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ABSTRACT. In this paper, we define the positive and negative limit sets and character-

ize their dynamical properties in terms of the non-Hausdorff sets. By using these

sets, we also consider the condition that a given homeomorphism has a square root,

and give an example of a wandering homeomorphism without square roots.

1. Introduction

For a given homeomorphism /, a homeomorphism g satisfying g g = /
is called a square root of /. Although the square root is not unique in
general, we always denote g by y/f. In this paper, we consider the condition
that a given homeomorphism of a non-compact space has a square root. For
this purpose, we use the positive and negative limit sets, which will be defined
and characterized in §2.

For homeomorphisms of compact spaces, we can use the nonwandering
sets to show the non-existence of square roots as follows: Let / be a homeo-
morphism. For any homeomorphism h, the nonwandering set Ω(f) of / and
the nonwandering set Ω{hflι~ι) of hflC1 satisfy the relation hΩ{f) = Ωihfh'1).
Since the square root y/f commutes with /, Ω(f) is also invariant under
y/f. By using this fact, we can construct a homeomorphism which has no
square roots: We choose a homeomorphism / of S2 such that / preserves
each curve of Figure 1 and exchanges two thorns on the equator. In particu-
lar, the equator with two thorns is invariant under /, and / exchanges their
branch points. If / has a square root y/f, then the equator with two thorns
is also invariant under y/f because Ω(f) consists of two fixed points and the
equator with two thorns. Thus y/f either exchanges or fixes the branch
points. However this contradicts the assumption that its square / exchanges
them.

The above argument cannot be applied to study the square roots of
homeomorphisms of non-compact spaces with empty nonwandering set. Thus
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Figure 1: / h a s no square roots.

we will define the positive and negative limit sets in §2 which replaces the

role of the nonwandering sets in the above argument. In § 2, we also charac-

terize the positive and negative limit sets in terms of the non-Hausdorff sets,

which were already studied in [3]. In §3, we show the relationship between

the positive (negative) limit set of / and that of yff. By using these limit

sets, we give an example of a wandering homeomorphism without square

roots and obtain the topological uniqueness of square roots in some special

case.

2. Positive and negative limit sets

Let X be a metric space and / a homeomorphism of X. For a compact

set K, we define its ω-limit (resp. cc-limit) set by ωf(K) = f]nez[jm^nfm(κ)

(resp. α r (X)= f\nez\Jm^nf
m{K)\ By definition, ωf{K) and <xf{K) are closed

sets. Furthermore, we can prove the following Lemmas 1 and 2 immediately.

LEMMA 1. Let f and h be homeomorphisms of X. For any compact set

K, the following equalities hold:

hωf(K) = ωhfh-

Mf(K) = 0Lhfh-

LEMMA 2. Let f be a homeomorphism of X. Then ccf{K) coincides with

ωf-ι(K) for any compact set K.

As in the case of the ω-limit (α-limit) set of a point, we can also define

the ω-limit (α-limit) set of a compact set by means of point sequences:
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LEMMA 3. A point p is contained in ωf(K) (resp. 0Lf(K)) if and only if

there are a converging point sequence {<?„}„=!,2,... °f K an^ integers mn (n =

1, 2,...) satisfying that mn^.n (resp. mn^ —n) and limΛ_>00/
mπ(#π) = p.

PROOF. Let p be a point of ωf(K). Then p is contained in \jm ^nf
m(K)

for any integer n. Hence there is a point pn (n = 1, 2,...) of [jm^nf
m(K)

such that d(p, pn) < 1/n. We choose an integer mn greater than or equal to

n such that pn is contained in fmn(K). Let qn = f~mn(pn). Then qn is con-

tained in K and limll_>00/
mn(gπ) = limfI_QOpπ = p. Since K is compact, we can

choose a subsequence {w,},=i,2,... such that {qΛi} converges to some point of

K as i->oo. Since mn.'^ni'^.i and limf_>00/
mn<(<?Πi) = p, the point sequence

{#n ί} i = 1 2 and integers mΆi (i = 1,2,...) satisfy the condition of Lemma 3.

Conversely, we assume that there are a converging point sequence

{<?«}n=i,2,... of K and integers mn (mn^ή) satisfying ]imH^aof
mn(qH) = p. We

fix an arbitrary integer N. If n ^ N, then mn^n'^. N9 and hence fmn(qn) is

an element of ( J m ^ / m C K ) . Therefore p is contained in Um^#/mCK). This

implies that p is an element of ωf(K).

