HIROSHIMA MATH. J. 26 (1996), 341-349

3-primary β **-family in stable homotopy of a finite spectrum**

Katsumi SHIMOMURA

(Received October 17, 1994) (Revised March 13, 1995)

ABSTRACT. Different from the case for a prime $p > 3$, the β -element $\beta_t \in \pi_{16t-6}(S^0)$ **is not defined for each positive integer** *t* **at the prime 3. Consider the 8-skeleton** *X* of the Brown-Peterson spectrum BP . Then we will show here that the β -element $\overline{f}_t \in \pi_{16t-6}(X)$ is defined for any positive integer *t* even at the prime 3, and that they are all essential. These β -elements are obtained from v_2 -maps on type 2 spectra. We use here $V(1) \wedge X$ as a type 2 spectrum instead of the Toda-Smith spectrum $V(1)$ that is used in the case $p > 3$.

1. Introduction

For each prime number p , a p -local finite spectrum X is said to have type *n* if $K(n)_{\star}(X) \neq 0$ and $K(n-1)_{\star}(X) = 0$ for the Morava K-theories $K(i)_*(-)$ with coefficient ring $K(i)_*(S^0) = \mathbb{Z}/p[v_i, v_i^{-1}]$. A self-map $\varphi : \Sigma^k X \to X$ of a *p*-local finite spectrum X for some $k > 0$ is called v_n -map if $K(n)_*(\varphi) \neq 0$ and $K(m)_{\star}(\varphi) = 0$ for $m \neq n$. M. Hopkins and J. Smith [1] show the existence of a v_n -map for every spectrum of type *n*, say, $\varphi : \Sigma^k X \to X$. Note that a v_n -map determines an integer $l > 0$ such that $K(n)_*(\varphi) = v_n^l$, and we cannot tell anything about *l* from Hopkins-Smith's theorem. For $n = 1$ and $p > 2$, Adams gives a v_1 -map $\alpha: \Sigma^{2p-2}V(0) \to V(0)$ with $l = 1$, where $V(0)$ denotes the *modp* Moore spectrum. Let *V(l)* denote the cofiber of α. Then it is a spectrum of type 2. For $n = 2$ and $p > 3$, L. Smith [9] show the existence of the v_2 -map $\beta: \Sigma^{2p^2-2}V(1) \to V(1)$ with $l = 1$. These maps α and β are used to define homotopy elements known as α - and β -families in the stable homotopy groups of spheres.

Now we restrict our attention to the prime 3. Then Toda shows the non-existence of v_2 -map on $V(1)$ with $l = 1$. So defining the β -family is a different story from the case $p > 3$, while β -family is given even at the prime 3. For example, *β⁴* does not exist at the prime 3. Recently, S. Pemmaraju [5] shows the existence of a v_2 -map on $V(1)$ with $l = 9$. In this paper, we shall

¹⁹⁹¹ *Mathematics Subject Classification.* **55Q10, 55Q45.**

Key words and phrases. β -family, v_n -map, the Toda-Smith spectra, the Adams-Novikov spectral **sequence, the Brown-Peterson spectrum.**

show the existence of a v_2 -map with $l = 1$ on a spectrum VX of type 2. Here, the spectrum *VX* is the smash product of $V(1)$ and $X = S^0 \cup_{\alpha_1} e^4 \cup_{\alpha_1} e^8$.

THEOREM 1.1. *There exists a* v_2 -map $\overline{\beta}: \Sigma^{2p^2-2}V X \rightarrow V X$ with $l = 1$.

A similar result is shown by S. Oka and H. Toda [4], in which they use $S^0 \cup_{\beta_1} e^{11}$ instead of *X* here.

Let $BP_*(-)$ denotes the Brown-Peterson homology theory with coefficient **ring** $Z_{(p)}[v_1, v_2, \dots]$ with $|v_i| = 2p^i - 2$, for each prime number p. Then the **cofiber** $V(2)$ of β at $p > 3$, which is known as the Toda-Smith spectrum as well **as** $V(1)$, is characterized by $BP_*(V(2)) = BP_*/I_3$ for the ideal $I_3 = (p, v_1, v_2)$.

