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ABSTRACT. Some roles in the global dynamics of so called stable and unstable sets will

be given for semilinear heat equations and semilinear wave equations with dissipative

terms.

1. Introduction

Let Ω c= RN be a bounded domain with smooth boundary dΩ. We are
concerned with the following two mixed problems:

(1.1) ut-Au=\u\p~1u, x e ί 2 , f > 0 ,

(1.2) w(0,x) = ι/o(x), xeί2,

(1.3) u(t,x)\dΩ = 0 f o r f > 0 ,

and

(1.4) utt-Δu + δut = \u\p~lu, x e ί 2 , f > 0 ,

(1.5) ιι(0, x) - ιio(x), ιιt(0, x) = m(x), x e O,

(1.6) M(t,x)lao = 0 f o r ί > 0 .

Here p > 1, δ > 0 and A is the Laplacian in RN.
For these problems, many authors investigated their dynamics. In par-

ticular, since Sattinger [21] has constructed so called stable set in 1968, the
method of stable set (potential well) was used in order to construct global
solutions (Ebihara et al. [3], Ikehata [9], Ishii [11], Lions [14], Nakao et al.
[16], Otani [17] and Tsutsumi [22, 23] e.g.). Furthermore, with respect to the
blowing-up properties, there is a work of Payne et al. [19]. Namely, roughly
speaking, if initial data MO belongs to so called unstable set, then the associated
weak solution blows up in a finite time. Of related interest is the works of
Ikehata et al. [10], Ishii [11] and Otani [17, 18].
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Now the first purpose of this paper is to characterize those stable and
unstable sets by the asymptotic behaviour of solutions to the problems (1.1)-
(1.3), adopting the arguments of Dynamical System (see Henry [7]). Our
method may be topological in this sense. The second purpose of this paper is
to consider the same problems for (1.4)-(1.6). In particular, we can charac-
terize stable set of the equation (1.4) by the asymptotic behaviour of solutions
as ί —^ oo and give sufficient conditions of initial data in order to blow up in
finite time by the energy method. Although the method is different from that
for heat equation (1.1), we will be able to say that the wave equation (1.4) with
δ > 0 has a similar property to (1.1). However, unfortunately we can not
characterize unstable set right now because of lack of 'smoothing effect' in
(1.4).

The contents of this paper are as follows. In section 2 we prepare several
facts on the local existence of solutions to (1.1)-(1.3) or (1.4)-(1.6) and basic
results of stable and unstable sets. In section 3 we state the main results
(Theorem 3.1) to the problem (1.1)-(1.3). In section 4 we assert the main
theorems to the problem (1.4)-(1.6) (Theorems 4.1 and 4.2). Section 5 is
devoted to the proof of Theorem 4.1 and in section 6 we prove Theorem 4.2.

After our work has been completed, we are noticed that Kawanago [12]
studied the dynamics of the Cauchy problem of (1.1) in RN with lul^w replaced
by up. This is closely related to our study, as he investigated the set K,
introduced by Lions [15], of initial values for the existence of global solution,
in detail. In addition, the use of an argument of Giga [4] is in the same way
as ours.

2. Preliminaries

Throughout this paper the functions considered are all real valued and
the notations for their norms are adopted as usual ones (e.g., Lions [14]).
Furthermore, Ω c RN is a bounded domain with smooth boundary dΩ.

We shall describe some lemmas.
2N

LEMMA 2.1 (SOBOLEV-POINCARE). If 2 <q< ——-, then

\\u\\q<C(Ω,q)\\Vu\\2

for ueH^Ω), v^here \\u\\ means the usual Lq(Ω)-norm.

The next two local existence theorems are given by Hoshino et al. [8]
and Haraux [6], respectively. In particular, Theorem 2.3 is easily proved by
using Banach's fixed point theorem.

