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ABSTRACT. This paper deals with L%mean limits for Taylor’s expansion of Riesz
potentials U, f of order a for functions f satisfying an Orlicz condition. We examine
when

1/q
lim w(r) <r"‘ J | U, f(x) — Pxo(x)|"dx> =0
r-0 B(xo,r)
holds for every x, € R" possibly except that in a set of capacity zero, where w is a

weight function and P, is a polynomial. If w(r) =r7’ then this means that U,f is
Le-differentiable of order £ at x,.

1. Introduction

For 0 < o < n and a nonnegative measurable function f on R", we define
U.f by

U f(x) = J

[x — yI*"f(y)dy;
RH

U,f is called the Riesz potential of f of order a. Here it is natural to
assume that U,f # oo, which is equivalent to

(1.1) f (L + Iy "f(y)dy < co.
RH
As in the previous papers [7], [8], we assume the condition
(1.2) j D,(f(y)dy < o,
RVI

where @,(r) = r?¢(r), 1 <p < oo, with a function ¢ on the interval (0, o)
having the following properties:
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(p1) ¢ is positive nondecreasing on (0, o0).
(92) ¢ is of logarithmic type, that is, there exists A, > 0 such that

A7'o(r) < o(r*) < A;p(r)  whenever r > 0.

In the previous paper [8], we discussed the existence of fine limits of
the form
(1.3) limR"_E o(1x — Xo[) [Upf(x) — Py, ()] =0
for functions f satisfying (1.1) and (1.2), where E is an exceptional set, w is

a “weight function” and P, is a polynomial.
In this paper, we prove that the Li-mean satisfies

1/q
(1.4) lim w(r) (r'”f |U,f(x) — Pxo(x)l"dx) =0,
r>0 B(xo,r)
for q > O satisfying 1/q > 1/p — a/n, where B(x,, r) is the open ball centered
at x, with radius r (see Theorem 3.1).
As in [8], U,f(x) — P, (x) is written as

Ua, {,xof(x) = JR" Ra,/,xo(x’ y)f(y)dy

for some nonnegative integer ¢/, with the remainder term of Taylor’s expansion
of R(x —y)=|x—y[*™

Ra,/,xo(x’ y) = Ra(x - y) Z ‘ (DI‘R )(xO y)]a

u|<¢

provided
(L.5) J ly = %oI* " f(y)dy < .
B(xg,1)
If (p1), (¢2) and
1
(1.6) f [ e 1] V* " Y~ ldr < ©
0

hold, then U, f is continuous everywhere on R" (see [1, Theorem 5.4] and [6]).
Furthermore we know (see [8]) that (1.3) holds for E = J (the empty set)
and hence (1.4) trivially holds (see also Theorem 3.2 below). Thus we are
mainly concerned with the case where (1.6) does not necessarily hold.

In Section 4, we shall show that (1.4) holds as far as x, is not contained
in a set of certain capacity zero (see Theorem 4.1 and Corollary 4.1 below).
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In view of the behavior at the origin of Bessel kernels, our results can be
considered as generalizations of the results by Meyers [3], [4] concerning
Bessel potentials of functions in LP(R").

If (1.4) holds for w(r) =r~7 then U,f is said to be Li-differentiable of
order 7 at x, (cf. Meyers [3], Stein [9] and Ziemer [10]), where / is a positive
integer such that £/ < a. In the final section we discuss Li-differentiability as
a consequence of the proceeding results in case ¢ < o (see Theorem 5.1 below).
In case a = ¢, we shall show that U,f is Li-differentiable of order / almost
everywhere (see Theorem 5.2). Note that if (1.6) holds, then U,f is ¢ times
differentiable almost everywhere (see [6, Theorem 2]).

2. The estimates of U, , . f

Throughout this paper, let M denote various constants independent of
the variables in question.

