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ABSTRACT. Exterior Neumann problems for quasilinear elliptic inequalities are consid-

ered. The leading terms of operators under consideration are the mean curvature

type and generalized mean curvature types. Sufficient conditions are given for some

Neumann problems to have no positive solutions.

0. Introduction

This paper concerns to elliptic boundary value problems of the form

xeΩ,
(P)

Dvu < 0, x e dΩ9

where x = (*;), Du = (Z)fM), D{u = du/dXi for i = 1, 2, ..., N, N>29 Ω c RN

is an exterior domain whose boundary dΩ is of class C2, v: dΩ -• RN

9 is a
vector field pointing outward with respect to Ω9 and Dvu denotes the derivative
of u along the vector v. Throughout the paper we always assume the follow-
ing without further mention:

(AJ 0<_α<l/2;
(A2) p: Ω -> (0, oo) is continuous;

(A3) /:(0, oo)-•((), oo) is locally Lipschitz continuous and strictly in-

creasing with limu ̂ nfiu) — °°
A typical example of / satisfying (A3) is the function f(u) = uσ

9 σ> 0. In
this case we shall refer to (P) as (Pσ):

(Mu > p(x)uσ

9 xeΩ9

{Dvu<09 xedΩ. { σ)

As is well known, when α = 1/2, the operator M is called the mean
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curvature operator. When 0 < α < 1/2, M is often referred to as the general-
ized mean curvature operator. The capillarity equation and the equation of
prescribed mean curvature are important special cases of (P) for which α = 1/2
and p and / are suitably specialized. In recent years many authors recognize
widely the importance of these quasilinear operators in differential geometry
and mathematical sciences [1, 2, 3, 4, 9]. Especially, we can find various
results in [2] for the case α = 1/2 that have interest of theoretical as well as
numerical. According to [4], the case of 0 < α < 1/2 appears in describing
some chemical reactions.

A positive solution u of problem (P) is defined to be a positive function
ueC2(Ω)ΠCί(Ω) which satisfies (P). Of course, if Ω = RN, it is supposed
that the boundary condition is void, and in such a case, we shall call positive
solutions of (P) as positive entire solutions.

For quasilinear elliptic problems like (P), we know numerous existence
theorems of positive solutions equipped with various supplementary conditions.
In particular, asymptotic properties of positive entire solutions have been
investigated in full detail. On the other hand, we have not found so many
studies in which the nonexistence properties of positive solutions of (P) were
discussed. Motivated by this point, in the earlier paper [11] the author
considered the same problem as (P) (with Ω = RN), and tried to give non-
existence criteria of positive solutions to (P). Our results in [11] require,
besides (A1)-(A3), some additional assumptions on the nonlinearity /. More
precisely, the following are imposed on / :

j ( Π f(s)ds] du <oo and ί ( | f(s)ds\ du = oo. (0.1)

This integral condition is a kind of superlinearity. When f(u) = uσ, σ > 0,
(0.1) hold if and only if σ > 1. (This means that in [11] the case σ < 1 for
problem (Pσ) was automatically excluded from our consideration.) It seemed
for the author that by [11] in this case the nonexistence property of positive
solutions is completely characterized. However, as soon as [11] was finished,
some questions occurred to the author:

(I) When 0 < α < 1/2, is it possible to weaken the superlinear condition
(0.1) so as to extend the results in [11]?; and,

(II) When α = 1/2, are the superlinear conditions like (0.1) unnecessary
to guarantee the nonexistence of positive solutions of (P) provided that p is
sufficiently large?

In the present paper, we intend to give several answers to these questions
affirmatively.

The paper is organized as follows. In Section 1 we prepare basic results
mainly concerning to local solutions of inequalities of the form appearing in
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(P). The results in Section 1 play crucial roles to analyze our main problems.

In Section 2 nonexistence criteria of positive solutions for (P) are established

for the case of 0 < α < 1/2. As mentioned above, we can improve the non-

existence criteria in [11] considerably, that is, answers to the problem (I) are

given. In Section 3 we consider the case of α = 1/2, and we shall show that

our conjecture (II) can be settled affirmatively in some cases. When f(u) is

specialized to the function uσ, 0 < σ < 1, one can obtain refinements of the

results in Section 3. Section 4 is devoted to this subject. Other related

results are found in [1-5, 7-10].

Finally, we introduce notation by means of which our results are formu-

lated. Let r0 > 0 be an arbitrarily fixed number through the paper such that

{x:\x\>r0} a Ω. We denote by p# and m, respectively, continuous functions

satisfying

0 < pj(f) < min p(x), 0 < m(r) < min p(x)
\x\=r r/2<\x\<3r/2

for r > 2r0. For example, if p(x) behaves like a constant multiple of |x| ',

/ e R, as |x| -• oo, then we may take p^r) = cxr* and m(r) = c2r* for some

cu c2>0.

1. Preliminaries

We give some auxiliary observation which will frequently be used later.

