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ABSTRACT. The present paper is devoted to a proof of the existence and uniqueness
of a strong solution for a mixed problem with nonlocal condition for certain pluripara-
bolic equations. The proof is based on an a priori estimate and on the density of
the range of the operator generated by the studied problem.

1. Statement of the problem

In the domain Q = (0, b) x (0, T;) x (0, T3), with b < 00, T; < 00 and T, <
oo, we consider the one-dimensional pluriparabolic equation
(1.1) Ko = dv/ot, + 0v/ot, — O(a(x, ty, t5)00/0x)/0x = £(x, t,, t,),

where a(x, t,, t,) satisfy the following assumptions:
Hl. ¢o <al(x, ty,t;) < cy, da(x, ty, t,)/0x < c,, Oa(x, ty,t,)/0t,<c3, p=1, 2,

(xa tl; tZ) € Q
H2. d%a(x, ty, 1,)/0: < ¢4, 0%a(x, ty, 1,)/0x* < cs, 0%a(x, ty, t,)/0t,0x < cq,

b= 1, 2, (x, tl’ tz) € Q
We pose the following problem for equation (1.1): to determine its solution
v in Q satisfying the initial conditions

1.2) v =10(x, 0, t,) = D,(x, t,), (x,t,)eQ, =(0,b) x (0, T),
(1.3) 4,0 = v(x, ty, 0) = D,(x, t,), (x,t;)eQ, =(0,b) x (0, Ty),
the Neumann condition

(1.4) (0, t,,t,)/0x = u(ty, t,), (ty,t;) €0, Ty) x (0, T,),

and the integral condition

b
(1.5) f v(x, ty, t)dx = E(ty, t5), (t1, t2) €(0, Ty) x (0, T3).
o
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WhCI'C ¢1(X, tz)a ¢2(X, tl)a ﬂ(tla t2), E(tla tz), a(x’ tla t2) and /(xa tla tz) are
known functions.
The data satisfies the following compatibility conditions:

b

09, (0, t,)/0x = p(0, 1), J Dy (x, t;)dx = E(0, t,),
0

b
6452(0, tl)/ax = ﬂ(tu 0)9 J ¢Z(Xs tl)dx = E(tla 0),
0

and
D, (x, 0) = D,(x, 0).

This type of problems is propounded in the mathematical modelling of
technologic process of external elimination of gas, practises in the refining of
impurities of Silicon laminae. In this case, v(x, ¢, t,) is the distribution of
impurities in the lamina {0 < x < b} at the time ¢, and at the temperature
t,, ®D,(x,t,) is the distribution of impurities at the initial time and at the
temperature t,, ®@,(x, t;) is the distribution of impurities at the time ¢, and
at the initial temperature. The condition (1.4) means that the flow of diffusion
throughout the left boundary is equal of u(t,,t,), and the condition (1.5) is
the total mass of impurities in the lamina {0 < x < b}.

The first investigation of mixed problems with integral conditions goes
back to Cannon [8] in 1963. The author proved, with the aid of integral
equation, the existence and uniqueness of the solution for a mixed problem
which combine Dirichlet and integral conditions for the homogeneous heat
equation. Kamynin [14] extended the result of [8] to the general linear
second order parabolic equation in 1964, by using a system of integral
equations.

Along a different line, mixed problems for second order parabolic equa-
tions which combine local and integral conditions were considered by Ionkin
[13], Cannon-van der Hoek [9], [10], Cannon—-Esteva—van der Hoek [11],
Lin [16], Kartynnik [15], Benouar—Yurchuk [1], Shi [17] and Yurchuk [18].
Recently, mixed problems with only integral conditions for parabolic and
hyperbolic equations have been treated in Bouziani [3] and Bouziani—Benouar
(5], [6].

In this paper, the existence and uniqueness of a strong solution of problem
(1.1)-(1.5) is proved. The method in the present paper is further elaboration
of that in Bouziani [2], [4] and Bouziani—Benouar [7].