COROLLARY 1.2. *There exists a spectrum* $\widetilde{V(2)}$ of type 3 such that

$$
BP_*(V(2)) = BP_*/I_3 \oplus \Sigma^4 BP_*/I_3 \oplus \Sigma^8 BP_*/I_3
$$

for the ideal $I_3 = (3, v_1, v_2)$.

Note that Oka and Toda show the existence of a spectrum whose BP_* **homology** is $BP_*/I_3 \oplus \Sigma^{11}BP_*/I_3$ at the prime 3 in [4].

In the same way as the β -elements of $\pi_*(S^0)$ at the prime $p > 3$, we can define β -elements of $\pi_*(X)$ at the prime 3 as follows: Let $i: S^0 \to V(1)$, $i_X : S^0 \to X$ and $\pi : V(1) \to S^6$ be the inclusions to the bottom cells and the projection to the top cell, respectively. Then the β -elements are defined to be

$$
\overline{\beta}_t = (\pi \wedge X)\overline{\beta}^t (i \wedge X)i_X.
$$

As for the *β*-elements of the spheres at the prime 3, $\beta_t \in \pi_*(S^0)$ is known to **exist for** $t \leq 3$ and $t = 5$, 6 (cf. [4]). Recently, S. Pemmaraju [5] shows the existence β_t for $t > 0$ with $t \equiv 0, 1, 2, 3, 5, 6$ (9). Otherwise, β_t does not exist by [8]. Furthermore, $\bar{\beta}_t = i_x \beta_t$ up to the Adams-Novikov filtra**tion** if β ^{*t*} exists, since β ^{*t*} and $\overline{\beta}$ *t*^{*t*} are detected by $v_2 \in E_2^{0,16}(\mathcal{S}^0)$ and $i_{\chi}(v_2) =$ $v_2 \in E_2^{0,16}(X)$, respectively. In [4], S. Oka and H. Toda show the existence **and non-triviality of** β **-elements in the homotopy groups** $\pi_*(S^0 \cup_{\beta_1} e^{11})$ **. Our result is:**

THEOREM 1.3. *For* $t > 0$, $\bar{\beta}_t \neq 0 \in \pi_*(X)$, where $X = S^0 \cup_{\alpha_1} e^4 \cup_{\alpha_1} e^8$.

By the relation $\overline{\beta}_t = i_x \beta_t$ and Pemmaraju's result, this theorem implies **the following**

COROLLARY 1.4.
$$
\beta_t \neq 0 \in \pi_*(S^0)
$$
 for $t > 0$ with $t \neq 4, 7, 8$ (9).

The existence theorems Theorem 1.1 and Corollary 1.2 are proved in §2 by using Toda's computation [11]. The non-triviality theorems Theorem 1.3 and Corollary 1.4 are proved by computing the chromatic spectral sequence converging to the Adams-Novikov E_2 -term for $\pi_*(X)$ in §3.

2. The homotopy groups of *VX*

In the following, the prime number is fixed to be 3. Let $V = V(1)$ and $T(1)$ denote the Toda-Smith spectrum and the Ravenel spectrum, respectively, characterized by the BP_{\star} -homologies

$$
BP_*(V(1)) = BP_*(3, v_1)
$$
 and $BP_*(T(1)) = BP_*[t_1].$

Here $(BP_{\star}, BP_{\star}(BP))$ is the Hopf algebroid with

$$
(BP_*, BP_*(BP)) = (\mathbb{Z}_{(3)}[v_1, v_2, \cdots], BP_*[t_1, t_2, \cdots]),
$$

where the degrees of these generators are $|v_i| = 2 \cdot 3^i - 2 = |t_i|$. Consider the 8-skeleton *X* of Γ(l). Then,

$$
BP_*(X) = BP_*\{1, t_1, t_1^2\} \subset BP_*(T(1))
$$

as a $BP_*(BP)$ -subcomodule.