1.1. It is to be noted that the operator Mu can be rewritten in the form

Mu= £ a^Duix^D^ xeΩ, (1.1)
U = l V lJ

where Dtj — DtDj, the symmetric matrix (fly (z)), z = (zf), is given by

1 2 , - , I * _ 2<XZ1ZJ

We therefore find that the matrix {a^z)) has two distinct positive eigenvalues

(l + | z | T α and (1 + I z l 2 ) " " " 1 ^ + (1 - 2α) |z | 2 ], and hence M is uniformly

elliptic on each compact subset in Ω with respect to any C2-function u.

Let k > 0 be a constant, and / a positive function satisfying (A3). The

following simple comparison principle is often employed in the paper. The

proof is similar to that of [11, Lemma 1].

LEMMA 1.1. Let B c= Ω be a bounded domain with smooth boundary dB.

Suppose that there are positive functions u e C2(B) and v e C2(B) satisfying

Mu > kf(u) on B, Mv < kf{v) in B9 and Dnv = oo on dB,

where n is the outward normal to dB. Then, u < v in B.
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1.2. Occasionally, we are required to find suitable positive radial solu-
tions (related to some point in Ω, say x°) v = v(r\ r = |x — x°|, of equations
of the form

Mv = g(r, v).

In such case, it is convenient to employ the polar form of the operator M;
that is, we use the equivalent form

Mv = r1~N(rN~1φ(v'))' = g(r, v\

where φ e C^if; R) is the function given by

s
:(ΓT7r s e

It is easily seen that φ has the inverse function on R or on the interval
( — 1,1) according as 0 < α < 1/2 or α = 1/2. In this paper we denote the
inverse function of φ by φ: φ = φ'1. When α = 1/2, φ is explicitly given by

Lrπ for s 6 (-1,1).

When 0 < α < 1/2, we cannot give the explicit formula for φ.

1.3. Consider the initial value problem for the quasilinear ordinary
differential equation

Mv = ̂ -"(r^φiv'))' = kf{v\ r > 0; (1.2)
0(0) = λ, v'(0) = 0, (1.3)

where k > 0, and λ > 0 is a parameter. It can be shown that this problem
admits a unique positive solution on some neighborhood of zero. We denote
this solution by vλ, and the maximal interval of existence of vλ by Iλ in the
sequel. The following lemmas concerning to IVP (1.2)—(1.3) play important
roles in proving our main results later.

LEMMA 1.2. Let fλ be the right end point of Iλ, λ > 0, and suppose that
fλ < oo.

(i) // 0 < α < 1/2, then vλ(fλ - 0) = v'λ{ίλ - 0) = oo.
(ii) // α = 1/2, then vλ{fλ - 0) < oo, υ'k(tk - 0) = oo.

LEMMA 1.3. (i) Let μ > λ > 0. Then, vμ(r) > vλ(r) and v'μ(r) > v'λ(r) when-
ever they both exist.

(ii) On each compact subset of Iλ, uniformly limμ^λvμ(r) = vλ(r) and
limμ^λv'μ(r) = v'λ(r).
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PROOF OF LEMMA 1.2. Since the proof of (i) is standard, we prove (ii)
only here.

We denote vλ by v9 Iλ by /, and tλ by f for simplicity. It is easily seen
that vf{r) > 0, and hence an integration of (1.2) shows that

'f(v(s))ds

^ W(v(r)) - ds = -rf{v{r)\ r e /.
Jo W ΛΓ

This yields

-ψ(vf) <-f(v\ re I. (1.4)

Since (1.2) can be rewritten as

\l/'(v')v" H ψ(v') = fe/(ι;), re/,

from (1.4) we have

ψ'(v')v">^Av)9 reh (1.5)

namely,

v" kf(υ)

(1 +(t) ' ) 2 ) 3 / 2 ~ N '

Note that this inequality is equivalent to

( l + ( t , ' ) 2 ) ^ N l ' w / i

where F(i ) = Jo/(5)^5 An integration gives

re I.

re I,

r e /

Obviously, this inequality shows that v(f — 0) < oo. Since ϋ" > 0 by (1.5), we
must have v'(f — 0) = oo by the standard argument. The proof is complete.

The proof of (i) of Lemma 1.3 is easy; hence the proof is left to the
reader. The assertion of (ii) of Lemma 1.3 seems very natural. However,
we cannot find the proof in the literature, so we give it for completeness and
for future reference.
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PROOF OF (ii) OF LEMMA 1.3. We shall give the proof for the case α = 1/2,

since a parallel argument holds for the case 0 < α < 1/2. Let [0, K] be a

compact interval included in Iλ.

First we show that - l i m ^ i ^ r ) = vf(r\ i = 0, 1. Since

there is a small δ > 0 such that

< l - δ\ r E [0, jq.Γ
o

By (i), for μ G (0, A], vμ exists at least on [0, K] and obviously satisfies

\vμ(s))ds < 1 - <5, r e [0, Λ].

Let C = m&xo<s<ί-.δφ'(s). From the above observation and the mean value

theorem we have

0 < υ'λ{r) - v'μ{r) < kC

0 < vλ(r) — vμ(r) < λ — μ + k

for r e [0, /q. Since / is locally Lipschitz continuous, a standard argument

leads to the desired conclusion.

