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ABSTRACT. We show that the fundamental representation of the affine Lie algebra

A™! is constructed by means of the Feynman path integral on the coadjoint orbits.

Using the complex white noise on the coadjoint orbit and generalizing the method

of our previous papers, we compute the path integral on the coadjoint orbit of the

infinite dimensional Heisenberg group, which realizes a kernel function of an irreducible

unitary representation. If we modify the computation of the path integral by multi-

plying a divergent factor, we obtain the vertex operator for the fundamental representa-

tion of ΛlLV

0. Introduction

Following the method given by Alekseev, Faddeev and Shatashvili [2],
we tried to compute the Feynman path integrals on the coadjoint orbits of
noncompact Lie groups ([7], [8], [9], [10], [14] e.t.c.). As to the Heisenberg
group, we succeeded in computing the path integrals for complex polarizations
as well as real polarizations. As to semisimple Lie groups, for real polariza-
tions, we computed the path integrals for SL(2, R) ([8]). This was generalized
to a certain class of noncompact real semisimple Lie groups ([10]).

For complex polarizations, however, we encountered difficulty of diver-
gence of the path integrals even for most simple Lie groups like SL(2, R)
([7]). In [8], for complex polarizations we gave an idea how to regularize
the path integrals for SU(2) and Sl/(l, 1) (~SL(2, R)) and showed that the
path integrals give the kernel functions of the irreducible unitary representa-
tions. In [9], we generalized this result to arbitrary connected semisimple
Lie groups which contain compact Cartan subgroups and succeeded in com-
puting the regularized Feynman path integrals which give the kernel functions
of the irreducible unitary representations realized by the Borel-Weil theo-
rem. Later it was pointed out by Dr. Hashimoto that our idea was nothing
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but the regularization of the path integral using "the normal ordering" which
is well-known to physicists (cf. Chapter 13 in [15], see also [14]).

If one tries to carry out this idea for Kac-Moody Lie groups one
encounters new difficulty of nonexistence of the quasi-invariant measures on
the coadjoint orbits. As to the infinite dimensional Heisenberg group, for
real polarizations we do not know yet how to overcome this difficulty. For
complex polarizations, however, it is well-known that irreducible representa-
tions are realized using the complex white noise on the coadjoint orbit. (See

[5]).
In this paper we consider the affine Kac-Moody Lie group LG of type

Aί'Λ.n l xx xx
First we take a subgroup LH of LG which is an infinite dimensional

Heisenberg group. Choosing a complex polarization we construct irreducible
representations using the complex white noise on the coadjoint orbit. We
will show how to compute the path integral for LH, making use of this
complex white noise. Finally we will give an idea how to express the vertex
operators by means of the path integral with a modification by multiplying
a divergent factor.

1. Definitions and Notation

Let G be a connected compact Lie group and Gc the complexification
of G. We denote by LG the loop group of G and by LGC the complexification
of LG so that

LG = {g: S1 -> G; C00} ,

LGc={g:Sί^Gc;C™}.

Then the Lie algebras of LG and LGC are given by

XX XX Γ Γ

Let LG and LGC be the central extensions of LG and LG , respectively
xx xx Γ χ\ xx Γ(see [15]). Let Lg and Lgc denote the Lie algebras of LG and LG , respec-

tively. Then we have

Lg = Lg 0 j^ΛRy (^ΪRy : center) ,

Lgc = Lgc 0 Cy (Cy : center) .
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For any X e gc and fee Z we identify X® tk e gc® C[ί, Γ1] with the
mapping

Thus, X®tkeL$c. Then Lgc is the completion of gc(g) C[ί, Γ1] with re-
spect to the C°°- topology so that Lgc is spanned by

The bracket product of Lgc is given by:

for any X, Y e gc, fe, leZ and ξ, */ e C

[Jf ® t* + ξy, Y®tl + ηy] = [X, 7] (x) tk+l + fc tr

Now we give some notation for the affine Lie algebra A^LV Throughout
this paper we fix an integer n > 2. Let Mπ be the algebra of all complex
n x n matrices. For any A e Mn we denote by A* the complex conjugate
transposed matrix of A. Put

G = SU(n) ={ge Mπ; 00* = /„, det (g) = 1} ,

where /„ denotes the unit matrix of order n. Then the Lie algebra of G is

g = 5U(n) = {X e Mn; X + AT* = 0, tr (X) = 0} .