First we collect properties which follow from conditions (¢1) and (¢2)
(see [7] and [8, Section 2]).
(p3) ¢ satisfies the doubling condition, that is, there exists 4 > 1 such that

(p(r) <)o2r) < Ao(r) whenever r > 0.
(p4) For any y > 0, there exists A(y) > 1 such that
A lo(r) < o(r") < A(y)o(r)  whenever r > 0.
(@5) If y >0, then
s'e(s™') < At"p(t™') whenever 0<s <t

For an nonnegative integer #, a point x, € R” and a nonnegative measur-
able function f on R", we consider the potential

Ua, /,xof(x) = J Ra,/,xo(x’ Y)f(J’)dy,

Rn

which is written as U, , . f(x) = U;(x) + Uy(x) + U,(x) for x € R" — {x,}, where

"

Ui(x) = R, ,%0(%, V) (¥)dy,

J R*=B(x0, 2|x—xo|)

r

Uz(x) = Ra,(,xo(x5 Y)f(J’)dya

J B(x0, |x—xol/2)

»

U3(x) = Ra, !,xg(x’ y)f(y)dy

o B(xg, 2|x—xg|)—B(xg, |x—x0l|/2)




162 Tetsu SHIMOMURA

We know the following results (cf. [6] and [8, Section 3]).
LeMMA 2.1. If ye B(xg,|x — x0|/2), then
IRy, 2,50 (% M) < M|x — Xo|“|y — Xo|* ™%
LemMa 2.2. If ye B(xg, 2|x — xo|) — B(xq, | X — X0|/2), then
[Rq,,%0(%: Y)I < M|x — y[*™".
LemMMA 2.3. If ye R"— B(xg,2|x — Xo|), then
IRy, £,50(% V)| < M|x — xo|“ "1y — xo "7,

Throughout this paper, let w(r) be a positive nonincreasing function on
(0, o) satisfying the following doubling condition:
(wl) There exists A; > 0 such that

o) < A,0(2r) whenever r > 0.

LEMMA 2.4. Suppose w satisfies
(w2) r’"(r) is nondecreasing on (0, ).
Let f be a nonnegative measurable function on R" satisfying

(2.1) L" [y = Xo|* "oo(]ly — xo[)f(y)dy < o0.

Then
o(]x — x0|)U(x) = 0(1) as x> Xq.
If in addition, ® satisfies

(w3) lim r‘*ow(r) = 0,
r-0

then
o(]x — x|) U (x) = o(1) as X — Xq-

Proor. Let ¢ >0. If 2|x — x| <é¢, then by Lemma 2.3 and condition
(w2) we have

|U;(x)|< M|x — xolf+1 f ly — xoia—"—/_lf()’)dy
R"—B(xo, 2|x—xol)
S M|x — xo| " [ (e)] 7! ly — xo* " (ly — xo)f(y)dy
R"—B(x0,£)
+ Mo(|x — x,[)7! f ly = xol*"@(|y — xo|)f(y)dy.
B(xo,&)—B(x0, 2|x—xo))
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Hence by (2.1) we obtain

[U1(x)] < oo(]x — x,l)7 {Melx — Xol M @(]x — xol)

+M j o [y — xol" "w(ly — xol)f(y)dy},

which implies that
Ui(x) = O(@(]x — xol)™")  as x> x,.
If in addition condition (w3) holds, then

lim sup w(|x — Xo|)| Uy (x)| < M ly = %ol*"o(ly — Xol)f(y)dy.

x—=Xxq B(xo,¢)

Since ¢ is arbitrary, we see that the left hand side is equal to zero.

LEMMA 2.5. Suppose w satisfies
(w4) rlw(r) is nonincreasing on (0, ).
If f is a nonnegative measurable function on R" satisfying (2.1), then

w(]x — x0])Uy(x) = 0o(1) as x - Xx,.

Proor. By Lemma 2.1 and condition (w4), we have

U,(x)| < M|x — xolfj ly = %ol ™"~ “f(y)dy
B(xo, |x—x0l/2)
< Mo(|x — xo|)™ J ly — xo*"a(ly — Xol)f(y)dy,
B(xo, |x—xol/2)

which together with (2.1) implies the assertion of the lemma.

