HIROSHIMA MATH. J. **26** (1996), 341–349

3-primary β -family in stable homotopy of a finite spectrum

Katsumi SHIMOMURA

(Received October 17, 1994) (Revised March 13, 1995)

ABSTRACT. Different from the case for a prime p > 3, the β -element $\beta_t \in \pi_{16t-6}(S^0)$ is not defined for each positive integer t at the prime 3. Consider the 8-skeleton X of the Brown-Peterson spectrum BP. Then we will show here that the β -element $\overline{\beta}_t \in \pi_{16t-6}(X)$ is defined for any positive integer t even at the prime 3, and that they are all essential. These β -elements are obtained from v_2 -maps on type 2 spectra. We use here $V(1) \wedge X$ as a type 2 spectrum instead of the Toda-Smith spectrum V(1) that is used in the case p > 3.

1. Introduction

For each prime number p, a p-local finite spectrum X is said to have type n if $K(n)_*(X) \neq 0$ and $K(n-1)_*(X) = 0$ for the Morava K-theories $K(i)_*(-)$ with coefficient ring $K(i)_*(S^0) = \mathbb{Z}/p[v_i, v_i^{-1}]$. A self-map $\varphi: \Sigma^k X \to X$ of a p-local finite spectrum X for some k > 0 is called v_n -map if $K(n)_*(\varphi) \neq 0$ and $K(m)_*(\varphi) = 0$ for $m \neq n$. M. Hopkins and J. Smith [1] show the existence of a v_n -map for every spectrum of type n, say, $\varphi: \Sigma^k X \to X$. Note that a v_n -map determines an integer l > 0 such that $K(n)_*(\varphi) = v_n^l$, and we cannot tell anything about l from Hopkins-Smith's theorem. For n = 1 and p > 2, Adams gives a v_1 -map $\alpha: \Sigma^{2p-2}V(0) \to V(0)$ with l = 1, where V(0) denotes the mod p Moore spectrum. Let V(1) denote the cofiber of α . Then it is a spectrum of type 2. For n = 2 and p > 3, L. Smith [9] show the existence of the v_2 -map $\beta: \Sigma^{2p^2-2}V(1) \to V(1)$ with l = 1. These maps α and β are used to define homotopy elements known as α - and β -families in the stable homotopy groups of spheres.

Now we restrict our attention to the prime 3. Then Toda shows the non-existence of v_2 -map on V(1) with l = 1. So defining the β -family is a different story from the case p > 3, while β -family is given even at the prime 3. For example, β_4 does not exist at the prime 3. Recently, S. Pemmaraju [5] shows the existence of a v_2 -map on V(1) with l = 9. In this paper, we shall

¹⁹⁹¹ Mathematics Subject Classification. 55Q10, 55Q45.

Key words and phrases. β -family, v_n -map, the Toda-Smith spectra, the Adams-Novikov spectral sequence, the Brown-Peterson spectrum.

Katsumi SHIMOMURA

show the existence of a v_2 -map with l = 1 on a spectrum VX of type 2. Here, the spectrum VX is the smash product of V(1) and $X = S^0 \bigcup_{\alpha_1} e^4 \bigcup_{\alpha_2} e^8$.

THEOREM 1.1. There exists a v_2 -map $\overline{\beta}: \Sigma^{2p^2-2}VX \to VX$ with l = 1.

A similar result is shown by S. Oka and H. Toda [4], in which they use $S^0 \cup_{\beta_1} e^{11}$ instead of X here.

Let $BP_*(-)$ denotes the Brown-Peterson homology theory with coefficient ring $Z_{(p)}[v_1, v_2, \cdots]$ with $|v_i| = 2p^i - 2$, for each prime number p. Then the cofiber V(2) of β at p > 3, which is known as the Toda-Smith spectrum as well as V(1), is characterized by $BP_*(V(2)) = BP_*/I_3$ for the ideal $I_3 = (p, v_1, v_2)$.