Actually, the Toda-Smith spectra *V(0)* and *V(l)* are defined by the cofiber sequences:

(2.1)
$$
S^{0} \xrightarrow{\quad 3 \quad} S^{0} \xrightarrow{i} V(0) \xrightarrow{\pi} \Sigma S^{0} \quad \text{and} \quad Z^{4}V(0) \xrightarrow{\alpha} V(0) \xrightarrow{i_{1}} V(1) \xrightarrow{\pi_{1}} \Sigma^{5}V(0)
$$

for the Adams map $\alpha \in [V(0), V(0)]_4$. Moreover, X has the cell structure

$$
X = S^0 \cup_{\alpha_1} e^4 \cup_{\alpha_1} e^8
$$

for the generator $\alpha_1 \in \pi_3(S^0)$, which is defined as $\alpha_1 = \pi \alpha i$ by the Adams map α .

Since $BP_*(X)$ is a free BP_* -module, the BP_* -homology of $VX = V(1) \wedge X$ is obtained by

$$
BP_*(VX) = BP_*/(3, v_1)\{1, t_1, t_1^2\} \subset BP_*[t_1]/(3, v_1).
$$

Thus the E_2 -term of the Adams-Novikov spectral sequence for $\pi_*(VX)$ is $Ext^{s,t}_{BP,(BP)}(BP_*, BP_*(VX))$, which is isomorphic to

$$
E_2^{s,t}(VX) = \text{Ext}^{s,t}_{BP_*[t_1^3, t_2, \cdots]}(BP_*, BP_*/(3, v_1))
$$

by a change of rings theorem using the comodule structure $BP_*(VX) =$ $BP_*(BP) \square_{BP_*(t_1^3, t_2, \cdots)} BP_*/(3, v_1).$

Note that the Ext-group $Ext^{s,t}_r(A, M)$ is given as a homology of the reduced cobar complex *(cf.* [3, Note 1.15]) for a Hopf algebroid *(A, Γ)* and a *I*-comodule *M*. For $t - s < 20$, we have an isomorphism

$$
E_2^{s,t}(VX) = \text{Ext}_{A(v_2,t_1^3,t_2)}^{s,t}(A(v_2), A(v_2))
$$

= Ext_{A(t_1^3,t_2)}^{s,t}(Z/3, Z/3) \otimes A(v_2).

In fact, *Λ(v²)* **is tensor out because** *v²* **is primitive. Besides, the internal** degrees of v_2 , t_1^3 and t_2 are 16, 12 and 16, respectively, and those of v_i and **; for** *ί > 2* **are greater than 52. Therefore, if we restrict the total degree** $t - s < 20$, then any product or any tensor product of such elements as

$$
v_2^2
$$
, $(t_1^3)^2$, t_2^2 , v_i and t_i for $i > 2$

leave our range, since these have total degrees at least 23. Thus the re duced cobar complex for computing $E_2^{s,t}(VX)$ equals to that for $Ext^{s,t}_{A(v_2,t_1^3,t_2)}$ $(A(v_2), A(v_2))$ if $t - s < 20$, and the first equality follows.

Consider the Cartan-Eilenberg spectral sequence

$$
(2.2) \t\t\t E_2^{s,t} = \Lambda(v_2) \otimes \mathbb{Z}/3[h_{11}, h_{20}] \Rightarrow E_2^{s,t}(V\mathbb{X}),
$$

where h_{11} and h_{20} are the cohomology classes represented by t_1^3 and t_2 , **respectively. Then we see the following**

LEMMA 2.3. *The homotopy groups* $\pi_k(VX)$ with $k < 20$ are all trivial but *for* $k = 0, 11, 15, and 16.$

In fact, for $t - s < 20$, the E_2 -term $E_2^{s,t}$ in (2.2) is trivial unless $t - s = 0$, **11, 15, 16, since** $t - s$ for 1, h_{11} , h_{20} and v_2 are 0, 11, 15 and 16, respectively.

COROLLARY 2.4. $[VX, VX]_4 = 0.$

PROOF. *VX* **consists of cells of dimensions**

0, 1, 4, 5, 6, 8, 9, 10, 13, 14.