Secondly we show that l i m ^ i JίV) = v(l\r), i = 0, 1. The proof seems

somewhat complicated. We can find small positive constants ε and δ < 1

satisfying

ί(Γ/(t?A(s) + 2εR)ds <l-δ for r e [0, K]. (1.6)

As a first step, we prove that vμ exists on [0, R] if μ > λ is sufficiently close

to A. For this purpose, we assert that v'μ(r) < v'λ{r) + 2ε as long as vμ exists

if μ is sufficiently close to λ. Suppose to the contrary. Then by (i) of Lemma

1.3, we can find sequences {μπ} and {Rn} satisfying

μx > μ2 > > μn > > A, lim μn = λ;
n-*co

Rx< R2<" < Rn<" < R;

a n d

v'Jr) < vf

λ(r) + 2ε, 0 < r < Rn; v'μn(Rn) = v'λ(Rn) + 2ε
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for n e TV. Let us introduce the function

Λ = (f(v) for r e [0, R], 0 < v < vλ(r) + 2εR;

\f(vλ(r) + 2εR) for r e [0, Λ], v > ι;λ(r) + 2εR,

and consider the initial value problem

Mz = fc/(r, z), r > 0;

z(0) = μn > 0, z'(0) = 0.

By noting the obvious inequality f(r, v) < f(vλ(r) + 2εR) holding on [0, R~] x
(0, oo), we can show that this problem has a unique positive solution zn on
[0, R]. In fact, it is easily seen that the integral equation

zn(r) = μn + £ I (fe £ Q " ' /(t, ds, 0 < r < R,
J

has a unique positive solution zn satisfying

μn < zn(r) <μn + Rφ{\ - δ\ 0 < r < R.

Moreover, we find by the monotonicity of / that the sequence {zn} is non-
increasing. Hence, the Ascoli-Arzela theorem implies that {zn} has the uni-
form limit zeC 2 [0, R], which satisfies

(Mz = fe/(r, zA), 0 < r < R;

\i (0) = λ, z'(0) = o.

We claim that z'{r) < v'λ{r) + ε, 0 < r < R. Indeed, if this is not the case,
we can find r e (0, K] such that

z'{r) < v'λ(r) + ε, 0 < r < r; z\f) = vf

λ(f) + ε.

Accordingly, ί{r) < vλ{r) + εR on [0, f]. This implies that z = vλ on [0, r]
by the definition of /(r, v). However, this gives a contradictory equality
i\f) = vf

λ(r). Therefore, we have z'(r) < v'λ(r) + ε on [0, R], as stated above.
Consequently, it follows that z(r) < vλ(r) -h εR on [0, R], and hence ϊ = vλ on
[0, R] by the definition of /.

On the other hand, since lim^^z;, = z' = v'λ uniformly on [0, R], we
have z'n(r) < v'λ{r) + ε on [0, R] if n is sufficiently large, say, n > n0. Therefore,
zn(r) < μn — λ + vλ(r) + εR < vλ(r) + 2εR on [0, R] if n > nί for sufficiently
large nί > n0. This implies that zn = vβn on [0, Rπ] if n>n1. However,
this gives a contradiction at r = Rw, for z^(RJ < UA(RW) + ε < t^(Rn) + 2ε =

From the preceding observation we conclude that, for some λ0 > λ9 vμ
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with λ < μ < λ0 exists on [0, R] and satisfies

k Γ μ J f(vμ(s))ds < 1 - <5, 0<r<R.

Here δ is the number appearing in (1.6). The rest of the proof proceeds as
in the case that μ] λ. The proof of (ii) of Lemma 1.3 is complete.

1.4. Finally, to show the sharpness of our nonexistence criteria in the
forthcoming sections, we present here a simple existence theorem of positive
solutions for (P) with Ω = RN:

PROPOSITION 1.4. Let f satisfy (A3), and q e C([0, oo); [0, oo)) be such that

lim sup I - 1 q(s)f(as)ds < oo for some a > 0. (1.7)
r^oo J yy

Then, the equation

= cq(\x\)f(u), xeRN, (1.8)

has positive radial entire solutions for sufficiently small c > 0.

PROOF. Let b e (0,1) be a constant satisfying φ(b) < a. Then by (1.7),
we can find a sufficiently small c > 0 so that

L

q(s)f(l + φ(b)s)ds <b for r > 0.

We shall show the existence of a global solution v of the initial value problem

\Mv ΞΞ ri~N(rN~1φ{vf))f = cq(r)f{v), r > 0;

[Ό(0) = 1, ι/(0) = 0.

The unique solution of this problem surely exists near zero. We prove that
this solution can be continued to oo. For this purpose it suffices to prove
that ψ(v'(r)) < b (< 1) as long as it exists. If this is not the case, then there
is an R > 0 satisfying

φ(v'(r)) < b, 0<r<R; ψ(v'(R)) = b.

