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ABSTRACT. This paper presents a new class of ordinary differential equations on

manifolds containing second order ordinary differential equations as a special sub-

class. The main result of the paper is the genericity of hyperbolicity of equilibrium

points in this class. A subclass containing the classical mechanical systems is also

discussed there.

1. Introduction

One of the important special classes of vector fields which can be defined
in a coordinate-free manner are second order ordinary differential equations
(ODEs) on manifolds (see e.g. [1, 3, 11]). We introduce a new special class
of ODEs on manifolds containing second order ODEs as its special sub-
class. Locally they are represented by systems of the form

(1.1) * = P(*)y, y = g(χ,y),

where g e (7(17, Rn), P e (7(17, Mn\ U c Rn is an open set and Mn is the set
of all n x n matrices. The mapping ΦP: TR -> TRn, ΦP(x, y) = (x, P(x)y) is a
fiber preserving bundle endomorphism of TRn, linear on each fiber. Therefore
we call such special vector fields E-vector fields. If ΦP = idTRn then P(x) is
the unit matrix and the system (1.1) is a second order ODE on Rn.

A special subclass of the class of E-vector fields are mechanical systems
of the form

(1.2) * = P(χ)y,

M + MX, y) ,

where P e Cr(U, Sn\ Sn is the set of all n x n symmetric matrices, Ve CΓ(C7, R\
hGCr(U,Rn), yτ is the transpose of y. This system can be written as the
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sum of the Hamiltonian vector field with the hamiltonian H(x, y) = %yτP(x)y +
V(x) and the E-vector field x = 0, y = h(x, y). The notion of the E-vector
field, which will be precisely defined in the next section, enables us to define
similarly as above also mechanical systems on manifolds. A definition of a
mechanical system on manifolds is given for instance in [1, 2, 7, 18, 21],
where it is defined as a class of second order ODEs.

In this paper the main results deal with generic properties of singular
points of E-vector fields and mechanical systems defined as E-vector fields.

2. E-vector fields

Throughout the paper M will be an n-dimensional C°°-manifold without
boundary and with C°°-Riemannian metric <., . >. We use the notation Xk(M)
for the space of all Cfc-vector fields on M. Let TM be the tangent bundle
of M. The papers [16] and [17] inspired us to define E-vector fields on
manifolds. Let us recall the following definitions given in these papers (see
also e.g. [1, Chapter 3, Section 3.4]).

DEFINITION 2.1. A bundle endomorphism A of the tangent bundle TM
is a Ck-mapping A: TM-+TM whose restriction on each fiber TXM is the
linear endomorphism A(x) of TXM. The set of all Cfc-bundle endomorphism
of TM we denote by Γ*(End (TM)).

DEFINITION 2.2. A bundle endomorphism A e .Γk(End (TM)) is called of
constant corank if, for any x e M, the rank of A(x) is independent of x. In
this case, if the constant rank equals n — r, we call A a bundle endomorphism
of corank r. We write corank A = r. The set of all A e Γk(End (TM)) of
corank r we denote by Γk(End (TM)).

In Section 6 we shall give a criterion (Lemma 6.1) for the local con-
stantness of rank A (x) for A e Γfc(End (TM)). Now let us define E-vector
fields on M.

DEFINITION 2.3. Let A e Γk(End (TM)) and π: TM -> M be the natural
projection. A vector field F e Xk(TM) is called an E-vector field on M if

(2.1) Dπ o F = A ,

where Dπ: T2M -> TM is the derivative of π and T2M =. T(TM) is the double
tangent of M. The set of all such vector fields with A fixed we denote by
Ek

A(TM) and we define Ek(TM) = (jAeΓk(End(TM))E
k

A(TM).

The set Ek

dτM is exactly the set of all second order ODEs on M of the
class Cfe, where ίdTM is the identity map on TM. One can easily check that
any F e EA(TM) is locally represented by a system of ODEs of the form (1.1).
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Now we globalize the definition of mechanical systems mentioned in the
introduction. By [9, Example 6.10] for any manifold Y there exists a regular
2-form v on the cotangent bundle T*Y of Y which define a symplectic struc-
ture on Y. The 2-form induces a map ηv: TY-> T*Y, vx H* η(vx)wx9 vx e TXY,
where η(vx)wx := v^, wx), wxeTxY. By [1, Proposition 13.7] the mapping η
is a vector bundle isomorphism (in particular, a diffeomorphism of TM). This
implies that there exists a regular 2-form ω on the cotangent bundle T*(TM)
of the tangent bundle TM which define a symplectic structure on the double
tangent T2M. The form ω defines the isomorphism

b: Ck(T2M) -> C*(T*(TM)), b(X) := ixω ,

where ixω is the inner product of X and ω (see [1, Definition 14.13]),
Cfc(T*(TM)) is the set of all (^-sections of T*(ΓM) and Ck(T2M)) is the set
of all C*-sections of T2M. If H e Ck+ί(TM, R) then dH e C*(T*(TM)). Since
the map b is an isomorphism, there exists a vector field XH on TM such
that &(-YH) = ίXaω = d/f and this means that XH is a Hamiltonian vector field
with the Hamiltonian function H.

Consider the function H e Cfc+1(TM, R\ H(vx) = i < BOΦ* - vx9 vx >,
y x eT x M, xeM, where B e Γk+1(End(TM)) is such that the mapping £(x):
TXM-+TXM is self-adjoint with respect to the scalar product < , >x on TXM
for any xeM. The set of all such B e Γ*+1(End (TM)) we denote by
7^fe+1(End(TM)). By the above construction there is a Hamiltonian vector
field f\ with the Hamiltonian function H. Now we define another Ck-vector
field F2 on TM as a second order ODE on M with the property that each
of its integral curve ί i—> γ(t) satisfies the condition

(2.2) F f y=-grad»F(y) + G(7),

dy
where γ = —, P^y is the covariant derivative of y, grad P^ is the gradient

vector field on ΓM defined by dW(vx) = <grad W(x\ vx\ for all ux e TM,
where W e C*+1(M, R) and G e Γ*(End (TM)). We call the vector field F =
Fί + F2 a generalized mechanical system or shortly a mechanical system on
M and we identify it with ¥ = (B, W9 G) e Γs

fc+1(End (TM)) x Ck+1(M, R) x
.Γfc(End (TM)). This vector field on TM is locally represented by a system
of the form (1.2). If B is an isomorphism on each fiber then we have a
classical mechanical system and the function K: TM -* R, K(vx) = %(B(x)vx9 vxy
represents the kinetic energy, the function W: M -> R is the potential energy
and E: TM -> R, E(vx) = K(vx) + W(π(vx))9 vx e TM, is the total energy of the
systm «$̂ . The function L = K — Wo π is called the Langrangian of the me-
chanical system. The mapping G e Xk(TM) represents the external force of
5̂ . We use these notions also in the case when B is not an isomorphism
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on each fiber. The space of all the above defined mechanical systems we
denote by Jtk = Jtk(TM\ In Section 5 we shall study some basic generic
properties of mechanical systems in the space Jίk(TM).