The complexifications of G and g are given by Gc = SL(n, C) and gc =
sl(n, C), respectively. We extend the map * to a conjugate linear endo-
morphism of Lgc such that

(X (x) ί*)* = AT* (x) r* (ΛΓ e βc, k € Z) ,

(W = Jy ( A e C ) .

Then it is easy to see that

Lg = {X e Lgc; X + X* = 0} .

Let EIJ denote the matrix with the (ij) entry 1 and all the rest 0. Put

£ £ ί l + 1eLβ

c.
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Then we have Λ* = Λ~l. We put

Pn = {k E Z; k> 0, k £ 0 (mod «)} .

2. Irreducible unitary representations of the infinite dimensional
Heisenberg group

We denote by y the set of all /^-valued rapidly decreasing sequences
{ak} — {ak}kePn (akεR) and by £fc the set of all C-valued rapidly decreas-

ing sequences {ck} = {ck}keP (ck e C) and we define a subalgebra Lt)c of Lgc

by

Put

/
The LI) is a real form of H)c. We denote by L/f and LHC the Lie subgroups

xx ^r xx vχ rof LG and LGC corresponding to LI) and Lip, respectively.
Put

§00 =

0 aί a2
c

b,
b2

• . 0

Then ί)̂  is an infinite dimensional Lie algebra with the bracket product

defined by: [X9T\ = XY- YX (X, Yeξ>J. §«, is called the infinite dimen-
sional Heisenberg algebra.

Since

Γ Σ (Λ/Γ

\_kePn

Σ (x/
kePn

tePn

Σ k(akb'k-a'kbk)γ,
kePn

the mapping
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+ λγ

'-\
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Σ (V- lak + bk)Λk + Σ
kePn kePn

0

0
XX XX

is an isomorphism Lt) ^ ξϊn It follows that LH is isomorphic to exp (§00).
XX

In the following, we call LH the infinite dimensional Heisenberg group.
Put

Then it is easy to see that the mapping

Σ xkΛ*^ Σ xkΛ
k+ X

keP n kePn kePn

is an isomorphism Lnc^ Lfy^-lRy. We define an inner product on Lnc

by: for any X, YeLnc

(X, 7) = Σ fac*Λ ,
keP n

where X = Σkepn

xkΛk and y = Σk epn;VfcΛ f c.
Further, for Jί, yeLn c we define

<x, y> = (x, y),
where y = Σfc6pn^

k.
We put Ec = Lnc and denote by Hc the completion of Ec. Then we

have the GeΓfand triple

Ec c /7C c £• * ,

where £c* denotes the vector space of all C-linear continuous mappings of
Ec into C.

Then we have a complex Gaussian measure vσ on £"c* such that for any

Ci, C 2 e£ c

L
where <z, C> = z(ζ), (z e £"c*, ζ e £"c). This measure is called the complex white
noise (see [11], [13]).
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Further, for any ze.E* and ζeEc we define

We denote by Γ2(E*y vσ) the Hubert space of all square integrable holo-
morphic functions on E* with respect to the measure vσ. For F e Γ2(E*9 vσ)

and g = exp (Σkepn

xkΛk + Σkepn(—*k)Λ~k + λγ) e LH we define

- α) (z e £*) ,

where α = Xfcepn^fc^lk. Then one can show that πσ is an irreducible unitary
representation of LH on Γ2(E*9 vσ).

3. The construction of the representations of the infinite dimensional
Heisenberg group by means of the path integral

In this section, generalizing the idea in [7] we construct irreducible unitary
representations of the infinite dimensional Heisenberg group LH by means
of the Feynman path integral.