ReMaArk 2.1. If o satisfies (w4) and f satisfies (2.1), then (1.5) holds.

3. Mean limits

For ¢ >0, x,€ R" and r >0, we define the L%mean of a measurable
function u over B(x,,7) by

1 1/q
I/q(ua xO’ r) = (O' rn J Iu(x)lqu) ’
n B(xq,r)

where g, denotes the volume of the unit ball B(0, 1).

THEOREM 3.1. Let 1 <p <n/a and q >0 with 1/g > 1/p — a/n. Suppose
w satisfies (w2), (w4) and
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(w5) limrfw(r) =0  for some B <oa.
r—0

If f is a nonnegative measurable function on R" satisfying conditions (1.1), (2.1)
and

(3.1) lin(l) [r" *o(r) Pe(r™)]™ ?,(f(y))dy =0,
re B(xo,r)

then

(32) OOV, (Uy 15, f(x), X0 ) = O(1)  as r—0.

If in addition condition (wS) holds for f < ¢ + 1, then

(3.3) OOV (Uy 5o f(X), Xos ) = 0(1) s r—0.

REMARK 3.1. By (w4), f>¢, and hence £ <a. If £+ 1 <a, then (w2)
implies (w5) for B satisfying £/ + 1 < f < a.

Proor oF THEOREM 3.1. Note that if B </ + 1, then (w5) implies (w3).
Thus, in view of Lemmas 2.4 and 2.5, it suffices to treat only U,(x). For
6 >0, we have by Lemma 2.2,

|Us(x)| < M [x — yI*"f(y)dy

E(x)

=M Ix — y|*"f(y)dy

{y e E(x):f (»)> |x—x0| ™%}
+M |x — yI*"f(y)dy
{y € E(x):0 < f(y)<|x—x0| %}
= MU;;(x) + MUj;,(x),
where E(x) = E(x; xo) = B(xg,2|x — Xg|) — B(xq, |x — X0l/2). By condi-
tion (p4), we see that if f(y) > |x — xo|7%, then
o(f(Y) = o(l1x — x017%) = Mo(|x — xo| ™).

For g with g > p, let y be a number such that 1/g=1/p —y/n. Then a —y =
n(l/q — 1/p + a/n) > 0. If |x — xy] <r <1, then we have

Uss(x) < Mo(Ix — xo7)17" f Ix =y () Lo(f(»)]"7dy

E(x)

< M[p(Ix — xo™)17VP|x — xo[*™” I lx — yI""f(») Lo (f(»))]Pdy

E(x)

< Mp())rr f I = YN Lp(F ()] 7dy.

B(xg, 2r)
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On the other hand, we have

Usz(x) < |x — xoi"SJ |x — y*7"dy < M|x — xo|*™° < Mr*™?,

B(x0, 2|x—x0[)

where 0 < d <a. We use Minkowski’s inequality to obtain

1 \Va
Vq(Ua(X), X0» r) < Myre? + M< n) [(o(r—l)]—llpra—y

a,r

q 1/q
X {J <f Ix— yl""f(y)[w(f(y))]”"dy> dX} .
B(xo,r) B(x0,2r)

Applying Sobolev’s inequality to the last integral, we obtain

1/p
a(r)Vy(Us(x), xo, 1) < M[r"*a(r) Po(r~")] 7" q D, (f1 (y))dy>

B(xg,2r)
+ Mr*%w(r).
Hence, by choosing 6 > 0 such that g <o — ¢ it follows from (3.1) and (w5)

lim o (r) V,(Us(x), X0, 7) = 0.
r—0

Since V,(u, xo, r) is nondecreasing with respect to g, Theorem 3.1 is obtained.

Set
r , 1/p’
(p*(r)=<j ¢(t‘1)‘P/Pt‘1dt> .
0

In case ap =n and g = oo, we shall establish the following resuit.