REMARK. The wide-spread notion of a mechanical system on a manifold
M (see e.g. [1, 3, 7, 18, 21]) is defined as a second order ODE on M defined
by two functions K: TM -> R, K(vx) = %(vx9 υx\ vx e TM, W: M -> R and some
external force. The main result concerning mechanical systems which we
shall prove in Section 5 says that singular points of generalized mechanical
systems on TM lying in the zero section (TM)0 of TM consists generically
of isolated points and the corresponding Hessian at these points is an iso-
morphism. This result is an extension of results by S. Shashahani [20] con-
cerning generic properties of mechanical systems. We remark that G. Fusco
and M. Oliva [6] recently obtained some results concerning dissipative me-
chanical systems with constraints. We remark that in our definition of gen-
eralized mechanical systems the vector bundle endomorphism defining the
function K which in classical mechanical systems represents the kinetic
energy, need not to be an isomorphism on each fiber. Of course, in the
case of classical mechanical systems with non-degenerate Lagrangians this is
not possible. We give an example of an E-vector field on R2m which in a
special case has the form of a generalized mechanical system. It is true that
the above abstract approach is not necessary in this case, however Theorem 4.2
can be applied to this case.

Let us give examples of equations which have the form of E- vector fields.

EXAMPLE 1. Consider the following class of models coming from reaction
kinetics. Let us consider a chemical reaction of reactants al9 a2, ..., an con-
sisting of m reactions expressed graphically as

n n

Σ **ak •-> Σ β*<*k (i = 1, 2, . . . , m) ,
k=l k=l

where αίfc, βik are non-negative integers. If uk is the concentration of ak then
the dynamics of the reaction can be described by the system of differential
equations

where yik = βik — αίfc and vvf is the velocity of the i-th reaction. In many

applications the velocity wf is supported to be of the form wf = fef Πfc=ι Mfc l k>
where fc, is a constant. If there are some constraints on the variables
M!, u2, •••> un given by smooth functions which define a smooth manifolds,
we have to deal with a vector field on a manifold. The structure of a chemical
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reaction determines the structure of the corresponding vector field. We give

an example of such a structure where the dynamics of the corresponding

reactions is described by an E-vector field.

Let al9 02,..., an, Al9A2,...,An be reactions for which the system of

reactions has the form

n n n n ^

(I) Σ «ikak + Σ «ikAk *-* Σ βik<*k + Σ βtkAk (i = 1, 2,..., n)
k=l k=l k=l k=l

n n ^ n n

(Π) Σ δjk<*k + Σ δjkAk H-> Σ fyfcfl* + Σ fίjkAk (7 = 1, 2,..., n).

& = (ήίk\ Γ11 =<& — stf, Γ12 = 2 — % Γ2l = <6 — stf, Γ22 = 2 — #, wk, rk be

concentrations of ak and Afc, respectively, u = (w l 5 M 2 , . . . , wn), t; = (ι?1? t;2,..., vn),

W; is the velocity of the i-th reaction of the system (I) and Wj is the velocity

of the 7-th reaction of the system (II). Then the dynamics of the system of

reactions (I) and (II) is described by the system

where w = (wl9 w2,..., wjτ, W = (Wi9 W2,..., Wn)
τ. If Γ12 = 0—the zero ma-

trix and w = w(w, t;) = (Φι(υ)vl9 ...,φn(u)vn)
τ, where ^(M), ..., φn(u) are smooth

functions, then the above system has the form

(**) ώ = B(u)v, ϋ = g(u, v),

where B(u) = Γ^(φ^(u)Όl9..., φn(u)vn)
τ and g(u, v) = Γ2l w + Γ22 W. In applica-

tions the functions φ^u) may have zero points. They are often supposed to

have the form φ^u) = ktull ... uy

n

n.

More generally, we can define differential equations on graphs as follows.

Let Γ be an oriented graph with two sets of vertices A = {al9 a2,..., an] and

B = {bί9 b2,..., bn} and edges (ak9 &,.), (bi9 ak) connecting the vertex ak with bh

with the orientation from ak to bt and bt with ak with the orientation from

b{ to αfc, respectively. Let αkί be the number of edges of the type (αk, fcf) and

jSίfc the number of edges of the type (bh ak). Let a function uk(t) correspond

to the vertex ak and a function wf(w) correspond to the vertex bh where

w = (uί9 u2,..., MΠ). The functions wf(w) are given and the functions uk are

unknown. The system (*), where yίk = βίk — αίk, is called a system of differen-

tial equations on the graph 7". The structure of the graph Γ determines the

structure of the system (*) and as a special case we have a system of the

form (**). If for instance, dim u = dim v = 1, Γ12 = Γ2ί = Γ22 = 1, w(w, t;) =

φ(u)v, W(u,v)=—φ(u)v — ̂ φ'(u)v2 — ψ'(u) + h(u,v)9 where ψ, h are smooth
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functions then the system (**) has the form

ύ = H(u9 v),

where H(u, v) = \φ(u)v2 + ψ(u). The reactants producing the term h play the
role of an "external force" during the reaction. Such systems in higher dimen-
sions are studied in Section 5.