COROLLARY 1.2. There exists a spectrum $\widetilde{V(2)}$ of type 3 such that

$$BP_*(V(2)) = BP_*/I_3 \oplus \Sigma^4 BP_*/I_3 \oplus \Sigma^8 BP_*/I_3$$

for the ideal $I_3 = (3, v_1, v_2)$.

Note that Oka and Toda show the existence of a spectrum whose BP_* -homology is $BP_*/I_3 \oplus \Sigma^{11}BP_*/I_3$ at the prime 3 in [4].

In the same way as the β -elements of $\pi_*(S^0)$ at the prime p > 3, we can define β -elements of $\pi_*(X)$ at the prime 3 as follows: Let $i: S^0 \to V(1)$, $i_X: S^0 \to X$ and $\pi: V(1) \to S^6$ be the inclusions to the bottom cells and the projection to the top cell, respectively. Then the β -elements are defined to be

$$\overline{\beta}_t = (\pi \wedge X)\overline{\beta}^t (i \wedge X) i_X.$$

As for the β -elements of the spheres at the prime 3, $\beta_t \in \pi_*(S^0)$ is known to exist for $t \leq 3$ and t = 5, 6 (cf. [4]). Recently, S. Pemmaraju [5] shows the existence β_t for t > 0 with $t \equiv 0, 1, 2, 3, 5, 6$ (9). Otherwise, β_t does not exist by [8]. Furthermore, $\overline{\beta}_t = i_X \beta_t$ up to the Adams-Novikov filtration if β_t exists, since β_t and $\overline{\beta}_t$ are detected by $v_2 \in E_2^{0,16}(S^0)$ and $i_{X_*}(v_2) =$ $v_2 \in E_2^{0,16}(X)$, respectively. In [4], S. Oka and H. Toda show the existence and non-triviality of β -elements in the homotopy groups $\pi_*(S^0 \cup_{\beta_1} e^{11})$. Our result is:

THEOREM 1.3. For t > 0, $\overline{\beta}_t \neq 0 \in \pi_{\star}(X)$, where $X = S^0 \cup_{a} e^4 \cup_{a} e^8$.

By the relation $\overline{\beta}_t = i_X \beta_t$ and Pemmaraju's result, this theorem implies the following

COROLLARY 1.4.
$$\beta_t \neq 0 \in \pi_*(S^0)$$
 for $t > 0$ with $t \neq 4, 7, 8$ (9).

The existence theorems Theorem 1.1 and Corollary 1.2 are proved in §2 by using Toda's computation [11]. The non-triviality theorems Theorem 1.3 and Corollary 1.4 are proved by computing the chromatic spectral sequence converging to the Adams-Novikov E_2 -term for $\pi_*(X)$ in §3.

2. The homotopy groups of VX

In the following, the prime number is fixed to be 3. Let V = V(1) and T(1) denote the Toda-Smith spectrum and the Ravenel spectrum, respectively, characterized by the BP_* -homologies

$$BP_*(V(1)) = BP_*/(3, v_1)$$
 and $BP_*(T(1)) = BP_*[t_1].$

Here $(BP_{\star}, BP_{\star}(BP))$ is the Hopf algebroid with

$$(BP_*, BP_*(BP)) = (\mathbb{Z}_{(3)}[v_1, v_2, \cdots], BP_*[t_1, t_2, \cdots]),$$

where the degrees of these generators are $|v_i| = 2 \cdot 3^i - 2 = |t_i|$. Consider the 8-skeleton X of T(1). Then,

$$BP_{*}(X) = BP_{*}\{1, t_{1}, t_{1}^{2}\} \subset BP_{*}(T(1))$$

as a $BP_{\star}(BP)$ -subcomodule.