This implies moreover that v(r) < φ(b)r + 1 , 0 < r < R. However, this also
gives a contradictory inequality:

b = ψ(v'(R)) = c Γ (ξX ' q(s)f(υ(s))ds

(^Y q(s)f(φ(b)s + l)ds < b.

The proof is complete.
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When f(u) = uσ, σ > 0, and q(r) is asymptotic to a constant multiple of

the function r~', ί > 0, as r -> oo, (1.7) is equivalent to the condition <f > 1 + σ.

Other existence theorems for (1.8) with different feature are found in [6].

2. The case of 0 < α < 1/2: generalized mean curvature operators

We begin with the case of 0 < α < 1/2. In addition to (A1)-(A3), we

always assume the following throughout the section:

(B) The function F(u) = J"S/(s)ds, u > 0, satisfies

lF(u)Yί/i2-2a)du < oo.

An important example of / satisfying (B) (and (A3)) is f(u) = uσ, σ > 1 — 2α.

If the first condition in (0.1) holds, then (B) also holds; however, the converse

does not necessarily. Moreover, unlike the earlier paper [11], no restrictions

are imposed on the behavior of F near origin. Thus less assumptions are

imposed on / here than in [11].

Condition (B) enable us to introduce the function G: (0, oo) -• (0, oo) given

by

Γ 0 0

G(u)= [F{z] - F(u)Y1/(2-2a)dz, u>0.
Ju

Noting that G can be rewritten as

-l/(2-2α)

we find that G is strictly decreasing on (0, oo) and G(+oo) = 0. (A similar

function was employed in [10]; see [10, Lemma 2.1].) Hence G has the

inverse function G" 1 on (0, G( + 0)). In what follows we put G" 1 = H

for simplicity. When f(u) = uσ, σ > 1 — 2α, for example, we have H(u) =

The aim of the section is to answer question (I) in the Introduction. Our

nonexistence results for (P) are as follows:

THEOREM 2.1. Problem (P) has no positive solutions if

lim inf H{C(N, α)r[m(r)] m 2 ~ 2 x ) ) Γ Γ Γ rΐ ' p*{t)dtdsl * = 0, (2.1)

where
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A simple corollary to Theorem 2.1 follows.

COROLLARY 2.2. Problem (P) has no positive solutions if

liminΐ\x\2-2ap(x)>0.
|x|-oo

This corollary gives a generalization of [10, Corollary 3.1], in which only
the case of α = 0 was treated.

REMARK 2.3. When it happens that

C(N, α)r[m(r)]1/(2"2α) φ dom H = (0, G(-fO)) for some r > 2r0,

r0 being the number introduced in the Introduction, it is understood that
problem (P) has no positive solutions. This fact follows from a close look
at the proofs of Theorem 2.1 and Proposition 2.5 below. Such a situation
may occur if

ι= [F(z)]
Jo

G( + 0) = [F(z)]-1/(2"2α)dz < oo.
Jo

EXAMPLE 2.4. Let 0 < α < 1/2 and σ > 1 — 2α. Consider problem (Pσ).
Theorem 2.1 states that, if

lim inf |x|2-2α+"p(x) > 0 for some β e (0, (σ + 2α - 1)( 1 °— ) ),
|χ|-oo \ \ σ + 2α//

then, (PJ does not possess positive solutions. On the other hand, if Ω = RN

9

p has radial symmetry, and

lim sup \x\2~2a+βp(x) < °° for some β > σ + 2α - 1,
l*|->αo

then, the equation

Mu = cp(x)uσ, x € RN,

has positive radial entire solutions for sufficiently small c > 0. This is a direct
consequence of Proposition 1.4. Noting that the difference of two quantities

(σ + 2α — 1)( 1 — I and σ + 2α — 1 can be made as close to zero as
'\ σ + lai.)

desired by choosing suitable σ and α (with keeping the relations 0 < α < 1/2
and σ > 1 — 2α), we can conclude that Theorem 2.1 is best possible in some
sense.

To prove Theorem 2.1 we need the following, whose proof is given at
the end of this section. It is due to this proposition that we can improve
the results in [11].
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PROPOSITION 2.5. Let x° e RN, k, R > 0 be constants, and u be a positive

C2-function satisfying

Mu > kf(u) in |x - x°| < R.

Then, we have

([^]"-'"ή (2.2,
PROOF OF THEOREM 2.1. This theorem is proved by the same method

as was used in [11, Proofs of Theorems 1 and 2].

Suppose to the contrary that (P) admits a positive solution u. Let x° EΩ

be fixed so that |x°| = r is sufficiently large. Since u satisfies

Mu > m(r)f(u% \x - x°\ < r/2,

Proposition 2.5 implies that

Hence we have

u(x) < H(C(N, α)|x|[m(|x|)]1 / ( 2-2 α )) for large |x|. (2.3)

Choose a sufficiently small δ > 0 so that /(maX|X|=Γo u) > δ > 0. Define

w(r), r > r0, by

=11Γ Φ G Γ G7' p*m)w ( r ) = 11 Φ G Γ G7 p * m ) d S i r~r°9 {2Λ)

where φ = ψ'1. We find that

w(r0) = w'(r0) = 0; (2.5)

w(r) > 0, w'(r) > 0 for t > ro; (2.6)

Af(ίw)(|x|) = ^P*(M) < ^p(x), |x| > r09 (2.7)

and

f' ίS ( j T ' r > r0 (2.8)^ C f' ίS (jT '
for some constant C = C(<5) > 0.

