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ABSTRACT. Different from the case for a prime p > 3, the f-element B, € m,4,_(S%)
is not defined for each positive integer ¢ at the prime 3. Consider the 8-skeleton X
of the Brown-Peterson spectrum BP. Then we will show here that the B-element
B, € n,6-6(X) is defined for any positive integer ¢ even at the prime 3, and that they
are all essential. These f-elements are obtained from v,-maps on type 2 spectra. We
use here V(1) A X as a type 2 spectrum instead of the Toda-Smith spectrum V(1)
that is used in the case p > 3.

1. Introduction

For each prime number p, a p-local finite spectrum X is said to have
type n if K(n),(X)#0 and K(n—1),(X)=0 for the Morava K-theories
K (i),(—) with coefficient ring K(i),(S°) = Z/p[v;, v;']. A self-map ¢: Z*X > X
of a p-local finite spectrum X for some k > 0 is called v,-map if K(n),(¢) # 0
and K(m),(p) = 0 for m # n. M. Hopkins and J. Smith [1] show the existence
of a v,-map for every spectrum of type n, say, ¢:X*X —» X. Note that a
v,-map determines an integer [ >0 such that K(n),(¢) = vj, and we cannot
tell anything about ! from Hopkins-Smith’s theorem. For n=1 and p > 2,
Adams gives a v,-map o:X??"2V(0) - V(0) with | =1, where V(0) denotes
the mod p Moore spectrum. Let V(1) denote the cofiber of a. Then it is
a spectrum of type 2. For n=2 and p > 3, L. Smith [9] show the existence
of the v,-map B:X??*~2V(1) > V(1) with I =1. These maps a and f are
used to define homotopy elements known as «- and f-families in the stable
homotopy groups of spheres.

Now we restrict our attention to the prime 3. Then Toda shows the
non-existence of v,-map on V(1) with I=1. So defining the f-family is a
different story from the case p > 3, while f-family is given even at the prime 3.
For example, f, does not exist at the prime 3. Recently, S. Pemmaraju [5]
shows the existence of a v,-map on V(1) with I =9. In this paper, we shall
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show the existence of a v,-map with / =1 on a spectrum VX of type 2. Here,
the spectrum VX is the smash product of V(1) and X = S°U, e*U,, €5

THEOREM 1.1. There exists a v,-map B:X?P*"2VX - VX with | = 1.

A similar result is shown by S. Oka and H. Toda [4], in which they
use S°Up e'! instead of X here.

Let BP,(—) denotes the Brown-Peterson homology theory with coefficient
ring Z,[v,, v,, -] with |v;| = 2p’ — 2, for each prime number p. Then the
cofiber V(2) of B at p > 3, which is known as the Toda-Smith spectrum as well
as V(1), is characterized by BP,(V(2)) = BP,/I; for the ideal I; = (p, vy, v,).

COROLLARY 1.2. There exists a spectrum V’(~2) of type 3 such that
BP*(VTZ)) = BP,/I;® Z*BP,/I, ® Z®BP,/I,
Jor the ideal I = (3, vy, v,).

Note that Oka and Toda show the existence of a spectrum whose BP,-
homology is BP,/I, @ Z''BP,/I, at the prime 3 in [4].

In the same way as the B-clements of n,(S°) at the prime p >3, we
can define p-elements of n,(X) at the prime 3 as follows: Let i:S%— V(1),
ix:8°—> X and n:V(1)— S® be the inclusions to the bottom cells and the
projection to the top cell, respectively. Then the f-elements are defined to be

B, = A X)B'i A X)iy.

As for the B-elements of the spheres at the prime 3, f, € n,(S°) is known to
exist for t <3 and t=35, 6 (¢f. [4]). Recently, S. Pemmaraju [5] shows
the existence B, for t >0 with t =0, 1, 2, 3, 5, 6 (9). Otherwise, f, does
not exist by [8]. Furthermore, B, = iy, up to the Adams-Novikov filtra-
tion if B, exists, since f, and B, are detected by v, € E3'5(S°) and iy (v;) =
v, € E31%(X), respectively. In [4], S. Oka and H. Toda show the existence
and non-triviality of B-elements in the homotopy groups 7,(S°U, e''). Our
result is:

THEOREM 1.3. For t >0, B, # 0 € n,(X), where X = S°U, e*U,, €

By the relation B, = iyf, and Pemmaraju’s result, this theorem implies
the following

COROLLARY 14. B #0emn,(S°) for t >0 witht #4,7, 8 (9).

