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ABSTRACT. In this paper, we firstly define an effective standard from of rational

functions of degree two and determine the Julia sets when the two parameters of the

above standardization are real. We especially consider the conditions under which

the Julia sets are real closed intervals or Cantor sets. Finally we study the continuity

and the analyticity of the Hausdorff dimension as a function of parameters.

1. Introduction

Quadratic polynomial maps on the Riemann sphere C have been studied
as typical examples of nonlinear complex dynamics which show chaotic
behaviors. Especially the Julia sets of these polynomial maps are inten-
sively researched (see [2] and [4]). In treating these quadratic polynomial
maps, one may consider one parameter families such as {z2 + c.ce C} or
{az(l — z):ae C} because any quadratic polynomial map can be transformed
into these forms by suitable affine maps and the geometrical or the metrical
properties do not change in this procedure. In other words, the family
{z2 + c:ceC} or {az(l — z): a e C} is regarded as a standard form of
quadratic polynomial maps.

In this paper we wish to investigate the Julia set J(f) of a rational
function / of degree two on the Riemann sphere. For this purpose we
introduce a standard form of rational functions of degree two. Several forms
of degree two rational functions have been studied. For example, Rees [7]

used the family of a standard form < z —: α, β e C, αβ φ 1 >. Recently,

I 1 + βz J
Saito-Saitό-Shimizu [9] studied the family < : 0 < y < 1, 1 < μ>,

in connection with the logistic maps. We propose another family
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= 0 or 6 =

We will see that any rational function / of degree two (excepting a very
special case) is conjugate to one of fa,be $ (see Proposition 3.2). This form
is very convenient to study the dependence of feature on parameter (α, b\
because zeros of fab are fixed (i.e., 0 and 1) and the eigenvalue of the fixed
point 0 of fab is a. Therefore for fOtb9 the research of the preimages of 0,
which is a repelling or a rationally indifferent fixed point in our cases, seems
easier than the previous two forms above. Moreover ours is more suitable
for applying the method for studying the Julia sets of one dimensional maps.
This will be used in the research of the structures of the Julia sets and their
estimates of the Hausdorff dimensions.

The contents of the present paper are as follows. In §2 we review basic
facts and tools which will be used in what follows. In §3 we show that
most of the degree two rational functions are conjugate to fOtb for some α,
beC. We can choose a fundamental domain Dc of the parameter space;
that is, any / e 01 is conjugate to a unique faM (α, b) e Dc c C 2 \£. Since we
are mainly interested in the case of (α, b) e R2, we will discuss the fundamental
domain D for R2\£ (see Theorem 3.8 and Figure 3.2). Our choice is very
effective, since the dependence of feature of fab on (α, b) in the domain D is
very clear, but it is very complicated on the outside of the domain. Having
obtained the domain D, we will focus on the analysis of the Julia sets of fOtb

when (a, b) e D.
In §4 the conditions under which J(fa b) c RU{oo} are discussed as in

[9]. We also consider more precise structures by using the criterion for the
hyperbolicity on the Julia sets and the fact that if a rational function / has
an attracting fixed point and J(f) is a proper subset of RU{oo}, there are
no other attracting fixed points and the Fatou set of / coincides with the
immediate basin of the attracting fixed points. Using the above, we see that
the domain D is separated to some parts, on each side of which the Julia
set of fab has different properties (see Theorem 4.3).

In § 5 we analyze the Hausdorff dimensions of the Julia sets of functions in
the above family. Especially we investigate the asymptotics of H-dim(J(/flb))
as b-* 1. In other words, we study how H-dim(J(/αb)) varies as a function
of (α, b) on the boundary where the degree degenerates to one. When b is
near 1, J(fatb) is self-similar so that the Moran-Hutchinson method in [3]
can be applied to the estimate of H-dim(J(fab)) (see Lemma 5.3). Here we
obtain the result which says that H-dim(J(/flb)) is continuous on the domain
up to the boundary, while the real analyticity does not hold on there (see
Theorem 5.4).
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2. Preliminaries

Throughout this paper we use the following terminologies and notations.

C denotes the Riemann sphere equipped with the spherical metric. We call

/ a rational function if / can be written in the form /(z) = P(z)/Q(z), where

P(z), Q(z) (φθ) are polynomials with complex coefficients and no common

factors. The degree, deg (/), of a rational function / is defined by deg (/) =

max {deg (P), deg (Q)}. In what follows / always stands for a rational function

unless otherwise stated especially.

A point z G C is an element of F(f), the Fatou set of /, if there exists

a neighborhood U of z in C such that the family of iterates {fn\u}n=ι,2,...

is a normal family. The Julia set J(f) is the complement of the Fatou set.

Let α € C be a p-periodίc point, i.e., fp(oc) = oc and fq(oc) φ α for 1 < q <

p — 1. In particular, if p = 1, we call oc a fixed point. Put Fix (/) = {zeC:

f(z) = z}. α e Fix(/) is called a fixed point of the order n if oc is an n zero

of f(z) — z when α e C and if 0 is n zero of φofoφ-i(z) — z (φ(z) = 1/z)

when α = oo. Especially a fixed point of the order one is called simple and

that of higher order, multiple.

In order to classify periodic points, we define λf(oc) at α e C as follows.

if α G C and /(α) e C ,

if oc G C and /(α) = oo ,

= lim z(f(z) —/(oo)) if α = oo and /(oo) G C ,

λf(oc) =

lim-
z-α Z-OL

lim
z-0

= lim z/f(z) if α = oo and /(oo) = oo .

For any rational function / and any α e C , it can be easily shown that

λf(oc) e C indeed exists.

