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ABSTRACT. The paper is devoted to construction and investigation of some riggings of

the L2-space of Poisson white noise. A particular attention is paid to the questions

whether the test space consists of functions with continuous version and whether the test

space is algebra under pointwise multiplication of functions.

1. Introduction

In the works [5, 6], started a study of test and generalized functions de-
fined on the Schwartz space of tempered distributions ^ ' (R) the dual pairing
of which is determined by the inner product of the L2-space (Lp) =
L2(Sf(JR),dμF), where μP is the measure of Poisson white noise. Following the
construction of the space of Hida distributions in Gaussian analysis (e.g., [10, 2,
4, 19]), Ito and Kubo [6] introduced the triple (SP)* => (Lj) => (SP). However,
the following two important problems remained open: 1) Does the space (*Sp)
consist of continuous functions, or, which is "almost" equivalent, do the delta
functions belong to (Sp)*? 2) Is the space (£p) an algebra under pointwise
multiplication of functions?

In this note, we will construct a whole scale of test spaces (Sp)κ, κ > 0,
such that (Sp)κi c (SP)κ2 if κx > κ2, and of their dual spaces (Sp)~κ with
respect to (i£). For κ = 0, (Sj>)° = (SP), so that (5P)"° = (SP)*. The idea of
construction of these spaces comes from the corresponding constructions in
Gaussian analysis [8, 7].

The main results of the paper are as follows: 1) The space (Sp)1 consists
of continuous functions, and for each (iSp)κ with κ < 1 this is not the case. 2)
The space (Sp)1 (and even each space (*Sp)κ with κ > 1) is an algebra under
the continuous pointwise multiplication. The estimate of Hubert norms are
analogous to the estimates in Gaussian analysis, e.g., [11, 20, 21, 4].
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It should be noted that there is another approach to developing analysis
on non-Gaussian spaces, based on the use of a system of Appell polynomials
and its dual (biorthogonal) system [1, 9]. By using Theorem 3.2 of the present
paper, one can prove that the application of the biorthogonal analysis
developed in [9] to the Poisson measure leads, in fact, to the same triple

see [23, 16]. So, it seems that the triple (1.1) will play the role analogous to
the Hida triple in Gaussian analysis, and one will use either the orthogonal
or biorthogonal methods, or combine them, depending on a specific problem
under study.

2. Setup for Poisson white noise calculus

In this section, we will construct the above mentioned scale of test and
dual spaces. To this end, we present below some results of the works [5, 6,
14], see also [22].

Let T be a separable, topological space and v a σ-finite, non-atomic
measure defined on the Borel σ-algebra &(T). We consider a standard
(Gelfand) triple of spaces [3]

$' = ind l i m J ^ ID L2(Γ, V) = Eo => proj l i m ^ = β, (2.1)

where {Ep \p > 0} is a sequence of real, compatible, separable, Hubert spaces
such that, for any p > q > 0, Ep is topologically—that is, densely and con-
tinuously—embedded into Eq and

lίl^lίl,, ξeEp, (2.2)

where | \p denotes the Ep norm; E-p is the dual of Ep with respect to zero
space Eo, so that $' is the dual of S.

One makes the following assumptions about the space S:
(A.I) Every element of E\ has a version continuous on T, and for each

t e T, δt—the delta function at t—belongs to E-\. Moreover, δ : t*-^δt is a
continuous mapping of T into E-\ and

P | | 2 E E [ \δttλdv{t) < 00,

so that [10] the embedding operator E\<^>EQ is of Hilbert-Schmidt type. Its
Hilbert-Schmidt norm is less than 1.
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(A.2) The mapping δ satisfies

\δt\_χ dv{i) + sup \δt\_χ < oo,
teT

so that Eι czL1(Γ,v)ΠL0 0(Γ,v).

(A.3) For any ξ e £ and p > 0,

P\ξ\P+ι > \ξ\p

with a fixed />e(0,1).

(A.4) The "diagonalization" operator D : g®2 -• ί, ^<8)2 = proj lim^® 2,

given by /?~*00

is continuous, and moreover, for any p > 1,

ITSH2)! < r ί l f ^ l Γ1 ^ 0
l ^ y I/? — ^p\J \pi ^p ^ w ?

where | \p also stands for the norm of each space Efn, so that & is an algebra

under pointwise multiplication of functions and

\ξη\p < Cp\ξ\p\η\p, p > \ .