From (2.3), (2.8) and assumption (2.1) we have lim inf^^iu — δw) < 0.

This means that u — δw < 0 on |x| = rx for some sufficienty large rx > r0. Let
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£ be a point such that

(u — <5w)(x) = max (w — δw).
ro<\x\<rι

Since u — δw > 0 on |x| = r0, and u — δw < 0 on |x| = rl9 St satisfies r0 < \St\ <

rx. We claim more precisely that r o < | a | < r 1 . To see this suppose the

contrary that |x| = r0 for a moment. Since w is radial, obviously u(£) =

maxw = Γ oM. Noting that u ψ const by the positivity of p and the boundary

condition Dvu < 0 o n β , we find that u(£) = max { M ( X ) : X S Ω and |x| < r0},

and hence Dnu{£) > 0, where n denotes the outward normal on |x| = r0.

Accordingly, Dn(u — δw)(£) > 0 because w'(r0) = 0. This contradicts the fact

that u — δw attains the maximum on the set ro<\x\<r1 at St. Therefore

| ί | > r0, as stated above. Note that we have automatically u(£) > max w = Γ o u.

Consider the linear elliptic operator with constant coefficients L defined by

where αo's are introduced in (1.1). Obviously we have L(u — δw)(£) < 0.

From (P) and (2.7), however, we have

L(u - δw)(x) > Mu{St) - M(δw(\*\)) > P.W[/(maxW a s r ott) - 5] > 0,

which is a contradiction. The proof is completed.

The remaining work for us is to establish Proposition 2.5. The rest of

the section is devoted to this purpose. We need the following.

LEMMA 2.6. Let k> 0, 0 < Rx < R2, and v0 > 0 be given constants. Then,

we can find a number c = c(k, Rί9 R2, v0) > 0 having the property that the

solutions v of the problem

= kf(v), 0<r<Ru

v'(0) = 0, v{Rx) > υ09 v'iRJ > c,

blow up before R2.

PROOF. Let c(fe, Rl9 R2, v0) > 0 be a sufficiently large number such that

k(2 - 2θL\ Ί-l/(2-2α)
V ^ — _ f W ) + c2-2« άZt (2.9)

The existence of such a c is guaranteed by the fact that the right hand side

of the above tends to zero as c -> oo by our assumptions and the monotone

convergence theorem. From (i) of Lemma 1.3, it is sufficient to show that

v satisfying
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Mv = kf{v\ 0 < r < Rl9

blows up before R2.
To this end, suppose to the contrary that v can be prolonged to the

interval [0, R2). Then, v'{r) > 0, and as in the proof of (ii) of Lemma 1.2,
we have

φ'(v'(r))υ"(r) > ~f(v(r)\ 0<r<R2.

Using the simple inequality ψ'(s) < s~2a for 5 > 0, we have

v"{r) > —r[y'{r)']2ctf(v(r)), 0 < r < R2,

N
which is equivalent to

-—τr-(Lvf{r)']2~2ay > —(F{v{r)))\ 0<r<R2.
2 — 2oc N

An integration from Rx to r < R2 shows

"|l/(2-2α)

v'(r) > I ̂ y ^ ( f ( t ? ( r ) ) - F(Ό0))

One more integration of this inequality gives for r e[Rl9 R2)
Ί-l/(2-2α)J c| _ ^ v Γ " F{Vo))

Letting r -• R2 — 0, we have a contradiction to (2.9). This contradiction
completes the proof.

PROOF OF PROPOSITION 2.5. To see this proposition as a first step we
establish the existence of auxiliary function ι;eC 2 [0, R) such that

Mv = kf(v), 0<r<R, v'{0) = 0,
(2.10)

v(R - 0) = v'(R - 0) = oo.

We show that for suitable λ, vλ gives the desired function v by means of a
simple shooting method. Here, of course, vλ denotes the unique solution of
IVP (1.2)—(1.3) introduced in the Introduction. The proof is decomposed into
three steps.
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Step 1. Let us introduce the set S by

S — {λ > 0: vλ blows up at some Rλ < R}.

We show that a neighborhood of infinity is included in S. Let λ be so large
that

Γk(2 2αΠ1 / ( 2~2 α )

lF(z) - [ ^

Then, vλ with such a λ, blows up before R. In fact, suppose to the contrary
that vλ exists on [0, R). Then, as in the proof of Lemma 2.5, we reach the
inequality

Vλ(r) Γfc(2 — 2 α ) Ί 1 / ( 2 ~ 2 α )

lF(z) - F(λ)Y1/i2-2a)dz > - 1 —-—- r, 0 < r < R.

Letting r-+ R — 0, we have a contradiction to (2.11). Therefore, vλ blows up
before R if A is sufficiently large, as stated above.