EXAMPLE 2. Consider an integrodifferential equation of the form

(2.3) x = A(x) |jexp (Bt)}c + £ {exp B(t -

where A e Ck(Rn, Mn\ g e Ck(R, Rn), k ̂  1, B e Mn, c € Rn. This equation can
be written as the system

(2.4) x = A(x)v , Ό = Bv + g(x)

with the condition t (O) = c. The system (2.4) is an E-vector field on Rn. If
A(x) = diag [xl9 x2, . . . , xw}, where x = (xl9 x2, . . . , xn} and Gf(x, ί) is the i-th
coordinate of the vector {exp(Bt)}c + ]'0{exp B(t — s)}g(x(sj)ds, then (2.3)

X
represents a model of population dynamics, where the relative velocity — of

x,

grows of the i-th species is G,(x, ί). Integrodifferential population models are
recently intensively studied. One can study also more general equations than
equation (2.3), e.g. equations of the form (2.3), however with integrals contain-
ing finite or infinite delays. Population models for such equations are studied
e.g. in [4]. Such equations with delays can also be defined in an analogous
way as E-vector fields (also on manifolds) and they can be studied from our
generic point of view. However we do not pursue this problem.

Even though the right hand side of the second equation of (2.4) is linear
in v, using the same procedure as in the proof of Theorem 4.2 one can prove
that there is a residual subset <^f0 of the space &o(TRn) of systems of the
form (2.4) such that if 'F e <ff0, then the set K(F) of all singular points
of F consists of isolated points which are all hyperbolic. If (x, v) e K0(F),
then c e Rn in (2.3) must be equal 0 and therefore K0(F) = K(F)ft(TRn) = 0,

REMARK. The second order ODE on a manifold M can also be defined
as a vector field on TM such that any solution β: I -> TM(I a R is an interval)
satisfies the condition D(π o β) = β, where π: TM -> M is the natural projection
(see e.g. [2, 3, 11]). Similarly one can define an E-vector field as a vector
field F on TM such that any solution β: I -> TM satisfies the condition



A class of vector fields on manifolds 133

(2.5) D ( π o β ) = Aoβ,

where A e Γk(End (TM)). This means that if β = (y, δ) is a local representa-
tion of β and π is a local representation of π then π o β = y, D(π o β) =

/ dγ\
(y, y ) ( y = — and if A(x9 y) = (x, P(x)y) is a local representation of A then

\ */
the condition (2.5) yields y = P(γ)δ, δ = #(y, δ).

DEFINITION 2.4. If A e Γ*(Endr(TM)), then a vector field F e E\(TM) is
called an E-vector field of corank r. The set of all such vector fields we
denote by E\t,(TM) and Ek

r(TM) := {Ek

A,r(TM): A e Γ*(Endr(TM))}.

THEOREM 2.5. I f F e Ek

AQ(TM\ k ̂  1, the there exists a Ck-dίffeomorphism
h: TM-> TM such that F* εE^^TM) defined via

F+(y) := Dh(h-l(y))F(h-*(y)), y e TM ,

is α second order ODE on M.

PROOF. Given any x e M define the mapping hx: TXM -> TXM, hx(y) =
A(x)y, and the mapping Λ: TM -> TM, Λ(ι?J = hx(υx), vx e TXM. Since the
bundle endomorphism A is of corank 0, the linear mapping A(x): TXM ->• TXM
is invertible for any x e M. Define the mapping h~l:TM^TM9 h~ί(vx) =
(A(x))~l(υx)9 vxeTxM, where (A(x))~i is the inverse of A(x). The inverse
mapping theorem implies that /Γ1 is of the class Ck and obviously it is the
inverse of h. Let F^ be defined as in the theorem. The vector field F^ is
locally represented by a system of the form (1.1), with P(x) = /—the unit
matrix. Since the C*-diffeomorphism h is defined globally, the Ck~l-vector
field F is a second order ODE on M.

3. Generic bundle endomorphisms

We shall study in the next section generic properties of E-vector fields.
Therefore we need to describe basic generic properties of bundle endomor-
phisms. Basic generic properties of matrix functions defined on the n-dimen-
sional disk are presented in the paper [12]. In this section we give a glob-
alization of these results in a form useful for our prupose.

One can consider an A e /"*(End (TM)) as a Ck-section of the fiber
bundle L(TM) := (p, End (TM), L(Rn))9 where p: End (TM) -> M, p(B) = x for
B e End (TXM). The coordinates on the fiber bundle L(TM) are defined as
follows:

Let (17, α) be a chart on M and (Tα, α, U) be the natural chart on TM
induced by (17, α) (see e.g. [3]). Then define the natural chart on L(TM) as
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a triple (Lα, α, 17), where La(x) = (α(x), BΛ(x)) for β e End (TXM\ bΛ(x) = AΛ(y\
y = α(x), Tα o B o I^fo i;) = (y, Λα(}>)4 Thus for A € Γk(End (TM)) we have
the mapping

(3.1) AΛ:*(U)^Mn,

defined via

(3.2) ΦΛ(y) := Tα o A(x) o T'l(y9 υ) = (y, AΛ(y)υ) .

DEFINITION 3.1. Let Sn be the set of all n x n symmetric matrices. Define
the sets

Rr = {B e Mn: rank B = r} ,

Rs

r = {B e 5Π: rank £ = r} .

Let us recall the following well-known results.

PROPOSITION 3.2.

(1) The set Rr is a smooth submanifold of Mn of codimension (n — r)2

(2) The set Rs

r is a smooth submanifold of Sn of codimension
i(n - r + l)(n - r)

(see e.g. [8, Proposition 3.2]).

DEFINITION 3.3. A bundle endomorphism A e Γ*(End (TM)) has the
property T (or the transversality property) if for any x e M there is a chart
(17, α) on M such that x e U and

(3.3) AaΛ\R,9 r = 0, 1, ..., n

(i.e. AΛ transversally intersects Rr\ where Aa: α((7) -> L(Rn) is defined by (3.1)
and we identify L(Rn) with Mπ. Analogously we define the property T for
A E Γf(End (TM)) by the condition

(3.4) 4 β f h Λ ; , r = 0, 1, ..., n.