(A.5) The set of the functions ζ e $ whose support is of finite v measure

is dense in S.

Let us construct an example of such a triple. Fix the sequence (e/)ĵ o °f

the Hermite functions on R:

ej = ej{t) =

For each p > 1, define S^P{SC) to be the real Hubert space spanned by the

orthonormal basis (ej(2j + 2)~p)^0, and let STp(WLd) = ^ ( R ) 0 ί / . Considered

as a subset of L2(WLd), every space £fp(WLd) coincides with the domain of the

operator (H®d)p, where H®d is the harmonic oscillator in L2(WLd) : H®d =

- Σti ( ^ ) + Σf=i'? + I- As well known, ST{ΨLd) = proj l i m ^ <?p(Έtd) is

the Schwartz space of rapidly decreasing functions on IRA Denote by

&-p(Bid) the dual of Sfp(tLd). Then, ^ i (R^) consists of continuous-p(Bi) the dual of Sfp( (

functions and R^ 3 11-» δt e &?-\(tild) is a continuous mapping such that
suP/eiR</ll^lly_i(Rί/) < °° ^ e assumptions (A.3), (A.4), and (A.5) are satisfied

for 5^(Rr f)'s. Let now v be a σ-finite, non-atomic, Borel, regular measure on

WLd. Suppose also that, for some ε > 0,

[ k (2.4)
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(for the Lebesgue measure, this holds when ε = 0). Making use of the evident

estimate

,) = f, m\2dv(ή < i i ί i i ^ - , f iWfiik,^') * « ,
JR JR

we conclude that £f\+e(WLd) is continuously embedded into L2(ΈLd,v). More-

over, by (2.4) and [10], the embedding operator Ox+ε: S?ι+ε(WLd)^L2(Wίd,v)

is of Hilbert-Schmidt type (note that, by passing to an equivalent system of

norms, one can always make its Hilbert-Schmidt norm less than 1). Then

because of the regularity and σ-finiteness of v, Sf(WLd) is a dense subset of

L2(WLd, v). At last, for each p > 1, define Ep to be the Hubert factor space

5fp+ε/keτ Op+ε, where Op+ε : &?

p+ε(WLd)^+L2(ΈLd,v) is an embedding operator.

By [2], Ch. 5, Sect. 5, subsec. 1, {L2(T, v),Ep \p > 1} is a sequence of

compatible, Hubert spaces, where T denotes the support of v. Thus, we get

the desired triple

S?(T) = f = ind l i m ^ => L2(Γ, v) => proj lim^, = t = ST(T). (2.5)

Note that the spaces Ep, p > 1, are completely determined by the set T, and $

is actually the test Schwartz space on T, Sf(T), accordingly $' is the Schwartz

space of tempered distributions on T, which is the dual of Sf(T) with respect to

zero space L2(T, v). Note also that, in case of a bounded T, S?(T) = 2{T) is

the space of infinitely differentiate functions on T.

Given a real Hubert space Jtf and κ e 1R, a weighted Fock space Γκ(3tf) is

defined by

where the symbol (g) denotes the symmetric tensor product, the index C stands

for complexification of a real space, ^ f ° = C, 0! = 1. Particularly, Γ0(jf) =

Γ(Jίf) is the usual Fock space over Jf.

By using (2.1) and (2.2), we construct, for each κ > 0, the following

standard triple [10, 2, 4, 8, 7]

Γ(E0) => proj l i m Γ κ ( ^ ) = Γx(£). (2.6)

By (A.I), the embedding operator Γκ(Eι)^Γ(E0) is of Hilbert-Schmidt type,

see, e.g., [2, 4].

We will use also the following triple

Γfin(') 3 Γ(£b) ^ Γfin(ί). (2.7)
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Here, Γΰn($) is the topological direct sum of the spaces

/*" Ξ= proj lim^g, « e Z + = {0,1,2,...},

so that Γfin(^) consists of finite sequences (f{n))Z=o,f{n) e *fπ. The
convergence in 7"fin(̂ ) is equivalent to the uniform finiteness and the
coordinate-wise convergence in $®n. The Γ^S)* is the dual of Γ^{S) with
respect to Γ(Eo). It consists of all the sequences of the form (F^)^=o,
F(n) e s'*n^ w h e r e

Jfn = ind lim£?" AZ 6 Z+./Jf = ind lim£?