The homotopy group $[VX, VX]_4$ is computed from the homotopy groups $k(VX)$ for $k = 4, 5, 8, 9, 10, 12, 13, 14, 17$ and 18, which are all trivial by **the above lemma. q.e.d.**

Recall that the spectrum $V = V(1)$ is the cofiber of the Adams map α : $\Sigma^4 V(0) \rightarrow V(0)$, where $V(0)$ denotes the mod p Moore spectrum. Since $V(1)$ is a $V(0)$ -module spectrum (cf. [11]), we have the splitting

$$
V(0) \wedge V = V \vee \Sigma V
$$

which gives us the maps

 φ : $\Sigma V \rightarrow V(0) \wedge V$ and μ : $V(0) \wedge V \rightarrow V$.

Here μ gives the module structure.

LEMMA 2.6. The composition

$$
\lambda_V(\alpha): \Sigma^5 V \xrightarrow{\varphi} \Sigma^4 V(0) \wedge V \xrightarrow{\alpha \wedge V} V(0) \wedge V \xrightarrow{\mu} V
$$

is trivial.

3 -primary β -family 345

PROOF. Recall from [11] the operation $\lambda_X : [V(0), V(0)]_k \to [X, X]_{k+1}$ for a $V(0)$ -module spectrum *X* defined by $\lambda_X(x) = \mu_X(x \wedge X)\varphi_X$. Since $\{(\alpha) \in [V, V]_5 \text{ and } [V, V]_5 = \{\delta_1[\beta i_1] \delta \pi_1\} \text{ by } [11, \text{ Th. 6.11}], \text{ we put } \lambda_V(\alpha) = 0\}$ $x\delta_1[\beta i_1]\delta\pi_1$ for some $x \in \mathbb{Z}/3$. Here $\delta_1 = i_1\pi_1$, $\delta = i\pi$ and $[\beta i_1]$ is the genera tor of $[V(0), V(1)]_{16}$ defined by Toda [11]. Note that Toda uses the notation **[***βi*₁], since it corresponds to $βi_1$ if $β ∈ [V(1), V(1)]_{16}$ exists. In fact, $β$ does not exist at the prime 3, while it does at any prime > 3 (*cf.* [10]).

To show that $x = 0$, we further recall from [11] the operation θ such that

1) [11, Th. 6.1, Lemma 6.5]

$$
\theta(\lambda_V(x)) = -\alpha''\lambda_V(\delta x) + (-1)^k \lambda_V(x\delta)\alpha''
$$

for $x \in [V(0), V(0)]_k$.

2) [11, Lemma 6.6] $\lambda_V(\alpha\delta) = \beta'\delta_0$ and $\lambda_V(\delta\alpha) = -\beta'\delta_0$.

3) [11, (3.9)] $\beta' x = x \beta'$ for any $x \in [V, V]_{*}$.

4) $[11, (4.2)]$ $\alpha''\delta_0 = 0 = \delta_0 \alpha''$.

5) [11, Th. 2.2] *θ* **is derivative.**

6) [11, Cor. 2.7, Th. 4.1, (3.7)] $\theta(\delta) = -1$, $\theta(\delta_1) = 0$, $\theta(\pi_1) = 0$.

7) [11, Th. 6.4] $\theta([\beta i_1]) = \alpha''[\beta i_1] \delta$.

Here $\delta_0 = i i_1 \pi_1 \pi$ and the elements $\alpha'' \in [V(1), V(1)]_2$ and $\beta' \in [V(1),$ **are non-trivial elements defined in [11, p. 219 and p. 240]. Besides, note that the second equation of 2) is not stated in [11, Lemma 6.6], but can be shown in the same fashion as the first one. Now we compute**

$$
\theta(\lambda_V(\alpha)) = \alpha''\beta'\delta_0 + \beta'\delta_0\alpha'' \text{ by 1) and 2}
$$

= 0 by 3) and 4.

and

$$
\theta(\delta_1[\beta i_1]\delta \pi_1) = \delta_1 \theta([\beta i_1]\delta) \pi_1 \qquad \text{by 5) and 6}
$$