THEOREM 3.2. Let ap=n and w be as in Theorem 3.1. Let f be a
nonnegative measurable function on R" satisfying conditions (1.1), (2.1) and (3.1).
If ¢*(1) < oo, then

(G4 SUp U, /2, /()| = o(0(r) " o(r™)Pe*(r))  as r—0.

x € B(xq,r)

REMARK 3.2. Note that

r 1/p’
@*(r) = qz [w(t“)]"’""t"dt> > M[o(r™')] "?[log(1/r)]"",
so that

lim ¢*()[p(r™)]"” = co.
r-0
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Hence (3.4) does not imply that
o(r) sup |U, .. f(x)] =0(1) as r—0.

x € B(xq,r)

ProoF OF THEOREM 3.2. In view of Lemmas 2.4 and 2.5, it suffices to
treat only Us,(x), as before. By [8, Lemma 4.1], we have

1/p
[Us(x)| < Mr*=% + Mo*(r) (I D,(f (y))dy>

B(xo,2r)

for |x — xo| <r, where 0 < 6 <a. Consequently, it follows that

|Us(x)] < M) ¢*()e@r™)""]

i/p
x {r"‘"’w(r) + ([w(r)-"w(r“n“ ¢p(f(y))dY> }

B(xo,2r)

for |x — x| <r. Hence we obtain by (3.1) and (w5)

lim [o(r) " o*@)e@r™")P1™" sup |Us(x)| = 0.
r—0

x € B(xg,r)

This completes the proof of Theorem 3.2.

4. Quasi everywhere convergence of mean limits
Define
k(x) = |x|*"e(] x]).

To evaluate the size of exceptional sets, for a set E < R" and an open set
G < R", we consider

Cu.0,(E; G) = inf f B le0))dy,

where the infimum is taken over all nonnegative measurable functions g on

G such that J

R
[7]). For simplicity, we write C, o (E) =0 if

k(x — y)g(y)dy > 1 for every x € E (cf. Meyers [2] and Mizuta

(0% ,pp(Eﬂ G, G)=0 for every bounded open set G.

In case k(x) = |x|*™", we write C; o, for G, o . If a property holds except
for a set E with G 4 (E) = 0, then we say that the property holds C, , -quasi
everywhere.

Lemma 4.1 (cf. [7, Lemma 7.1]). If f is a nonnegative measurable function
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on R" satisfying (1.1) and (1.2), then
G, ¢>,,(Ef) =0,

where

E; = {x: L" k(x — ) f(y)dy = oo}.

If h is a positive nondecreasing function on (0, o) satisfying the doubling
condition, then h is called a measure function. We denote by H, the
Hausdorfl measure for the measure function h.

LemMA 4.2 (cf. [7, Lemma 7.2]). Let h be a measure function on [0, c0)
for which

lim r~"h(r) = oo.
r—0

For a locally integrable function g on R", set

E,,= {x: limﬂsoup [h(r)]! lg(y)dy > 0}.

B(x,r)
Then H,(E, ,) = 0.

LemMMa 4.3 (cf. [7, Corollary 7.2]). If G and G' are bounded open sets
in R" such that G' = G, then there exists M > 0, depending on the distance
between 0G' and 0G, such that

G, 0,(E; G) < MH,(E)
for any set E = G', where
1 ) -plp’
h(r) = (I [t" () Pe(t™1)] 7" “’t“‘dt) , O<r<27t,

and h(r) = h(2Q™Y) for r > 271
Proor. First we show that for any a > 0, there exists M > 1 such that
G, 0,(B(0, r); B(0, a)) < M[k,(r)]™"
whenever 0 < r < a/2, where

K, (r) = (fa [t"‘“”co(t)"’qo(t‘l)]""“’t“dt)w.

Let 0 <r < a/2 and consider the function
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1) = yI"*o(y) Ly oy Pe(lyl )17, if y e B(0,a) — B(O, ),
¥ = 0, otherwise.