First we will show that what kind of difficulty we encounter if we try
to compute the path integral in the exactly same way as in [7].

Fix a positive integer m such that m ^ 0 (mod n). Define

We put

= Σ
UePn,

Then LΪ)m is a finite dimensional subalgebra of Lt). It is clear that LI)m is
isomorphic to the Heisenberg algebra

&,=

0 at ••• α,

0

0 bm

0

ak, bk,ceR

The isomorphism is given by the mapping
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kePn *sP.

0 «! •••

0

0

In [7], we proved that all irreducible unitary representations of §m are
obtained by the path integrals. Using the above isomorphism we can con-
struct all irreducible unitary representations of exp (Lί)m) by the path integrals.

Now let us investigate what happens if we take the limit m -> oo. We re-
view roughly the main part of the computation of the path integral. (Refer to

[7] for the details.) For any Y = ̂ kePnmxkΛ
k + Z^J-^M'* + λV e $»»

the corresponding Hamiltonian is given by

where we put α = £k e P n mxkyl f c. The action integral is computed as follows.

~ ί T ((z(t\ z(t)) + ((z(t\ α) - (5(όΓ55 + λ))dt
z Jo

N r(k/

= ̂  Σ
^ k=l J(k-l-l/N)T

_

*"lf α) " (Zjk~15 α) + '

We denote by pnjTn the number of elements in the set Pn>m. Then the
path integral is computed as follows.

Kγ(z',z;T)

-zι^
^ Σ

k.l9 α) - (zk_!, α) + λ } -
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i f σPn'm ( σ Λ
__expU-II^H2 (

Ln£ jLn£ W"- V 2 /

Pn,n

(σ$(< ^ ί {

( ^ 7 ϊ Λ T

x exp^ Σ ((**> ̂  + (^ + **-!.«) - fe-i.«) + ̂ J jv

-^

^ί (z', z) + ((z', α) - (z^ίj)Γ- 1 ||α||2Γ2

We define

Finally the unitary operator is obtained as follows.

(z', α)T- ||α||2T2 + λTF(z' - αΓ)

= (C/σ(exp(Ty))F)(z').

To generalize the above computation to the infinite dimensional Heisenberg

group LH it looks natural to replace (σp" -/(2π)p" -)exp(-(σ/2)||z||2)(dz, dz)
by the complex white noise dvσ(z). However there appears a crucial difficulty
that (zk9 z f c_i) and ||z0||

2 are divergent on Ec*. Notice that z0 = z. Then one
finds that the factor exp ( — (σ/2)||z0||

2) should be used to form the complex
white noise dvσ(z) when we compute the unitary operator.

Now we are in a position to mention our idea how to compute the
path integral of the infinite dimensional Heisenberg group LH.

For any C0, ζl9 •••, ζNeEc we define

Σ (C*. c*-ι)

We regard S0(C0, ζ ί 9 •••, CN) as a function of the variable d on £"c fixing other
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variables. Then it is clear that replacing (i by zl this function is uniquely

extended to a continuous function on E*. And we carry out the first integra-
tion to get a new function

i (Co, C2, •",£»)= ί
JEE

Carrying out the integration successively we obtain finally

=
JEE*

= exp(|((C*-ι, Co) + «C*-ι, «) - (U«

We define

Kγ(ζ',z T) = Sw_1(z,C')

Computing step by step, we get

Kγ(ζ', z; T)dv.(z) = exp( -((ζ ' t z) + ((£', α) - (z,,

Finally we have

dv,(Z)Kγ(ζ', z; Γ)F(z) = expl 1{-(C', α)Γ- ̂ ||α||2T2 + A Γ ) )F(C' - αΓ)L/
Thus we proved the following theorem.

THEOREM 1. The unitary representation πσ of the infinite dimensional

Heisenberg group LH can be obtained by means of the Feynman path integral.