The statement for αy(K) follows from Lemma 2. •

By taking sufficiently many compact sets, we will define the positive and

negative limit sets. Let I be a metric space with a countable base Θ =

{ί/Ji=slf2,... such that each Ut is a compact set. For a homeomorphism / of

X, we define the positive (resp. negative) limit set by coΘ(f)= Uf=i,2,...cy/(^i)

(resp. ocΘ(f) = U 1=1,2,...α/(^i)) Then these sets do not depend on the choice

of countable bases by the following lemma:

LEMMA 4. Let Θγ = {t/ i} i = 1 2 j # and &2 = {^}j=i,2,... be countable bases

such that Ui and Vj are compact sets. Then coΘί(f) (resp. ocΘl(f)) coincides

with (o®2(f) (resp. α^2(/)) for any homeomorphism f.

PROOF. Let p be an element of ωΘl(f). Then p is contained in ωf(Ui)

for some l/f. By Lemma 3, there are a converging point sequence {qn}n=i,2,...

of Ui and integers mn (n = 1, 2,...) satisfying that mn^n and limw_+00/
mn(<?n) =

p. Since Ui is compact, Ui is covered by a finitely many member of {Vj}.

Therefore infinitely many qn are contained in some Vj. By taking a sub-

sequence, we may assume that the points qn of Vj converge to some point

of Vj and limn_+00/
mn(gw) = p. By Lemma 3 again, p is contained in ωf(Vj),

and also in ωe)2(f).

By Lemma 2, α^(/) = ω ^ / " 1 ) and α^2(/) = ω ^ / " 1 ) . Therefore α ^ ( / )

coincides with ocΘ2(f). D

Since ω ^ / ) (resp. α^/)) does not depend on the choice of such a count-

able base Θ, we denote it by ω(f) (resp. α(/)) in the following.
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THEOREM 1. For any homeomorphism /, co(f) and α(/) are invariant
under f.

PROOF. Let {^}ί=1>2,... be a countable base such that Ut is compact.
Then ω(f) is equal to (J i=i,2,...ω/(^i) By taking / as a homeomorphism
h of Lemma 1, we obtain the equation /(co^ϋ,)) = ωf(f(Ui)). Hence f(ω(f)) =
Ui=i,2,...ω/(/(^ΐ)) Since {y*(ί/i)}ί=12> is also a countable base such that
each f(Ui) is compact, \Ji=it2,...ω/(f(Ui)) *s a l s o the positive limit set by
Lemma 4. Thus /(ω(/)) coincides with ω(/). The negative limit set α(/)
is also invariant under / by Lemma 2. •

REMARK. By definition, ωf(K) and af(K) are closed sets. However ω(f)
and α(/) are not always closed. Moreover, there exists a homeomorphism
/ of R2 such that ω(f) and α(/) are not closed and dense while Ω(f) is
empty (See [2] and the following Example 1).

If X is compact, then both ω(f) and α(/) coincide with X because we
can take X as one of the open sets {l/J. Thus ω(f) and α(/) are interesting
only when we consider homeomorphisms of non-compact spaces. In the rest
of this section, we will consider homeomorphisms whose nonwandering sets
are empty, which are called wandering homeomorphisms. For such homeomor-
phisms, the limit sets play an important role. First we give a typical example
of such homeomorphisms.

EXAMPLE 1. Let X = R2. Denote by g the foliation of X containing
the Reeb component (Figure 2). We choose a leaf-preserving and fixed point
free homeomorphism / of X as illustrated in Figure 2. Then / is a wandering
homeomorphism. We take a compact set K intersecting the upper boundary
of the Reeb component as in Figure 2. Then the ω-limit set ωf(K) is the
lower boundary of the Reeb component. As a result, ω(f) is the lower
boundary of the Reeb component and α(/) is the upper one.

In the case of wandering homeomorphisms, we can give a geometric
characterization of ω(f) and α(/) by using the non-Hausdorff sets defined as
follows: Let / be a homeomorphism of X. Denote by π: X -• X/f the quo-
tient map which maps each orbit of / to a point. In general, the orbit space
X/f with the quotient topology is not Hausdorff. A point p of X is called
non-Hausdorff if π(p) is not "Hausdorff" in X/f, i.e. there is a point q of X
which is not contained in the orbit of p and, for any neighborhoods U and
V of p and q respectively, ({JneZf

n(U))n(\JneZf
n(V)) is not empty. We

call the set of non-Hausdorff points the non-Hausdorff set, denoted by NH(f).
The following theorem shows the relationship between ω(/), α(/) and

NH(f) for wandering homeomorphisms.
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K f(K) p{K)

Figure 2: The Reeb component.