The convergence in /"fin(<̂ )* is the coordinate-wise convergence in δ®n.

Now, endow <̂ ' with the strong dual topology, and define on the Borel
σ-algebra ${$') the probability measure μP by its Fourier transform

x) = exp

//P is called the measure of Poisson white noise on T with intensity v. Here,
( , •) stands for dualization between the space &'®n and $®n for each n, which is
supposed to be linear in both variables.

For any x e £', the Poisson Wick power : x®n : e £'®n, n e Z+, is defined
by the recursion relation (cf. [14, 15]):

: x®x :,

where D ( / I + 1 ) : ^®(w+1) -^ $®n i s the continuous operator given by

(2 9)1), n>2,

where id is the identity operator, D is defined by (2.3), and τ is an element of
S'®2 such that

REMARK 2.1. Let us note that the recursion relation (2.8) is derived from
the formula of multiplication of a multiple stochastic integral by a compensated
Poisson process by a linear functional, see [22] and Proposition 2.1 below.
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REMARK 2.2. In order to distinguish between the Gaussian and Poisson

Wick powers, it would be better to denote the latter by : x®n :p. But since the

Gaussian Wick powers do not appear in this note, we do not use such a

notation.

Evidently, for any f{n) e if1, the dualization (: x®n : ,/ ( n ) ) is well defined

and is a continuous function of x e $', which is called the Wick monomial

with kernel f{n). Then, for each f{n) e L2(Tn, vn) = (L2(7\ v)) |π, we define a

function (: x®n : ,/ ( n ) ) as an element of the space (Z|) =!?($', dμp) that is

the (L^)-limit of an arbitrary sequence ((: x®n :j}n)))*L0 such that ff] e sf1

and f}n) -> f{n) as j -> oo in L2(Tn, vn).

Next, for any / e L2(Γ, v) Π Lι (Γ, v), we put

f(t)dv{t)e{Ll).
T

Hence, for any set α c T of finite v measure, we can put X^ = Xa(x) =

(x,χa) e (Lp), where / α is the indicator of α. Then, X^ is the Poisson random

measure on T with intensity v, i.e., for any i e N and for arbitrary disjoint

sets αi, . . . , αw e ^(Γ), the random variables Xa i,..., Xan are independent,

and for each α l α has the Poisson distribution with mean v(α). Thus, X^ —

X* — v(α) = (:x®1 :,χu) is the centered Poisson random measure.

PROPOSITION 2.1. For each / ( n ) eL2(Tn,vn),

^ . - ^ , (2.10)= f
π'̂ Aί hand side of (2Λ0) is the n-fold Wiener-Itό integral of f^ by the

centered Poisson random measure Xa.

Since a centered Poisson random measure has the chaotic representation

property, Proposition 2.1 yields

THEOREM 2.1. The following mapping is a unitary:

2Γ, v)) 9 / =
/i=0

So, we are able now to construct different riggings of (L%). We have only

to apply the unitary / (or its extension by continuity) to the riggings of the

Fock space Γ(L2(T,v)) and get corresponding riggings of

First, we note that

PROPOSITION 2.2. We have
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where &>{$') is the set of all continuous polynomials on $'—that is, the set of all
complex functions on g1 of the form Σ"=o(x®n, f { n ) ) , f{n) e£%n,neΈ+.

Thus, the application of / to the rigging (2.7) gives

REMARK 2.3. The topology of the nuclear space &>($') is supposed to be
that induced from Γ^S) by the isomorphism /. One can also define a
nuclear topology on &{$') from that of Γ^S) by using the following natural
isomorphism [2, 9]

n=0

But, in fact, these two topologies coincide.

Thus, every generalized function Φ from the biggest (in a sense) space
&($)* can be represented in the form

φ = φ(x) = J2(: x®
n :,F ( n )), F<"> e *'$",

and the dual pairing between Φ and a continuous polynomial

n=0

is given by

Λ = 0

where FW denotes the complex conjugate of F^n\
Next, by applying / to (2.6), we get

(<TP)-
κ = ind lim(ίp):* 3 ( I | ) =D proj lim(^P)κ = (<fP)

κ, κ > 0 (2.11)

(we are using natural notations for all the images of the spaces from (2.6)).
The norm of any Hubert space (ίp)jj*,/> > 0, κ > 0, (t e {+, -}, will be denoted
by || Hjjκ̂  The triple (2.11) with κ = 0 was investigated in [6].