If x e B(0, r), then |x — y| < 2]|y| for y e B(0, a) — B(0, r), so that

flx — yIF"o(lx — yf(y)dy

=M I Ly~ o(ly)~Pe(lyI™) 17" Pdy

B(0,a)—B(0,r)
= M[x,(r)1".
Hence it follows that

Gy, 0,(B(O, 15 BO, @) < f ?, (M—[f,%> dy.
For f=a + np'/p — ap’, we see that

o) Iyl Po(lyly !
(k.1 ~ [k.(a/2)]"

whenever y € B(0, a). Here note by the doubling condition on w that

o) <Mr? O<r<l,

for some §>0. Thus f(y)[k,(r)] " <M|y|™? for y=8+d(p' —1)>0.
Hence, we find by conditions (¢3) and (¢4)

£ )
% (M[Ka(r)]"'>
S I
< M(W) o(yI™)
< Mk, (1777 [y *o(ly) LIy **o(ly)) Pe(yI™)]1 " e(yI™)
= M[x, (177" [IyI"*Po(lyl) Pyl ™) 7yl ™
Consequently we establish

Gy, 0,(B(0, r); B(0, a))

< Mk, (r)]77" j LyI™a(lyl) Pe(ly| ™)1 "?|y|"dy

B(0,a)—B(0,r)

= M[k,(n]™".
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Let a’ = dist(0G', 0G). For any xe G,
Gy, 0, (B(x, 1); B(x, a')) < M[k,(r)]™" < Mh(r)
whenever 0 <r < a’/2. Hence, we have
G, qr,p(B(x, r); G) < Mh(r).

If Ec ()2, B(x;, 1), r; < a'/2, then we obtain

G, ¢,(E; G) <G, @, <U1 B(x;, 1;); G)
=

8

< . G, cpp(B(Xj’ "j)§ G)

<M ¥ hiry),

=
which proves
G, 0,(E; G) < MH,(E).

LEMMA 4.4. For a nonnegative measurable function f on R" satisfying
(1.2), set

F= {xoz lim_'soup [r" () Pe(r~1)]! D,(f(y)dy > O}.

B(xo,r)
If (w5) holds, then G o (F)=0.

Proor. Letting p(x) denote the distance of x from the boundary 0G,
we define G; = {x e G: p(x) >j '} for each positive integer j. Since FNG =
Ui (FNG)), we have

Ci,0,(FNG; G) < Y G, »,(FNG; G).
=1
Let h be defined as in Lemma 4.3. By the doubling conditions on w and
¢ we see that
h(r) < M[r""*Pw(r) Po(r™)].
Since (w5) implies

Lim r"[r"w(r) Pe(r )] = lim r¢~2?[rfw(r)] Pe(r™) = o,
r=0 r-0

we have H,(F) =0 by Lemma 4.2. Hence it follows from Lemma 4.3 that
Ck, ¢p(F) = 0.
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Now, with the aid of Lemmas 4.1 and 4.4, we obtain the following result
from Theorem 3.1.

THEOREM 4.1. Let 1 <p <nfa, q >0 with 1/g>1/p — a/n and ® be as
in Theorem 3.1. If f is a nonnegative measurable function on R" satisfying
conditions (1.1) and (1.2), then (3.2) holds for Ci, 0,-quasi every X,. If in
addition (w5) holds for p < ¢ + 1, then (3.3) holds for Cy, o -quasi every X,.

REMARK 4.1. Letap<n 0<a<landa—¢—a>0. If o) =r¢*,
then conditions (w1) ~ (w5) are all satisfied.

COROLLARY 4.1. Let {+a<a<n/pand 0<a< 1. If f is a nonnega-
tive measurable function on R" satisfying conditions (1.1) and (1.2), then

4.1) lim r”_“Vq(Ua,,,xof(x), Xo, 1) =0

r—0
holds for C,_;—4 0, -quasi every xo and q >0 with 1/q > 1/p — a/n.

REMARK 4.2. Meyers [3] obtained a result similar to Corollary 4.1 for
Taylor’s expansion of Bessel potentials of LP-functions.