Actually, the Toda-Smith spectra V(0) and V(1) are defined by the cofiber sequences:

(2.1)
$$S^{0} \xrightarrow{3} S^{0} \xrightarrow{i} V(0) \xrightarrow{\pi} \Sigma S^{0} \text{ and}$$
$$\Sigma^{4} V(0) \xrightarrow{\alpha} V(0) \xrightarrow{i_{1}} V(1) \xrightarrow{\pi_{1}} \Sigma^{5} V(0)$$

for the Adams map $\alpha \in [V(0), V(0)]_4$. Moreover, X has the cell structure

$$X = S^0 \cup_{\alpha_1} e^4 \cup_{\alpha_1} e^8$$

for the generator $\alpha_1 \in \pi_3(S^0)$, which is defined as $\alpha_1 = \pi \alpha i$ by the Adams map α .

Since $BP_*(X)$ is a free BP_* -module, the BP_* -homology of $VX = V(1) \wedge X$ is obtained by

$$BP_{*}(VX) = BP_{*}/(3, v_{1})\{1, t_{1}, t_{1}^{2}\} \subset BP_{*}[t_{1}]/(3, v_{1}).$$

Thus the E_2 -term of the Adams-Novikov spectral sequence for $\pi_*(VX)$ is $\operatorname{Ext}_{BP_*(BP)}^{s,t}(BP_*, BP_*(VX))$, which is isomorphic to

$$E_2^{s,t}(VX) = \operatorname{Ext}_{BP_{\star}[t_1^{s}, t_2, \cdots]}^{s,t}(BP_{\star}, BP_{\star}/(3, v_1))$$

by a change of rings theorem using the comodule structure $BP_*(VX) = BP_*(BP) \square_{BP_*[t_1^3, t_2, \dots]} BP_*/(3, v_1)$.

Note that the Ext-group $\operatorname{Ext}_{\Gamma}^{s,t}(A, M)$ is given as a homology of the reduced cobar complex (cf. [3, Note 1.15]) for a Hopf algebroid (A, Γ) and a Γ -comodule M. For t - s < 20, we have an isomorphism

$$E_2^{s,t}(VX) = \operatorname{Ext}_{\Lambda(v_2,t_1^3,t_2)}^{s,t}(\Lambda(v_2), \Lambda(v_2))$$

= $\operatorname{Ext}_{\Lambda(t_1^3,t_2)}^{s,t}(\mathbb{Z}/3, \mathbb{Z}/3) \otimes \Lambda(v_2).$

In fact, $\Lambda(v_2)$ is tensor out because v_2 is primitive. Besides, the internal degrees of v_2 , t_1^3 and t_2 are 16, 12 and 16, respectively, and those of v_i and t_i for i > 2 are greater than 52. Therefore, if we restrict the total degree t - s < 20, then any product or any tensor product of such elements as

$$v_2^2$$
, $(t_1^3)^2$, t_2^2 , v_i and t_i for $i > 2$

leave our range, since these have total degrees at least 23. Thus the reduced cobar complex for computing $E_2^{s,t}(VX)$ equals to that for $\operatorname{Ext}_{A(v_2,t_1^3,t_2)}^{s,t}(\Lambda(v_2), \Lambda(v_2))$ if t-s < 20, and the first equality follows.

Consider the Cartan-Eilenberg spectral sequence

(2.2)
$$E_2^{s,t} = \Lambda(v_2) \otimes \mathbb{Z}/3[h_{11}, h_{20}] \Rightarrow E_2^{s,t}(VX),$$

where h_{11} and h_{20} are the cohomology classes represented by t_1^3 and t_2 , respectively. Then we see the following

LEMMA 2.3. The homotopy groups $\pi_k(VX)$ with k < 20 are all trivial but for k = 0, 11, 15, and 16.

In fact, for t - s < 20, the E_2 -term $E_2^{s,t}$ in (2.2) is trivial unless t - s = 0, 11, 15, 16, since t - s for 1, h_{11} , h_{20} and v_2 are 0, 11, 15 and 16, respectively.

COROLLARY 2.4. $[VX, VX]_4 = 0.$

PROOF. VX consists of cells of dimensions

0, 1, 4, 5, 6, 8, 9, 10, 13, 14.

The homotopy group $[VX, VX]_4$ is computed from the homotopy groups $\pi_k(VX)$ for k = 4, 5, 8, 9, 10, 12, 13, 14, 17 and 18, which are all trivial by the above lemma. q.e.d.