Let us consider two important examples of distributions. The first one is
a Poisson white noise monomial:

, tu...,tneT. (2.12)
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By (A.I), the distribution (2.12) belongs to (<P)IJ . The formulas (2.8)

give the recursion relation:

:x(tι)~-x(tn+ι): = (:x(tι)' x(tn): : x(tn+ι):) -n(: x{tχ)- x(tn): δ(tn - tn+λ))

- n(: x{tχ) x(tn-i): l(tn)δ(tn - tn+ι)),

where δ — δo is the delta function at 0, the superscript stands for the

symmetrization of a function.

The second example is the Poisson white noise exponential function

:e(χ,y):ΞΞ ^ ( w ! ) - 1 ^ 0 " : , ^ ) , yeS'ς. (2.13)

If y e E.pjCi p > 0, then : e<^>: e (<rP):°; if ξ e EPtC, p>0, then : e™ : e ( * ) ;

with κ < 1, and

: ^ ) : e ( ^ p ) j if | ^ < 1 (2.14)

(we keep the notation | \p for the complexified spaces E®£). We will return to

this function in the next section.

3. Continuous version theorem and Poisson white noise delta function

In this section, we will show that every element of the space (<?p)ι has a

version (in the (Zψ)-sense) whose restriction to every E-p is continuous on

E-p. Such a continuity will be called a continuity on S1 (though it does not

imply the continuity on $' endowed with the strong dual topology). This will

allow us to introduce a Poisson white noise delta function. Also, by using the

(proof of the) theorem on continuity, we will obtain a theorem on the explicit

form of the Poisson white noise exponential function.

THEOREM 3.1. Each φ from the space (^p)1 has a version φ that is
continuous on $' and is given by

φ(x) = £ < : x®« :, /-)>, /W e 4", (3.1)

where the Wick powers : x®n : are defined by the recursion relation (2.8) and φ is

the image under the unitary I of the element (/^)^L0 °ftne space Γ\{$). The

series (3.1) converges absolutely and uniformly on every bounded set from

$'. Moreover, φ(x) can be extended to the complexification S1^ of $' that φ(z)

becomes analytic in $'<£. This extension is given by the formulas (3.1) and (2.8)

in which x G Sf is replaced by z e Sf^.
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REMARK 3.1. The definition of a function analytic in (f'c can be found,
e.g., in [13, 4].

PROOF. Our proof is close in spirit to (part of) the proof of the con-
tinuous version theorem in Gaussian analysis proposed by Obata [18, 19]. We
wish to estimate the norms of :x®n: in E®£.

Since ( τ , ^ 2 ) = ($τδf2dv(t),ξ®2), we get from (A.I) and (2.2) that

\τ\.p < J ^ \δt\
2_pdv{t) < £ \δt\

2_χ dv(t) = \\δ\\\ p > \ . (3.2)

By (A.4) and (2.9), we easily conclude that

| ϊ > ( " + 1 ) / ( n + % < nCp\f("+X p > \ , (3.3)

i.e., D ( n + 1 ) : £ ® ( n + 1 ) -> Ef" is a linear continuous operator with norm <>nCp.
By (2.8),

: x ® n + 1 : = : x®n : <g>: x ® 1 : - Φ + x > : x ® n : - n : x ® ^ : ® τ, (3.4)

where D ( n + 1 ) * : S'®n -»^®( π + 1 ) is the dual operator of D ( n + 1 ) , and for each
p > 1, t)(n+x) : £®,Λ -+ E®p

n is a continuous operator with norm <nCp.
By (A.2) and (2.2), we have that 1 e £_i and

J ^ ^ L ^ v W < PIU, p > \ . (3.5)

Thus, by (3.2)-(3.5),

\:x®("^:\_p<\:x®":\_p{\x\_p + \\δ\U
(3.6)

+ n C p \ : x ® n : \ _ p + \\δ\\2\:x®("+»:\_p, p > \ .