N + 2
THEOREM 2.2 (HEAT EQUATION). Assume either 1 < p < ——- (N > 3) or
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1 < p < +00 (N = 1,2). Then for any UQ e HQ(Ω), there exists a real number
Tm > 0 such that the problem (1.1)-(1.3) has a unique local solution u ε C([0, Tm);
HQ(Ω)) Π C1((0, Tm); L2(Ω)). Furthermore, u becomes a classical solution of
(1.1)-(1.3) for t > 0 and if Tm < +00, then

lim \\Vu(t,OH2 = +°° and Mm ||ιι(ί,OIL = +°°

THEOREM 2.3 (WAVE EQUATION). Let δ > 0 and suppose either 1 < p <

N
jτ—-(N>3) or 1 <p < H-oo (N = 1,2). Then for any UQ e H^(Ω) and

u\ e L2(Ω), there exists a real number Tm > 0 SMC/I ί/iαί ίΛ^ problem (1.4)-(1.6)
admits a unique local weak solution u(t}x) which belongs to the class:

C([0, Tm);Hl

0(Ω)) Π CJ([0, Γm);L2(Ω)) Π C2([0, Γ^ fΓ1^)),

and if Tm < +00, then

Iimf||Γtt(t,.)ll, + ll«t(t, )||,l = +oo.

Now we define some functionals as follows:

(2.1) J(«) = i||FM||2--l-f||M||^1

1 for ue

(2.2) /(«) = \\Vu\\l - \\u\\£\ for u e H*(Ω).

And also we define so called 'Nehari manifold' and 'potential depth', respec-
tively as follows (see Payne et al. [19]):

JΓ Ξ {u e fli(O); /(ιι) = 0, u ?έ 0},

(2-3) f 1
a = inϊi sup J(λu);u e Hλ(Ω), u φ 0 \.

U^o J

Then with the aid of Lemma 2.1, we have (see Ikehata et al. [10] and Payne et
al. [19])

(2.4) 0<d= inf J(u).
ue^Γ

Furthermore, if we set:

£ = {u€Hi(Ω) ;-/»«= |«ΓVu|afl = 0},

£* = {ue£;J(u) = d},

then we have (see Payne et al. [19])

E* = ue^;Ju=d¥=φ.
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Now let us define so called stable set W* and unstable set F* (see Sattinger
[21], Payne et al. [19]):

(2.5) W* = {ueHl(Ω) ,J(u)<d,I(u)

(2.6) F* EE {u e Hj(Q);J(ιι) < dj(u) < 0}.

Then we have

LEMMA 2.4.
(1) W* is a bounded neighbourhood of 0 m HQ(Ω),
(2) ojn
(3) JF* Π 7* = £*,
(4) E* c ^T.

Here U means the closure of U in HQ(Ω).

PROOF. For (1), see Lions [14, p. 31]. Let us show (2). Suppose 0 e V*.
Then there exists a sequence {vn} c V* such that vn — > 0 as n — > oo in HQ(Ω).
(1) means that if n is sufficiently large, then ι;n e W*. These contradict to the
fact W* Π F* = .̂ Since (4) is trivial, we finally prove (3). Indeed, if v e W* Π
F*, then I(u) = 0 and J(ιι) < d. Further, (2) implies v^O. Therefore, we get
v e Jf, J(υ) < d. Noting (2.4), we obtain v e E*. Conversely, if v e £*, then
we have J(u) = d and I(u) = 0 with v^O. This implies υ E W* Π V*.

Finally, we shall prepare energy identities associated with the problems
(1.1)-(1.3) and (1.4)-(1.6), respectively:

LEMMA 2.5 (HEAT EQUATION). Let w(ί, x) be a local solution to (1. !)-(!. 3)
on [0, Γw) with initial data UQeH^(Ω). Then

J(u(ί, ))+ Γ
Jo

J(αo) on [0,TW).

LEMMA 2.6 (WAVE EQUATION). Lβί 5 > 0 and let w(ί, x) ftβ α /ocαί solution
to (1.4)-(1.6) on [0,Γm)

i) on [0,ΓW),
o

vv/iβre £(M, t;) = ^||t;||2 + J(u) is a Liapnov functional corresponding to the
equation (1.4).