If α is a fixed point or a periodic point of / λf{(x) is called eigenvalue.

a e Fix (/) is called attracting (superattracting), rationally indifferent, irrationally

indifferent and repelling if \λf(oc)\ < 1 (λf(cc) = 0), λf(<x) is a root of unity,

\λf(oc)\ = 1 but λf(<x) is not a root of unity and \λf(ot)\ > 1, respectively.

Ωf(oc) denotes the basin of an attracting p-periodic point α, i.e.

β » = y γe C : i™ /pπ+i(z) =«} •

Moreover Ω^(α) denotes the connected component of Ωf(<x) containing α and

is called immediate basin of / at α.
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A point α is said to be a critical point of /, if / fails to be injective in
any neighborhood of α. It is not hard to see from the definition of λf(oc)
that α e C is a critical of point / if and only if λf(<x) = 0. The set of all the
critical points of / is denoted by Crit (/), i.e., Crit (/) = {ze C: λf{z) = 0}.

Let J( be the set of all Mόbius maps, i.e.,

C -• C: φ(z) = α Z +

 J9 ad-bcφO
cz + a

We say two rational functions / and g are conjugate if there is φ e M such
that f(z) = φ^giz) = φ o g o φ~~ι(z). In this case we write f~g9 or more pre-
cisely f-^g if there is a necessity for making φ clear. It is easy to see that
f~g implies that deg (/) = deg (g) (see [1] for example).

We check here the following chain rule.

LEMMA 2.1. Let f and g be rational functions. Then we have

λfog{oί) = λf(g{oί)) λg{oi)9 α e C . (2.1)

PROOF. For ζx eC, ζ2 e C, we define

i.ω-{{}Cl

for ζ2 e C,

for ζ2 = oo .

Then we have

Therefore we obtain

, , , ,. D{fog(z),fog(μ))

D{z, a)

κ_D(fog(z\foβ(a)) D{g{z),g(μ))

In view of Lemma 2.1, the following lemma is immediately obtained. The
proof is easy and omitted.

LEMMA 2.2. If f^g, then

φFix(0), (2.2)

J(f) = φJ{g), (2.3)

λf(μ) = y φ" 1 (α)) ί / α e Fix (/), (2.4)
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) = φ(Crit(flf)), (2.5)

flr(α) = φΩg(φ-H«)\ Ω*{z) = φΩ*{φ-\*)) if αe Fix (/). (2.6)

By this lemma we have the next fact which will be used in the standardiza-

tions of the degree two rational functions with two fixed points.

LEMMA 2.3. α e Fix (/) has the order not less than two if and only if

λ,(*) = 1.

PROOF. The lemma is clear for α e C When α = oo, it is sufficient to

show that 0 is a fixed point of the order n(n > 2) of g(z) = l//(l/z) if and

only if λg(0) = 1. This is derived from the fact that λg(0) = ^(oo) and the

orders of the corresponding fixed points 0 and GO are the same. The former

fact has already been stated in (2.4). The latter can be easily seen from the

definition of the order of the fixed points. Therefore we may only consider

the case α e C . •

REMARK 2.4. (i) If deg(/) > 1 and / is not identity, then / has precisely

deg (/) + 1 fixed points (see [1, Theorem 2.6.3]).

(ii) #Crit (/) < 2 deg (/) - 2 (see [1, Corollary 2.7.2]).

(iii) Repelling fixed points of / and irrationally indifferent fixed points are

elements of J(f) (see [1, Theorem 4.2.6, Theorem 6.5.1]).

(iv) Generalizing the fact in Lemma 2.3, it is easily seen that f^g, φeJt

means ord r (α) = ordg (φ^α), where ord r (α) stands for the order at the

fixed point α and so on.

3. A standard form of rational functions of degree two

Set

si — {/: / is a rational function such that deg (/) = 2 and #Fix (/) > 2} ,

where E = {(α, ί ? )eC 2 :α = 0 or b = 1}.

We put

αx(α, b) = 0 , α2(α, b) = oo , α3(α, b) = (α- l)/(α - b).

Then

Fix (fΛfb) = {α^α, b\ α2(α, b\ oc3(α, b)} .

Note that αx(α, b) Φ α2(α, b) always holds but it may happen that αx(α, b) =

oc3(α, b) or α 2(α, b) = <x3(α, b).
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By elementary calculus, we obtain

b -a2 + 2a-b
λfaM^a> b)) = a> ^/β>2(a> b)) = - , λfjoc3(a, b)) = — _ — .

We will write λk(a, b) = λUh(<*k(a, b)) (fe = 1, 2, 3) and Λ(a, b) = {λk(a, b):

k = 1, 2, 3} for convenience.

Since clearly deg (fOfb) = 2 and #Fix (/α>b) > 2, we first see that si => Ĵ .

On the other hand, we can prove that each fesί is conjugate to some

element of Ĵ . In order to prove the statement, we prepare the following

lemma.

LEMMA 3.1. Suppose fesf and α, β e Fix(/) α Φ β. Then the following

(i)-(iii) hold.

( i ) // λf{μ) = 0, then there exists no φ e M such that φ(oc) = 0 and φ#fs $.

(ii) λf(μ)λf{β)Φ\.

(iii) // vϊ^α) / 0, then there exists a unique φ e Jί (which depends on α, β

and f) such that φ(α) = 0, φ(β) = oo and φ^feSS. Moreover φ*f =

fλf(Λ),λfωλf(β) in this case, that is,

λf(*)z(l - z)

PROOF, (i) Suppose that there exists φ e Jί such that φ(α) = 0 and

<P*f = fa,b G *• β y ( 2 4 ) a n d (3.1), we see λf((x) = λfab(0) = a = 0. This is im-

possible by the definition of &.

(iii) We will construct a conjugate map φ as follows. From the assump-

tion that λf(oϊ) Φ 0 and deg(/) = 2, there exists ζeC such that f{ζ) = α, ζ Φ α.