5. L%differentiability
We say that u is Li-differentiable of order ¢ at x, if

nng 1=V u(x) — P(x), X9, 7) =0

for some polynomial P (see Meyers [3], Stein [9] and Ziemer [10]).
In view of Corollary 4.1, we have the following result.

THEOREM 5.1. Let ap <n. Let f be a nonnegative measurable function
on R" satisfying conditions (1.1) and (1.2). If ¢ is a nonnegative integer smaller
than o, then U,f is Li-differentiable of order ¢ C,_, o -quasi everywhere for
qg >0 with 1/g > 1/p — a/n.

For similar results for Bessel potentials of LP-functions, see Meyers [3].
In case ¢ = o, we show the following result.

THEOREM 5.2. Let ¢ be a positive integer with {p <n. Let f be a non-
negative function in L% (R") satisfying condition (1.1) with a =¢. Then U,f
is Li-differentiable of order ¢ almost everywhere for q >0 with 1/q > 1/p — ¢/n.

REMARK 5.1. For L?-differentiability of Bessel potentials, we refer the
reader to Ziemer [10, Theorem 3.4.2]. In case £ = a =1 and p < n, Theorem
5.2 implies the result by Stein [9, Theorem 1, Chapter 8].
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For the reader’s convenience, we give a proof of Theorem 5.2. First we
recall the following result from the singular integral theory (see Stein [9];
Theorem 4 in Chapter 2).

LemMmA 5.1. Let f be a locally integrable function on R" satisfying condi-
tion (1.1). Then there exists a set E, with n-dimensional measure zero such that

r-0

Ay(Xo) = A, /(x0) = lim J D*R/(xo — y)f (y)dy
R"—B(xg,r)

exists and is finite for every x, € R" — E, and every multi-index v with |v| < ¢.
Set

Ulx) = f R/(x — y)dy.
B(xo,1)

Then U is infinitely differentiable on B(x,, 1) (see e.g., [5, Lemma 4]). Define
B, = D*U(x,)

for any multi-index v with |v| </. Note here that B, does not depend on
Xo, that is,

B, =D’ j R/(x — y)dy
B(0,1)

x=0
The following lemma is elementary (cf. [S, Lemma 1]).

LEMMA 5.2. For a nonnegative function g € L.(R"), set

gr)= sup t™" j g(y)dy.
B(0,1)

o<t<r

If y>0, then

(5.1 f [y""g(y)dy < Mre(r)
B(0,r)
and
(5.2 r? f [yI77""g(y)dy < Me(s)
B(0,s)—B(0,r)

whenever 0 <r <s.

ProorF oF THEOREM 52. By Lemma 5.1, we can find a set E, with
n-dimensional measure zero such that A, ,(x,) exists and is finite for every
Xo € R" — E; and every multi-index v with |v| </. Consider the set
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E, = {xo: lim sup r™" f 1f(y) — fxo)IPdy > 0};
r—0 B(xq,r)

note that E, has n-dimensional measure zero since fe L}, (R"). We show
that U, f is Li-differentiable of order ¢ at x, € R" — (E, UE,). For simplicity,
we assume that x, =0. For |v| </, set

C = {AV,((O) if |V| < fs
"7 |4, ,0) +fO)B, if |v|=¢.

For x € B(0, 1/2) — {0}, we write K,(x,y) = R, ;0(x, y) and

le"{sz(x) -3 ng}

v<¢ v!

= |x|™* I K, (x, y)f(y)dy
R"—B(0,1)
+ lxl"f K,(x, »{f(y) — f(0)}dy
B(0,1)—B(0, 2|x|)

—IxI™ 3 ilimj D'RA—y){f(y) — f(0)}dy
B(0, 2x))~B(0,r)

i<t Va0

B
+f(0)IXI_’<1imJ K(x, y)dy — Y, %x”>
r-0 JB(0,1)-B(0,r) =e¢ V:
+ IXI_’f R/(x — Y{f(y) — f(0)}dy
{veB(0, 2|x);lx—y| > |x|/2}

+[x|7° J R/(x — y){f(y) — f(0)}dy
(ye BOO, 20xlx—y1 < xl/2)

= u;(X) + up(x) — uz(x) + fO)uys(x) + us(x) + ug(x),

if the limits exist.
With the aid of Lemma 2.3, it is easy to see that

lim u,(x) = 0.

x=0
For a> 0, set
1/a
g(r) = sup (t‘"I 1f(y) —f(O)I“dy) :
o<t<r B(0,1)

Then note that lim,_,¢,(r) = 0, since we assumed that 0 ¢ E,. Holder’s in-
equality gives
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(5.3) &1(r) < Me,(r) for r>0.