The existence theorems Theorem 1.1 and Corollary 1.2 are proved in §2
by using Toda’s computation [11]. The non-triviality theorems Theorem 1.3
and Corollary 1.4 are proved by computing the chromatic spectral sequence
converging to the Adams-Novikov E,-term for 7, (X) in §3.
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2. The homotopy groups of VX

In the following, the prime number is fixed to be 3. Let V = V(1) and
T(1) denote the Toda-Smith spectrum and the Ravenel spectrum, respectively,
characterized by the BP,-homologies

BP,(V(1)) = BP,/(3, v,) and BP,(T(1)) = BP,[t,].
Here (BP,, BP,(BP)) is the Hopf algebroid with
(BP,, BP,(BP)) = (Z3)[vy, v3, """ ], BP,[t;, t5,°"]),

where the degrees of these generators are |v;| = 2-3' — 2 =|t;|. Consider the
8-skeleton X of T(1). Then,

BP,(X) = BP,{1,t,,t}} = BP,(T(1))

as a BP,(BP)-subcomodule.
Actually, the Toda-Smith spectra V(0) and V(1) are defined by the cofiber
sequences:

so 2

»S°—, V(0) 2> 2S°  and
2.1) . ; 1!1
Z*V(0) — V(0) — V(1) — Z°V(0)

for the Adams map a € [V(0), V(0)],. Moreover, X has the cell structure
X =8, e*y, €

for the generator o, € n4(S°), which is defined as «, = nai by the Adams map o.
Since BP,(X) is a free BP,-module, the BP,-homology of VX = V(1) A X
is obtained by

BP,(VX) = BP,/(3, v,){1, t,, t}} = BP,[t,1/3, v,).

Thus the E,-term of the Adams-Novikov spectral sequence for w,(VX) is
Ext3p, sp)(BP,, BP,(VX)), which is isomorphic to

E3'(VX) = Extgp,i2.1,,-1(BPy; BP,/(3, v1))

by a change of rings theorem using the comodule structure BP,(VX) =
BP,(BP)Opp,113,1,,1BP/(3, v1)-

Note that the Ext-group Ext;'(4, M) is given as a homology of the
reduced cobar complex (cf. [3, Note 1.15]) for a Hopf algebroid (4, I') and
a I'-comodule M. For t — s <20, we have an isomorphism

E3'(VX) = Ext}j,,i3,1,(4(v2), 4(v2))
= Ext}ji,1,)(Z/3, Z/3) ® A(v,).
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In fact, A(v,) is tensor out because v, is primitive. Besides, the internal
degrees of v,, t3 and t, are 16, 12 and 16, respectively, and those of v; and
t; for i >2 are greater than 52. Therefore, if we restrict the total degree
t — s < 20, then any product or any tensor product of such elements as

vi, 32 t3, v, and t; fori>?2

leave our range, since these have total degrees at least 23. Thus the re-
duced cobar complex for computing E3‘(VX) equals to that for Extj, .,
(A(v,), A(v,)) if t — s <20, and the first equality follows.

Consider the Cartan-Eilenberg spectral sequence

(2.2) 3" = A(v;) ® Z/3[hy,, hyo] = E5'(VX),

where h;; and h,, are the cohomology classes represented by t3 and t,,
respectively. Then we see the following

LEMMA 2.3. The homotopy groups m(VX) with k <20 are all trivial but
for k=0, 11, 15, and 16.

In fact, for t — s < 20, the E,-term E%' in (2.2) is trivial unless ¢t — s = 0,
11, 15, 16, since t — s for 1, hy4, h,, and v, are 0, 11, 15 and 16, respectively.

COROLLARY 24. [VX,VX],=0.
ProoF. VX consists of cells of dimensions
0,1,4, 5,6, 8,9, 10, 13, 14.

The homotopy group [VX, VX], is computed from the homotopy groups
n(VX) for k=4, 5, 8, 9, 10, 12, 13, 14, 17 and 18, which are all trivial by
the above lemma. q.ed.

