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ABSTRACT. The aim of this work is to present a new mixed finite element method to

solve the two-dimensional Stokes problem in terms of the stream function and the

vorticity. The main feature of the method is to overcome the difficulty associated with

the lack of boundary conditions for the vorticity on a no-slip boundary, by means of an

incorporated uncoupling technique of both variables.

Introduction

Let us begin by recalling the problem to solve: Given a field of volu-
metric forces / and denoting by v the kinematic viscosity of the fluid occupying
a bounded simply connected domain Ω of R2 with boundary Γ, we wish to find
the stream function φ and the vorticity ω such that:

λ j v^.vu> = curl / in Ω

'°Λ) \-Jψ = ω inΩ.

We consider the case where the following boundary conditions apply:

<7o on 7"

where go and g\ are functions determined from the given velocity on Γ (Cf. [8]).
Long since some advantages are recognized in using the stream function-

vorticity formulation to solve computationally the two-dimensional incom-
pressible Navier-Stokes equations. Among those let us mention the fact that
the former leads to computed flow fields that implicitly satisfy the incom-
pressibility condition; moreover the number of unknown functions is reduced
from three to two and the vorticity is computed directly instead of being
obtained from the velocity field.
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The main difficulty for treating system (0.1) is the fact that, whenever the
velocity is given on Γ, there are two boundary conditions for φ and none for ω.

Many authors contributed to the study of the Stokes system in terms of the
stream function and the vorticity. In this context we refer in particular to the
bibliography and comments given in the seventh chapter of Ciarlet's book [6],
and also to Girault-Raviart [9] and Brezzi-Fortin [4].

In [11] the second author proposed and studied a finite element method
for solving system (0.1)-(0.2) based on the direct computation of a harmonic
component of the vorticity. In this paper we shall further exploit this approach,
by presenting a new mixed method to solve the associated saddle-point problem.

An outline of the paper is as follows: In § 1 we recall some basic results
due to Ruas [10, 11], and we introduce two related saddle-point problems. §2
is devoted to the analysis of the continuous saddle-point problems. In § 3 we
study the discrete version of the problems in §2, obtained by the finite element
technique. In §4 and 5 we make a series of remarks concerning implementation
and relationship between our method and other works. We conclude with
some numerical illustrations given in §6.

1. Variational and uncoupling techniques

Like in [11], in order to derive a variational formulation of system (0.1)
and (0.2) we consider the set

(1.1) X(Ω) = {χeL2(Ω);JχeH-ι(Ω)}.

X(Ω) is a Hubert space with the following inner product

(i 2) Ct,f)i- = Cr,£)o + (*o,£o)i,

where ( , )0 denotes the standard inner product of L2(Ω) and χ0 in HQ(Ω) is
uniquely defined by

(1-3) (*o,«0i = <-4t,»> (Vi ef l Jίfl)).

( , )i and ( , ) denote the standard inner product of HQ(Ω) and the duality
product between H~ι(Ω) and HQ(Ω) respectively. We further introduce the
following closed subset of X(Ω):

(1.4) XH(Ω) = {χeL2(Ω)]Aχ = 0}.

Using standard arguments from the theory of Hubert spaces, we may
uniquely write every function / e X(Ω) as a sum of the form:

(1.5) χ = χ0 + χH, where χ0 e HQ (Ω) is uniquely defined by (1.3).



The Stokes problem in (ψ — ώ) formulation 383

Note that χH is the harmonic function of L2(Ω) whose trace over Γ coincides

with that of χ.

Let us assume that / eL2{Ω)2, #z e i/ 3/ 2-'(Γ) for i = 0,l. Set ω =

coo +COH, where ωo e HQ(Ω) and ω# e XH{Ω).

The variational form associated with the system (0.1)-(0.2) is:

' Find (ω o ,ω#, Φ) e H^{Ω) x XH(Ω) x H^(Ω) such that

φ)0 (Vφ e

, - ^ ) (VχHeXH(Ω))
Cn /3/2

k iii) (^,^0)1 = (ωo + ωH,χ0)0 (V/o e flj(ω))

where Hgo(Ω) = {v eHx{Ω)\υ\Γ = go} and ( , ) 5 denotes the duality product

between H~S(Γ) and HS(Γ) with seR+.

PROPOSITION 1. Problem (VP) has a unique solution (COO,CUH,Ψ), such that

the field (Ψ,CUO + CQH) is the unique solution of system (0.1)-(0.2).

PROOF. See [8, 11].

For the sake of simplicity but without loss of essential results we assume

hence-forth that #o = 0 and g\ = 0.