Recall that the spectrum V = V(1) is the cofiber of the Adams map $\alpha : \Sigma^4 V(0) \to V(0)$, where V(0) denotes the mod p Moore spectrum. Since V(1) is a V(0)-module spectrum (cf. [11]), we have the splitting

$$(2.5) V(0) \land V = V \lor \Sigma V$$

which gives us the maps

$$\varphi: \Sigma V \to V(0) \land V$$
 and $\mu: V(0) \land V \to V$.

Here μ gives the module structure.

LEMMA 2.6. The composition

$$\lambda_{V}(\alpha): \Sigma^{5}V \xrightarrow{\varphi} \Sigma^{4}V(0) \land V \xrightarrow{\alpha \land V} V(0) \land V \xrightarrow{\mu} V$$

is trivial.

344

3-primary β -family

PROOF. Recall from [11] the operation $\lambda_X : [V(0), V(0)]_k \to [X, X]_{k+1}$ for a V(0)-module spectrum X defined by $\lambda_X(x) = \mu_X(x \land X)\varphi_X$. Since $\lambda_V(\alpha) \in [V, V]_5$ and $[V, V]_5 = \{\delta_1[\beta i_1]\delta \pi_1\}$ by [11, Th. 6.11], we put $\lambda_V(\alpha) = x\delta_1[\beta i_1]\delta \pi_1$ for some $x \in \mathbb{Z}/3$. Here $\delta_1 = i_1\pi_1$, $\delta = i\pi$ and $[\beta i_1]$ is the generator of $[V(0), V(1)]_{16}$ defined by Toda [11]. Note that Toda uses the notation $[\beta i_1]$, since it corresponds to βi_1 if $\beta \in [V(1), V(1)]_{16}$ exists. In fact, β does not exist at the prime 3, while it does at any prime > 3 (cf. [10]).

To show that x = 0, we further recall from [11] the operation θ such that

1) [11, Th. 6.1, Lemma 6.5]

$$\theta(\lambda_V(x)) = -\alpha''\lambda_V(\delta x) + (-1)^k\lambda_V(x\delta)\alpha''$$

for $x \in [V(0), V(0)]_k$.

- 2) [11, Lemma 6.6] $\lambda_V(\alpha\delta) = \beta'\delta_0$ and $\lambda_V(\delta\alpha) = -\beta'\delta_0$.
- 3) [11, (3.9)] $\beta' x = x\beta'$ for any $x \in [V, V]_{*}$.
- 4) [11, (4.2)] $\alpha'' \delta_0 = 0 = \delta_0 \alpha''$.
- 5) [11, Th. 2.2] θ is derivative.
- 6) [11, Cor. 2.7, Th. 4.1, (3.7)] $\theta(\delta) = -1$, $\theta(\delta_1) = 0$, $\theta(\pi_1) = 0$.
- 7) [11, Th. 6.4] $\theta([\beta i_1]) = \alpha''[\beta i_1]\delta$.

Here $\delta_0 = ii_1\pi_1\pi$ and the elements $\alpha'' \in [V(1), V(1)]_2$ and $\beta' \in [V(1), V(1)]_{10}$ are non-trivial elements defined in [11, p. 219 and p. 240]. Besides, note that the second equation of 2) is not stated in [11, Lemma 6.6], but can be shown in the same fashion as the first one. Now we compute

$$\theta(\lambda_V(\alpha)) = \alpha''\beta'\delta_0 + \beta'\delta_0\alpha'' \quad \text{by 1) and 2)$$

= 0 by 3) and 4).

and

$$\theta(\delta_1[\beta i_1]\delta\pi_1) = \delta_1 \theta([\beta i_1]\delta)\pi_1 \qquad \text{by 5) and 6)} \\ = \delta_1(\alpha''[\beta i_1]\delta\delta - [\beta i_1])\pi_1 \qquad \text{by 5, 6) and 7)} \\ = -\delta_1[\beta i_1]\pi_1 \qquad \text{since } \delta\delta = 0.$$

Here by [11, Th. 6.11], we see that $\delta_1[\beta i_1]\pi_1$ is the generator of $[V, V]_6$. Thus we obtain x = 0 from the equation $0 = \theta(\lambda_V(\alpha)) = \theta(x\delta_1[\beta i_1]\delta\pi_1) = -x\delta_1[\beta i_1]\pi_1$. q.e.d.