Hence, given any fixed p ;> 1 and R > 0, we have, for each x e $' such that

which easily yields that

|: x® ( n + 1 ) :\-P Z n\z;ιR, ZpΆ = max{l, FP,Λ}. (3.7)

The assumption (A.3) implies

Pmn\f(n)\P+m ^ I/(Π)IP. / W e ^ ? " , rn e N, (3.8)
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and so

\FW\_ip+m) < pmn\F{n)lP, F{n) 6 E%», m € N . (3.9)

Summing (3.7) and (3.9) up, we conclude that there exists px = px{p,R) >
p such that

| : *®" : |_ Λ <n\2-".

Therefore, for φ(x) = Σn°°=0 0*®" :>/W> * (#rΫ, we have, for \x\_p < R,

Λ=0 Λ=0 Λ=0

i.e., the series Σ™=o(:x®n : J / ( Π ) ) converges absolutely and uniformly on every
bounded set in E-p (we recall that every bounded set in $' endowed with the
strong dual topology is bounded in some space E-p [3]). For any / ( n ) e £®n,
the function (:x<8>π :,/(/ι)) is a continuous polynomial of variable xeS1 (see
Proposition 2.2), and so the function φ(x) is continuous on every E-p.

Next, we note that if one replaces xeS' with ze<f'c in (2.8) and (3.1),
then all the above formulas hold true for the complexified spaces E-p^. Since
(:z®n : , / ^ ) , / ^ e $®n, is a continuous polynomial of variable z, it is an
analytic function in every E-p^. The series

/!=0

converges absolutely and uniformly on every bounded set in E-p&, so φ(z)
is analytic in every E-p^. By [13], Theorem A.2, we conclude that φ(z) is
analytic in $'^. •

Having obtained the continuous version theorem, we are able now to
define a Poisson white noise delta function. So, we put, for each y e $',

n=0

PROPOSITION 3.1. For each yeS\ δy belongs to (<^p)~\ and for each

(3.10)
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where φ is the continuous version of φ defined in Theorem 3.1. Moreover, the

following mapping is continuous:

PROOF. Let us fix y e S\ and let p > 0 be such that y e E-p, \y\_p = R.

Let P\>p be chosen so that

( « ! Γ 1 | : j ' 0 " : | - Λ ^ 2 - (3.11)

(see the proof of Theorem 3.1). Then

ί ! Γ 2 h yφn li!Γh y -liΛ

whence δy ε ( ίp ) !^ and (3.10) holds.

Let a sequence {j^ |y € N } G E-^ tend to a ^ in E-p. Then, there is R > 0
such that \yj\-p < R for ally e IN, and so |;y| ^ ^ Choose ^j so that (3.11)
holds for any y e E-p with \y\_p < R. Let us show that

δy. -* δy in ( ίp ) :^ a s ; -> oo. (3.12)

As follows from the proof of Theorem 3.1,

: jf" :->:,«»: in £*£, n e Z + ,

whence

(: x®n :, (if!)"1: y f :) -> <: *®Λ :, (if!)"1: y®π :> in ( 4 ^ a s ; - oo,n e Z+.

(3.13)

Next, for any «,wieN, n>m, we get by (3.11)

i=m

i=m

(3.14)

From (3.13) and (3.14), we easily conclude that (3.12) holds. •

Now, we will prove a theorem on the evident form of the Poisson white

noise exponential function. This theorem is a refinement of a corresponding

result of [6].
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THEOREM 3.2. We have

: e™ : = exp [(*, log(l + ξ)) - J ξ{t)

/cλ holds for μP-a.a. x e $', more exactly, for all xe E-\, which is a set of full
μP measure.

PROOF. We divide the proof into steps.

1. Let us fix an arbitrary set α <z T of finite v measure and put

k

7=1

where ajj = 1,. ..,&, are disjoint subsets of α, Uy=i°5/= α Then, by Prop-
osition 2.1,

k

7=1 (3.16)

,χ

where Cn{u,τ) are the Charlier polynomials with parameter τ:

] — Cn(u,τ) = exp[«log(l +ω)-ωτ]. (3.17)

n=o

Therefore, by (3.16), (3.17), we have (cf. [5, 6])

«=0

= exp

= exp

(3.18)

(x,χjog(l

the equalities making sense for |ωy | < 1.
2. For any n e N , let us consider the following triple

(L°°(αΛ, vn))f 3 L2(αΛ, vΛ) => L°°(αΛ, vΛ),

where ^ ( α ^ v " ) is the subspace of L°°(απ,vn) consisting of symmetric
functions on αn, and (Z,00(α/l,vπ))' is the dual of L0 0(Γ/ I,vΛ) with respect to
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zero space L2(αΛ, vn). Let us fix an arbitrary x = x{t) e Lι(α, v). We suppose
that rx®": are defined by the recursion relation (2.8) and these :x®n: are
understood as elements of (L00(αn,v/I))'. By analogy with the proof of
Theorem 3.1, the following estimate can be proved

where V is a positive constant, depending on α and c. Therefore, for any
/eL°°(α,v), we have

Λ=0 W=0

Hence, x e L ! ( a , v) being fixed,

«=o

is a continuous function of variable /eL°°(α,v) in the ball in L°°(α,v) of
radius (2F)"1 centered at 0.