To achieve the purpose, we reduce the non homogeneous boundary condi-
tions (1.4), (1.5) to homogeneous conditions, by introducing a new unknown
function u defined as follows:
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u(x’ tl’ t2) = U(x’ tla tz) - %(x, tla tz),

where

b2
U(x, 11, 1) = Wy, )X + 3x’/b3'<E(t1, t2) = Ly, rz))’

Then, the problem can be formulated in this way:

(1.6) Pu=y— LU= f,
(1.7) fiu=u(x, 0, 1) = Dy(x, ) — 61U = ¢y(x, t5),
(18) fzu = u(x’ tla 0) = dsz(xa tl) - {2% = (p2(xa tl)a
(1.9) ou(0, ¢y, t,)/0x =0,

b
(1.10) f u(x, t;, t,)dx =0.

0

Here we assume that the functions ¢,, p=1, 2, satisfies conditions of
the form (1.9), (1.10), ie., 9¢,(0, -)/0x =0, [ ¢,(x,0)dx =0, and such that

?1(x, 0) = @,(x, 0).

Instead of searching for the function », we search for the function u.
So, the strong solution of problem (1.1)—(1.5) will be given by: v(x, t,, t,) =
u(x, ty,ty) + Ux, ty,t,).

2. A priori estimate and its consequences
The problem (1.6)—(1.10) is equivalent to the operator equation
Lu=%,

where Lu = (Lu, t1u, L,u), F = (f, ¢, ¢,). The operator L acts from B to
F, where B is the Banach space of functions u e L%(Q), satisfying (1.9) and
(1.10), with the finite norm
l0u/ox||5 o + sup llu(x, T4, t2)lI3,0, + sup llu(x, t1, 7)l13,q,
0<ty;<T, 0<t,<T,
and F is the Hilbert space of vector-valued functions & = (f, ¢,, ¢,), obtained
by completing the space L?(Q) x L?(Q,) x L*(Q,) with respect to the norm

IZ 1% = 1113.0 + l@1ll3.0, + 02130,
Let D(L) be the set of all functions u € L%(Q) for which du/dt,, du/ot,,
ou/ox, 0*u/ox?, 0*u/oxot,, 0°u/dxot, e L*(Q) and satisfying conditions (1.9)—
(1.10).
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THEOREM 1. If the assumptions H1 are satisfied, then for any function
ue€ D(L), we have

(2.1 lullp < cllLulg
where ¢ > 0 is a constant independent of u.

ProoF. Taking the scalar product in L%(Q%) of equation (1.6) and the
operator

Mu = 2(b — x)[3,(0u/dt, + du/ot,) — a(x, t, t,)0u/dx],
where Q° = (0, b) x (0, 7,) x (0, 7,) and J,g = jg g(&, t,, t,)dE, we obtain

(22) (Lu, Mu)g o =2 J (b — x)0u/ot, - 3,(0u/ot,)dxdt,dt,
Q!

+2 | (b— x)ou/ot,- 3 (0u/or,)dxdt,dt,

LY Q'

r

+2 | (b= x)ouor, - 3, (0u/or,)dxdt,dt,
Jor

»

+2 | (b— x)0u/ot, 3 (0u/dt,)dxdt,dt,
Q\:

"

—2| (b= x)dalx, t,, t,)0u/dx)/0x 3 (0u/ot,)dxdt,dt,
Qt

-2 (b—x)a(x,t,,t,)0u/0x 0u/dt,dxdt dt,
JOr

-2 (b—x)a(x,t,t,)0u/0x" ou/ot,dxdt dt,
Jr

+2 | (b—x)d(a(x,t,,t,)0u/ox)/ox

Jor

~a(x, ty, t,)0u/0xdxdt,dt,.