Here we see that C Φ β, because /(Q = α ̂  β=f(β). Set

if α = oo, β e C ,
z — p

z — α if α e C, /? = oo .

ώ (z)
Since £ # α, j8, we can easily see that ι^α)/3(0 # 0, oo and that φ(z) = > p G « .̂

Ψa,β\ζ)

Moreover φ satisfies the following conditions:

Fix (φj) 3 0, oo and ^ / ( l ) = 0 . (3.2)

In fact,
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ψJ(0) = φ o/o φ-»(0) = φ o/(α) = φ(α) = 0 ,

<p*/(°°) = <p °/° ^"Hoo) = φ °f(β) = <?(/?) = °o,

<?*/(!) = Ψ o/o ^-'(l) = <P o/(0 = φ(α) = 0 .

Furthermore we see that

deg(φJ ) = deg(/) = 2. (3.3)

Therefore by (3.2) and (3.3), φ+f must be written in the form

φj(z) = *'vl~^ with a'c'ΦQ. (3.4)

Putting a = a'/c' e C, b = -b'/c' e C, we have

τ^r (3 5)

Here (3.1) and (2.4) mean a = J./.JO) = Ar(α) and b/a = λfab(oo) = λf{β\ which
consequently imply a = λf(oc) and b = λf(a) λf(β).

On the other hand, suppose that θ e M satisfies θ(α) = 0, θ(β) = oo and
θ^fe @. Since 0^/(1) = 0, θ'^l) is a preimage of α = Θ'^O) with respect to /.
Therefore fl-^l) # α = fl-^O) and fl-^l) = ζ, i.e., 0(0 = 1. Thus we can see
that both θ and φ map the distinct three points α, /?, ζ to the distinct three
points 0, oo, 1 respectively. Since the Mόbius map is uniquely determined
by the images of three distinct points, we have φ = θ.

(ii) If b = λf((x)'λf(β)= 1 in the proof of (iii), then fΛtb(z) = az. This
contradicts to deg (fatb) = 2. •

PROPOSITION 3.2. Each f e s/ is conjugate to some element of 0b.

PROOF. By the assumption deg (/) = 2 and Remark 2.4 (ii), we see
#Crit (/) < 2. Therefore, if #Fix (/) = 3, then there exists α e Fix (/) such
that λf(ot) Φ 0. If #Fix (/) = 2, the multiple fixed point α satisfies λf(oc) =
1 Φ 0 by Lemma 2.3. Therefore the assertion is true in view of Lemma 3.1
(iii). •

Since fab e 0b has two distinct fixed points 0 and oo, there exist no
φsM such that φJΈ^S. But we have the following standardization for
functions with only one fixed point.

PROPOSITION 3.3. Suppose that f is a degree two rational function such
z(z - 2)

that #Fix (/) = 1. Then there exists φ e Jί such that φ+f(z) =
(z - l)(z + 2)'
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PROOF. Let p0 e C be the unique fixed point of /. Then p0 has the

order three. Let α0 be one of the non-critical two periodic points of /. Since

α0 is not critical and deg(/) = 2, there exists β0 G/"1(α0) such that β0 φ α0,

p0. Now we put

φ(z) =

<*o - βo z -

Zo-Poz-

z-Po

z- βo

z-Po
α o ~~ βo

Fix (φ

Po

βo

*/) =

φ

if α0,

if α0 =

if α o e

{0},

/(oo) =

00

c,

= 1

. C

βo-

e C ,

- oo .

(3.6)

(3.7)

Then φ^f satisfies

By (3.6) and deg (φ*f) = 2, φ*f(z) is written in the form φ*f(z) =

- + z for some c, pr, (j', r' e C, (c, p', r' ^ 0). Since deg (φ+f) = 2,
+ r'

we see that φ+f(z) =
pz2 + qz + 1

we obtain p = q = -1/2. Thus φ+/(z) =

some p(#0), q e C . Moreover by (3.7),

z(z - 2)

-h A)

In what follows we will designate to reduce the parameter space using

the conjugation by Mobius maps. Identifying (a, b) with fOfb, we define

(flu h) ~ (fli> bi) i f falfb2 and fa2yb2 are conjugate.

We shall write G<F if for any (a,b)eF there exists (a\b')eG such

that (α, b) - (α', fc') and G«F if G < F and (α1? bx) - (α2, b2) implies

{aub1) = (a2,b2) for (α l 9 fej, (α2, b2)eG. We call G a fundamental domain

of F if G « F.

REMARK 3.4. If Fk -<-< Fk, (fc = 1, , n) and there are no pairs (ah bt) e Fh

(am9 bm)eFm,(lm=l-',n,lΦm) such that (al9 b,) - (αm, ftm), then |J2= 1 Fk«

Restricting our arguments to real cases, we will first find a fundamental

domain of R2\£. Complex cases will be slightly referred to later.

For fΛyh e ^(R 2 \£) , fah has at most three distinct fixed points, two super-

attracting fixed points and three distinct eigenvalues. Therefore we have

U U
*=o 1=0

(3.8)
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where

DkJ = {(a, fe) € R2\E: jf(Fix (/„,„)) = 3, #(Fix (fa,b) Π Crit (/„,,)) = fc, #Λ(α, fe) = /}

and Z)(2) = {(a9b) e R2\E: #(Fix (/fl>b)) = 2}. Clearly DkJ (k = 0,1,2,3,

/ = 0,1, 2) and D ( 2 ) are pairwise disjoint. A simple observation immediately

implies

D1Λ = DU2 = D2Λ = D2>3 = 0 , D0Λ = {(-2, 4)}, D 2 , 2 = {(2, 0)} .

By a further precise classification of eigenvalues we can obtain a fundamental

domain of R 2 \ £ as follows.