= $\delta_1(\alpha''[\beta i_1]\delta \delta - [\beta i_1])\pi_1 \qquad \text{by 5, 6) and 7}$
= $-\delta_1[\beta i_1]\pi_1 \qquad \text{since } \delta \delta = 0.$

Here by [11, Th. 6.11], we see that $\delta_1[\beta i_1]\pi_1$ is the generator of $[V, V]_6$. **Thus we obtain** $x = 0$ from the equation $0 = \theta(\lambda_v(\alpha)) = \theta(x\delta_1[\beta i_1]\delta\pi_1) =$ $-x\delta_1[\beta i_1]\pi_1$. **q.e.d.**

Now apply $-\wedge X$ to the above splitting (2.5), and obtain

$$
\varphi_X : \Sigma V X \to V(0) \land V X
$$
 and $\mu_X : V(0) \land V X \to V X$.

Then Lemma 2.6 is applied to prove the following

THEOREM 2.7. *There exists a map* $v: V \wedge VX \rightarrow VX$ that is an extension *of the identity* $VX \rightarrow VX$ *.*

PROOF. Consider the exact sequence

$$
[V \wedge VX, VX]_0 \xrightarrow{i^*} [V(0) \wedge VX, VX]_0 \xrightarrow{\alpha^*} [V(0) \wedge VX, VX]_4
$$

associated to the second cofiber sequence in (2.1). By the definition of the multiplication $\mu: V(0) \wedge V \rightarrow V$, it is an extension of the identity $V \rightarrow V$ **and we obtain the map** $\mu_X : V(0) \wedge VX \rightarrow VX$ such that $\mu_X i = id : VX \rightarrow VX$, for the inclusion $i: S^0 \subset V(0)$. By (2.5) and Corollary 2.4, we have the **isomorphisms**

$$
[V(0) \wedge VX, VX]_4 = [VX, VX]_4 \bigoplus [VX, VX]_5 \stackrel{\varphi_s^*}{\cong} [VX, VX]_5.
$$

Then by Lemma 2.6,

$$
\varphi_X^* \alpha^* (\mu_X) = \mu_X(\alpha \wedge VX) \varphi_X = \lambda_V(\alpha) \wedge X = 0 \in [VX, VX]_5.
$$

Therefore we obtain a map $v: V \wedge VX \rightarrow VX$ such that $v(i_1 \wedge VX) = \mu$: $V(0) \wedge VX \rightarrow VX$. q.e.d.

As a corollary of this theorem, we have a similar theorem to Oka-Toda's [4]:

COROLLARY 2.8. *There exists a map*

 $\overline{\beta}: \mathcal{Z}^{16}VX \to$

 $such$ that $\bar{\beta}$ induces the multiplication by v_{2} on each factor of $BP_{*}(VX),$ and *hence the BP*_{*}-module $BP_*(3, v_1, v_2) \otimes \mathbb{Z}/3\{1, a, a^2\}$ with $|a|=4$ is realizable as the BP-homology of the mapping cone of $\bar{\beta}$.

PROOF. Computing the E_2 -term of the Adams-Novikov spectral sequence for $\pi_*(V)$, we obtain the permanent cycle $v_2 \in E_2^{0,16}(V)$, which is represented by a homotopy element $[\beta i_1]$ i $\in \pi_{16}(V)$. In other words,

$$
BP \wedge [\beta i_1] i = v_2 \in BP_*(V).
$$

Here *BP* denotes the Brown-Peterson spectrum, which represents the *BP*₊**homology theory.** The self-map $\overline{\beta}$ is now defined to be the composition

$$
\Sigma^{16}VX = \Sigma^{16}S^0 \wedge VX \xrightarrow{[\beta i_1] \wedge VX} V \wedge VX \xrightarrow{\nu} VX.
$$

