ«Γ+ (z(s))«*ώ, ί ̂  Γ,

Jr

and

Γ°° i*

(5.42) F2(y, z)(ί) = λ + Q(t)(y(t))β + ]8 β(s)();(s))/'~1(z (s))α ds, ί ̂  T.
Jr

Let (y, z)e r x Z. Then, using (5.41), (5.42), (5.32)-(5.36), and the inequali-

ties

\ξθ* - ηθ*\ ^ \ξ - η\θ for 0 < θ g 1 and ξη ̂  0,

I ζθ* _ ^0* i ^ 21 f - ^ |e for 0 < θ ̂  1 and ξη < 0,

we obtain

i p i* i

l Λ Z ί ί = J ^

Γ f i Γ !
^2 \z(s)-λ\"ds^2\

JT Jr

λ C< β. i I f' I
g2μα sα(β(s))αds + 2vα (5(5))α

JT Jr

-λ«ί + -λ«ί = -λ«ί, ί > T,
4 4 2
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P2 iIF^y, z)(ίx) — Fι(y, z)(ί2)| ^ μ(s)|αί
Jίl

Γί2 i
(5.43) ^ (/I + μsβQ(s) + vS(s))" ds,

Jίl

and

/ 3 A β

\F2(y> z)(0 - ^1 ^ -^α *βQ(t) + β&~

^t^ T,

βV-1Q(s)(S(s))«<fe

-i i ί Γ"
Jί

sβ-lQ(s)ds

£μtβQ(t)+ -^A +

+ vS(ί), ί ̂  T.

Therefore, (y, z ) e Y x Z implies F^(y9 z}εY and F2(>^, z)eZ, so that F defined

by (5.40) sends Yx Z into itself. Furthermore, as in the proof of Theorem 5.1

it can be shown that F is continuous and F(Yx Z) is relatively compact in the

topology of C[T, oo) x C[T, oo). Consequently, the Schauder-Tychonoff
theorem is applicable to F and there exists an element (y, z) e Y x Z such that

(y, z) = F(y, z), i.e.,

(5 44)

z(t) = λ + βWίyW)* + ̂  β(5)(y(5)/- ̂ z^))^ ώ, t * T.

It is easily verified by differentiation of (5.44) that y(t) is a solution of the

equation (A) on [Γ, oo). That y(t) satisfies (5.21) follows from (5.37).

(ii) Next suppose that α < 1. Let λ, μ and λ be as in the case (i). Take

a constant v > 0 such that
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Choose Γ > α large enough so that

α Y+1 -JL_ 1

α \α -h I/ 6

1 1 i l l
-(4v)«(S(Γ))«^-A<,
α 6

and

and let the sets Y, Z and the mapping F be defined exactly as in the case (i)

(cf. (5.37)-(5.41)). Using the inequality

\ξ9* - ηθ*\ g 0[max [ \ ξ \ , \η\}γ~l \ξ - η\, θ > 1,

we see that if z(ί) satisfies (5.39), then for ί ̂  Γ

* ~(λ + μtβQ(t) + v5(ί))α (μrβ(ί) + vS(ί))
α

- l(2λγ~l + (2μtβQ(t) + 2vS(ί))"~1](μί/*β(ί) + vS(ί))
α

S - (2A)«"* (μί^β(ί) + vS(ί)) + -(2μf'β(f) + 2vS(ί))«
α α

1 i-i 1 1 £ i 1 1
^ — (2λ)Λ (μtβQ(i) H- vS(ί)) H—[(4μ)αία(β(ί))α + (4v)α(S(ί))α]

α α

Since ^(y, z)(ί) - λllΛt\ ^ Γ |(z(5))1/α* - λ1/Λ\ds for (y, Z)E Yx Z, (5.45) and
Jr

the choice of A, I, μ, v and T ensure that

= 2 =

It is clear that (5.42) holds, and so Fx maps Yx Z into Y F2 maps Yx Z
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into Z; in fact, we have for (y, z ) e Y x Z

\F2(y, z)(t) -λ\^ λ«( |λ«)Vβ(ί) + βλ'-1 Γ sβ-1Q(s)(λ
\ 2 / Jί

l(3λr Γ s'-'βίs)*
Jt

+ βλf-lQμγ I s(1+«)'~1(β(s))1 + «ds + jW'-^v)" Γ s'-1

Jί Jί

^ μ^β(ί) + ̂ - (̂S^ + (3μ)«]S(ί) + ̂ ^(SvHSίΓ))^^)

^ μί^β(ί) + vS(ί), ί ̂  T.