LEMMA 3.5. Set D = {(-2, 4), (2, 0)} U 50,3 U D0>2 U D1>3 UD ( 2 ), w/im?

A),3 = {(<*> fe) e /)o,3^ Λi(<*> fe) > ^ 2 ( ^ fe) > λ3(a, b)} ,

D l f 3 = {(α, ft) e ^ , 3 : ̂ ( β , ft) > A3(α, 6) > λ2(a, b) = 0} ,

A),2 = {(α' b ) G ^0,2: λiίfl, t) / λ2(a9 b) = λ3(a, b)},

D^ = {(α, fc) e D<2>: α^α, b)( = α3(α, fe)) # α2(α, fe)}.

D « R2\E.

PROOF. We show the following (i)-(iv).

(i) DOt3«DOt3.
Suppose that (a9b)eDO3. Then by the definition of D03, there exists

a unique σ e S3 (the symmetric group of degree three) such that

λσ{1)(a, 6) > i σ ( 2 ) (α, fe) > λσi3)(a, fe). (3.9)

By Lemma 3.1 (iii), there exists a unique φσeJί such that

{ψσ)Ja,b = fua,t) > %(<W*> *>» = «/«σfe fe)) * * J = 1, 2, 3 , (3.10)

where

ί.(α, fe) = (λσil)(a, fe), Aff(1)(α, b)λσ(2)(a, fe)) (3.11)

and /(fl',6) stands for fa,# and so on. Clearly ξσ(a9 fe)e50>3, because

λΛWβ, fe)) = Aσ(1)(α, fe) > λ2(ξσ(a, fe))

= ^ 2 ) ( α , fe) > λ3{ξM fe)) = λσi3)(a, fe).

Since ( α , t ) e D 0 ) 3 is arbitrary, we have DOt3^ζDO3.

On the other hand, suppose that there exist (aί,b1), (a2,b2)eD03 such

that (al9 fex) - (α2, fe2). Since ^ ( α l 5 fe^) = Λ{a2, fe2) and A^^, bs) > λ2(ap bj) >

λ3(aj9 bj), (j = 1, 2), we must have
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ax = λx(al9 bj = λt(a2, b2) = a2i — = λ2(au bx) = λ2(a2, b2) = — .

Therefore (al9 bx) = (a29 b2) is easily obtained. Thus we can conclude

(ii) DU3«DU3.
Suppose that (a, b)e D1 > 3. Then there exists a unique σ e {τ e S3: τ(2) ̂ 1 }

such that

W * > b) = 0 , λσ(1)(α, 6) > λσ(3)(α, b)(λσ(1)(α, b)Aσ(3)(α, fc) / 0).

Since ^/αb(α<T(1)(α, ft)) = λσ(1)(a, b) Φ 0, we can find φa e Ji, which satisfies (3.10)

by Lemma 3.1 (iii). Clearly ξσ(a, b) e D13, because

and

k&M b)) = λσa)(a, b) > λ3(ξσ(a, b)) = λσi3)(a, b).

Therefore we have D13^D13 and it follows Dx 3^<r<D1 3 by similar argu-

ments as before.

(iii) D0t2«D0f2.
Suppose that (α, b)eD02. Then there exists a (but not a unique) σ e S3

such that

K(i)(a> b) Φ λσ(2)(a, b) = λσ(3)(a, b).

Therefore Do 2 <DQ 2 is deduced from this similarly.

Suppose that (al9 bj, (α2, b2) e D0t2 and (α l 9 b^ ^ (α2> b2), or more pre-

cisely, φ*faί,bί - fa2tb2 f° r s o m e φe^t Then there exists a unique σ e S 3

such that φία/fli, bx)) = α ^ ί ^ , fc2), (j = 1, 2, 3). If σ(l) = k Φ 1, i.e., fe = 2

or 3, then

^ifal, &l) = ^σ(l)(«25 ^2) = KikMl* h) = ^(fll» M

This is impossible by the definition of D02. Therefore σ(l) = 1 and conse-

quently σ(2) = 2 or 3, which implies

ΛΊ(*I> bι) = k±(a29 b2), λ2(au bx) = A3(α l5 bx) = λ2{a2, b2) = λ3(α2, b2).

Thus we have (aί9bί) = (a2,b2) from (3.1) as before and this implies

(iv)

Suppose that (α, b) e D(2\ Then there exists σeS3 such that oισil)(a, b) =

αα(3)(α, fe) φ ασ(2)(α, ft). Since Λ.σ(1)(α, b) = 1 ̂  0 in this case by Lemma 3.1, there

exists φσsM which satisfies (3.10) by Lemma 3.1 (iii). Then oίι(ζσ(a9b)) =

0i3{ξM b)) Φ x2(ξσ(a, b)\ i.e., ξσ(a, b) e D<2>. Therefore D<2> < D(2>.
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Next suppose that (aί9b1), (α2, b2) e D(2) and (al9 bx) ~ (α2, b2) or
<P*faί,bί -fa2,b2 f°r s o m e φεJl- Since the order of the fixed points are pre-
served as has been already stated, we must have

φ(ocx(au bj) = dx(al9 b2), φ(cc2(au bx)) = dx(a2, b2).

Then

λ\(fli> bt) = aί = a2 = λx(a29 b2), λ2{al9 b1) = — = — = λ2(a2, b2).
aί a2

Therefore (aί9 bj = (a2, b2). Thus D{2)« D{2) is obtained.
In view of (i)-(iv), we can see that

by Remark 3.4. •

REMARK 3.6. The explicit forms of {φσ} and {ξσ} which appeared in the
above proposition are given as follows. See the construction of φ in Lemma
3.1 (iii) and recall the definition (3.11).