3. Heat equation and stable-unstable set

Throughout this section, we shall concentrate our interest on an analysis
of the problem (1. !)-(!. 3). Of course, we assume the unique local existence
Theorem 2.2. Then our results read as follows:



Stable and unstable sets 479

THEOREM 3.1. Let u(t,x) be a local solution to the problem (1.1)-(1.3) on

[0, Γm) with initial data u^eH^Ω). Then there exists a real number t^e

[0, Tm) such that w(ί0, •) e W* if and only if Tm = +00 and lim^α, \\Vu(t, )||2 = 0.

THEOREM 3.2. Suppose that either UQ > 0 or Ω is a convex set. Let
w(ί,x) be a local solution to the problem (1.1)-(1.3) on [0, Tm) with initial data

UQ e H^(Ω). Then there is a real number ί0 e [0, Tm) such that w(ί0, •) 6 F* if

and only if Tm < + oo.

REMARK 3.3. It has been known that if UQ e W*, then Tm = +00 and

ι*(f, ) -> 0 in #o(Ω) as t -» oo or if UQ e V*, then Tm < +00 (see Ishii [11],
Oίαni [17], Payne eί α/. [19] and Tsutsumί [22]). However, all of their results

depend on the energy method differently from ours.

To prove Theorems 3.1-3.2, we need some lemmas.

When Tm = + oo, we can define so called ω-limit set ω(wo) associated with
(1.1)-(1.3) as follows: Let ιι(ί,x) be a global solution to (1.1)-(1.3) with Tm =

+00 in Theorem 2.2. Then

ω(wo) = {u e HO (β); there is a sequence {tn} with tn —> oo as n —> oo

such that u(tn, •) -> u in Ho(ίZ)}.

The following proposition will be given by Henry [7]:

PROPOSITION 3.4. Suppose Tm = +00 in Theorem 2.2. Then

(1) ω(wo) T* ^ is compact in HQ(Ω),

(2) ω(wo) is connected in HQ(Ω),

(3) ω(Wo)c=£,

(4) dist(ιι(ί, •), ω(ιio)) -» 0 as ί -* -foo.
Here dist(u,ω(uo)) means ί/ie distance from u to ω(wo).

Next we can prove the following lemma in the same way as in Tsutsumi

[22].

LEMMA 3.5. Let ιι(ί, ) be a local solution to (1.1)-(1.3) on [0, Tm) and let

S(t) be a 'dynamical system9 corresponding to the problem (1.1)—(1.3), i.e., S(t) is

a mapping UQ i-> ιι(ί, •). Then

S(t)W* c W* and S(t)V* c F* on [0, Tm).

Now we are in a position to prove Theorems 3.1-3.2.

PROOF OF THEOREM 3.1. First we shall prove Theorem 3.1. Suppose

that there is a real number ίo e [0, Tm) such that ιι(ίo, •) e W*. Then Lemma
3.5 means ιι(ί, •) e VΓ* for all ί e [ί0, Tm). Therefore, by (1) of Lemma 2.4 there

exists M > 0 such that ||Γιι(ί, )||2 < M which implies Tm = H-oo in Theorem
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2.2. And also, it follows from Proposition 3.4 that CO(MO) Φ ψ is connected

and ω(wo) c= E.
To begin with, assume 0 φ ω(wo). Then there are ω e CO(MO) with ω ̂  0

and a sequence {ίn} with ίn — > oo such that w(ίn, •) — » ω in HQ(Ω).
Futher, for sufficient large n we also have u(tn,')eW*. So we obtain

ω e ω(wo) Π W*. On the other hand, since ω ^ 0, we get ω e CO(MO) <= £\{0} <=
Jf. This implies ω 6 J f ΐ \ ϊF*. Thus, we obtain /(ω) = 0 and J(ω) < d. It
follows from the definition of d (see (2.4)) that

(3.1) J(ω) = d.