If (V, β) is another chart on M as in Definition 3.3, where x e K, then

Γ, o A(x) o Γ^(Λ t;) = Tβ o T,-1 o A(x) o ΓΓHί^ o TJ-^y, i;))

and therefore there is a regular linear map CΛβ e L(Rn) such that Φ^(y) =
(y>Aβ(y)) (see (3.2)), where Aβ(y) = CΛβ o ̂ (y) o C'/. This implies that AΛ ftl Λk

ίĵ  A^ ίtl Rk. Thus Definition 3.3 is independent of coordinates.
Let M be a compact Riemannian manifold. The set 7"k(End (TM)) has

the natural linear structure. We can define the norm |||^4|||k of A e
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(3.5) I M I I k = sup(M(x)||o, \\DA(x)\\l9...9 \\DkA(x)\\k) ,
xeM

where || ||£ is the norm in L1(TXM) — the space of continuous i-linear mappings
of TXM into itself and A is considered to be a Ck-section of End (TM). One
can check that Bk = (Γk(End (TM)), ||| |||k) is a Banach space. Analogously
Bl = (Γs

k(End (TM)), ||| |||k) is a Banach space.
Define the mappings

pΛ: B
k x α(£7) -* L(Rn) , (A, y) ̂  AΛ(y) ,

where (£/, α) is a chart on M, ,4α is defined by (3.1) and

p.M: α(l7) -* L(K") , pβM(y) = pΛ(A9 y) ,

where Ae Bk is fixed.
Let Fc=α(l/) be an open set with 7cα(l7) and fc ̂  n. Then by the

Abraham's transversality theorems (see [3, Theorems 18.2, 19.1]) the set of
all A e Bk for which pΛA ίflp #r for r = 0, 1, . . . , n is open and dense in Bk. An
analogous assertion is valid in the case of the Banach space B$. We have
the following theorem.

THEOREM 3.4. Let M be a compact smooth Riemannian manifold of dimen-
sion n, Bk = (Γk(End(TM)), ||| |||k), Bk = (Γk(End (TM)), ||| |||k) be the Banach
spaces with the norm defined by (3.5) and k^.n. Then there is an open dense
subset Bτ of Bk (of B$) such that if Ae Bτ, then A has the property T in
the sense of Definition 3.2.

DEFINITION 3.5. If A e Bτ then we say that A is generic.

As a consequence of [3, Corollary 17.2] we have

PROPOSITION 3.6. // A e Bτ c. Bk(a β£), (17, α) is a chart on M and AΛ

is the mapping defined by (3.1), then the set Σr(AΛ) = A^(Rr)(Σr

s(AΛ) = A^(Rs

r))
is either empty or it is a Ck-submanifold of α(C7) of codimension (n — r)2, i.e.
dim Σr = n - (n - r)2^(n — r+ l)(n - r), i.e. dim Σf = n - %(n - r + l)(n - r).

COROLLARY 3.7. // A έ Γ*(End (TM))(A e Γs*(End (TM))), then Gr(A) =
{x e M: rank ,4(x) = r} is a Ck-submanifold of M of codimension (n — r)2, i.e.
dim Gr(A) = n - (n - r)2 dim, Gr(A) = n - |(n - r)(n - r + 1).

4. Generic E-vector fields

Let F be an E-vector field from £^(TM), where M is a compact Rieman-
nian manifold, {Ui9 (*i}Γ=ι be an atlas on M and
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(4.1) Ft:

be the local representation of F with respect to the chart (7^., αί? I/£) on

TM. Let us define

where |||Λ|||k is defined by (3.5), D{Xty)fi is they-th derivative of/ f at (x, y) and let

(4.2) H F I I i = ^ max \\F.\\, .

Define the set

(4.3) g\TM) ={Fe Ek(TM): \\F\\k < 00} .

The set Sk(TM) has a natural linear structure and one can check that ($k(TM\
|| ||fc) is a Banach space. The set of all FE$k(TM\ where A is fixed, we
denote by <fJ(ΓM).

Generic properties of second order ODEs on a manifold M have been
studied by S. Shahshahani [19] and generic properties of 1-parameter families
of second order ODEs are described in [13, 14, 15]. Proposition 3.6 and
its corollary show that generic bundle endomorphisms which are components
of generic E-vector fields are not simple in general. Namely, the set of all
x e M for which the linear map A(x): TXM-> TXM is not an isomorphism, is

locally an algebraic variety whose (n — fc)-th stratum has the dimension n — k2.
We shall show that in spite of this fact we are able to prove some results
concerning generic properties of singular points of E-vector fields.

Recall that vx E TXM is the singular point of F e £k(TM) if F(vx) = 0(vx)—
the zero of TVχ(TM). We denote by K(F) the set of all singular points of F.

DEFINITION 4.1. Let F E <ζϊ(ΓM). Define the sets

Sj(F) = {vx E TM: vx E K(F), rank A(x) = j} , j = 0, 1, ..., n

and let S(F) = (Jn

j=1 Sj(F).

If A = idTM then Sj(F) = 0 for = 1, 2, ..., n and K(F) c (TM)0 =

{vx E TM: vx = Ox—the zero in TXM}—the zero section of TM. By S.
Shahshahani [19] (see also [15]) the set K(F) consists genetically of isolated
points which are all hyperbolic.

Let us write K(F) as K(F) = K0(F)(J K^F), where K0(F) = K(F)Π(ΓM)0

and K,(F) = K(F) - K0(F).

THEOREM 4.2. Let M be a compact manifold. Then there exists a residual
subset β\ of <ίk(TM) such that if F E β\ then
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(1) F e Ek

A(TM\ where A e Γ*(End (TM)) is a generic bundle endomorphism

in the sense of Definition 3.5.

(2) The set K(F) of all singular points of F consists of isolated points

which are all hyperbolic and K0(F) is finite.

Before starting to prove this theorem we give an example which demon-
strates the main idea of the proof and also a difference between generic
properties of second order ODEs and E-vector fields.

EXAMPLE. Consider the plane E-vector field

ύ = φ(u)Ό,

v = f(u, v),

where M, v e R9 φ and / are smooth functions. If φ(ύ) φ 0 for all u then
by Theorem 2.5 this system is conjugated to a second order ODE. If, for
instance, φ(u) > 0 for all u then the system has the same trajectories as the
second order ODE

ύ = v,

By the results of S. Shahshahani [19] the hyperbolicity of singular points is
a generic property in the space of all smooth second-order ODEs. In this
case all singular points lie on the submanifold v = 0. If φ(u) has some zeros
then the system possesses singular points also outside the submanifold v = 0.
Let, for instance, φ(u) = u2, f(u, υ) = au + bv, a φ 0, b φ 0. Then K = (0, 0)
is the only singular point which is non-hyperbolic. If we perturbe φ into
φε(u) = u2 — ε, ε > 0, then the corresponding systems has three singular points

K = (0, 0), K1 = ( — .y/ε, ι?β), K2 = C\/ε> — ve), where vε = τ\f& One can easily

check that all these singular points are hyperbolic. If b = 0 then it is neces-
sary to perturb also / into the generic case with b Φ 0. In the following
proof we shall find generic perturbations of the linear vector bundle endo-
morphism as well as of the vector field defining a given non-generic generalized
vector field in such a way that the resulting generalized vector field has all
singular points hyperbolic.