Now apply $- \wedge X$ to the above splitting (2.5), and obtain

$$\varphi_X : \Sigma V X \to V(0) \land V X$$
 and $\mu_X : V(0) \land V X \to V X$.

Then Lemma 2.6 is applied to prove the following

THEOREM 2.7. There exists a map $v: V \wedge VX \rightarrow VX$ that is an extension of the identity $VX \rightarrow VX$.

PROOF. Consider the exact sequence

$$[V \land VX, VX]_0 \xrightarrow{i_1^*} [V(0) \land VX, VX]_0 \xrightarrow{\alpha^*} [V(0) \land VX, VX]_4$$

associated to the second cofiber sequence in (2.1). By the definition of the multiplication $\mu: V(0) \land V \to V$, it is an extension of the identity $V \to V$ and we obtain the map $\mu_X: V(0) \land VX \to VX$ such that $\mu_X i = id: VX \to VX$, for the inclusion $i: S^0 \subset V(0)$. By (2.5) and Corollary 2.4, we have the isomorphisms

$$[V(0) \land VX, VX]_4 = [VX, VX]_4 \bigoplus [VX, VX]_5 \stackrel{\varphi_X}{\cong} [VX, VX]_5.$$

Then by Lemma 2.6,

$$\varphi_X^* \alpha^*(\mu_X) = \mu_X(\alpha \wedge VX) \varphi_X = \lambda_V(\alpha) \wedge X = 0 \in [VX, VX]_5.$$

Therefore we obtain a map $v: V \wedge VX \rightarrow VX$ such that $v(i_1 \wedge VX) = \mu$: $V(0) \wedge VX \rightarrow VX$. q.e.d.

As a corollary of this theorem, we have a similar theorem to Oka-Toda's [4]:

COROLLARY 2.8. There exists a map

$$\overline{\beta}: \Sigma^{16}VX \to VX$$

such that $\overline{\beta}$ induces the multiplication by v_2 on each factor of $BP_*(VX)$, and hence the BP_* -module $BP_*/(3, v_1, v_2) \otimes \mathbb{Z}/3\{1, a, a^2\}$ with |a| = 4 is realizable as the BP-homology of the mapping cone of $\overline{\beta}$.

PROOF. Computing the E_2 -term of the Adams-Novikov spectral sequence for $\pi_*(V)$, we obtain the permanent cycle $v_2 \in E_2^{0,16}(V)$, which is represented by a homotopy element $[\beta i_1]i \in \pi_{16}(V)$. In other words,

$$BP \wedge [\beta i_1]i = v_2 \in BP_*(V).$$

Here *BP* denotes the Brown-Peterson spectrum, which represents the *BP*_{*}-homology theory. The self-map $\overline{\beta}$ is now defined to be the composition

$$\Sigma^{16}VX = \Sigma^{16}S^0 \wedge VX \xrightarrow{[\beta_i]i \wedge VX} V \wedge VX \xrightarrow{\nu} VX.$$

Next consider the map $BP_*(\overline{\beta}): BP_*(VX) \to BP_*(VX)$. Let $T: V \land BP \to BP \land V$ be the switching map, and $m: BP \land BP \to BP$ and $\iota: S^0 \to BP$, the structure maps of the ring spectrum BP. Then for $v_2 \in BP_*(V)$,

$$(m \wedge V)(BP \wedge T)(v_2 \wedge BP) = (m \wedge V)(BP \wedge T)(BP \wedge i)(v_2)$$
$$= v_2 = BP \wedge [\beta i_1]i.$$