Moreover, since M(£O> ) £ W*5 it follows from Lemma 2.5 that

for sufficiently large n. Letting n — > oo above, we get

(3.2) J(ω)<J(w(ί0, •))<<*,

which contradicts to (3.1). So it must hold 0 e ω(wo).
Next let B Φ φ be a subset of Hj(fl) such that ω(w0) = {0} U B. Then B

must be closed in H^(Ω). In fact, let bn e B be a sequence such that bn — > ft

in #o(ί2) for some ft e HQ(Ω). (1) of Proposition 3.4 means ft e ω(wo). Sup-
pose ft = 0. Then we obtain from (1) of Lemma 2.4 that bn e W* for n large
enough. On the other hand, since bn Φ 0, it follows from (3) of proposition
3.4 that bneEO}d^. So we get bneW*Γ\^=φ for n large enough.

This is a contradiction. Thus, ft φ 0. This implies ft e B, i.e., 5 is closed.
Finally, it follows from (2) and (4) of Proposition 3.4 that B = φ, ω(u$) = {0}

and ιι(t, ) ->0 in H^(Ω).
Conversely, if Tm = +00 and ' limf_>oo||Fιι(f, )||2 = 0, then from (1) of

Lemma 2.4 that there is a number ίo e [0, oo) such that w(ίo, ) e W*

PROOF OF THEOREM 3.2. Second we shall prove Theorem 3.2. Since the
proof of 'if part of Theorem 3.2 is almost the same as that of Theorem 3.1, we
will state only the outline of proof.

Assume that there exists a real number ίo e [0, Tm) such that w(ίo, •) e V*.
Then we have from Lemma 3.5 that ιι(ί, •) e F* for all t e [ί0, Tm). In the
following, we suppose Tm = +00 (see Otani [17]). By using V* instead of W*

in the proof of Theorem 3.1, first of all we get ω(wo) = {0} and u(t, •) — > 0 in
Ho(β). From (1) of Lemma 2.4 we obtain that u(ί, •) 6 W* for t large enough.
Therefore, we get tι(f, •) e PP* Π V* for sufficiently large t > ίo which contradicts
to W* Π F* = .̂ So we get Tm < +00.

Conversely, suppose Tw < H-oo. It follows from Lemma 2.5 that

(p + l)J(uo) > (p + l)J(«(t, •)) - ̂  ||Fu(t, O U 2 + '(«(', •))•
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Since lim^^

(3.3)

||2 = H-oo, the above inequality gives

lim/(u(ί, )) = -oo.

Furthermore, since we also get limt|rm | |w(f, ) l l o o — +°°> when the initial data
satisfies UQ > 0, it follows from the results of Giga [4] that

(3.4) lim J(ιι(ί, )) = -oo.

(3.3) and (3.4) imply that there is a number t0 e [0, Tm) such that u(ίo, )eV*.
Next, we shall rely on the results of Giga-Kohn [5] in order to prove

(3.4) when Ω is convex. Indeed, if Tm < +00, then there exists a "blowup
point" a e Ω such that

u(ί, y) = (Tm - i)βu(t, a + (Tm- t)i/2y) as t

where β =
p-1

and the convergence is uniform on every compact subset of

RN. If we set s = log
1

Tm-t
and w(s,3;) = ±v(t,y), then w(s,3;) satisfies

W e " Λ W + - = w p w

on ( l°g τpτ> +00 )
Ξ eχp(^ ) (β + {~a}) Here, it is known that

as s —> +°° so that ^w ^̂  0 and ws -̂  0 as s — > -f oo, where the
convergence is uniform on every compact subset of RN. Under the above
preliminaries, we can calculate as follows:

= f ' f \ut(t,x)\2dxdt
J t i JΩ

fiog(i/τm-ί) (/ ΛΓ\ Ί f
exp 2j5+l-^ )s \ds\

Jiog(i/τm-ίι) IV L) ) JΩS

dy,

N
where α = 2β -f 1 — — > 0 by the conditions of p. So there is a real number
R > 0 such that

j.log(l/Tm-ί)

I exp (αs)ds
J\y\<RMθg(l/Tm-ί!)