The successive integration by parts of integrals on the right-hand side
of (2.2) are straightforward but somewhat tedious. We only give their results

2.3) 2| (b — x)ou/or, 3,(0u/or,)dxdt,dt,
Ql’

= J (3.(Qufot,) dxdt,dt,,  p=1, 2,
Q‘!
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(24) 2 J;t (b — x)0u/ot, - 3, (Ou/ot, )dxdt dt,
=2 J;' 3.(0u/ot,) - 3,(Ou/ot,)dxdt dt,
-2 L' (b — x)3,(0u/dt,) - Oujot dxdt dt,,
2.5 -2 L (b — x)d(a(x, t,, t,)0u/0x)/0x - 3,0u/ot,dxdt,dt,
= L'z a(x, ty, ty) (u(x, T, t5))*dxdt, — Lq a(x, 0, t5) (@1 (x, t,))*dxdt,
— L( da(x, t,, t,)/ot, -u*dxdt,dt,
-2 .Lx da(x, ty,t,)/0x u- 3, (0u/ot,)dxdt dt,
+2 J;r (b — x)a(x, t,, t,)0u/0x - Ou/ot,dxdt dt,,
26) -2 J;: (b — x)o(a(x, t,, t,)0u/0x)/0x - 3,(0u/dt,)dxdt,dt,
= J;n a(x, ty, t,) (u(x, ty, t,))*dxdt, — Lz“ a(x, ty, 0) (@a(x, t;))*dxdt,
- L( da(x, ty, t,)/0t, -u*dxdt dt,
-2 JQt oa(x, ty, t,)/0x " u- 3, (0u/ot,)dxdt,dt,
+2 L (b — x)a(x, t,, t,)0u/0x - Ou/ot,dxdt dt,,

2.7 2 j (b — x)o(a(x, t,, t,)0u/ox)/0x - a(x, t,, t,) Ou/Oxdxdt,dt,

= f (@(x, t,, t,))?(u/0x)?dxdt dt,.
Q{

Substituting (2.3)—(2.7) into (2.2), we obtain
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(2.8)
J (3,(0u/ot,) + 3,.(0u/ot,))*dxdt,dt, + f a(x, Ty, ty) (W(x, 1y, t,))?dxdt,
o 0y
+ f a(x, ty, 1,)(u(x, ty, 1,))?dxdt, + J~ (a(x, ty, t;))*(Ou/ox)*dxdt dt,
Qi Qo
= (L, Mu)y g — 2 f da(x, t,, t2)/0x- u-(3,(0u/dt,) + 3(Ou/ot,))dxdt,dt,
Ql

+ j a(x, 0, t,) (@y(x, t;))*dxdt, + J a(x, ty, 0): (@,(x, ty))*dxde,
[0} ot

+ j (Ga(x, ty, t;)/0t, + da(x, t,, t,)/0t,)u*dxdt dt,.
Qr

We estimate the first term on the right-hand side of (2.8) by applying
the Cauchy-Schwarz inequality and the Cauchy inequality

(29) (Lu, Mu)y o < 2b* f f?dxdt,dt, + 2b%/c, f (a(x, ty, t;))*f *dxdt,dt,
Q° [
+ co/2 J (Ou/0x)*dxdt dt,
Q!

+172 f (3,(0u/dt,) + 3,(0u/ot,))*dxdt, dt,.
QI‘

The remaining integral throughout Q° on the same side of (2.8) can be
estimated as follows

(2.10) -2 f da(x, ty,t,)/0x u-(3,(0u/ot,) + 3,(0u/dt,))dxdt dt,
Q(
< 2‘[ (Ga(x, ty, t,)/0x)*u*dxdt dt,
Ql

+1/2 f (3, (0u/dt,) + 3, (0u/ot,))*dxdt, dt,.
Q(
By virtue of (2.9) and (2.10) and the conditions H1, we can transform
(2.8) into (2.11)
211)  co/2l|0u/0xI1§ o + collulx, T4, 2115 gz + Collu(x, t1, TG gn
<26%(1 + c}/eo)l 3.0 + crll@illd g, + c1ll@213 0,

+2(c} + c3)lul3, o
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We eliminate the last term on the right-hand side of (2.11). To do that
we use the following Lemma:

LemMa 1. If fi(zy, T5), f>(t1, T,) and f3(t,,T,) are nonnegative functions
on the rectangle (0, Ty) x (0, T,), fi(zy,7,) and f,(t,,1,) are integrable, and
f3(t4, T,) is nondecreasing in each of its variables separately, then it follows from

T

2.12) f f filty, ty)dtydt, + f(ty, 1)

< c( J folts, Ta)dty + f foles tz)dtz) + fylrn 1)

that

(2.13) J‘n ftzfl(tl’ ty)dt dt, + fo(ty, T;) < exp (2c(ty + 12))" f3(T4, T2).
o Jo

Proor oF LEMMA 1. We write (2.12) in the form

(2.14) T + 2, < Kf; + f,

where

Tf1 =f J fl(tl’ tz)dtldtz
0

0

and

Kf, = J falty, Tr)dty + f fo(zy, ty)de,.
0 0

Since f; is nonnegative function, (2.12) gives rise to

(2.15) fo < cKfy + fa.

Obviously the operator K preserves the inequality. If we apply it to
(2.15) and multiply the result by ¢, we obtain

cKf, < ¢*K?f, + cKf;.
Hence
Tf, + f, < 2K*f, + cKf; + f;.
Continuing this process, we obtain
T + fo S " K"fy + Ym0 €K 5.

It is easy to see that
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cn+1Kn+1f2 < cn+12n+1/(n + 1)!.(1:1 + Tz)n+1 -sup f2a

which implies that the first term tends to zero as n — oo, while the second
term on the right-hand side is majored by the function exp (2¢c(t, + 1,))-
f3(t4, 7). The proof of Lemma 1 is complete. []

Returning to the proof of Theorem, we denote the first term on the
left-hand side of (2.11) by fi(tr,, 7,), the sum of the three first terms on the
right-hand side of (2.11) by f5(r,, 7,), and the last term on the same side of
(2.11) by Kf,, by Lemma 1 we obtain

10u/ox 113 g + llu(x, 4, tz)"(z),Q'zz + llulx, ty, Tz)||(2),erl
<cr (1130 + 19113,0, + l0213.0,)s
where
¢y = 2/co max (2b%(1 + c%/cy), ¢1) exp (2(c2 + ¢y )(Ty + T)).

The right-hand side here is independent of (t,, t,), hence replacing the
left-hand side by its upper bound with respect to 7, from 0 to T,, p=1, 2,
thus obtaining (2.1), where ¢ = c}2. O

PROPOSITION. The operator L from B into F is closable.

ProoF. Suppose that u,e D(L) is a sequence such that

(2.16) u,——>0 in B
and
(2.17) Lu,—> F =(f, ¢1,9,) inF,

we must prove that f=0, ¢, =0, and ¢, =0.
Since u,,mo in B, then
(2.18) u,— 0 in 2'(Q).

By virtue of the continuity of derivation of 2'(Q) in 2'(Q), (2.18) implies
(2.19) Lu,—>0 in 2'(Q).
But, since Lu,—— f in L*(Q), then
(2.20) Luy—— f in 2'(Q).

By virtue of the uniqueness of the limit in 2'(Q), we conclude that f =0.
Moreover, by the fact that

221 Lz o in L3(Q)
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and the canonical injection from L2(Q,) into 2'(Q,) is continuous, (2.21)
implies
(2.22) LUy =2 O in 2'(Q,).
Moreover, since
w20 in B
and

”flun”g,Qz < ”un“B9 Vn

then, we have

(2.23) {11y~ 0 in L%(Q,),
consequently
(2.24) 1ty ——20 in 2'(Q,).