4. The construction of the fundamental representation of the affine
Kac-Moody Lie algebra A^ by means of the path integral

We denote by dπσ the representation of the infinite dimension Heisenberg

algebra Lί) on the space of differentiable vectors in Γ2(E?, vσ) which is

obtained by differentiating the unitary representation πσ of LH defined in

Section 2.

Then for any X e LI) and any differentiable F e Γ2(E?, vσ) we have

-
d

πσ(exp ίJ^)F.
ί=0
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Computing explicitly we get

+ ?}kzk,ϋzk 2

- - ~ k ,
ozk 2

σ-I,

where / denotes the identity operator on Γ2(E*9 vσ).
We extend dπσ complex linearly to the complexification Lί)c. Then by

the explicit computation we can prove the equations in the following proposi-
tion.

PROPOSITION. For any kePn9 we have

dπσ(Ak) = ~ ,
dzk

πσy = - ,

where I denotes the identity operator.

We define the isomorphism

φ: Γ2(EC*, vσ)BF^Fe Γ2(EC*, v.)

by

F(z) = F(-z) (z

Then the representation pσ of LH is obtained so that the following commuta-
tive diagram should hold.

Γ2(E?> vσ) —2-̂  Γ2(E*9 vσ)

«Λ*) Pσ(ff)

Γ2(£*,vJ— 2-. Γ2(E*,v.)
xs

for all gf e LH.
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It is easy to show that for FeΓ2(E*9vσ) and g = exp(£fce

fcepn(— x*M~* + λγ) E LH we have

(pσ(flf)F)(z) = exp(j(-(z, α) - i||α||2 + λ\}p(z + α) (z e £*) ,

where α = Σ fce

For σ = 2 we have the following corollary.

COROLLARY. For any k e Pn9 we Λαt e

dp2(A~k) = kzk ,

dp2(7) = / ,

where I denotes the identity operator.

Now we need some results in [12]. Let IE {0, •••, n — 1} and let τl be
XS jn,

the fundamental representation of Lί)c which is defined in [12]. Put ε =
exp ((2πx/^ϊ)/n). For k e Z and s e {1, , n - 1} define

Λ,s = Σ ^~%
i,j=l

i-j=ik+rn

Then these elements and Ak

9 Λ~k (k e PΠ) form a basis of Lgc. The fundamen-
tal representation τt is defined as follows (see Proposition 9.1 in [12]). (We
corrected some misprints there.)

For fc e Pn one has

And the operators τ{(Ak<s) are obtained by the coefficients of the parameter
u of the following vertex operators:

= exp Σ ( l - ε * V z t e x p -
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It follows from the above corollary that the representation dp2 is equiva-
lent with the restriction of the fundamental representation τ,.

Assuming that \u\ = 1, we put

—
Then as is easily seen, α e E*. Furthermore, for any ζ E Ec and any polyno-
mial function F on E*9 we have

(Y
\\

exp Σ ( l -β>*C k eχp- Σ

= exp

= exp(-(C,α))F(C + α),

where C = ΣfcepnCk^ f c For any mePn we put

fcePM>m K kePn>m k

1 _ o-sfc

S

Then it is clear that Ym e LI). Using the kernel function obtained by means
of the path integral in Section 3, we have

exp(-(C, α))F(C + α) = lim exp(-(ί, αJ)F(C

= lim e x p α M | | 2 ( p 2 ( e x p ( y m ) ) F ) ( C )

1 ||αm||2) f
/ J £c*

= lim exp ||αm||2 dv2(z)K_Ym(ζ, z;
m-»00 V / J £c*

We remark that lim^j^^expdlα^,!!2^) is divergent to oo and that the
restriction of τl to Li) coincides with άp2

In the above the assumption that \u\ = 1 is essential. Thus, it follows
that any vertex operator with the parameter u such that \u\ = 1 can be
obtained by the path integral if we modify the computation of the path
integral by multiplying a divergent factor. Thus we proved the following
theorem.
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THEOREM 2. Every fundamental representation τl of the affine Kac-Moody

Lie algebra A^ can be given by means of the path integral with modification,

if necessary, by multiplying a divergent factor.
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