2. A saddle-point for the Stokes problem

While problems (VP-ϊ) and (KP-iii) are classical, (FP-ii) is a problem with

a constraint COH e XH{Ω). In order to avoid this difficulty we introduce an

equivalent saddle-point problem assuming that ωo is a solution of (VP-i):

{ Find (ωH,λ) e L2(Ω) x H$(Ω) such that

(ωH, v)0 - (t>, Δλ\ = -(ωo, ι?)0 (Vt> e L2(Ω)) and

Now we set V = L2(Ω), M = HQ(Ω) and we define the two bilinear forms

a(u, υ) = («, v)0 for M, V E V and b(u,μ) = -(w, Aμ)0 for ue V, μe M.

We can rewrite problem (SP1) as follows:

Find (COH, λ) e V x M such that

a{ωH, v) + 6(t;, λ) = -(ωo, «)0 (Vυ e F) and

i ) = 0 (VμeΛί).
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THEOREM 1. Problem (SPl) has a unique solution (COHA) in V x M.

Moreover COJJ is the unique solution of problem (VP-ii).

PROOF. See [8].

REMARK 1. The main difficulty in solving problem (SPl) is the

approximation of the space HQ(Ω), by finite element spaces. We shall next

give another characterization of the solution of this problem in (SPl).

2.1. An ill-posed mixed problem

In order to avoid the difficulty mentioned in Remark 1 we use a result due

to Brezzi and Raviart, namely, Theorem 2 of [5]. In other words we introduce

a second saddle-point problem and we show that under some hypothesis this

problem has the same solution as (SPl).

In order to replace XH(Ω) suitably, we introduce the set

(2.1) XH(Ω) = {ue H\Ω) (Vu,Vv)0 = 0 (Vi; e

which is a closed subspace of Hι(Ω). Let us consider the following problem:

J Find ωH e XH(Ω) such that

1 ( y , v)0 = -(ωo, IOO ( v " *

Problem (CP) can be viewed as a constrained problem, whose constraint is

COH e XH(Ω). It can be changed into an unconstrained one, at the cost of

adding a Lagrange multiplier. More specifically, problem (CP) is equivalent to

the following saddle-point problem:

( ¥'md(ωH,λ) e V x M such that

a(ωH, v) + b(v, λ) = -(ω 0 , v)0 (Vv e V) and

b(ωH,μ)=0 (VμeM)

where V = Hι(Ω), M = H^(Ω) and b(v,μ) = (Vυ,Vμ)0 for v e V, μ e M.

REMARK 2. Since the bilinear form a( , ) is not a priori Hι(Ω)-elliptic,

problem (SP2) is not well-posed at least in general.

THEOREM 2. If the first argument CUH of the solution (ωπ,λ) of problem

(SPl) belongs to the space Hι(Ω), then (ωπ,λ) is the unique solution of problem

(SP2).

PROOF. If the first argument of the solution (ω#,/ί) of problem (SPl)

belongs to Hι(Ω), then (ωπ,λ) is a solution of problem (SP2) because HQ(Ω)

is dense in HQ(Ω) and we have (Vv, Vμ)0 = —(v,Aμ)0 (Vt; e V, VμeM).
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Let us prove that problem (57*2) has a unique solution. Suppose that
,λ) eHι(Ω) x HQ(Ω) is a solution of the following problem:

~)eV x M such that

, v) + b(v, λ) = 0 (Vϋ e V) and

6(tu^,^) = 0 (VμeM).

Taking v = τσπ we obtain b(πH,λ) = 0 and hence Q{WH^H) = 0 that is
τu# = 0. Therefore (7ι>, FA)0 = 0 (Vi; e /f ι(Ω)). On the other hand for some
β>0

which yields 1 = 0.

REMARK 3. i) In general if Ω is an open bounded domain of R2 and Γ is
of the C2 class (Cf. [4, 9]) then ωHeH\Ω).

ii) If i/f, a solution of problem (FP-iii), belongs to H3(Ω) then λ = —ψ
(Cf. [1]).

iii) Since the finite element approximation of problem (SP2) involves
only the construction of finite-dimensional subspaces of the spaces Hι(Ω) and
HQ(Ω), problem (&P2) is easier to approximate numerically than problem
(SPl).

3. Discretized Variational problems

Throughout this section, Ω will be a polygonal domain. In all the sequel,
we shall assume that the conclusion of Theorem 2 holds.