It follows therefore that F maps 7x Z into itself. The continuity of F and

the relative compactness of F(Yx Z) can be proved routinely, and so F has

a fixed element (y, z) e Y x Z. As is easily seen, the first component y gives

a solution of (A) on [T, oo) satisfying (5.21). This completes the proof of the

sufficiency part of Theorem 5.2.

6. Oscillation criteria

We are finally interested in criteria for all proper solutions of (A) to be

oscillatory.

THEOREM 6.1. Suppose that α < β and Q(t) ^ 0 for t ^ a. Then, all proper

solutions of (A) are oscillatory if and only if

f °° Γ i / f0 0 i+i \«Ί
(6.1) (β(0)α+ (Q(s)) *ds A = 00.

PROOF. The failure of (6.1) implies (5.1), so that, by Theorem 5.1, there

exists a nonoscillatory solution of (A).

Conversely, suppose the existence of a nonoscillatory solution y(t) of

(A). We may assume that y(t) > 0 for t ^ ί0. Then, by Lemma 4.1,

It follows that

(6.3) ^S^ew or
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and

(y(t))β-

Integrating the second inequality in (6.3) from ί0 to ί and letting ί -» oo, we
have, because of α < /?,

(6.5) (Q(s))*ds < oo.

Next, substituting (6.3) into (6.4), we obtain

Γ 0

^J

which is equivalent to

i+i

An integration of this inequality yields

i

(6.6) I ( I (Q(s))1+'ds}"dt<ao.Γ(ΓJ to \ •/ ί

The inequalities (6.5) and (6.6) thus obtained clearly contradict (6.1), and so,
under the condition (6.1), all proper solutions of (A) must be oscillatory. This
finishes the proof.

REMARK 6.1. Theorem 6.1 is a generalization of an oscillation theorem
of Butler [1] for the superlinear Emden-Fowler equation (C) (β > 1) subject
to the condition Q(t) ^ 0.

Let us consider the case α > β in (A). From Theorem 5.2 we see that
in order that all solutions of (A) with Q(i) ^ 0 be oscillatory it is necessary
that either

f β > ί / ϊ - 1 β(ί)Λ=cχ) or ί°
Jα Jα

(6.7) ί / ϊ - 1 β(ί)Λ=cχ) or «~ 1 (β( ί)) 1 + « dt = oo.
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In view of Naito's result [15] characterizing the oscillation situation for the
sublinear Emden-Fowler equation (C) (β < 1) it would be natural to expect
that (6.7) is also sufficient for oscillation of all solutions of (A). However, we
have been unable to prove this conjecture. What we have proved so far is
the sufficiency of the second integral condition in (6.7).

THEOREM 6.2. Suppose that α > β and Q(t) ^ 0 for t^ a. All proper
solutions of (A) are oscillatory if

1°J a

PROOF. Assume that (A) has a nonoscillatory solution y(t). We may
suppose that y(t) > 0 for ί ̂  ί0. From the proof of Theorem 4.1 we see that
the function K2(t) defined by (4.13) is convergent:

κ2(t) = |α(6.8) K2(t) = (Q(s)) *(y(s)) " ~ d s < oo, ί £ ί

(i) Suppose that (1 + - }β - 1 g 0. Since y(t) ^ cί, ί ̂  £0>
 for some

\ «/
c > 0 (cf. Theorem 3.3), we then conclude from (6.8) that

which contradicts (6.7').

(ii) Suppose that ( l + - β - l > 0 . From (4.11), (4.12) and (4.13) it

follows that

^βK2(t) or /(ί)^/

Integrating the last inequality over [ί0, ί], we have

y(t) ^ β~« Γ (K2(s)γds ^ β*(K2(t)) (t - ί0),
Jίo

so that

(K2(t))
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Since K'2(t) = — (Q(t)} *(y(t)) α , the above inequality can be written as

(6.9) " , * /TίΉ<t - tαΓ^-'ίQWr*, t * to.

We integrate (6.9) over [ί0, ί] and let ί -> oo. Noting that a> β, we then

conclude that

r „ _ >0

which again contradicts (6.1'). This completes the proof.
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