346

This shows the commutativity of the center square in the following commutative diagram:

$$S^{0} = S^{0} \wedge S^{0} \xrightarrow{v_{2} \wedge x} BP \wedge V \wedge BP \wedge VX \xrightarrow{BP \wedge T \wedge VX} BP \wedge BP \wedge V \wedge VX \xrightarrow{m \wedge v} BP \wedge VX$$

$$x \xrightarrow{v_{2} \wedge BP \wedge VX} \xrightarrow{BP \wedge [\beta_{i_{1}}]_{i} \wedge VX} BP \wedge V \wedge VX$$

for any element $x \in BP_*(VX)$. The upper and the lower sequences represent v_2x and $BP_*(\overline{\beta})(x)$, respectively, and so $BP_*(\overline{\beta}) = v_2$ as desired. q.e.d.

3. The non-triviality of the β -elements

Using the element $\overline{\beta}$ of Corollary 2.8, we will define the β -elements of $\pi_{\star}(X)$.

The β -elements $\overline{\beta}_t$ for t > 0 is defined to be the composition

$$\Sigma^{16t-6}S^0 \xrightarrow{\iota} \Sigma^{16t-6}VX \xrightarrow{\bar{\beta}^t} \Sigma^{-6}VX \xrightarrow{\pi_1 \wedge X} \Sigma^{-1}V(0) \wedge X \xrightarrow{\pi \wedge X} X.$$

Here $\iota: S^0 \to VX$ is the inclusion to the bottom cell. The change of rings theorem implies

$$\operatorname{Ext}_{BP_{\bullet}(BP)}^{s,t}(BP_{\bullet}, N \otimes_{BP_{\bullet}} BP_{\bullet}(X)) \cong \operatorname{Ext}_{BP_{\bullet}[t^{3}, t_{2}, \cdots]}^{s,t}(BP_{\bullet}, N)$$

for a comodule N, since $BP_*(X) = BP_*\{1, t_1, t_1^2\} = BP_* \Box_{\Sigma} BP_*(BP)$, where $\Sigma = BP_*[t_1^3, t_2, \cdots]$. We denote this shortly by

Ext^{s,t}N.

We also use the abbreviation

$$H^{s,t}M = \operatorname{Ext}_{BP_{*}(BP)}^{s,t}(BP_{*}, M).$$

Now recall from [3] the chromatic spectral sequence. First consider the short exact sequences

$$0 \to N_0^0 \to M_0^0 \to N_0^1 \to 0 \qquad \text{and} \qquad 0 \to N_0^1 \to M_0^1 \to N_0^2 \to 0.$$

Here $N_0^0 = BP_*$ and $M_0^i = v_i^{-1}N_0^i$. Then the short exact sequences give rise to the long exact sequences

$$\cdots \to \operatorname{Ext}^{1} M_{0}^{0} \to \operatorname{Ext}^{1} N_{0}^{1} \xrightarrow{\delta} \operatorname{Ext}^{2} N_{0}^{0} \to \cdots \qquad \text{and}$$
$$\cdots \to \operatorname{Ext}^{0} M_{0}^{1} \to \operatorname{Ext}^{0} N_{0}^{2} \xrightarrow{\delta'} \operatorname{Ext}^{1} N_{0}^{1} \to \cdots.$$

Recall [6] and [3] the structure of modules $H^*M_0^0$ and $H^*M_0^1$, and we have

Katsumi SHIMOMURA

 $H^{s}M_{0}^{0} = 0 \qquad (s > 0),$ $H^{s}M_{0}^{1} = 0 \qquad (s > 1),$ $H^{1,t}M_{0}^{1} = 0 \qquad (t \neq 0) \qquad \text{and}$ $H^{0}M_{0}^{1} = Q/Z_{(p)} \oplus \oplus_{i > 0, s \in \mathbb{Z} - 3\mathbb{Z}} \mathbb{Z}/(3^{i+1}) \{v_{1}^{spi}/3^{i+1}\}.$

Furthermore, by definition, $\operatorname{Ext}^0 N_0^2 = \{x \in N_0^2 | \eta_R(x) = \eta_L(x)\}$, and $\eta_R(v_2^s/3v_1) = \eta_L(v_2^s/3v_1)$. In fact, $\eta_R(v_2^s) \equiv v_2^s \mod (3, v_1)$ by Landweber's formula. Thus,

 $v_2^s/3v_1 \in \operatorname{Ext}^0 N_0^2$.