On the other hand, by letting s—>oo(ί |Γ w ), it follows that for any ε > 0 there
is a number SQ > 0 such that if SQ < s, then

w + -y Fw + ι
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where \BR\ is a volume of the set {y e RN-, \y\ < R}. Thus, there exist a
constant Co > 0 and an another number SQ > 0 such that if SQ < s, then

1 i „ 2, ^-y-Vw + ws dy>C0.
>\y\<R

Let to = Tm- exp(-so). Then for all ί 6 [ίo, Tm) we get from Lemma 2.5 that

J(ιι(ί)) = J(ιι(ίd)) - Γ f \ut\
2dxdt

Jt0JΩ

ί
l O g ( L / l m - t )

exp (as)ds
log(l/TM-ί0)

n f± \\ , C o 1 Co 1
— "V"VH^; -r /τ, , x α „ /T * Λ α *α (im —ίoj α (7m — ί)

Letting t T Tm, we get

lim J(ιι(f)) = -oo.

Taking (3.3) into consideration, we obtain the converse statement of Theorem
3.2.

COROLLARY 3.6. Suppose that either MQ > 0 or Ω is a convex set. Let
u(t,x) be as in Theorems 3.1-3.2. Then the fallowings are equivalent each
other:

(1) Tm = +00 and 0 φ ω(wo),
(2) J(u(t,.))>dfor all ίe[0,Γm),
(3) u(t, )φW*UV*for all fe[0,Γw).

PROOF. First it is easy to show that (2) is equivalent to (3). Next let us
prove the equivalence of (1) with (2).

Suppose (1). If there is a number ίo e [0,-hoo) such that J(w(ίo, )) < d,
then one of the following three cases hold:

(i) 7(W(ί0, ))>0, (ϋ) /(t/(ί0,.))<0, (iii) 7(u(ί0, )) = 0.

If (i) is true, since w(ίo, )) e ^*5 it follows from Theorem 3.1 that Oeω(ι/o).
This contradicts to the hypothesis. If (ii) is right, then we get w(ίo, •) e V*
which implies Tm < +00 by Theorem 3.2. This is also a contradiction.
Finally assume (iii). If u(ίo, •) ¥= 0, then w(ίo, •) e Jf and J(u(ίo, •)) < ̂  This
contradicts to (2.4). So we get w(ίo, •) = 0 and therefore J(w(ίo, •)) = 0. From
the monotonicity of the mapping ί ι-> J(u(t, •)) (see Lemma 2.5) we have 0 >
J(ι/(ί, •)) for all ί > ίo. On the other hand, we can easily see that if Tm = +00,
then J(w(ί, ))>0 for all ίe[0,+oo). Thus, we obtain J(tι(ί, •)) = 0 for all
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t e [ίo, -foo). Because of Lemma 2.5 with 0 replaced by ίo we have ||wt(ί, )||2 =
0 for all ίe[ί0,+oo). Since w(ί0, ) = 0, this implies n(ί, ) = 0 for all
t e [ίo, -fcx)). This also contradicts to the hypothesis 0 φ ω(ιio).

Conversely, suppose Tm < +00 even if J(w(ί, ) ) > d for all ίe[0, Tm).
Since it follows from Theorem 3.2 that w(fo, •) ^ K*, this contradicts to hy-
pothesis. So we have Tm = +00. Finally if 0 e ω(uo), then from (2) of Prop-
osition 3.4 we can prove ω(uo) = {0}. This implies lim^oo J(u(t, •)) = 0 which
contradicts to the assumptions.

REMARK 3.7. Owing to the 'smoothing effect' of the equation (1.1), we can
apply the theory of Gig a [4] in order to prove Only if9 part of Theorem
3.2. Therefore, it may be difficult to apply the argument directly to the problem
(1.4)-(1.6). The fact that the global solutions have their values J bounded is
first proved by Otani [17].