2a-b

{a-b)z-a+\ t t ^ (-a2 + 2a-b b(-a2 + 2a- b)a' έ ( f l b) {2a-b-a2 ' έ ( 1 3 ) ( f l ' b) = { α(l-b) ? a2(l - b)

= ί -, bJ

ft b(-

1 α(l-fc) / _ α 2 + 2 α - b -a

2 + 2a-b\

REMARK 3.7. In complex cases, setting Dc = {(-2,4),(2,0)}UΓ>o,3U
j.z UDC (2), where

C2\£: |A1(β, b)| > |A2(α, b)\ > |A3(a, b)| > 0}

U {(a, b) e C2\£: \λx(a, b)\ = \λ2(a, b)\ Φ \λ3(a, b)\ > 0,

Arg λγ(a, fc) > Arg A2(a, fe)}
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U {(a, b) e C2\E: \λM b)\ = \λ2(a, b)\ = \λ3(a, b)\ > 0,

Arg λ^a, b) > Arg λz(a, b) > Arg λ3(a, b)},

Z)0

c

2 = {(a, b) e C2\£: λ,(a, b) = λ2(a, b) Φ λ3(a, b), λ,(a, b)λ2{a, b)λ3(a, b)Φ0},

0iC3 = {(«, b) e C2\E: λ2(a, b) = 0, \λM b)\ > \λ3(a, b)\ > 0}

U {(a, b) e C2\£: λ2(a, b) = 0, μ^α, b)\ = \λ3(a, b)\ > 0,

Arg λ^a, b) > Arg λ3(a, b)} ,

Dc>™ = {(α, b) € C2\E: #Fix (/a,b) = 2} = {(a, b) e C2\E: a = 1} ,

we have D c - « C γ E in the same way as above.

Though we have already obtained a fundamental domain D of R2\£, we

will slightly transform it into another domain D below using maps {ξa: σ e S3}.

See Figure 3.2.

THEOREM 3.8. Set ί> = DQUDJ UD 2, where

Do = {(α, b) e R 2 \£: α > l , 2 - α < ί > < 2α/(α + 1)} ,

£>! = {(a, b) e R 2 \£: a < -2, 2α/(α + 1) ̂  fe < 2 - α} ,

Z)2 = {(a, b) e R2\E: a = 1} .

R2\£.

PROOF. Let Γ»0)3, Do>2, Dlt3, D0>3, D02 and D13 be the sets which

appeared in Lemma 3.5. According to the definition

A),3 = {(a, b) e £>0>3: λ,{a, b) > λ2(a, b) > λ3(a, b)}

^ r, a -a2 + 2a-b\
b)D

We can obtain by elementary and easy calculations Do3 = U?= 1D0 > 3 > ;, where

^0,3,1 = {(a, b) e O0,3: 2 - a < b< 1} ,

A>,3.2 = {(a, b) e £ O j 3 : 1 < a < b< a2},

Λ>,3,3 = {(α> b ) e A>,3: b>ί,a<0,a2 <b<2-a} .

Similarly we also obtain D02 = U * = 1 D 0 2 J , where

4,2,1 = {(a, b) e £) 0 ) 2: b = 2 - α, a < - 2 } ,

A),2,2 = {(«, ί>) e O0,2: b = 2-a,-2<a<0},
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and 5 1 > 3 =

#0,2,3 = {fa b) e Doa: b = 2 - α, 0 < a < 1} ,

A),2,4 = {fa *>) e D 0 > 2 : & = 2 - α, 1 < a}

i f3 fi U D l f 3 f 2 , where

5i,3,i = {fa b) G D 1 > 3 : b = 0, 0 < a < 1} ,

See Figure 3.1. Put

and

Since ξ{i23)Φo,3,2)« ^0,3,2 and so on, in view of Remark 3.4, we have

2a

FIGURE 3.1
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2α

a + b = 2

On the other hand easy calculations show that D'o = Dθ9 D[ = D1 and D ( 2 ) =

D2. Therefore D = D0UD1 UD2 is a fundamental domain of R 2 \£ by Lemma

3.5. •

REMARK 3.9. For (a, b)eD9 0 always belongs to J(fatb). For, as can be

seen from Figure 3.2, |/α',f,(0)| = \a\ > 1 for any (a, b)e D except when a = 1.

Therefore 0 is either a repelling fixed point or a rationally indifferent one. In

any case OeJ(fab) by Remark 2.4 (iii).

In [9] the rational function

- γz)
for μ > 1, 0 < y < 1 ,

μ'γ 1 + μ(l — γ)z

was investigated. It is easy to see that the Mobius map

φ{z) = yz

gives φ*FμΊeM. In fact,

- 1 M = α Z ^ ~~ Z^

(3.12)

(3.13)

fatb(z) = φ o Fμ,y o φ-\z) =

where α = μ and b = — μ(l — y)/y.

We will consider the family {fOtb: (α, fc) e D} in the following sections. We

shall use the same notations as those in this section.
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4. Real Julia sets

In this section we will investigate a necessary and sufficient condition
under which J(/ f l l)) c R c {00} holds and the structure of J(fafb). As was
stated, the Julia set is equal to the closure of the preimages of an arbitrary
element in it. Therefore, for (α, b)eD9 we only have to investigate fa~b({0})
(n = 0,1, 2, •) because we have already pointed out that 0 e J(fa,b) in Remark
3.9.

Our goal in this section is the following Theorem 4.3. For the prepara-
tion of the theorem we consider the following lemma in a general situation.

LEMMA 4.1. Let f be a rational function. Suppose that J(f) is a proper

subset of RU{oo} and that f has an attracting fixed point α. Then f has

no other attracting periodic points and F(f) = Ωf(oί) = Ωf(oc).