Next consider the map $BP_{\star}(\overline{\beta})$: $BP_{\star}(VX) \rightarrow BP_{\star}(VX)$. Let $T:V \wedge BP \rightarrow$ $BP \wedge V$ be the switching map, and $m: BP \wedge BP \rightarrow BP$ and $\iota: S^0 \rightarrow BP$, the structure maps of the ring spectrum *BP*. Then for $v_2 \in BP_{\star}(V)$,

$$
(m \wedge V)(BP \wedge T)(v_2 \wedge BP) = (m \wedge V)(BP \wedge T)(BP \wedge i)(v_2)
$$

$$
= v_2 = BP \wedge [\beta i_1]i.
$$

This shows the commutativity of the center square in the following commuta tive diagram:

$$
S^{0} = S^{0} \wedge S^{0} \xrightarrow{v_{2} \wedge x} BP \wedge V \wedge BP \wedge VX \xrightarrow{BP \wedge TX \wedge YX} BP \wedge BP \wedge V \wedge VX \xrightarrow{m \wedge v} BP \wedge VX
$$

\n
$$
B^{p} \wedge YX \xrightarrow{BP \wedge YX} BP \wedge VX \xrightarrow{BP \wedge [B_{1}] \wedge VX} BP \wedge V \wedge VX \xrightarrow{BP \wedge v}
$$

for any element $x \in BP_{\star}(VX)$. The upper and the lower sequences represent v_2x and $BP_*(\beta)(x)$, respectively, and so $BP_*(\beta) = v_2$ as desired. q.e.d.

3. The non-triviality of the β -elements

Using the element $\bar{\beta}$ of Corollary 2.8, we will define the β -elements of $\pi_*(X)$.

The β -elements β_t for $t > 0$ is defined to be the composition

$$
\Sigma^{16t-6}S^0 \xrightarrow{\iota} \Sigma^{16t-6}VX \xrightarrow{\bar{\beta}^t} \Sigma^{-6}VX \xrightarrow{\pi_1 \wedge X} \Sigma^{-1}V(0) \wedge X \xrightarrow{\pi \wedge X} X.
$$

Here $i: S^0 \to VX$ is the inclusion to the bottom cell. The change of rings theorem implies

$$
\operatorname{Ext}_{BP_*(BP)}^{s,t}(BP_*, N \otimes_{BP_*} BP_*(X)) \cong \operatorname{Ext}_{BP_*[t_1^3, t_2, \cdots]}^{s,t}(BP_*, N)
$$

for a comodule N, since $BP_*(X) = BP_*\{1, t_1, t_1^2\} = BP_*\square_{\Sigma}BP_*(BP)$, where $E = BP_*[t_1^3, t_2, \dots]$. We denote this shortly by

 $Ext^{s,t}N$.

We also use the abbreviation

$$
H^{s,t}M=\operatorname{Ext}_{BP_*(BP)}^{s,t}(BP_*,M).
$$

Now recall from [3] the chromatic spectral sequence. First consider the short exact sequences

$$
0 \to N_0^0 \to M_0^0 \to N_0^1 \to 0 \quad \text{and} \quad 0 \to N_0^1 \to M_0^1 \to N_0^2 \to 0.
$$

Here $N_0^0 = BP_*$ and $M_0^i = v_i^{-1} N_0^i$. Then the short exact sequences give rise to the long exact sequences

$$
\cdots \to \text{Ext}^1 M_0^0 \to \text{Ext}^1 N_0^1 \xrightarrow{\delta} \text{Ext}^2 N_0^0 \to \cdots \quad \text{and}
$$

$$
\cdots \to \text{Ext}^0 M_0^1 \to \text{Ext}^0 N_0^2 \xrightarrow{\delta'} \text{Ext}^1 N_0^1 \to \cdots.
$$

Recall [6] and [3] the structure of modules $H^*M_0^0$ and $H^*M_0^1$, and we have

Katsumi SHIMOMURA

 $H^{s}M_{0}^{0}=0$ $(s > 0)$, $H^{s}M_{0}^{1}=0$ $(s > 1)$, $H^{1,t}M_0^1=0$ $(t \neq 0)$ and $H^0M_0^1 = Q/Z_{(n)} \oplus \oplus_{i>0, s \in Z-3Z} Z/(3^{i+1}) \{v_1^{sp^i}/3^{i+1}\}.$

Furthermore, by definition, $Ext^0 N_0^2 = \{x \in N_0^2 | \eta_R(x) = \eta_L(x) \}$, and $\eta_R(v_2^s/3v_1) =$ $\eta_L(v^s/3v_1)$. In fact, $\eta_R(v^s) \equiv v^s$ mod $(3, v_1)$ by Landweber's formula. Thus,

 $v_2^s/3v_1 \in \text{Ext}^0 N_0^2$.