PROOF OF THEOREM 4.2. The assertion (1) is a direct consequence of
Theorem 3.4. Let TM = \J?=1 Ti9 where Tt are compact sets and Tί+ί => 7]
for all i. Let Fe<f*(TM), ι̂ o e K(F) Π 7] and (Tα, α, U) be a chart on TM
such that vXoeπ^(U). Then the local representation of F with respect to
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this chart has the form

(4.4) ?β fώ = B(u)υ,
J° \ύ = g(u9 υ),

where B e C*(α(l7), MJ, g e Cj(α(l7) x Λ", Rn), TΛ(vXQ) = (w, ι;), C* is the set of
all bounded C*-maρpings with bounded derivatives up to order k. Let us
define the mapping

: α(l7) x Rn -> Y:= Rn x Mn x Rn x

and let 14; = {(y, A, z, C, D) e 7: rank ,4 = r, Ay = 0, z = 0}. If rank A = r then
there exist regular matrices P, β e Mn such that PAQ = diag {1, . . . , 1, 0, . . . , 0}.
Therefore Ay = 0 iff wx = 0, . . . , wr = 0, where w = (wl5 . . . , wπ)

Γ = Q~ly. From
this and Proposition 3.2 (1) it follows that Wr is a smooth submanifold of
Y and codim W^ = n - h r + (n- r)2. Let ΛΓ c α(L7) x Rn be an open set with
compact closure N a α((7) x #" and (p, q) e N. Abraham's transversality
theorems ([3, Theorem 18.2, 19.1]) imply that the sets &r

k(N) = ̂  =
{(g9B)€X:=CkMU)^^Rn)xCk^U\Mn):ΦgtB^Wr}9 r = 0, 1, ..., n
are open dense in X. If (g9B)e^r

k then Z;>jB(ΛΓ) := ((^ΓWrMΠW is a
C*"1 -submanifold of (α(l/) x Λ Π )ΠΛΓ of codimension n + r + (n - r)2. This
implies that Zr

βtB(N) = 0 for r < n - 1 and dim Z^(N) = dim Z£β = 0.
If (p, <?)eZ£B(N) then det B(p) ̂  0 (therefore t; = 0) and generically also

C:=—g(p,q\ D := ^-g(p,q} are regular matrices. One can easily show
dM at;

that the matrix I j is regular and therefore λ = 0 is not an eigen-
\C D J

value of DF(υXo). Let W(c) = {(y, A9 z, C, D) e Y: A, C, D are regular matrices,

y = 0, z = 0, I 1 has a purely imaginary eigenvalue}. This set is a semi-
C D

algebraic variety of codimension ^ 2n H- 1. Therefore if (0, 5) e ^k(N, c) :=
{(β,B)eX:=Φ, ( J l fhff W(c)} then (Φ^BΓH^c)) = 0. Therefore if ( p , q ) e
ZgtB(N) then q = 0 and the point (p, 0) is the hyperbolic singular point of (4.4).

If (p, q) e Zg~B(N) then rank B(p) = n — 1. There exist regular matrices
P, β e Mn such that PB(p)Q = diag {1, 1, . . . , 1, 0}. Let PB(u)Q = (bv(u)). Let
us introduce new coordinates via the regular mapping Ψ: x = Pu, yt =

fruMίQ"1^! + '•• + bin(u)(Q~lv)n> 1 ̂  i ̂  n - 1, y, = (β'1^ near (p, 4), where
(β"1!;),- is the ί-th coordinate of (Q~lv\ In these coordinates the system (4.4)
has the form
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(4.5) H:

Xι = JΊ >

Xn-l = y*-l

xn =ai(x)yi

y = 8(χ> y) ,

an(x)yn,

where α/p) = 0, l ^ j g n , (p, g) = ( p l 9 ...,pπ, ql9..., qn). Obviously, q1 =
0, ..., <?„_! =0, #„ / 0 (generically). Thus we have

DH(p, q) =

where C = ̂ (p, g), 5 = ̂ (p, q). If C = (cβ) and D = (dtj) then det DH(p, q)

= 0 iff det D(p, q) = 0, where

' s1(x)y1

(4.6) ΰ(x,)') =

0

0

Saa(p)
dXί

 qι

0

0

8a.(p)q

C

1

0

n\J

0 ...

0 ...

f)\J ...

D

0

1

n\J

0

0

n\J

^mfe y)

dnn(χ, y)
dan(x) dgfay)

sXχ) = -̂ '̂ co (χ' ̂  = ^ >

). Let us define the mapping ψβtB: V x Rn

^ f, 7 g „, 3~ =
π x Mπ+1 by

, y\ D(x, y)) ,

where V = ι/<(α(l/)) c R", αB = (α1? α2, . . . , αn) and D(x, y) is defined by (4.6).
Let D1 = {(y 1 , . . . ,y n ,^w,z,0e^ 4 n xM n + 1 :y 1 =0, >;2 = 0, ..., yn., = 0,
wn = 0, z = 0, det β = 0}, where vvn is the n-th coordinate of w. This set
is an algebraic variety whose strata have codimension ^ 2n + 1. The set
WQ = {(g, B) E X: ψgtB^v0 ^1} i§ open dense in X, where X is defined as above
and V0 c K is an open neighbourhood of (p, q), VQ c K If (0, β) e P 0̂ then

(Ψg.BΓ1^!)^ vo = 0 τhίs means that generically det DH(p, q) + 0.
Now we show that DH(p, q) has generically no pure imaginary eigen-

values. Since q^ = 0, ..., qn_± =0 the characteristic polynomial of DH(p,q)
has the form (λ — snqn)P(λ\ where P(λ) is the determinant of the matrix



140 Milan MEDVED

— Λ nu n

-c2ι - λd 2ί

... λ* - /</„_!„_! - £„_!„-! -</„_!