PROOF. Since J(f) is a proper subset of RU{oo}, F(f) = C\J(f) is
connected so that the number of the connected components of F(f) is clearly
one. If there exists an attracting periodic point β φ α, then F(f) has at least
two distinct components Ωf(ot) and Ωf(β). This is a contradiction. Therefore
/ has no attracting fixed points other than α and F(f) = Ωf(<x) = ΩJ(u). •

A subset B of the complex sphere C is said to be a Cantor set if it is
non-empty, closed, perfect (there are no isolated points), and totally discon-
nected (each component of B is a single point). We quote from [1] and [5]
the following well known criterion for the Julia set to be a Cantor set.

THEOREM 4.2 ([1], [5]). Let f be a rational function. Then the follow-

ing conditions (i) and (ii) are equivalent.

(i) The orbits of all the critical points of f converge to stable cycles.

(ii) There exist c > 0 and λ > 1 such that

\λf»(z)\ > cλn for z e J(/), n e N .

Moreover if ζ be an attracting fixed point of f and all of the critical points

of f lie in Ωf(ζ)9 then J(f) is a Cantor set.

A rational function / which satisfies (i) or (ii) is called expanding or
hyperbolic. Now let us go back to the concrete analysis of J(fatb).

THEOREM 4.3. (i) // (a, b) e Do and b > 1, then J(fatb) is a Cantor set

contained in [α^α, b\ α3(α, f>)] and αx(α, b\ α3(α, b)e J(fatb).

(ii) // (α, b) e Do and 2y/a — a < b — 1, then J(fatb) is a Cantor set contained

in [0,1] and 0, 1 G J ( / J .

(iii) // (a, b)eD0 and b = 2y/a-a, then J(fatb) = [0, 1].
(iv) // (α, b) e Do and b < lj~a — α, then J(fatb) is not a subset of RU {00}.



268 Toshio NAKATA and Munetaka NAKAMURA

(v) / / (a, b) € Dί and b < —a, then J(fa,b) is a Cantor set contained in [p_, p+]

and p_, p+ e J{fatb), where p+ is 2-periodic points of fab.

(vi) // (a, b)eDι and -a< b, then J{fa%h) = R U {oo}.

REMARK 4.4. In (i)-(v) it is easily assured that \λ2(a, b)\ = \b/a\ < 1.

Therefore α2(α, b) = oo is an attracting fixed point of fab in these cases.

PROOF, (i) Suppose that (α, b) e Do and b > 1. Then an easy calculation

shows that

in this case. Therefore α3(α, b) e J(fa,b). 0 = α^α, fc) G J(/α,b) has already

been stated in Remark 3.9. Since J{fa>b) coincides with the closure of

{fa~b{{0}): n = 0,1, 2, •••}, it is clear from the graph of fab as a function from

R to R that fa~b({0}) a [α^α, b\ α3(α, f>)] for any n e N and consequently

J(f*.b) c [«i(β» *λ «3fe 6)] See Figure 4.1.

On the other hand, both of the critical points (1 + yjb — li)/b are not

real (recall the condition b > 1) so that they do not belong to J{fa,b)>

Therefore by Lemma 4.1 they lie in Ω*(θL2(a, b)). By the criterion Theorem

4.2, we can conclude that J(fatb) is a Cantor set.

(ii) Suppose that (a, b) e Do and lj~a — a <b < 1. Then of course

0 e J(faib) and 1 e J(fa,b) because 1 is one of the preimages of 0. A simple

observation of the graph of / α b again shows that fa~b({fy)c [0, 1] for

any n e N . Therefore J{fayb) c [0, 1]. See Figure 4.2. On the other hand

Crit {fatb) = {(1 ± J\ - b)/b} and it is easy to show that (1 + y/l - b)/b > 1

and fatb((ί — y/ί — b)/b) > 1. Therefore both of the critical points do not

belong to J(/ f l,b). Again recalling that α2(α, b) = oo is attracting as before,

we see that they must lie in ί2*(α2(α, b)) and that J(fa,b) is a Cantor set.

(iii) Suppose that (a,b)eD0 and b = 2y/a — a. In this case J{fa,b)<^

[0, 1] can be shown in the same manner as in (ii).

On the other hand, since Ω(<x2(a, b)) = Ω*(oc2(a, b)) = F(fab) as before and

/«.b([0, 1]) = [0,1] as is easily seen, we have [0,1] ΠΩ*(<x2{a, b)) = [0, 1] Π

b) = 0> which means [0, 1] c J(fOfb). Therefore we have J(fOfb) = [0, 1].

(iv) Suppose that (α, b) e Do and 2^/a — a < b < 1. Then we can immedi-

ately see that both of the preimages of 1 with respect to fab are not real,

i.e., the solutions of the equation fQjb{z) = 1 or az1 — (a + b)z + 1 = 0 are both

not real. Therefore J(fa,b) is not real.

(v) Suppose that (α, b) e Dt and b < —a. The graph of fOtb is as shown

in Figure 4.3. The assertion can be easily shown in the same way as before.

(vi) Suppose that (α, b)eD1 and b> —a. Then the fixed points α/α, b\

(j = 1,2, 3) are all repelling so that they belong to J(/α,b). The relation
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) c RU{oo} can be shown in the same way as before. See the graph
of fΛtb in Figure 4.4.

On the other hand suppose that there exists x e RΠF(/α>ί)). Then J{fatb)
is a proper subset of RU{oo}. Therefore by Lemma 4.1, the number of the
connected components of F(/α>ft) is only one. By Sullivan's Theorem [1,
Theorem 7.1.2.], F(/α b) is a Siegel disc or a Herman ring. Therefore F(fath)
is simply connected or doubly connected in C. Hence the number of the
connected components of the Julia set is one or two. Since α/α, ί))eRU
{oo}Π J{fatb) {j = 1,2,3), at least one of the intervals in RU{oo} given by
h = [αi(O),«3fa&)]> h = [α3(^6)»α2(^6)]( = [α3(α,fe),+oo]) and /3 =
[α2(α, b), α^α, b)]( = [-oo, α^α, b)]) must be contained in J(/α,ft). Using fOtb-
invariance of J(fOtb% we have

Afa,t) => h^fa^faMj) = RU {oo} for j = 1, 2, 3 .