By virtue of the uniqueness of the limit in 2'(Q,), (2.23) and (2.24) imply
that ¢, =0. The reasoning is similar for proving that ¢, =0. [

Let L be the closure of the operator L with domain of definition D(L).
DEFINITION. A solution of the operator equation
Lu=%

is called a strong solution of the problem (1.6)—(1.10).
By passing to limit, inequality (2.1) extends to strong solutions, i.e., we
have the inequality

(2.24) lullp < cllLullp,  Vue D(L)
Inequality (2.24) leads to the following results:

COROLLARY 1. If a strong solution of (1.6)—(1.10) exists, it is unique and
depends continuously on & = (f, ¢,, ¢,) € F.

COROLLARY 2. The range R(L) of the operator L is closed and equals
to R(L).

Thus, to prove the existence of a strong solution of the problem (1.6)—
(1.10) for any & € F, it remains to prove that the range R(L) of the operator
L is dense in F.
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3. Solvability of the problem

THEOREM 2. Suppose the conditions of Theorem 1 are satisfied. Assume
that a(x,t,,t,) satisfies the conditions H2. If, for some function w e L*(Q)
and for all ue Dy(L) = {u/u € D(L): £{,u = 0, £,u = 0}, we have

3.1 (Lu, )y, =0
then «, vanishes almost everywhere in Q.

Proor. Relation (3.1) holds for any function u of Dy(L), using this fact
we can express it in a special form. First define g, by the relation:

T,

9, =3Jfw, = j ’ w,dt,, p=1, 2.

p

Let 0u/dt, be a solution of the equation

(3.2) —a(o, ty, t;)I¥(& — x)oufot,) =g, p=1,2

where ¢ is a fixed number belonging to [0, b] and 3¥*g = jgg(é, t)dé&.
And let

0
(3.3) u= 1 [ , r=12
0*u/0t,0t,dt dt, s, <t,<T,

We now have
34 0= 3-13t"9, = Y.5-10(a(0, t;, 1) IX(E — x)0u/dt,))/ot,.
LEMMA 2. The function w defined by the relation (3.4) is in L*(Q).

ProOF OF LEMMA 2. Let the inequality
b b
(3.5 f (3 — x)0u/ot,))*dx < b*/12- j (Ou/ot,)*dx.
0 0
Indeed, the Cauchy-Schwarz inequality gives

(JX((& - x)('iu/atp))2 = <Jb (= x)au/atpd§>2 < <fb (e x)2d5> Jb (6u/6tp)2dx
x x 0

b

<(b—x)3 j (Ou/ot,)*dx.

0

Therefore, we have
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Jw (IX((€ — x)0u/dt,))*dx < 1/3 "J‘b (6u/6tp)2dx-(fb (& — x)3d€>
0 0

0
b
=b*/12- f (0u/t,) dx.
. 0

By virtue (3.5) and by the fact that the conditions H1 are satisfied, we
deduce that da(o, t,, t,)/0t," IX(& — x)0u/dt,) is in L*(Q).

It remains to prove that a(o, t,, t,)I¥((¢ — x)0*u/dt?) belongs to L*(Q).
For this, we use t-averaging operators p, of the form

+oo

(p.g) (%, 1) = e f ofs — 1/8)g(x, s)ds,

—ao

where w e CF(0, T), w(t) >0, (T2 w()dt = 1.
Applying the operators p, and 9/dt, to equation (3.2), we obtain

(3.6) a(o, ty, t5)0(p,I%((§ — x)0u/0t,))/0t,
= —da(o, t1, 1,)/0t," p,IX((E — x)0u/0t,) — 0(p.g,)/0t,
+ 0(a(o, ty, t)p,IX(E — x)0u/dt,)
— P,a(0, t1, t2)IX((E — X)0u/0t,))/0t,.
It follows from (3.6) that
la(o, t1, t2)0(p, IX((& — x)0u/0t,))/0t,1I5 o
< 3c311p.IH(E — x)0u/0t,)lI5,o + 3110(p.g,)/0t,113,0
+ 3|0(a(o, ty, t3)p, IX((& — x)0u/ot,)
— p.a(0, ty, 1) I — x)0u/0t,))/0t, 13 o-
Using properties of p, introduced in [12], yields
la(a, t1, 12)2(p,3H(E — x)0u/dt,))/2t, 3, o < cs(10u/dt, 3.0 + 129,/0t,13,0)
where
cg = max (c2b*/4, 3).