Let us fix ί e ^ c such that \ξ\γ < (2K||J||0 0)-1, and so, by (A.2),
II£IIL°°(ΓV) ^ (^F)" 1. Approximate the function ξχa in the L°°(Γ, v) norm by
step functions. Since (3.18) holds for all xeLι(T,v), we conclude that (3.18)
holds true for our fixed x if / is replaced by ξχa.

3. Let us denote by f(x;ξ) the function on the right hand side of
(3.15). By virtue of (A.4), log(l + ζ) = ΣZi^ψ^ξ" e £i,c provided ξeS
and l̂ lj < R = (max{l, Q})" 1 . Thus, taking also to notice (A.2), we conclude
that f(x] ξ) is well defined for all x e E-\ and the above ξ. Moreover, for
each xeE-ι fixed, f(x ζ) as a function of ξ E E\^ is analytic in the ball
\ξ\x < R. Therefore, see, e.g., the proof of Theorem 3 in [7], it can be rep-
resented in the form

Γ 1 < F ( Π ) W» ^ " ) ' F(n) W e * ? " •
n=0

Moreover, since /(x; ^) e 1R for any ξ€.δ, we conclude that actually
FM(X) G ̂ /(έ)n, i.e., (FW(x),f{n)) e IR for any / ( / l ) e ̂ ®".

By step 1 and step 2, for any xeL ! (Γ,v) and any set α of finite v
measure, we have

n=0
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where ξ e & is such that it vanishes outside of α and \ξ\λ < ^ α , < α̂ a positive
constant determined by x and α. From here, because of (A.5), : x®n: =
FW(X). Thus, (3.15) holds for all x e L ^ v ) .

4. It follows from the proof of Theorem 3.1 that there exist p0 > 1 and
r > 0 such that, for any fixed ξ e <f, \ξ\ < r,: e^x& : is a continuous function
of variable xeE-\. On the other hand, f(x\ζ) is continuous on E-\ for all
ξ€S,\ξ\x < R. Let us fix an arbitrary ξ e S, \ζ\ < r. We know that

: e{x& : = f(χ; ξ) for all x e Lι(T, v) (3.19)

(we assume that r < R). Extending (3.19) by continuity (since ^ c L ^ Γ , v)

and $ is a dense subset of is_i, L^Γ, v) is also a dense subset of E-\), we

conclude that (3.19) holds true for all xeE-\ and ξeS, \ξ\pQ <r. At last,

analogously to step 3, we get the conclusion of the theorem. •

REMARK 3.2. It follows from the proof of Theorem 3.2 that the formula

(3.15) holds for all x e E-p, p>\, provided ξ e £& and 1 ^ < (max{l, Cp})~\

COROLLARY 3.1. For each yeS', y^O, the Poisson white noise delta

function δy does not belong to any space (^p)~κ with κ < 1.

REMARK 3.3. This statement shows that there is no sense in trying to

prove the continuous version theorem for any (<£p)κ with κ < 1.

PROOF. Following [6, 8], for any Φ e (<ft>)~κ with κ < 1, we define the
^p-transform of Φ by

Since the set of: e^'Q : is total in each (^p)κ, the ^p-transform uniquely defines
Φ. Moreover, for each Φ e (^p)"1, there is p > 0 such that Φ e (<£p)Î > and
we set, taking to notice (2.14),

«Φ,: eM :»; ξ e * c > \ξ\p < 1. (3.20)

As follows from [7], the ^p-transform defined by (3.20) uniquely determines

Φe{£γ>)-\

Since all the above constructions are totally isomorphic to the Gaussian
case, all the characterization theorems of the spaces (<£p)κ, κ € [— 1,1], in terms
of their ^-transforms hold true, e.g., [2, 4, 19, 8, 7].