Next we prove that, conversely, if λ is sufficiently small, then vλ exists
at least on [0, R], that is, some neighborhood of zero is not included in
S. To prove this suppose the contrary. Then, we find from (i) of Lemma
1.3 that, for all λ > 0, vλ blows up at some Rλ < R. Since v'λ(Rλ — 0) = oo,
Lemma 1.1 shows that u(x) < vλ(\x — x°\) in \x — x°\<Rλ, from which we
obtain u(x°) < vλ(0) = λ. However, it is impossible since λ > 0 is arbitrary.

From the above observation and (i) of Lemma 1.3, we find that inf S = λ+
is finite and positive.

Step 2. As for uλ# there are three possibilities:
(a) ϋλ+ exists at least on [0, R~];
(b) vλ blows up just at R;
(c) vλφ blows up before R.

We will show that actually case (b) occurs.
Suppose that case (a) occurs. By (ii) of Lemma 1.3 if μ > λ^ is sufficiently

close to λ+9 vμ also exists on [0, K]. This contradicts the definition of λ+.
Suppose next that case (c) occurs. Let R e [0, R) be the point at which

vλ^ blows up, and c(fc, R, R, 1) > 0 be the number introduced in the statement
of Lemma 2.6. Since vλJ[R — 0) = v'χJ^R — 0) = oo, one can find a sufficiently
small p > 0 satisfying vλJiR - p) > 1 and υ'λjji - ρ)> c(fe, R, R, 1). By (ii) of
Lemma 1.3, there is a μ€(0, λ^) satisfying vμ(R — p) > 1 and vμ(R — p) >
c(fe, R, R, 1). Then, vμ blows up before R by the definition of c(fe, R, R, 1).
This contradicts the definition of λ^9 again.

Hence, vλ blows up at R, and so, vλ gives a desired function v.
Step 3. We are now ready for proving the Proposition. Since (2.10) is
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equivalent to

Mv = kf(v) in |x - x°| < R; and Dnv = 00 on |x - x°| = R,

where r = |x — x°| and n denote the unit outward normal to |x — x°| = R,

Lemma 1.1 implies that u < v in |x - x°| < R. This gives especially M(X°) <

v(0). On the other hand, arguing as in Step 1, we can easily see that

Hence, the validity of (2.2) is established. The proof of Proposition 2.5 is

completed.

3. The case of α = 1/2: the mean curvature operator

In this section we treat the case of α = 1/2. Therefore the operator

M is the mean curvature operator. Note that no additional conditions are

needed here other than (A1)-(A3). Answers to question (II) are given. Our

nonexistence results are as follows:

THEOREM 3.1. Suppose that p # is of class C1 near infinity, and (rp+(r))' < 0

for all large r. Then, problem (P) has no positive solutions provided

where f ' 1 denotes the inverse function of f

THEOREM 3.2. Problem (P) has no positive solutions provided

rr /Λff-i
lim sup I - I p*(s)ds < 00 (3.2)

r-00 J \rj

and

COROLLARY 3.3. Problem (P) has no positive solutions provided

liminf |x|p(x) > 0.
|x|->αo

REMARK 3.4. As in Remark 2.3, when it happens that

2N
— — φ dom f ' 1 = (/( + 0), 00) for some r > 2r0,rm(r)
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it is understood that problem (P) has no positive solutions. Such a situation
may occur if / (+ 0) > 0.

EXAMPLE 3.5. Let Ω a {x:\x\> e), and consider the problem

c log (1 + u)
Mu > \——, xeΩ,

|x| log log |x|

Dvu < 0, x e dΩ,

where c> 0 is a constant. We may choose

c 2c

, and m(r) =
3Moglog(3r/2)

for r>r0 sufficiently large. Applying Theorem 3.1, we find that this problem
has no positive solutions.

EXAMPLE 3.6. Let Ω = RN and ε > 0. Then, Proposition 1.4 asserts that
the equation

has positive radial entire solutions for sufficiently small constant c > 0. Hence
under our standing assumptions (A1)-(A3), the decaying order of p indicated
in Corollary 3.3 seems to be best possible in some sense.

As in the previous section, the following is crucial to prove our results.
The proof of this proposition will be given later.

PROPOSITION 3.7. Let x° e RN, k, R > 0 be constants, and u be a positive
C2-function satisfying

Mu > kf(u) in \x - x°\ < R.

Then, we have

The proof of Theorems 3.1 and 3.2 relies on the argument already used
for Theorem 2.1. It is in turn based on the fact that we can construct a
useful comparison function like w defined by (2.4), that is, a C2-function w
satisfying (2.5)-(2.7). Now, we employ different comparison functions as seen
below.

PROOF OF THEOREM 3.1. Suppose to the contrary that (P) has a positive
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solution u. We find by Proposition 3.7 that

Put

r > r0.