Since P9 =5 9 in L%(Q), and the norms of a(a, t,, t,)3(p, I*((¢ — x)0u/0t,))/ot,
in L?*(Q) are bounded, we conclude a(o, t,, t,)0(3*((¢ — x)0u/dt,))/dt, € L*(Q).
The proof of Lemma 2 is complete. []

Returning to the proof of Theorem 2, replacing w in (3.1) by its represen-
tation (3.4), we have
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(3.7) (Ou/ot,, d(a(a, ty, t;)I¥(& — x)0u/dt,))/ot,)o,0
+ (0u/oty, d(a(o, ty, t;)I(E — x)0u/0t,))/0t;)0,0
+ (Qu/t,, 0(a(o, ty, t;)I¥(E — x)0u/dt,))/0t1)o.o
+ (Ou/0t,, 0(a(o, ty, t,)IX(E — x)0u/dt,))/0t,)0.0
— (B(a(x, ty, t,)u/dx)/dx, d(a(o, t,, t;)IE(E — x)0u/dt,))/0t,)o.o
— (3(ax, ty, t,)0u/dx)/0x, d(a(o, t,, t,)IH(E — Xx)du/dt,))/0t,)o.o = O.
Integrating each term of (3.7) by parts with respect to t, we obtain

(3.8) (Ou/0ty, 0(a(o, ty, 1;)IF((E — x)0u/0t,))/0t1)0,0

=1/2 j a(o, 1, t,)(3¥0u(x, sy, t,)/0t,))*dxdt,
Q2s2

—1/2 f da(o, ty,t,)/0t, - (3*(u/ot,))*dxdt dt,,
Q.
(39) (Qu/oty, d(a(o, ty, t3)IX((E — x)0u/dt,))/0t2)0,0
= 1/2f a(o, Ty, t,)(3¥(@u(x, Ty, t,)/0t,))*dxdt,
Q2s,
—1)2 J da(o, t,, t,)/0t, - (3*%(0u/ot,)) dxdt dt,,
o
(3.10) (Qu/dt,, d(a(o, ty, t;)IF((€ — x)0u/0t))/t1)o,0
= 1/2j a(o, ty, T,)(3¥(0u(x, t,, T,)/0t,))* dxdt,
Qis,
- 1/2[ da(o, t,, t,)/0t, - (3¥(0u/ot,))*dxdt, dt,,
Q.
(3.11) (0u/0t,, d(a(o, ty, t2)IX((E — x)0u/0t,))/0t2)0,0

=1/2 j a(o, ty, ;) (I¥(0u(x, t, 5,)/0t,))* dxdt,
lel

—1/2 f 0a(0, t,, t,)/0t, - (3*(0u/dt,))*dxdt, dt,.
QS
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(3.12)  —(d(a(x, ty, t2)0u/0x)/0x, O(a(a, ty, ;) IF((€ — x)0u/dt,))/0t1)o,0

= J a(x, tl’ tz)a(o', tl’ tz)(au/atl)zdxdtldtZ

s

+1/2 f da(x, Ty, t,)/0t, -a(o, Ty, t,)(u(x, Ty, t,))*dxdt,
QZsz

- 1/2 f (aza(x9 tla t2)/at% 'a(a, tla tZ) + aa(x, t19 t2)/at1
-0a(a, t,, t,)/0t,)u*dxdt,dt,

- f 0%a(x, ty, t,)/0x0dt, - a(o, t,, t,)uI*(Ou/ot,)dxdt dt,

- 1/2j 0%a(x, t, t,)/0x*- a(o, ty, t,)(3*(0u/ot,))*dxdt dt,.
Q.