THEOREM 2. Let f be a wandering homeomorphism. Then the non-
Hausdorff set is the union of ω(f) and α(/).

PROOF. First we show that NH(f) contains ω{f) and α(/). Let p
be a point of ω(/). By Lemma 3, there are a converging point sequence
{<?«}Λ=i,2,... i n s o m e compact set ί/f and integers mn (n = 1,2,...) such that
mn^n and lim^^ fmn(qn) = p. Denote by q the limit point of {qn}.

Suppose that q is in the orbit O(p) passing through p, i.e. fk(p) = q for
some integer k. Since limπ_>00/

mn+*(gπ) = fk(p) = <?, any neighborhood F of
4 contains fmn+k(qn) and <?„ for sufficiently large n, and hence K intersects
\J\m\^fm{V) for every iVe Z. Therefore <? is nonwandering. Since this con-
tradicts the assumption that / is wandering, q is not contained in the orbit
O(p).

For any neighborhood U of p, fmn(qn) is contained in U for sufficiently
large w, and hence qn is an element of the saturation ( J m e Z / m ( ^ 0 Thus <?
is contained in ( J m e Z / m ( ^ 0 Therefore any neighborhood of q intersects
(Jm e Z/m(L7). By the above consideration, p is non-Hausdorff. We can show
α(/) a NH(f) in the same way.

Next we prove that NH(f) is contained in ω(/)Uα(/). We take a
countable base {l/J of X such that each U; is compact. Let p be a point
of NH(f) and let g be a pair of p, i.e. a point <? is disjoint from O(p) and
is contained in \Jmezfm(U) for any neighborhood U of p. Since &(/) is
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empty, the orbit O(p) is a closed set. Hence there is an open neighborhood

V of q disjoint from O(p). We choose an open set Ut from the countable

base such that q e Ut c U c V.

We will show that p is contained in ωf{Όi) Uαy(l/f). First remark that

p is not contained in 0(1^) = {Jmezfm(Ui) because O(p)Γ\ Ut is empty. Since

Ui is a neighborhood of q, p is contained in ( J m e z / m ( ^ i ) by the choice of

p and q. Then we have

p 6 0(1/,)-0(1/,)

= {( U /"W)u( U /W)u(u/W)}-o(t/ι)

= if U fm(Vi)) u f U /"W) u ( U /"W))j - °(^ )
l\m^-n / \|m|<n / \m̂ n /J

U /"(ϋi) u
^ /

for any n ^ 0. If p is contained in U m ^ π / m (£/ ί ) for infinitely many n (n*t 0),

then p is contained in ( J m ^ n / m ( t ^ ) for every neZ. Hence p is a point of

cQf(Ui). Otherwise p is a point of 0Lf(Ui).

Thus # # ( / ) is cointained in ω(/)Uα(/). D

THEOREM 3. Lei f be a wandering homeomorphism. If ω(f) (resp. α(/))

is empty, then the non-Hausdorff set NH(f) is also empty.

PROOF. By Theorem 2 and Lemma 2, it is enough to show that ω(f)

is not empty if α(/) is not empty. Let Ut be an open set of the countable

base {l/j}j=i,2,... s u c h that ocf(Ui) is not empty, where ί/f is compact. Let p

be a point of (Xf(Ui). By Lemma 3, there are a converging point sequence

{β»}»=i.2f...
 o f ^ a n d integers mn (mn ^ - π ) such that p = lim^^/'"»(«„). Let

q denote the limit point of {<?„}. We choose a neighborhood Uj from the

countable base {Uι}isslt2,... containing p. For sufficiently large n, fmn(qn) is

contained in ϋj . Furthermore, —mn^n and lim / l_ 0 0/~m n(/m n(^n)) = f̂. Since

the point sequence {/mn(^π)}w=i,2,... and integers — mn (n = 1, 2,...) satisfy

the condition of Lemma 3, q is a point of cof(Uj). Therefore ω(/) is not

empty. •

From the consideration of NH(f) in [3], we obtain the following prop-

erties of ω{f) and α(/):

THEOREM 4. Lei / be an orientation preserving and fixed point free

homeomorphism of R2. // its positive (resp. negative) limit set is empty, then

f is topologically conjugate to the translation T: R 2 -• R 2; T(x, y) = (x + 1, y).
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THEOREM 5. Let X be a metric space with a countable base {l/J such
that each Ut is compact. If X is, moreover, a Baire space, then the limit sets
ω(f) and <x(f) have no interior points for any wandering homeomorphism f of X.