But this contradicts the assumption. Therefore J(/α>5) = RU{oo}.
Next suppose that {a, b)e {(a, b)eD2: a + b = 0}. Then α^α, b) and

α3(α, ί>) are repelling fixed points and α2(α, b) is a rationally indifferent fixed
point which satisfies λfa _α(α2(α, b)) = — 1.

Now put #(z) = φ" 1 o fa_a o φ(z) and /i(z) = go g(z% where ( )

Since J(fat-a) cRU{oo} can be shown similarly, J(h) = J(g) = <p(J(/α>_α))
RU{oo}. On the other hand, an easy calculation shows that

h(z) = z 2 z 3 + " ' f°Γ z sufficiently near 0,

and
(α + l)(α + 2)

0. Applying Petal Theorem [1, Theorem 6.5.8 (b)], we

1/
0 li

α = 5, b = 1.5

FIGURE 4.1

o I 1

α = 4, b = 1.5

FIGURE 4.2



270 Toshio NAKATA and Munetaka NAKAMURA

\

/

χ
0 \ l

a = - 5, b = 3

FIGURE 4.3

\

/

y
0 l\

a = _ 5 > b = 5

FIGURE 4.4

see that F(h) has two distinct components. Therefore J(h) = RU{oo}. Thus

REMARK 4.5. If (a, b) e Do, α^α, b) is a repelling fixed point and α2(α, b)
is an attracting one as we have seen above. Suppose that (a, b) e Do and

b < — . Then α3(α, b) is an attracting fixed point. When (a,b) is in
a + 1

this region, we see by using computer simulations that the family {fOtb} causes
period doubling phenomena similarly as logistic maps.

5. Asymptotics of Hausdorff dimension

We will treat here subsets of R. Hence we give the definition of the
Hausdorff dimension only for (bounded) subsets of R. For a bounded set
A a X and β > 0 we firstly define

Jff(A) = inf j f 117,1": A <z U& Uh \ Ut\ < δ (i = 1, 2,...)j

= lim

where \U\ = supx>3,6l7 |x — y\. The Hausdorff dimension of A is the number
given by

H-dim (A) = sup {β: = +00} .

It is well known and can be easily verified that H-dim (A) = inf {j?: Jfd'β(A) =
0}. See for example [3].

According to [8], for a real analytically parameterized family of expanding
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rational functions of the same degree, the Hausdorff dimension of the Julia
set of these functions is real analytic with respect to the parameter.

Set D* = {(a, b) eD0:b> 1} and D+ = {{a, b) e Do: 2^/a - a < b < 1}.

As has been seen in Theorem 4.3, the degree two functions fatb are expanding
on J(fafb) if (a, b) e D* UD* and the map (a, b)\-+fatb(z) is clearly real analytic.
Therefore the map D*UDJ|t 9(α, b)h->H-dim(J(/fl[,)) is real analytic. In what
follows we investigate the asymptotics near the boundary {(α, 1): 1 < a}.

Assume that (a, b) e D+. Let z+( = z+(a, b)) and z_( = z_(a, b))(z_ < z+) be
two real distinct solutions of the equation

fatb(z) = 1 i.e. az2 - (a + b)z + 1 = 0 .

Now we prepare the following convergences for the later arguments.

LEMMA 5.1

lim λfab(z+(a,b)) = -π, lim λfah{z^b)) = a. (5.1)
(a,b)eD;b-+l-0 '

lim λfab(αi(α, b)) = a, lim λfab(α3(α, b)) = +oo . (5.2)
(a,b)eD*,b->l+O ' (a,b)eD*,b-> 1+0

These convergences are locally uniform in a.

PROOF. First we see that

lim z+(a, b)) = 1 , lim z_(a, b) = I/a.

These convergences are locally uniform in a. In fact, recalling a > 1, we have

(a + b)± y/(a + b)2 - 4a
z±(a,b) = ^

(a -hi) + (b - 1) ± (a - 1)^1 + (b - l)(2a + b + \){a - 1)~2

2a

a + 1 ± (a - 1) f 1, for z+

2α [I/a, for z_

as b -• 1 — 0 for each α and these convergences are clearly locally uniform
in a. Since λfab(z±(a, b)) =flb(z±(a, b) and

_, , , a(bz2 - 2z + 1) ^ Lχ bz - 2
/«»= ( 1 _ f c z ) 2 = ^ ^ - ^ ( 1 3 ^ ) 2 '

the assertions are easily seen. •

Let q>! and φ2 be two branches oϊ fa~b\[01] such that ψ>i([0,1]) = [0, z_]
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and φ2([0,1]) = [z+, 1]. That is,

1
Ψi(x) = 2^(« + bx - y/(bx + a)2 - 4ax),

= ^-(α + bx + J(bx + a)2 - 4ax).