— cnl — λdnί ... — £„„_! — λdnn_ι λ — dn

where s, = s/p), c0 = ctj(p9 q)9 dtj = dtj(p9 q). This polynomial is of degree

2n — 1 and it has a purely imaginary eigenvalue ia iff it factors as

(λ2 + a2)P2n-2(λ)9 where P2n-3 is a polynomial of degree 2n - 3 with real

coefficients which are polynomial functions of cij9 dtj and pk. Therefore the

coefficients of P(λ) must satisfy some equalities which define an algebraic

variety / in M2n of codimension ^ 1. Therefore the set D2 = { ( y ΐ 9 ...9yn9v9

w, z, Q) € R4n x M2n: y1 = 0, ..., yn^ = 0, wπ = 0, z = 0, Q e /} is an algebraic

variety of codimension ^ 2n. The set P (̂c) = {(#, 5) 6 ^ f f f Λίllp0 D2} is open

dense in X and if (g9B)eX then (^β)"1^)^ *o = 0- T^s means that
D#(p, ^) has generically no purely imaginary eigenvalue. Since any 7] is a

compact set, we can cover it by a finite number of charts {(Tj.9 U}9 αj)}^

and using the above local results one can find open dense subsets &f(j)9

7 = 1, 2, ..., m of ^(TM) such that if F E £ k ( j ) then X(F)ΠT^(ί/;) con-

sists of isolated points which are all hyperbolic. Obviously, the set $\ :=
Qjij Qjί? if (7) is residual in $k(TM) and it has the properties as in the

theorem.

5. Generalized mechanical systems

In this section we study generalized mechanical systems (shortly mechani-

cal systems) defined in Section 2 which are locally represented by systems of

the form (1.2) with /(x, y) = Q(x)y, where Q(x, y) is a Cfc-matrix function. The

set of all such systems we denote by Jίk = Jtk(TM) and a mechanical system

y e Jik is identified with a triple (B, W, G) e Γs

k+1(End (TAf)) x Ck+ί(M, R) x

Γ*(End (TM)). We shall need the topology of a Banach space on the space
of all mechanical systems and therefore we restrict ourselves to a subset

<%k(TM) of Ji\ΎM) defined as <%k(TM) = Bk x Cj(Af, R) x £*, where Bk =
(Γk(End(TM),|| ||fc), Bέ = (Γs

k(End (TM)), || ||fc) are Banach spaces defined in

Section 3 and C£(M, R) is the space of all bounded Ck-functions on M with
bounded derivatives up to order fe. The form of mechanical systems enables

us to define the natural structure of a vector space on 38k(TM\ i.e. λ£S +

μff" = (λB + μF, /W + μW9 λG + μG') for A, μ 6 R, ^ = (B, W; G), ̂  =
OB', W^r, G') 6 @k(TM). The space @k(TM) is a Banach space.

We shall study generic properties of mechanical systems near singular

points lying in the zero section (TM)0. We define K0(&) :=
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where K(£f) is the set of all singular points of the mechanical system
y E @k(TM).

Let us recall the definition of the Hessian G(x) of a vector field G on
a manifold N. This is the linear map τ o TXG: TXN -+ TXN (see [3, Section
5]), where TXG: TXN -> T0χ(TN) = T0χ(TN)0 φ T0χ(TxN), Ox is the zero in TXN9

τ: T0χ(TN) -> TXN is the projection onto the second summand followed by
the canonical identification of T0χ(TxN) with TXN. The Hessian locally repre-
sents the linearization of the vector field at this singular point.

THEOREM 5.1. Let M be a compact manifold. Then there is an open
dense subset Of( of @k(TM) such that if &> e @k

ί9 then the set KQ(&) is finite
and if vx e KΌ(&), then the Hessian &(υx): TVχ(TM) -» TVχ(TM) is an isomor-
phism.

PROOF. Let TM = (J^ Th where all 7] are compact sets and Γί+1 => T{

for all i. Let F e Oξ(TM), vxeK(^)r\T{ and (TΛ9 α, 17) be a chart on TM
such that VX€U'M(U). Then the local representation of F with respect to
this chart has the form

(5.1) ύ = A(u)v,

where (A, V, Q) e ®k

b := Cf (α(l7), Sn) x C?(α(t7), R) x C6

fe(α((7), MJ, Tβ(ι;,) = (ιio, 0).
Let us define the mapping

:= Rn x 5n x Rn x Sn x Mw ,

grad K(M), D(grad K)(W), Q(u))

and let

ΛΓ0 = {(y, c, z, D, JE) 6 Z: j; = 0, z = 0, C, D, E e Mn are regular} ,

y,1 = {(y, C, z, A £) e Z: j; = 0, z = 0, C e Λί, D, E are regular} ,

yr

2 = {(y9 C,z9D,E)εZ:y = 0,z = Q,De Rs

r, C, D are regular} ,

yr

3 = {(y9 C,z,D,E)εZ:y = Q,z = Q,Ee Rr9 C, D are regular} ,

where Rs

r, Rr are the sets from Definition 3.1.
Obviously, the set X0 is a smooth submanifold of Z of codimension 2n.

From Proposition 3.2 it follows that the sets Yr

j, j = 1, 2, 3 are smooth
submanifolds of Z, codim Yr

j = 2n + τ(n — r + l)(n — r), j = 1, 2 and codim l̂ .3

= 2« -I- (n — r)2. From the Abraham's transversality theorems it follows that
the sets Ck

0 = {(A,V,Q)eZ'.pAiV,QA\ϋX0}9 C* = {(A, V, Q) εZ: Aι.Fff lίtlΓo 1?},
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7 = 1, 2, 3; r = 0, 1, ..., n — 1, are open dense in Z, where U0 a α(l/) is an
open neighbourhood of (MO, 0) with Ϊ70 a α(ί/). Therefore C\ = Q?=έ(Π;=ι c>)
Π C£ is open dense in Z and if (B, K, β) 6 C\ then (p^K.βΓW) = 0 for j =
1, 2, 3; r = 0, 1, ..., n - 1, (PB,V,Q)~I(XQ) consists of isolated points. This
means that the system (5.1) has generically at most a finite number of singular
points lying in C/0Π {(M, t;): v = 0}. Using the procedure sketched at the end
of the proof of Theorem 4.2 one can first extend this generic property to the
whole Ti and then to the TM. Since the regularity of the Hessian &*(vx) is
independent of coordinates the proof is complete.