That w satisfies (2.5)-(2.7) for any δ > 0 was proved in [11]. Since (3.1) and
(3.4) imply that l i m i n f ^ ^ u — δw) < 0 for any δ > 0, the function u — δw
takes a local maximum at some it, \it\ > r0 for some δ > 0. Arguing as
before, we can easily get a contradiction. We refer the reader to [11] for
the detailed argument. The proof is complete.

PROOF OF THEOREM 3.2. Suppose that (P) admits a positive solution
u. Of course, the inequality (3.4) is still valid. By (3.2) we can find a small
δ > 0 having the properties

δ sup I - I p*(s)ds < 1 and /(maX|X|=Γou) > δ > 0.
r>r0 Jr0 \Γ/

Hence the function

5, r>r0, (2.4)

is well-defined, and satisfies (2.5)-(2.8). Exactly as in the proof of Theorem
2.1, we can easily get a contradiction. The proof is complete.

Our final task in this section is to prove Proposition 3.7. For this
purpose we need the following.

LEMMA 3.8. Let fc> 0 and let vλ and fλ be as in Lemma 1.2. Then, we

have

\)>r1(^)
PROOF. The proof is by contradiction. For simplicity we write v for vλ

and f for tλ. Suppose to the contrary that v(f) < f'11 — I, namely, f{v{f)) <

N N
—. We then have f(v(r)) < —, 0 < r < f, by the monotonicity of v. On the
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other hand, v satisfies

ψ(vv'(r)) = k P (°λN VίΦ))^, 0 < r < f.

Letting r -> f — 0 in this equation, we obtain a contradiction because

\JV-1

1 =

PROOF OF PROPOSITION 3.7. The proof is analogous to that of Proposition
2.5. Accordingly, we must construct a comparison function υ e C2[0, R) such
that

Mv = fe/M 0 < r < R, i?'(0) = 0;

v(R - 0) < oo, v'(R - 0) = oo.

We again employ the family of solutions {vλ} of VIP (1.2)—(1.3).
Step 1. Define the subset S <= (0, oo) by

S = {λ > 0: vλ blows up at some Rλ < R}.

We claim that A's satisfying

are members of S. (Since /(oo) = oo, such a 2 surely exists.) To see this,
suppose that λφS. Then, vλ exists on [0, R), and satisfies

Φ(vfχ(r)) = fc Γ Q N V ( ^ ) ) ώ , 0 < r < K.

Letting r ^ Λ , we reach a contradiction because

1 > ψ(v'λ(R)) =

This contradiction shows that λe S. On the other hand, exactly as in the
proof of Proposition 2.5, we know that sufficiently small λ's do not belong
to S. From these considerations and (i) of Lemma 1.3, we find that inf S = λ+
is finite and positive.

Step 2. Let us consider the solution vλ . That vλ does blow up at
some R e (0, R'] is easily proved by (ii) of Lemma 1.3. We show that actually
R = R. To this end suppose to the contrary that R < R. We first note that

ΓR / \N-1

Jo \R/
a n d f ( ^ ) ) ^

kR
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Recall that the later inequality is given by Lemma 3.8. We can find a

sufficiently small number c e (0,1) such that

because the left hand side of this inequality tends to R/R > 1 as c -• 0. With

this choice of c, we next choose μ = μc < λ^ sufficiently close to λ+ so that

\ ( - f(v

Jo \R;

XT

a n d /K(Φ) > τ^
kR

This is possible because of (ii) of Lemma 1.3 and the fact that vμ exists at

least on [0, R]. Then, we can show that vμ never exists on [0, R). In fact,

supposing to the contrary that vμ exists on [0, R\ we have

s N-l

s) ms))ds

ί>ψ(v'(R-O)) = k\ - f(vt
Jo W

N

This contradiction implies that vμ blows up before R. However, this fact

also contradicts the definition of λ^ = inf S, and hence R = R.

Step 3. By Step 2, we can construct a function v satisfying (3.5). As

in the proof of Proposition 2.5, we have u(x°) < v(0). On the other hand,

from

1
ΓR / \N-1 [R / \N-1

= ψ(υ'(R - 0)) = k \ l-J f(v(s))ds > kf(υ(0)) I ί - J ds

we find that 1 > kRf(v(0))/N. Combining these inequalities, we can obtain

(3.3). The proof of Proposition 3.7 is complete.

REMARK 3.9. (Cf. Corollary 3.3 and Remark 3.4) When /( + 0 ) > 0 , a

simple observation yields some nonexistence criteria related to Corollary 3.3

and Remark 3.4.

(i) Consider the special case that v is parallel to the outward normal

n on dΩ. Then (P) has no positive solutions provided that

r1"* f p(x)dx > - j ^ - for some r > r0, (3.6)

where Ωr = Ω Π {x: |x| < r}, and ωN = J w = 1 dS.
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To prove this fact let u be a positive solution of (P). Integrating the

inequality in (P) on Ωr, and employing the divergence theorem, we have

I f
P(X)dx.

J + \Du\2 }sΩs/ί + \Du\2 JoΓ

Since Dnu < 0 on dΩ and the first integral in the left hand side is bounded

above by jM=rdS = ω^"'1, we reach a contradiction to (3.6).