Recall that the spectrum V = V(1) is the cofiber of the Adams map
a: 24V (0) - V(0), where V(0) denotes the mod p Moore spectrum. Since V(1)
is a V(0)-module spectrum (cf. [11]), we have the splitting

2.5 VO)AV=V VIV
which gives us the maps
Q:ZV-VO0) AV and w:VOyAvVv-ovV.
Here u gives the module structure.
LEMMA 2.6. The composition
@) : ZV 2O A VEL VO A VLV

is trivial.
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ProoF. Recall from [11] the operation Ay:[V(0), V(0)], = [X, X1iss
for a V(0)-module spectrum X defined by Ay(x) = uy(x A X)@x. Since
Ay(@) e[V, V]s and [V, V]s = {6,[Bi;16n,} by [11, Th. 6.11], we put A, (x) =
x0, [ i, ]om, for some x € Z/3. Here 6; =i,;n;, 6 = in and [Bi,] is the genera-
tor of [V(0), V(1)],6 defined by Toda [11]. Note that Toda uses the notation
[Bi,], since it corresponds to fi, if fe[V(1), V(1)],¢ exists. In fact, B does
not exist at the prime 3, while it does at any prime > 3 (¢f. [10]).

To show that x = 0, we further recall from [11] the operation 6 such that

1) [11, Th. 6.1, Lemma 6.5]
B4y (x)) = — a2y (5%) + (— 1Ay (x8)o"

for x € [V(0), V(0)];-
2) [11, Lemma 6.6] Ay(ad) = p'd, and A,(da) = —f'J,.
3) '[11, 3.9)] PB'x=xp for any x e[V, V],.
4) [11, 4.2)] "6y =0 = Jya".
5) [11, Th. 2.2] @ is derivative.
6) [11, Cor. 2.7, Th. 41, (3.7)] 6(6) = —1, 6(6,) =0, 6(n;) = 0.
7) [11, Th. 6.4] 6([Bi,]) = «"[Bi,]0.
Here J, =ii;m;n and the elements a” € [V (1), V(1)], and B e[V(1), V(1)li0
are non-trivial elements defined in [11, p. 219 and p. 240]. Besides, note

that the second equation of 2) is not stated in [11, Lemma 6.6], but can be
shown in the same fashion as the first one. Now we compute

0(A, (%)) = " B8, + B'Sea” by 1) and 2)

=0 by 3) and 4).
and
65, [Bi,1omy) = 6,6([ i, 10)m, by 5) and 6)
= 0,(«"[Bi 16 — [Bi;])n, by 5, 6) and 7)
= —6,[Bi,]1n, since 66 = 0.

Here by [11, Th. 6.11], we see that 6,[fi;]n, is the generator of [V, V],.
Thus we obtain x =0 from the equation 0= 0(4,(a)) = 6(xd,[Bi,]on,) =

—x6,[Bi,]n,. q.ed.
Now apply — A X to the above splitting (2.5), and obtain
Px:2VX->V(0) A VX and ux: V0 A VX > VX.
Then Lemma 2.6 is applied to prove the following

THEOREM 2.7. There exists a map v:V A VX - VX that is an extension
of the identity VX - VX.
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Proor. Consider the exact sequence
[V AVX,VX], i, [V(©O) A VX, VX]o —— [V(0) A VX, VX1,

associated to the second cofiber sequence in (2.1). By the definition of the
multiplication u:V(0) A V-V, it is an extension of the identity V —V
and we obtain the map uy:V(0) A VX - VX such that uyi=id: VX - VX,
for the inclusion i:S° = ¥(0). By (2.5) and Corollary 2.4, we have the
isomorphisms

[V(O) A VX, VX1, = [VX, VX1, DIVX, VX]s = [VX, VX]s.
Then by Lemma 2.6,
ofa*(puy) = px(@ A VX)ox = Ap(@) A X =0€ [VX, VX]s.

Therefore we obtain a map v:V A VX - VX such that v(i, A VX)=yu:
V) A VX > VX. q.ed.

As a corollary of this theorem, we have a similar theorem to Oka-Toda’s

[4]:
COROLLARY 2.8. There exists a map
B:ZVX 5> VX

such that B induces the multiplication by v, on each factor of BP,(VX), and
hence the BP,-module BP,/(3,v,,v,) ® Z/3{1, a, a*} with |a| =4 is realizable
as the BP-homology of the mapping cone of P.

Proor. Computing the E,-term of the Adams-Novikov spectral sequence
for n,(V), we obtain the permanent cycle v, € E3''5(V), which is represented
by a homotopy element [fi;]ie n,4(V). In other words,

BP A [Bi,]i = v, € BP, (V).