To get our modules we consider the exact sequences

$$
0 \to M \to M \otimes \Lambda(t_1) \to \Sigma^4 M \to 0 \quad \text{and}
$$

$$
0 \to M \otimes \Lambda(t_1) \to M \otimes \mathbb{Z}[t_1]/(t_1^3) \to \Sigma^8 M \to 0
$$

for $M = M_0^0$ or $= M_0^1$. Note that $H^*M \otimes Z[t_1]/(t_1^3) = \text{Ext}^*M$. Applying H^*- , we see that

LEMMA 3.1.

$$
\text{Ext}^1 M_0^0 = 0 \quad \text{and} \quad v_2^s / 3v_1 \notin \text{Im} \left\{ \text{Ext}^0 M_0^1 \rightarrow \text{Ext}^0 N_0^2 \right\}.
$$

COROLLARY 3.2. In the E_2 -term $Ext^2(BP_{\star})$ of the Adams-Novikov spectral sequence for $\pi_*(X)$,

$$
\delta \delta'(v_2^s/3v_1) \neq 0.
$$

Consider the diagram

in which $f(x) = x/3v_1$. Here $N_0^0 = BP_*$, $N_1^0 = BP_*/(3)$ and $N_2^0 = BP_*/(3, v_1)$, whose Ext groups are the Adams-Novikov E_2 -terms for computing $\pi_{\bullet}(X)$, $\pi_*(V(0) \wedge X)$ and $\pi_*(VX)$. Then, $v_2^s \in \text{Ext}^0 N_2^0$ converges to $\overline{\beta}^s \in \pi_*(VX)$ by Corollary 2.8, and so does $\partial \partial'(v_2^s)$ to $\overline{\beta}_s \in \pi_* (X)$ by the Geometric Boundary Theorem [2]. Hence the commutativity of the diagram shows that $\bar{\beta}_s \in \pi_* (X)$ is detected by $\delta \delta'(v_2^s/3v_1) \in \text{Ext}^*N_0^0$. New Corollary 3.2 shows the nontriviality of the element in the E_2 -term. Besides, nothing kills it in the Adams-Novikov spectral sequence, and we obtain Theorem 1.3 stated in the introduction.

348

3 -primary β -family 349

References

- [1] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory II, to appear in Ann. of Math.
- [2] D. C. Johnson, H. R. Miller, W. S. Wilson and R. S. Zahler, Boundary homomorphisms in the generalized Adams spectral sequence and the nontriviality of infinitely many y_t in the stable homotopy, Notas, de Matematicas y Simposia, Numero 1: Reunion Sobre Teoria de Homotopia, ed. D. Davis 29-46. Sociedad Matematica Mexicana, Mexico, D. F., 1975.
- [3] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. **106** (1977), 469-516.
- $\lceil 4 \rceil$ S. Oka and H. Toda, 3-primary β -family in stable homotopy, Hiroshima Math. J. 5 (1975), 447-460.
- [5] S. Pemmaraju, private communication.
- [6] D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z., **152** (1977), 287-297.
- [7] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
- [8] K. Shimomura, The homotopy groups of L_2 -localized Toda-Smith spectrum $V(1)$ at the prime 3, to appear in Trans. Amer. Math. Soc.
- [9] L. Smith, On realizing complex cobordism modules, IV, Applications to the stable homotopy groups of spheres. Amer. J. of Math., 99 (1971), 418-436.
- [10] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology, **10** (1971), 53-65.
- [11] H. Toda, Algebra of stable homotopy of Z_p -spaces and applications, J. Math. Kyoto Univ. **11** (1971), 197-251.

Faculty of Education, Tottori University, Tottori, 680, *Japan*