Since J(fa_b) is the closure of U £ ^ " ( { O } ) , if

max |φj(x)| < 1, (5.3)
jce[θ,l],j=l,2

then J(fOtb) is the self-similar set constructed by the contractions φx and φ2,

i.e., J(fatb) is the unique compact set such that

J(fa,t) = <PΛΆfa,b)) U 92(J(fa,b)) • (5-4)

Furthermore φi(J(fa,b))f\φ2(J(fa,b)) - 0 holds and

•'(/..»)= Π U %°-«Φj[0,l]).
n=l (ί,. ,Ue{l,2}»

Next assume that (α, b) e D*. Let ̂ t and φ2 be two branches of

/.:»l[o..,e.«] s u c h t h a t λ([0,α3(α,fe)]) = [0,1/α] and ^ 2 ([0, α3(α, ft)]) =

[1, α3(α, 6)]. If

max |#(x) | < 1, (5.5)
JC6[0,l]J=l,2

then J{fajh) is a self-similar set constructed from the contractions φx and φ2, i.e.,

J(Λ.») = Λί 'ίΛ.*)) U Φ2(J(fa,b)) (5.6)

In this case as before Φi(J(fa,b))^Φ2(J(fa,b)) = 0 holds and J{fa,b) i s given
by the representation

Π U
Π = l (iU'-'tin)G{l,2

Here we extend H-dim (J(fa,b)) to the functions on the region D = D* U

D^ U {(α, 1): 1 < α} by putting H-dim C/(/α,b))|f,=i = 0. This is justified because

fal{z) = az so that clearly H-dim (J(/ α l ) ) = 0. As stated, the asymptotics of

this function will be researched when the degree of functions degenerates.

THEOREM 5.2.

lim H-dim (J(fatb)) = 0 , lim H-dim (J(fatb)) = 0 . (5.7)
ί-l-0 (a,b)e D*,b^ί + 0
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These convergences are locally uniform in a. In other words, H-dim (J(fa>b))
is continuous in D* U D# U {(α, 1) e R2: a > 1}.

PROOF. Suppose that (a,b)eD^. In view of (5.1) we can see that the
condition (5.3) is satisfied when b is sufficiently near 1. Therefore J(fa,b) is the
self-similar set defined by (5.4). Applying the Moran-Hutchinson's methods,
we have the following estimate for H-dim (J(fatb)).

s(a9b)< H-dim (J(fa,b))<t(a,b),

where s(a, b) and ί(α, b) are given by the following equations:

) s(a,b) / \s(a,b)

+ m i n | φ ί ( x ) | 1 = 1 ,
\*e[O,l] /

) t(a,b) / \«a,b)

+ max |φi(x)| = 1
\xe[O,l] /

respectively (see Falconer [3, Theorem 8.8]). Since
max \φ[(x)\ = |φί(l)l = tt/Λz-T1 > max \φ^(x)\ = \φ^(l)\ = I ^ z + Γ 1 ,

jce[θ,l] ' X€[O,1]

Lemma 5.1 implies

lim max \φ[(x)\ = lim \λf (z.)]'1 = l/a9
(a,b)eD*,b-+1-0 xe[O,l] (β,ft)eD ,Hl-0

lim max \φί(x)\ = lim |A/βb(z+)|"1 = 0 ,
(α,&)eD ,b->l-0 xe[0,l] (a,b)eD*,b->l-0

where these convergences are locally uniform in a. Therefore it is clear that

lim t(a, b) = 0 locally uniformly in a .

Next suppose that (a, b) E Z>*. Then similarly we obtain

lim max \φ[{x)\ = lim lA^O)!"1 = I/a,
(a,b)eD*,b-> 1+0 xe[0,a3(a,b)] (a,b)eD*,b^> 1+0

lim max |£(χ) | = lim |A/o>3(a, fc))!'1 = 0.
(a,i>)eD*,ft-»• 1+0 xe[0,a3(a,b)] (a,b)eD*,b->l + 0

Therefore defining t(a9 b) for φx and φ2 similarly, we obtain

lim t(a, b) = 0 locally uniformly in a .
(α,ί>)e D*,b-+1+0

Thus we have (5.7) in both cases. •
The number s(a, b) defined above is used to estimate H-dim (J(fafb)) from

below and the estimates in the following lemma will be used to show the
non-analyticity on the boundary.
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LEMMA 5.3. // (α, ft) e D+ satisfies (5.3), then

// (α, ft) e D* saris/ies (5.5), then

PROOF. Note that

min |φί(x)| = |<pί(0)| = \λa ̂ (O)!"1 = I/a ,
*e[O,l]

min |φί(x)| = | ^ ( 0 ) | = l ^ ^ l ) ! " 1 = | - α / ( l - ft)!"1 = (1 - b)/a
xe[0,l]

for (a, ft) e D+ and

(α - ft)2

min |£(x)| = \λfa b(l/a)r = ,
jc€[o,α3(α,i>)] a(b 2a + a)

min | # ( x ) | = l ^ ^ l ) ! " 1 = | - α / ( l - bψ1 = (ft - l)/α
xe[O,α3(α,fc)]

for (α, ft) e D*.

Suppose (α, ft) e D^ and (5.3) holds. Then \λfa b(0)\ = α < α/(l - ft) =

|A / α b(l)| since ft > 1, which implies

1 = (l/α)
s<* » + ((1 - b)/a)s{a>b)

> 2((1 - b)/a)sia>b).

Therefore it is clear that

log 2/(log a - log (1 - ft)) < s(a, ft) < H-dim (J(/Λ, b)).

Similarly we can estimate (5.9) when (a, ft) e Z>* and (5.5) holds. In this

a(b -2a + a)2

case \λfab(l/a)\ = - — 2 < a/(b - 1) = |J/β § b(l)|. Therefore we have the

estimate (5.9) similarly. •

THEOREM 5.4. H-dim (J(faib)) is not real analytic in ft at 1 for each a > 1.

PROOF. Suppose that there exists some a > 1 such that H-dim (J(fatb))

is real analytic at ft = 1. Considering continuity and analyticity, we have the

following estimate for some C > 0 when (α, ft) e D^ ft is sufficiently near 1

and (5.3) holds.

(0<) H-dim (/(/„,*)) < C(l - ft)" for some n e N . (5.10)
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Comparing (5.8) with (5.10), we must have

log 2

log a - log (1 - b)
- b)n

for b sufficiently near 1, which is clearly impossible. Therefore the assertion

must hold. •

REMARK 5.5. We can show Theorem 5.4 by (5.9) as well.
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