4. Wave equation and stable-unstable set

In this section we treat the problem (1.4)-(1.6). To begin with, we shall
introduce "modified" unstable set depending on δ > 0 as follows (see (2.6)):
Suppose

(4.1) 0 < δ < min{p + 3,(p-

Then we define

VI = {ueHj(O); J(u) < dδj(u) < 0},

j . Note that F0* = V*. Then we obtain the fol-

lowing two main Theorems by using Theorem 2.3 with regard to the existence
of local solutions.

THEOREM 4.1. Let δ > 0 and let w(ί, x) be a local solution to the problem
(1.4)-(1.6) on [0, Tm) with initial data u0 e H^(fl) and u\ e L2(Ω). Then there

exists a real number ίo e [0, Tm) such that w(ίo, •) e W* and E(w(ίo, •)> W((ίo, •)) < d

if and only if Tm = +00 and lim^ \\Vu(t, )||2 = lim^oo ||"ί(ί, )\\2 = °

THEOREM 4.2 (BLOWING-UP). Let δ satisfy (4.1) and suppose that w(ί, x) be
a local solution to (1.4)-(1.6) on [0, Tm) with initial data uoeH^Ω) and
u\ E L2(Ω). If there is a real number ίo e [0, Tm) such that w(ίo, •) e V£ and

£(ιι(ίd, ),«t(ίo, •))<*, then Tm < +00.

REMARK 4.3. In proving Theorem 4.1, we shall get the decay estimates of
\\Vu(t, )||2 or ||wt(ί, )||2 as t— * oo simultaneously. This part is closely related
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to the recent work by Nakao et al. [16]. Next, concerning the "only if" part
in Theorem 4.2, it is still open.

REMARK 4.4. In Theorem 4.1, we can not take δ = 0. This means that
the presence of a dissipative term plays an essential role to obtain a decay
property of total energy to (1.4)-(1.6). And also, the equation (1.4) has similar
properties to heat equation (1.1) in this case of δ > 0. On the other hand,
taking into consideration to the effect of "damping", it mil be natural to restrict
a value of coefficient δ in Theorem 4.2 in order to get the blowing-up properties.

5. Proof of Theorem 4.1

In this section we shall prove Theorem 4.1. To this end, we prepare
several lemmas. Throughout this section, we always assume the local
existence Theorem 2.3.

LEMMA 5.1. Let δ > 0 and let w(t,x) be a local solution to (1.4)-(1.6) on

[0, Tm). If there is a number ί0 e [0, Tm) such that E(w(ί0, •)> "t(ίό»')) < d and

I(u(tQ, •)) > 0, then w(ί, •) e W* and E(w(ί, ),ut(t, •)) < d for all t e [to, Tm).

PROOF. Since the proof is almost the same as that of Tsutsumi [22], we
shall omit it.

The next lemma plays an important role to derive the decay estimate of
the total energy E(u(t, ),ut(t, •)) as t —> oo. Although the proof is almost the
same as that of Ishii [11], we will describe it for the sake of completeness.

LEMMA 5.2. Let u(t,x) be a local solution to (1.4)-(1.6) on [0, Tm). //

there exists a number to e [0, Tm) such that w(ίo, •) e W* and E(w(ίo> •)> Wί(ίo> •)) <
d, then

||tt(ί, )ll£ί < (1 -y)||Fιι(ί, )||2 on [ί0,Γm),

p-l)/2

= i _ C(ί2,p+ 1)'+ 2 τ &("(*>> )M*>> 0)(P"1)/2 > 0.

PROOF. In general, if ueH^Ω) satisfies I(u) > 0, then

(p + !)/(«) = P-^- \\Vu\\l + /(«) > ̂  \\Vu\\l

So we have
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Therefore, it follows from Lemma 2.1 with q = p+l that

(5.1) | |:ί < C(Ω,p + l)p

for u E Hl(Ω) with I(u) > 0. Since J(u) < E(u,v), from (5.1), Lemma 2.6 and
Lemma 5.1 we get

' 2

Taking 7 = i_c(β,p+l)p+1(2^4Y Eίufor),!!,^))^1^ we ob-
V P- l/

tain the desired inequality.