Hence we have by Lemma 2.3 and (5.2),

lim sup |u,(x)| < M lim sup |x| Y7711 (y) — fO)dy
x=0 x>0 B(0,1)—B(0, 2x)
= M lim sup |x| YT () — fO)dy
x=0 B(0,8)—B(0, 2|x|)
< Meg,(3)

for any 6 > 0, which proves

lim u,(x) = 0.

x=0

Similarly, if |v| < ¢, then (5.1) and (5.3) give

j D'RA—) (/) — fO)}dy
B(0, 2|x|)

lim sup |x|"~¢
x—0

< M lim sup |x|M~* J Iyl M| f(y) — f(0)|dy
B(0, 2|x|)

x—0

< M lim sup ¢,(2]x]) = 0.

x=0

If |v| = ¢, then, since

(5.4) j DR, (—y)dy =0, O<r<s
B(0,5)—B(0,r)

(see [5, Proof of Theorem 3]), we see that by the assumption that 0 ¢ E,
and (5.4)

lim j D'RA—9){f(y) — fO)}dy
B(0,2|x|)—B(0,r)

r—0

= lim H D*RA(—y)f(y)dy — f(0) j D'R/(— y)dy}
B(0, 2|x))~B(0,r) B(0, 2|x))-B(0,r)

r-0

= lim { j DR, (—y)f(y)dy — f D'R/(—y)f (y)dy}
R"—B(0,r) R"—B(0, 2|x)

r—-0
tends to zero as x — 0, so that u,(x) is well-defined and

lim u5(x) = 0.

x—=0
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Noting that
_[ D'R/(—y)dy = D*U(0)
B(0,1)

for [v| < ¢, we see by (5.4) that u,(x) is well-defined and

v

u4(x)=|xr‘{U(x)~ y X L{O , DRA=ndy _léf%"v}

vi<¢ v!

z Lo,

¢

= IXI"{U(x) -

Since U is infinitely differentiable at O,

lim u,(x) = 0.

x=0
As to us, we see by (5.1) that
lus(x)] < M|x|™" f |f(y) = f(O)ldy < Me,(2]x]),
B(0, 2|x|)

which tends to zero as x —» 0 in view of (5.3).
In case /p < n, note that

lue(x)] < |x|77 J Ix — yI”"1f(y) — f(O)Idy

B, Ix1/2)
<M Ix = 1“7y~ £ () — £(O)]dy.
Blx,Ix1/2)

Hence, letting 1/q = 1/p — £/n, Sobolev’s inequality yields

1/p
Vy(ug, 0,r) < Mr="4 O CIyI~“1f () —f(0)|]”dy) .

B(0,2r)
Consequently, (5.1) gives

Vi(us, 0, 7) < Me,(2r),
which shows that

(5.5) lim ¥, (u, 0,7) = 0.

r—0

In case /p =n, for g > p, take y such that 1/g=1/p—y/n. Then 0 <y<?¢
and

lus(x)| < M lx = y""yI771f(y) — f(0)ldy,

B(x, |x|/2)
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so that

1/p
V,(ug, 0,1) < Mr™"4 (f Lyl Lf(y) = f (0)I]"dy) < Me,(2r).

B(0,2r)

Therefore, (5.5) also follows. Hence we have established that

lim r~“V, (U, f(x) — P(x),0,r) =0
r—0

holds for ¢ > 0 with 1/q > 1/p — //n, where
P(x)= ) [C,/v]x"

vl<¢
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