We do not pursue the problem of generic properties of singular points
of generalized mechanical systems lying outside the zero section and we do
not deal with the case in which linearizations of generalized mechanical sys-
tems at singular points have purely imaginary eigenvalues, either. Instead of
this we give a sufficient condition for the nonexistence of purely imaginary
iegenvalues of the linearizations.

Let us note that vx e K0(^) for Sf = (B, V9 Q) e @k(TM) iff x e C(F)—
the set of all singular points of the function V. Then the Hessian HXV: TXM x
TXM -> R (a bilinear map) of the function V at x is defined.

THEOREM 5.2. Let &> = (B,W,G)e $\, $\ being as in Theorem 5.1,
wx e K0(£f) and let the following conditions be satisfied:

(1) HxV(uχ9 B(x)vx) = HxV(B(x)ux, vx) for all ux e TXM,
(2) HxV(ux, B(x)ux) > 0 for all uχ9 vx € TXM,
(3) <G(x)Mχ, uxy < 0 for all ux e TXM.

Then the Hessian ^(wx) has n eigenvalues with negative real parts and n
eigenvalues with positive real parts.

PROOF. We proceed similarly as G. Fusco and M. Oliva in the proof
of [6, Lemma 4.2]. Let (5.1) be the local representation of (B, W, G), where
TΛ(vx) = (w0, 0). Let AQ = A(uQ)9 B0 be the Hessian of the function V at MO

and C0 = Q(u0). The matrices Aθ9 BQ are symmetric and assumption (1)
implies that A0B0 = B0A0. Therefore the matrix B0A0 is also symmetric.
Assumption (3) implies that the symmetric part of C0 is negative.

The matrix L = ( ° ) is the matrix of the linearization of (5.1) at
V*o Co/

(MO, 0) and

iff

def ° -'
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Thus we have the following characteristic equation for L:

(5.2) det (λ2! - λC0 - B0A0) = 0 .

Therefore λ is an eigenvalue of L iff there exists w 6 Rn, w / 0 such that

(5.3) λ2w - λC0w - B0A0w = 0 .

If w* is the conjugate transpose of w then w*β0A0w is positive definite and
symmetric and Re w*C0w < 0 since the symmetric part of C0 is negative.
Therefore (5.3) implies that there exist α, /?, γ e R, α, y > 0 such that

(5.4) λ2 + (α + iβ)λ -7 = 0.

This implies that (5.4) has not root on the imaginary axis. The same is true
for εC0 instead of C0, 0 ̂  ε ̂  1. Therefore it suffices to consider C0 = 0 and
for this case the assertion of theorem is obvious.

COROLLARY. If Sf = (£, W, G) e &\ ana for any wx e K0(&) the conditions
(1), (2), (3) of Theorem 5.2 are satisfied, then all critical points lying in K0(^)
are hyperbolic.

EXAMPLE 1. Consider the integrodifferential equation

(5.5) x = A(x) [jexp (Qt)}c - £ {exp Q(t - 5)} grad V(x(s))ds~\ ,

where A e Ck(Rn, Sn\ Q e Mw, c e Rn, Ke Ck(Rn, R), k ̂  1. This equation can
be written as the system

x = A(x)v,
(5.6)

ύ= -grad V(x) + Qv

with the condition v(0) = c. This is obviously a generalized mechanical system
on Rn, i.e. an E-vector field on Rn of a special form. Using the same proce-
dure as in the proof of Theorem 5.1 one can prove that there is a residual
subset BIQ of the set B^TR") of all systems of the form (5.6) such that if
B e Bjo, then the set K0 consists of isolated points which are all hyperbolic.

EXAMPLE 2. Let R3 — {0} be the space of positions with coordinates x.
Then tangent space T(R3 - {0}) = (R3 - {0}) x R3 is the space of positions
and velocities with coordinates (x, v). A classical mechanical system is defined
by a smooth Hamiltonian function H: T(R3 — {0})-»#. The Hamiltonian
function describing the motion of two bodies in jR3 in the gravity field is
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H(x, v) = \\\v\\2 — —-, where one of the bodies is fixed at the origin, μεR
l l ^ l l

and ||x|| is the norm of x. The corresponding Hamiltonian vector field XH is

x
(5.7) x = v, v = -μ-

Ίlxll3

(see e.g. [2]). Consider the following perturbation of (5.7):

(5-8) i -r , i.- + J / f c p ) .

This system possesses the same topological structure of trajectories on M =
(R3 - {0}) x #3 as the system

x = ||x||3t; , ύ = -μx + /(x, t;) ,

which can be obtained from (5.8) by rescaling the time. This is an E-vector
field on M . If we extend this system to the manifold M = R3 x R2 we obtain
an £-vector field of the form (1.1), where P(x) = diag (||x||3, ||x||3, ..., ||x||3),
which however is not in the form of a generalized mechanical system (1.2).

EXAMPLE 3. Consider the Kepler problem in one dimension given by
the system

where (x, y) e R+ x R — the phase space. This is a Hamiltonian system with

the Hamiltonian function H(x,y) = %y2 -- - After introducing so called
x

McGehee transformation u = x, v = ^/xy of the half-plane x > 0 with time

rescaling defined by — = x3/2 (see e.g. [5, 10]), we obtain the system
ατ

u = uv , v = -v2 — 1

which is no longer Hamiltonian. However, if we extend this system to R2

we obtain an E-vector field on Rn with singular points Kί = (0, —^/2)9 K2 =
(0, ̂ /2). The singularities Kί9 K2 correspond to the collision of the particle
with the attracting center x = 0.

The E-vector fields described in the above examples 2, 3 do not represent
generalized mechanical systems, however their perturbations can be studied
by using the method presented in Section 4.



A class of vector fields on manifolds 145

6. E-vector fields of corank r

We shall study the local structure of linear parts of E-vector fields of
corank r (see Definition 2.4). First let us formulate a modification of [16,
Lemma 3.1].

LEMMA 6.1. Let AeCk(U,Mn), k ̂  1, U c Rn be an open set, x0eRn

and A(x0) be of corank r. Then there exists a neighbourhood V of x0 such
that A(x) is of corank r for x e F if and only if

(6.1) E(x) = B(x)D(xΓ1C(x)

holds, where

0
(6.2) 0 , ,

\U ln-rj

P, β e Mn are regular matrices,

—(S3
E(x), B(x), C(x) are close to the zero matrix and D(x) is close to the unit
matrix /W_Γ.