LEMMA 5.3. Under the same assumptions as in Lemma 5.2, it holds that
there exists a constant M > 0 such that

\\ut(s, }\\\ds<- on [ί0,Γm).

°
PROOF. The first inequality is a direct consequence of Lemma 2.1, (1) of

Lemma 2.4 and Lemma 5.1. Next noting that u e W* implies J(u) > 0, from
Lemma 2.6 with 0 replaced by ίo we get the desired inequality.

LEMMA 5.4. Under the same assumptions as in Lemma 5.2, it holds that
there is a real number M > 0 such that

f I(u(s, ))ds<M, f \\Vu(s, )\\ldsίM on[ί0,oo).
Jί0 Jίθ

PROOF. Note that under the hypothesis we get Tm = -f oo by Theorem
2.3 and Lemma 5.3. Since we obtain

jt(u'(ή,u(ή) - \\u'(t)\\2

2 + i(u(ή) +~\\u(t)\\l = o,

by integrating the above equality on [ίo, ί] and using the Schwarz inequality it
follows that

f l(u(s))ds + f ||«(t)||i < I ll«(to)||22 + [' ||"'WII2

2 ds
JtQ ^ ^ Jί0

+ ll«'(to)l|2||«(ίo)||2 + Il«'(t)l |2ll"(t)ll2 on [to, oo).
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Here u(t) = w(ί, •) and u'(i) = ut(t, •). Therefore, from Lemmas 2.1 and 5.3 we
have

(5.2) I(u(s))ds < ||«

+ C(0,2)||«'(t)||2||Γιι(t)||2.

Since Lemma 5.2 implies

γ\\Vu(t)\\2

2<i(u(ή),

it follows from (5.2) and Lemma 5.3 that

f I(u
Jto

(s))ds<M
Jto

with a constant M > 0.

LEMMA 5.5. Under the same assumptions as in Lemma 5.2, it holds that

M
E(w(ί,.),Wί(ί> ))< γ^-t (*>ίo)

with a constant M > 0.

PROOF. First note that the following identity holds:

|{(1 + t)E(u(ή, «'(t))} + 0(1 + t)||u'(t)|ll = E(u(t), «'(t))

By integrating this equality on [ίo,t] we have

(1 + t)£(«(ί), «'(«)) ̂  (1 + ίo)£(«(ίo),t/'(ίo))

n 1

Since (p+l)J(u(ή) =!-——\\Vu(ή\\l +I(u(t)), the above inequality gives:

(1 + t)E(ιι(ί),ιι'(ί)) < (1 + ίo)£(w(ί0)X(fo)) + ~ ||ι*'(s)||2ίfa

Finally, by using Lemmas 5.3 and 5.4 we obtain the desired inequality.

PROOF OF THEOREM 4.1. First suppose that there exists a real number

ίo e [0, Tm) such that u(ί0, •) e W* and E(ιι(ί0, '),ut(tQ, •)) < d. Then it follows
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from Theorem 2.3 and Lemma 5.3 that Tm = +00. In addition, Lemma 5.5
implies

lim £(ιι(ί, ),ιιί(ί, )) = 0.
ί— KX)

So we get

l lwίfo ) l l 2 -» ° and J(u(t> •)) -» 0 as ί -> oo.

Since u e W* implies J(u) > 0 and I(u) > 0, the following inequality:

means lim,-^ \\Vu(t, )\\\ = 0.
Conversely, if ||Fw(ί, )||2 ̂  0, ||ιιt(ί, )||2 -> 0 as ί->oo, it follows from

Lemma 2.1 that lim^oo ||u(ί, )llp+ι = 0 which implies

lim £(ιι(ί,.),Mί(ί, )) = 0.
ί— >oo

Therefore, from (1) of Lemma 2.4 and the above mentioned results we get:

M(£O, •) e W* and E(u(ίo, •)? ̂ (ίo, •)) < ̂  f°r some ίo e [0, oo).