Let us fix y e $', y Φ 0, and let p > 0 be such that y e E-p. By virtue of
Proposition 3.1, we know that a priori δy e {$?)~x. By Theorem 3.2 (more
exactly, by Remark 3.2), we get that ^p[Sy](ξ) is equal to the right hand side of
(3.15) provided \ζ\ < (max{l, Cp})~1. But the function yF[δy](ξ) is analytic
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only in a neighborhood of zero in <ίc, but not in the whole $&. Therefore, by
the characterization theorems, which state particularly that the ̂ p-transform of
an element of (<fp)~κ with κ < 1 is a function analytic in $&, we obtain the
desired statement. •

COROLLARY 3.2. For each t e T, define a linear continuous operator dt in
1 by

dt is called the operator of Hida differentiation at t. Then, for each φe (Sp) ,

(δtφ) ~ (*) = φ(x + δt) - φ(x), xef,

where φ denotes the continuous version of φ defined in Theorem 3.1.

PROOF. For φ e ^(<f')? the corollary was proved in [5, 6]. For an
arbitrary φ e (<£p)\ let us choose a sequence {φj)JL\ e &($') such that φj —• φ in
(^P) 1. Then, by Proposition 3.1,

φj(x -f δt) - φj(x) = (δx^t - δx, φ^ - lδx+δt - 4 , ε»

= φ(x + δt)-φ(x). (3.21)

On the other hand,

Φj(x -fδt) - φj(x) = (dtφj)- (x) = «&, a^> -+ «&, dtφy = (δtφ)- (x). (3.22)

Combining (3.21) an (3.22) gives the corollary. •

REMARK 3.4. It is worth to compare Corollary 3.2 with the results of
Nualart and Vives [17].

4. Multiplication in ( ^ P ) 1

THEOREM 4.1. The space (^p)1 is an algebra under pointwise multiplication
of functions. More exactly, for any φ,ψ e (^p)1 and p > 1, there is const > 0
such that

\\ΦΦhP<comt\\φ\\lιP+ι\\ψ\\hp+cl,

where ^ e N is chosen so that

p"<{\- p)2Yp-\ Yp = max{l, ς,}max{l, \\δ\U,

p the constant from (A.3). In particular, for any φ e (^p)1, the operator of
multiplication by φ acts continuously from (<^p)j+1 into (^p)j for each p > 1.
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PROOF. The proof is rather analogous to that of Proposition 6.5 in [6], so
we only note some new points.

Let / ( Λ ) e S®n, n e Έ+. Then, for the operator Ar,kJ{f{n)), f + k +y = n,
defined in [6], we have the estimate (compare with Proposition 4.5 in [6]):

(4.1)

so that Afjcjif^) is a continuous operator in (^p)1.

Let ψ € ( /P ) 1 be of the form ^(JC) = ΣZo(:x®n :>/(π)> τ h e n

j'+k+j=nJ ""''

By (4.1) and (4.2)

>k. (4.3)

Λ=0 f+k+j=n

By using the estimate (3.25) in [6], we have

which, upon (4.3) and (3.8), gives

n=0

1 / oo V/2

2 ' ' Wo /
which gives the theorem. •

REMARK 4.1. By analogy with the proof of Theorem 4.1, one can easily
verify that each space ($?)κ with κ > 1 has an algebraic structure.

Following [6], for each teT,we define the operator of Poisson coordinate
multiplication

x(ή. = (e; +1)(5, +1) = e;et + dt + a; + 1 ,

where d* : (^p)"1 —> (<̂ p) * is the dual of the operator dt : (^p)1 —>
defined in Corollary 3.2. Evidently, jc(ί) is a continuous operator from
to (ΛΓ 1 .
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COROLLARY 4.1. For φ,φ e (£?)
1 and te T,

where φ is the complex conjugate of φ. Here, x(t) = (-.x®1 :,δt) + 1 e (^p)"1.

PROOF. Let us choose an arbitrary sequence (fy )j® I <= $ such that ξj —> δt

in ί ' (notice that & is dense in $'). Denote by (x,ξj)- the operator of
multiplication by the function (x,ξ). Evidently,

It remains only to note that (x, ξj) —> x(ή in (^p)"1 and (x,ζj)-φ-^
x(t) φ in (^p)"1 (see [6, 14]).
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