(B-13)  —(0(a(x, ty, t,)0u/0x)/0x, 0(a(o, t, t;)IF((E — x)0u/0t;))/0t;)o,0

= f a(xa tla tz)a(o', tl’ tz)(au/atZ)zdxdtldtZ

s

+ 1/2 J aa(x’ Tla tl)/atZ 'a(a, tl’ Tz)(u(x, tla TZ))dedtl
lel

- 1/2 J (aZa(x’ t17 tZ)/atg.a(a’ tl’ t2) + aa(x7 tl’ tZ)/atZ
Qs
-0a(o, ty, t,)/0t,)u*dxdt dt,

- j 0%a(x, ty,t,)/0x0t, - a(o, t,, t,)uI*(Ou/ot,)dxdt dt,

s

12 J 0%a(x, t,, t,)/0x2 - a(o, t,, t,)(3*(0u/ot,))?dxdt, dt,.

By virtue the conditions of Theorem 2, we obtain

(.14 Co/Z'J (3¥(0u(x, 51, t,)/0t,))* dxdt,
Q2s,

<cy2- | (3*0u/ot,))dxdt,dt,
QS

+ (0u/dty, d(a(o, ty, t;)IX((E — X)0u/0t,))/0t,)0, 0,
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(3.15) Co/2- j (3¥(Ou(x, Ty, t,)/0t,))*dxdt,
lez

<c;3/2 j (3*(0u/ot,))*dxdt dt,
Qs
+ (0u/0ty, d(a(a, ty, t3)IF((E — x)0u/0t,))/0t3)0,05

(3.16) co/2" f (SXu(x, t,, T,)/0t,))*dxdt,
Qis,

<2 J (3¥(0u/0t,))*dxdt, dt,
Qs
+ (0u/0t3, 0(alo, t1, 12)I2((E — X)0u/dt,))/0t1)o, 0,

(3.17) Co/2 f (3%(0u(x, t,, 5,)/0t,))*dxdt,
Q2s,

<cy)2 J (3*(0u/0t,))*dxdt dt,
Qs
+ (0u/0t,, d(al(a, ty, t)IF((& — x)0u/0t,))/0t3)0, g

(3.18) 2 | (Qufor,2dxdtdt, + cocy2- f (W(x, Ty, t,)dxdt,
Qs Q2s,

<(3c?/4+ 32+ ci/4)J u?dxdt,dt,
QS

+(c3/d+ck/ad+c22) | (3*Ou/ot,))*dxdt,dt,
QS

— (9(a(x, 1y, t2)0u/0x)/0x, d(alo, t1, t2)I3((S — x)0u/0t,))/0t1)o,0-

(3.19) cZ | (du/ot,)*dxdt,dt, + cocz/Z-J. (u(x, ty, T,))*dxdt,
Qs Qas,

<(3c2/4 + c2/2 + c2/4) | uldxdt,dt,
Qs

+(c3/4+ /4 + cé/Z)J~ (3¥(0u/ot,))*dxdt,dt,
Qs

— (0a(x, ty, t,)0u/0x)/0x, O(a(o, ty, t;)IF((E — x)0u/0t,))/0t5)o,0-
Combining the relations (3.14)—(3.19) and using (3.7), this yields



Mixed problem with nonlocal condition for certain pluriparabolic equations 387

(3-20)  ||0u/or, 113 g, + llou/ot, ”?LQ, + I3¥0u(x, t;, T,)/0t1)3,0,,,

+ I13¥(0u(x, 51, 12)/0t,)113, 0,,, + 132(@u(x, ty, 52)/0t,)I15 o,

+ 13@u(x, Ty, t2)/06)113,,,, + lulx, ts, TH)I3,0,,,

+ llu(x, Ty, 0)113,q,,,

< ¢o([13%(0u/0t,) 113, + 3% (0u/0t)N13,0, + uld.0,)
where
co = max (c3/2, 3c2/4 + c%/2 + c2/4, (¢ + c% + c2)/4)/min (c3, co/2, coC2/2).