6. Prooof of Theorem 4.2

Throughout this section, we always assume (4.1). First we shall prepare
two lemmas:

LEMMA 6.1. Let ιι(ί,x) be a local solution to (1.4)-(1.6) with initial data
UQEHQ(Ω) and u\eL2(Ω). If there exists a number to e [0, Tm) such ίftαί

w(ί0, •) e F; and E(w(ί0, •), "ί(ίo, •)) < b> then **(*> 0 e »7 αnd £(«(ί» '), *(*, •)) <
^ /or all ί 6 [ί0, Γm).

PROOF. Proof is almost the same as that of Tsutsumi [22].

LEMMA 6.2. If ue HQ(Ω) satisfies I(u) < 0, then

(6.1) ||H|2>2d^±i.

PROOF. From the definition of d, we know that

d = inf {(1 - ̂  iiF-ii^1^1) iMl^r07^; « 6 fli(fl)\{o}}.
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Therefore,

(--—Y-\2 p + ljd

*1 2/<p~1}ul l u p + ι

Since ||Fu||2 < INIn+ί by assumption, we obtain the desired inequality.
Now we are just in a position to prove Theorem 4.2. The proof will be

done by the modifications of Ikehata [9].

PROOF OF THEOREM 4.2. Suppose that Γm = +oo. Then the proof is
based on the identity:

(6.2) 1̂  ||u(t, )»2 - IMί, )»2 = <M*. ),u(t, )>x*x on [0, oo),

where <,>*** means the usual duality of X* and X with X = H^(Ω). Next
multiplying (1.4) by w(ί, x) in the duality <,>^*χ we get

, u(t, )>χ.jr =ιι«(t,

where ( , ) means the usual L2(Ω) -inner product. Furthermore, it follows from
Lemma 2.6 that

(6.4)

on [0,oo),
to

where £Q = E(u(to, ),ut(to, •)). From (6.2)-(6.4) we can estimate as follows:

\ £2 !!«(*. OH'

f ' |K(s, )||^ ds - (p + l)£o - 5(«t(t, •), «(«, 0)
Jto

' OH' + ̂  I|F«C, )ll2 - (P + !)£o

, ),«(ί, ))
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Here, from the Schwarz inequality and Lemma 2.1 we have

2(«t(t, •), «(*, •)) ^ 2iκ(t, oιy«(t, )iι 2 * IN*, on! + ιι«(ί, on!

Therefore, we obtain

- (P+1)£0 - IK*, on! - iiMt, oil!

Here we know from Lemmas 6.1 and 6.2:

So we have

(6.5) ^ ||«(t, OH! > {(P + 3) - δ}\\ut(t, Oil! - 2(p + l)£b

Let KI = (p + 3) - δ > 0 (see (4.1)) and K2 = 2(p + 1) < d -
p-1 J

Then we have £2 > 0 since EQ < d I 1 — "~v">~> \ ^y assumption. Thus, it
follows from (6.5) that V P ~ /

(6.6) l|n(t, )ll2^«ιWί. ) l l 2 + «2 on fo, oo).

Integrating (6.6) on [ί0,ί] (to < ί < oo), we get

jt \\u(t, )\\l > 2(ιι(ίd, •), κt(ίό, •)) + *2(* - ίo) on [ί0, oo).

This implies that there is t\ > ίo such that

| |«(t,0ll!>0 on(t,,oo).
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Consequently, P(ί) = ||u(t, -}\\\ never vanish on (*ι, oo). On the other hand, it
follows from (6.6) that

*^

>K2\\u(t,.)\\2

2>0 on (ίι,oo);

in the last step we have used the Schwarz inequality. According to the
standard "concavity argument" (see Levine [13]) we can find TO > 0 such that

lim ||w(ί, )||2 = +00,

which contradicts to Tm = +00.
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