Here BP denotes the Brown-Peterson spectrum, which represents the BP,-
homology theory. The self-map B is now defined to be the composition

[BisliAVX
_—

Ty X = 31680 A VX VAV — VX,

Next consider the map BP,(B): BP,(VX)—> BP,(VX). Let T:V A BP >
BP A V be the switching map, and m: BP A BP - BP and 1:5° —» BP, the
structure maps of the ring spectrum BP. Then for v, € BP,(V),

(m A VYBP A T)(vy A BP)=(m A V)(BP A T)(BP A 1)(vy)
= v, = BP A [fi,]i
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This shows the commutativity of the center square in the following commuta-
tive diagram:

V2AX BPATAVX
—_—

SO=S°AS°—""» BPAVABPAVX BPABPAVAVX 222, BPAVX

v, ABPAVX mAVAVX
x BPAv

BP A[Bi,JiAVX

BPAVX »>BPAVAVX

for any element x € BP,(VX). The upper and the lower sequences represent
v,x and BP,(B)(x), respectively, and so BP,(B) = v, as desired. q.ed.

3. The non-triviality of the S-elements

Using the element B of Corollary 2.8, we will define the f-elements of
T, (X). B
The B-elements B, for ¢t > 0 is defined to be the composition

J161-6g0 L, s161-6p y LZ‘GVXMZ*V(O) AXZ25 x

Here 1:S° > VX is the inclusion to the bottom cell. The change of rings
theorem implies

Ext%:a‘(BP)(BP*, N ®BP' BP*(X)) = Ext;:"['i‘"z’...](BP*, N)

for a comodule N, since BP,(X)= BP,{l,t,,t}} = BP,[1;BP,(BP), where
2 =BP,[t},t,,-*]. We denote this shortly by

Ext*'N.
We also use the abbreviation
H*'M = Extgp_gp)(BP,, M).

Now recall from [3] the chromatic spectral sequence. First consider the
short exact sequences

0-N->M3—->N;—>0 and 00— N} - M- N;-O.

Here NQ = BP, and M) = v;'Ni. Then the short exact sequences give rise
to the long exact sequences

-+ > Ext'MQ » Ext'N¢ 5 Ext?Ng -+ and
+++ > Ext®M} — Ext°NG S Ext!Ng — -+

Recall [6] and [3] the structure of modules H*M$ and H*M}, and we have
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HM{ =0 >0,
HM} =0 (s>1),
H"'M} =0 (t#0) and

HOMG =Q/Z ) ® @izo,5e2-32 Z/(3" 1) {viF/37*}.

Furthermore, by definition, Ext°Ng = {x € N¢|ng(x) = n.(x)}, and ng(v5/3v,)=
nL(v3/3v,). In fact, ng(vy) = v mod (3, v;) by Landweber’s formula. Thus,

v3/3v, € Ext°Ng.
To get our modules we consider the exact sequences
0-M->MQ@AEt,))>Z*M—-0 and
0-MQ@A(l)-» M@ Z[t,]/(t3) > ZM >0

for M =MQ or =M} Note that H*M ® Z[t,]/(t}) = Ext*M. Applying
H*—, we see that

LemMMa 3.1
Ext'MJ =0 and  v5/3v, ¢ Im {Ext°M§ — Ext°NZ}.
COROLLARY 3.2. In the E,-term Ext*(BP,) of the Adams-Novikov spectral
sequence for m,(X),
66'(v3/3v,) # 0.
Consider the diagram

Ext°N2 —~ BExt!N! —>— Ext2N?

1]

EXtoNzo .T) EthNP _—B—b ExtzNg,

in which f(x) = x/3v,. Here N{ = BP,, N{ = BP,/(3) and N = BP,/(3,v,),
whose Ext groups are the Adams-Novikov E,-terms for computing =, (X),
7, (V(0) A X) and =, (VX). Then, v§ e Ext°Ny converges to B’en*(VX) by
Corollary 2.8, and so does 89'(v3) to B, e m,(X) by the Geometric Boundary
Theorem [2]. Hence the commutativity of the diagram shows that B, € n,(X)
is detected by 66'(v3/3v,) e Ext*N?. New Corollary 3.2 shows the non-
triviality of the element in the E,-term. Besides, nothing kills it in the
Adams-Novikov spectral sequence, and we obtain Theorem 1.3 stated in the
introduction.
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