To get our modules we consider the exact sequences

$$0 \to M \to M \otimes \Lambda(t_1) \to \Sigma^4 M \to 0 \quad \text{and}$$
$$0 \to M \otimes \Lambda(t_1) \to M \otimes \mathbb{Z}[t_1]/(t_1^3) \to \Sigma^8 M \to 0$$

for $M = M_0^0$ or $= M_0^1$. Note that $H^*M \otimes \mathbb{Z}[t_1]/(t_1^3) = \operatorname{Ext}^*M$. Applying H^*- , we see that

Lemma 3.1.

$$\operatorname{Ext}^{1} M_{0}^{0} = 0 \quad \text{and} \quad v_{2}^{s} / 3v_{1} \notin \operatorname{Im} \{ \operatorname{Ext}^{0} M_{0}^{1} \to \operatorname{Ext}^{0} N_{0}^{2} \}.$$

COROLLARY 3.2. In the E_2 -term $\text{Ext}^2(BP_*)$ of the Adams-Novikov spectral sequence for $\pi_*(X)$,

$$\delta\delta'(v_2^s/3v_1) \neq 0.$$

Consider the diagram

in which $f(x) = x/3v_1$. Here $N_0^0 = BP_*$, $N_1^0 = BP_*/(3)$ and $N_2^0 = BP_*/(3, v_1)$, whose Ext groups are the Adams-Novikov E_2 -terms for computing $\pi_*(X)$, $\pi_*(V(0) \wedge X)$ and $\pi_*(VX)$. Then, $v_2^s \in \text{Ext}^0 N_2^0$ converges to $\overline{\beta}^s \in \pi_*(VX)$ by Corollary 2.8, and so does $\partial \partial'(v_2^s)$ to $\overline{\beta}_s \in \pi_*(X)$ by the Geometric Boundary Theorem [2]. Hence the commutativity of the diagram shows that $\overline{\beta}_s \in \pi_*(X)$ is detected by $\delta \delta'(v_2^s/3v_1) \in \text{Ext}^* N_0^0$. New Corollary 3.2 shows the nontriviality of the element in the E_2 -term. Besides, nothing kills it in the Adams-Novikov spectral sequence, and we obtain Theorem 1.3 stated in the introduction.

348

3-primary β -family

References

- [1] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory II, to appear in Ann. of Math.
- [2] D. C. Johnson, H. R. Miller, W. S. Wilson and R. S. Zahler, Boundary homomorphisms in the generalized Adams spectral sequence and the nontriviality of infinitely many γ_t in the stable homotopy, Notas, de Matematicas y Simposia, Numero 1: Reunion Sobre Teoria de Homotopia, ed. D. Davis 29-46. Sociedad Matematica Mexicana, Mexico, D. F., 1975.
- [3] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
- [4] S. Oka and H. Toda, 3-primary β-family in stable homotopy, Hiroshima Math. J. 5 (1975), 447-460.
- [5] S. Pemmaraju, private communication.
- [6] D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z., 152 (1977), 287-297.
- [7] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
- [8] K. Shimomura, The homotopy groups of L_2 -localized Toda-Smith spectrum V(1) at the prime 3, to appear in Trans. Amer. Math. Soc.
- [9] L. Smith, On realizing complex cobordism modules, IV, Applications to the stable homotopy groups of spheres. Amer. J. of Math., 99 (1971), 418-436.
- [10] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology, 10 (1971), 53-65.
- [11] H. Toda, Algebra of stable homotopy of Z_p-spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197-251.

Faculty of Education, Tottori University, Tottori, 680, Japan