Inequality (3.20) is basic in our proof. In order to use it, we introduce
the new function

T, T,
0(x, ty,t,) = f u, dt, + J u,,dt,
t

ty 2

Then
u(x, Ty, t;) = 0(x, 54, t5), u(x, t,, T,) = 0(x, t,, s,),
ou(x, t,, T,)/0t, = 00(x, t,, s,)/0t,, ou(x, Ty, t,)/0t, = 00(x, s,, t,)/0t,,
ou(x, sy, t,)/0t; = —1/2-00(x, sy, t,)/0t,,
ou(x, ty, s,)/0t, = —1/200(x, t,, s,)/0t,.
Then (3.20) becomes

(3.21)
||3u/0t1||(2,,Qs + "5“/6’:2”(2),(25 + (1 = 3co(Ty — 5,)/4)13%(30(x, 54, tz)/(‘i'fx)ntz),(zl,l

+ 1520k, 11, 5,)/0t)113,0,.,

+ (1 = 3eo(Ty — 51)/ 1320, 51, 12)/082)3,g,.,

+ 13¥00(x, t1, 52)/0t2)113,0,,, + (1 = 3co(Ty — $2)/A)N0(x, 11, 5))113 .,
+ (1 = 3eo(Ty — 5)/H0(x, 51, )13, 0,

3c
< TQ(HS:(ae/atl)||(2),Q, + [|3%(06/0t,)115,0, + 16113,0,)-

Hence if s, > 0 satisfies 1 — 3co(T, — s,,)/4 = 1/2, p = 1, 2, (3.21) implies
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(322) 9u/dt 3., + 10u/dt, 13,0, + IFE@OC, 51, £,)/0,)13. ...
+ ISHEO(x, 11, 52)/011) 13, q,., + IF2@O(x, 51, 1)/08,)13.g,..
+ 320G, 11, 5,)/015)13.0,,. + 10Cx, 11, 52)l13.0,,,
+160%, 51, £2)13. 0.,
< 3co/2-(I3%(06/01,) 13,0, + 132(26/01,)13., + 1013.0,)

for all (sy,s;) € [T} — 81, ;] X [T, — 55, T].
We denote the sum of three terms on the right-hand side of (3.22) by
y(sy, s;). Hence, we obtain

l0u/0t 113, 0, + 110u/0t,113, o, — (8/0sy + 0/0s;)y < 3coy/2.
Consequently,
—(0/0sy + 0/0s,)(y.exp (3co(sy + 5,)/2)) <O.
Taking into account that y(T;, T,) = 0, we obtain
(3.23) (y.exp (3co(sy + 5,)/2)) < 0.

It follows that w =0 almost everywhere in Q;_;. Proceeding in this
way step by step, we prove that w = 0 almost everywhere in Q. Therefore,
the proof of Theorem 2 is complete. []

THEOREM 3. The range R(L) of L coincides with F.

Proor. Since F is a Hilbert space, we have R(L) = F is equivalent to
the orthogonality of vector W = (w, w,, w,)€ F to the set R(L), ie., if and
only if the relation

(3.24) (Zu, w)O.Q + (41u, wl)o,Q2 + (£Lu, wZ)O,Ql =0

where u runs over B and W = (w, w,, w,) € F, implies that W = 0.
Putting u € Dy(L) in (3.24), we obtain

(gu, w)o’Q = 0
Hence Theorem 2 implies that w = 0. Thus, (3.24) takes the form
(414, @1)0,0, + (£2U, @3)0,0, = 0, u e D(L).

Since the quantities Z,u, /,u can vanish independently and the range of
the operators 7;, 7, are dense in L*(Q,) and L*(Q,), respectively, the last
equality above implies that @, = w, = 0. Hence W = 0. The proof of Theo-
rem 3 is complete. []
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REMARK. We can prove that our results remain in force for the case of

multidimensional time:

Yon o 0u/ot, — da(x, ty, ty, ..., t,)0u/0x)/0x = f

with the appropriate initial conditions
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