(ii) Generally, similar results hold. For example, if

limsupr^f p(x)dx >
r-oo J Ωr

then (P) has no positive solutions. The proof is as in (i), and hence is left

to the reader.

These criteria do not apply in the case /( + 0) = 0, which we are mainly

interested in.

4. The mean curvature operator with the nonlinearity f(u) -ua

The last section is devoted to the case that α = 1/2 and f(u) = uσ, σ > 0

in (P):

(Mu > p(x)uσ, XEΩ,

[DVU<0, xedΩ. [ σ)

Applying Theorem 3.1 (or 3.2), we find that, if

lim inf \x\(1+2σ)lil+σ)-εp(x) > 0 for some ε > 0,
|x|-αo

then, (Pσ) has no positive solutions. However, as seen from Proposition 1.4

this criterion is not effective. We shall show that the nonexistence criteria

of positive solutions for (P) can be considerably improved if (P) is specialized

to (PJ, 0 < σ < 1. Note that the case of σ > 1 was discussed in [11].

THEOREM 4.1. Let 0 < σ < 1. Suppose that p+ is of class C1 near infinity,

and (rpχ(r))f < 0 for large r. Then, problem (Pσ) has no positive solutions if

ty r
r-*ao •-Kfl i m s u p r 1 + σ εm(r)l sp^(s)dsj = oo for some εe(0, σ).

THEOREM 4.2. Let 0 < σ < 1. Then, problem (Pσ) has no positive solutions

provided

lim sup I - I
r-oo J \rj

lim sup I - I p*(s)ds < oo
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and

Γ Γr fs ftY'1 T
l imsupr 1 + < r εm(r)\ (-) pjt)dtds \ = 0 0 for some εe(0, σ).

r-00 \_J J \S/ J
COROLLARY 4.3. Lef 0 < σ < 1. 77ιen, problem (Pσ) has no positive solu-

tions if

lim inf \x\1+σ~εp(x) > 0 for some ε > 0.
|x|->oo

EXAMPLE 4.4. Let σ > 0 be arbitrary and consider the problem

< 4 "

where c > 0 is a parameter, and / > 0 is a constant. We can completely

characterize the existence of positive entire solutions of this inequality by

virtue of Proposition 1.4, Corollary 4.3 and some results in [6, 11]:

(i) Let σ > 1 and £ > 2. Then, (4.1) has positive radial entire solutions.

(ii) Let σ > 1 and / < 2. Then, (4.1) has no positive entire solutions

for all c> 0.

(iii) Let 0 < σ < 1 and t > 1 + σ. Then, (4.1) has positive radial entire

solutions for sufficiently small 0 0.

(iv) Let 0 < σ < 1 and / < 1 + σ. Then, (4.1) has no positive entire

solutions.

The key point of the proof of Theorems 4.1 and 4.2 is to obtain more

precise estimates for the function v(r) satisfying

Mυ = kvσ, 0<r<R9 v'(0) = 0;
(4.2)

v(R - 0) < 00, v'(R - 0) = 00,

whose existence has been established in the proof of Proposition 3.7. Such

estimates are described in Proposition 4.5 below. We omit the proof of

Theorems 4.1 and 4.2, since it can be carried out as before.

PROPOSITION 4.5. Let 0 < σ < 1. Let moreover x° e RN

9 k, R > 0 be con-

stants, and u be a positive C2-function satisfying

Mu > kuσ in \x - x°\ < R.

Then, for each ε e (0, σ) we have

where C(N, σ, ε) is a constant not depending on k nor R.
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PROOF. Let y be a C2-function satisfying (4.2). It suffices to show the

validity of (4.3) with u(x°) replaced by v(0). We shall elaborate the proof of

Proposition 3.7.

Arguing as in the proof of Lemma 1.2-(ii), we have

υ"(r) k
> T7[f(r)]ff, 0 < r < R.(1 + [t>'(r)] 2 p ~ N

Since v(r) > v(0), the above implies that

, 0 ^ r < R,
(1 + [t/(r)]2)3 / 2 :

where we put fc[ϋ(O)]β/iV = k and σ — ε = ά for simplicity. Multiplying v'(r) >

0 and integrating, we have

°-r<R (44)

Letting r -> R — 0 in the above, by virtue of v'(R — 0) = oo, we obtain

which is equivalent to

<ά + 1

On the other hand, quadrature gives from (4.4)

(4.5)

)v{

Replacing the upper limit v(R) of the above integral by Λ(ά9 fή (given by

(4.5)), and performing the change of variable w = ίc(σ + l ) " 1 ^ ^ 1 -

in the resulting inequality, we get

\[
k Jo (6+ 1

1 - w .
dw > R.

Consequently, we find

1 - w

/c Jo

(1 - (1 - w ) 2 ) 1 / 2

-dw > R,
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from which it is easily seen the validity of the inequality

with C(N, σ9 ε) given by

C(N, σ, ε) = N1/ε(σ - ε

Jw ( σ - ε ) / ( f f - ε + 1 ) ( l - (1 - w)2)1'2

The proof is complete.
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