PROOF. It is well-known that matrices P, Q satisfying (6.2) do exist. Let
the matrices E(x), B(x), C(x), D(x) be defined by (6.3). If V is a sufficiently
small neighbourhood of x0 then D(x) is regular for all x 6 K and the assertion
of lemma follows from [16, Lemma 3.1].

REMARK. A more general result concerning the existence of a Cfc-vector
bundle endomorphism of constant corank is proved in [1]. As a consequence
of [1, Proposition 3.4, 18] we obtain that A e Γfe(End (TM)) is locally of
constant corank iff Ker A = \JxeM Ker A(x) and Range A = (JxeM Range A(x)
are subbundles of the tangent bundle TM.

THEOREM 5.2. // F e Ek

A>r(TM) (see Definition 2.4) then for any vx e TM
there is a chart (TΛ9 17, α) on TM such that vx 6 π^(C7), TΛ(vx) = (0, 0) and the
local representation of F with respect to this chart has the form

U! = P(φ2 >

(6.4) ύ2 = v2 ,

v = g(u9 v),

where u^eR', w2, υ2eRn~r, u = (uί,u2), v = (vl9v2), P(u) is an (n — r) x r
matrix function, P(0) = 0, P, g e Ck.
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PROOF. The vector field F has a local representation of the form

x = A(x)y,
(6.5)

y = f(χ, y) >

where A is a Ck-matrix function and / e Ck. Let x0 e Rn. Since rank A(x0) =
n — r, by Lemma 6.1 there exist regular n x n matrices P, Q satisfying equality
(6.1). By the definition of Ek

A,r(TM) we have rank A(x) = n - r for all x. By

Lemma 6.1 we have the equalities (6.1), (6.3). If x = P~V y = Qv then the
system (6.5) becomes of the same form with PA(x)Q instead of A(x). There-
fore we may suppose without loss of generality that A(x) has the form

(6.6)

where B(0), C(0) are zero matrices and D(0) = /π_r. After introducing the

coordinates x = u9 y = Φ(u)v, where

Φ(u) = ( '' °1 ; \-D(uΓlC(u) D(u)~l

v — (vί,v2)9 vίeRr, v2€Rn~r, the system (6.5) with A(x) as in (6.6) becomes
of the form (6.4), where P(u) = B(u)D(uΓl. Obviously, P e Ck, g € Ck, P(0) = 0,
g(u9 v) = f(u, Φ(u)v).

COROLLARY 6.3. Let F e Ek

A^(TRn)Q—the set of all vector fields in the
set Ek

Ar(TRn) for which the matrix function A(x) has the form

(6.7)

where rank D(x) = n - r for all x E Rn. Then E(x) = 0 for all xeRn and the

system (6.5) has the form

x2 = y2 ,

Ϋ2 = f(χ, y),
which is equivalent to an r-parameter family of vector fields on R2n~r of the form

u = z,

w =/i (μι,.. , μ r ,w,w,z),
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where u = x2, w = y2, x = (μl5 . . . , μr, x2), y = (u9z)9 μl9 ...9 μr are parameters,

/ = (/ι,/2)

Define the set <ί*(ΓM) = {F e £k(TM): F e < (̂ΓM), A E Γ*(Endr(ΓM))},
where ^J(M ) is the set of all F e $k(TM) with common endomorphism A.

THEOREM 6.4. Let M be a compact manifold. Then there is an open
dense subset Hk of £k(TM) such that if F e Hk then

(1) K0(F) = (vxeK(F): vxε(TM)0} is either empty or it is a finite set,
where K(F) is the set of all singular points of F.

(2) // z0 e K0(F) then the linearization L(z0) of F at z0 has the zero
eigenvalue of multiplicity r and no purely imaginary eigenvalue.

PROOF. The proof of assertion (1) is the same as the proof of Theorem
4.2. If F e Sk(TM) and z0 e K0(F) then by Theorem 6.2 there are such coordi-
nates on TM in which the vector field F has the local representation of the
form (6.4), where (x, y) - (0, 0) are coordinates of z0. We have shown in the

proof of Theorem 4.2 that the matrices C = ^r-g(Q9 0), D = ^-#(0, 0) are generi-
du ov

cally regular. The matrix L of the linearization of (6.4) at (0, 0) has the form

L = ι

where B = diag {0, ..., 0, 1, ..., 1} eMn with r zeros on the diagonal. One
can easily show that P(λ) = det (-λI2n + L) = 0 iff Q(λ) = det R(λ) = 0, where

Rι(λ) = diag { — λ, . . . , -/I, 0, . . . , 0} 6 Mn with n — r zeros on the diagonal,
R2(λ) = {0, . . . , 0, 1, . . . , 1} e Mn with n - r units on the diagonal, R3(λ) =
[cl9 ..., cr, cr+1 + λdr+l9 . .., cn 4- >WΠ], where ch ά{ are the i-th columns of the
matrices C and D, respectively, and R4(λ) = —λln + D. Obviously, det R(λ) =

(-l)'Γ.det Q(λ\ where β(λ) = [cr+1 + λdr+ί,...9cn + Adn, ̂ W, ..., df(λ)],
rfy(A) = dj + p ί/l), ίi7 is the ί-th column of the matrix D and Pj(λ) =
(0, ...,0, -A, 0, ...,0)Γ, —A is the r-th element of Pj(λ). It is obvious that
there is an open dense subset Nl of Mn x Mn such that if (C, D) e N^
then the matrix β(0) is regular. This implies that λ = 0 is generically the
eigenvalue of L of multiplicity r. The other eigenvalues of L are zeros of
the polynomial q(λ) = det Q(λ). Using the transversality argument (see e.g.
[3]) one can show that if (C, D) e N2, then q has no purely imaginary root
and the proof is complete.
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REMARK. We have studied generic properties of E-vector fields and gener-
alized mechanical systems near singular points only. The problems concerning
closed orbits, bifurcations and some other global generic properties of these
objects, including their equivariant version, remain open.

The author is grateful to the referee for helpful suggestions and remarks
Concerning this paper.
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