PROOF. By Theorem 2 in [3], the non-Hausdorff set has no interior
points. Hence ωf(Ui) (i = 1, 2,...) are closed sets without interior points.
Since X is a Baire space, their countable union has also no interior points. •

REMARK. In [3], only homeomorphisms of R2 are considered. However
most results of this paper are valid for wandering homeomorphisms.

3. Limit sets for square roots

In this section, we use the positive (negative) limit sets for the square
roots of homeomorphisms. In the following, we assume that X is a metric
space with a countable base {Ui}i=ly2,... such that each ί7f is compact and /
is a homeomorphism of X.

THEOREM 6. // a homeomorphism f of X has a square root y/f9 then
the positive (resp. negative) limit set ω(f) (resp. α(/)) off is invariant under y/f.

PROOF. Since / is the square of y/f9 yff commutes with /. Hence we

obtain the equality y/f{ωf(Ui)) = ω/(>//(l7f)) by taking yjf as a homeomor-

phism h of Lemma 1. Thus yjf(ω(f)) is equal to \Ji=i,2,...ωf(\/f(Ui))> Then

ί)}/=i,2,... is also a countable base such that each ^f(Ut) is compact.
Since ω(f) does not depend on the choice of such countable bases (Lemma
4), \ff{u>{f)) coincides with ω(f). We can also prove y/f(<x(f)) = α(/) by
using Lemma 2. •

By using this theorem in the same way as in the case of the nonwandering
set in the introduction, we can show the non-existence of a square root for
the following wandering homeomorphism of R2:

EXAMPLE 2. Let X = R2. We take the singular foliation g illustrated
in Figure 3 (see also [1]). In the region between the two straight lines with
thorns, the homeomorphism / preserves the leaves of $• On the upper (resp.
lower) straight line with thorns, / maps each thorn to the next thorn on the
right (resp. left) side. By modifying / along the straight lines with thorns,
we can construct a homeomorphism (diffeomorphism) of X preserving the
leaves of g. Then co(f) is the lower straight line with thorns and α(/) is
the upper one (See Example 1). If / has a square root ^ff, then ω(f) must
be invariant under y/fby Theorem 6. Furthermore, V//Γπiaps the adjacent
branch points of ω(f) on themselves because yjf is a homeomorphism.



412 Hiromichi NAKAYAMA

Figure 3: The Reeb component with thorns.

However this contradicts the assumption that / maps each thorn on the
lower straight line to the next thorn on the left side.

REMARK. The non-Hausdorff set is also useful to show the non-existence
of square roots. However, for this example, the non-existence of square roots
cannot be directly shown by the non-Hausdorff set.

Finally we give a more precise relationship between the positive (negative)
limit set of / and that of y/f, and use it for the square roots of translations.

THEOREM 7. // a homeomorphism f of X has a square root y/f, then
the positive (resp. negative) limit set of y/f coincides with that of f

PROOF. Let {£/Jί=1>2> be a countable base of X such that each Ut is
compact. Then we get

0ί
ί=l (nε

ϋ
i = l

= u {n u

Thus we conclude that ω(/) is contained in
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Now suppose that p is an element of ω(y/f). Then there is an open
set Ui such that ω^Ui) contains p. First observe that

U fm(ϋi))u( U f

where [n/2] is the integer satisfying [n/2] ^ n/2 < [n/2] + 1. Hence p is

contained in {jm^[n,2]f
m(Ui) or U^[»/2]/m\//ffi) for any n e Z . If p is

contained in {Jm^[n/2]fm(Ui) for infinitely many n (n ̂  0), then p is an ele-

ment of Π" 6zU^[»/2]/m(^ ) because Um^[M/2]/
m(ί7ί) are decreasing subsets

with respect to n. Thus p is contained in ωf(Ui). Otherwise p is contained

*n [jmun/2]fm\/f(^i) f°Γ infinitely many n (n ̂  0). Then p is contained in
a n d i s anelement of ωf(^f(Ui)). As a result, p is

contained in U Γ ^ K ί ^ U ω ^ ί / , ) ) ) . Then {ί/J,=1>2>... U {V7(^)}ί=i>2t... is

also a countable base such that Ut and yJf{Ui) are compact. Since ω(f)
does not depend on the choice of such countable bases (Lemma 4), ω(y/f) is
contained in ω(f).

Since y/f'1 is a square root of /~~\ coi^/f'1) = ω(f~1). By Lemma 2,
oc(y/f) coincides with α(/). •

By Theorem 7, ω(f) = 0 implies that ω(y/f) = 0. Using Theorem 4,
we obtain the uniqueness of square roots for the translation of R2.

COROLLARY. For the translation of R2, its orientation preserving square
root is topologically conjugate to the translation.
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