Let {Th}h be a quasi-uniform family of triangulations of Ω with mesh step
size h < 1. We introduce the finite element spaces defined by:

Yh = {vh e L2(ί2); vh]κ e Pk(K) (V* e Th)}

Vh=YhΠC°(Ω)

where Pk{K) denotes the space of polynomials of degree less than or equal to
k, defined in K. Finally, we define

(3.1) X* = {uheV

We note that Vh c Hι(Ω) and Mh c
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3.1. Approximation of problem (VP-ϊ)

We discretize the formulation (VP-ϊ) by

Find COQ G M/, such that

v(Vω^ Vφh)0 = (/, curl φh)0 (V^Λ e Mh).

We note that problem (Poh) has a unique solution (see Ciarlet [6]); moreover

we have the following error estimate.

THEOREM 3. Ifωo e Hk+ι(Ω)f)H^(Ω) for k greater than or equal to one,

then we have ||ωo - ω§\\x < CΛ*||ωolU+i where C is a constant independent ofh.

PROOF. See Ciarlet [6].

REMARK 4. If A is a bounded convex polygon then we have the L2-

estimate | |ω 0 - ωo

Λ | |o < Chk+ι\\ω0\\M.

3.2. Approximation of problem (SP2) by a mixed finite element method.

The discretized problem associated with (SP2) is:

ί
ff,λh) e F ί x Λf/, such that

(cob vh)o + (Vυh, Vλh)0 = -(ω0

Λ, vh)0 {Vυh e Vh) and

(Vωh

H,Vμh)0 = 0 (VμheMh).

THEOREM 4. As well as problem (SP2), problem {SPD) has a unique

solution (cOfnλh) e Vh x M^.

PROOF. The result is a simple application of Brezzi's theory [5] (see [8]).

REMARK 5. We note that λh = -φh where φh is the unique solution of the

following discrete problem:

{ Find φh e Mh such that

THEOREM 5. Assume that Ω is a bounded convex polygonal domain. For

an integer k greater than or equal to two, we assume

φ E Hk+ι(Ω) Π H$(Ω), ω0 e Hk{Ω) Π H^(Ω) and ωH e Hk(Ω).

Then we have
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\\a>H - <4llo + II* ~ Mi ^ Chk-ι{\\ωH\\k + \\ωo\\k + \\ψ\\k+1} and

| |* - * A | | 0 < Chk{\\ωH\\k + \\ωo\\k + \\ψ\\k+1}

where C and C are constants independent of h.

PROOF. In order to prove this theorem we use the result due to Brezzi and
Raviart (Cf. [5]. Theorem 3), with a simple modification in the case where the
right hand side of the discrete problem is an approximation of the one of the
continuous problem.

In order to establish this result, we have to prove the two following error
estimates

(3.2.1) \\ωH-ωh

H\\0<A{lΏΪ\\vh-ωH\\x+\ Inf \\λ -μ^ + \\ω0 - ωh

0\\Λ
lvheVh n μheMh J

(3.2.2) \\λ-h\\χZBl\\ωH-ωh

H\\t+ Inf \\λ -μh\\x + ||ω0 - ωo

Allo}

We recall that λ = -ψ, λh = -ψh9

μ\U < Chk\\ψ\\k+ι,

(3.2.4) Inf \\ωH - vh\\λ < Chk-χ\\ωH\\k and
VeVh

(3.2.3) Inf \\Ψ - μh\U < Chk

βeMh

(3.2.5) \\co0-o>X<Chk\\a>4k.

Combining inequalities (3.2.1), (3.2.2), (3.2.3), (3.2.4) and (3.2.5) we obtain

\\°>H - <4llo + II* - Mi ^ Chk~ι{\\ωH\\k + IKII* + H*IU+1}.

Now let us prove inequalities (3.2.1) and (3.2.2).

Error estimate (3.2.1)

By definition ω# e Xfa and for every ΌH G X^ we have

(3.2.6) a(vh - ωh

H, vh - ωh

H) = a(vh - ωHi vh - ωh

H) 4- a(ωH - ωh

H, υh - ωh

H).

Combining this with (SPD) and (SP2), we obtain

a{ωH -ωh

H,υh- ωh

H) = (ωξ -ωo,vh- ωh

H)Q + b(υh -ωh

H,μh-λ) (VμheMh).

Relation (3.2.6) thus becomes:

a(vh - ωh

H, vh - WH) = a(vh -ωH,vh- ωh

H) -f b(vh -ωh

H,μh- λ)
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Hence we have

\\vh - ωh

H\l < \\vh - ωH\\0 \\vh - ω ^ | | 0 + ||t7A - ω^\\x \\μh - λ\\x

Now, using the inverse inequality (Cf. Ciarlet [6], Girault-Raviart [9] and
A

Brezzi-Fortin [4]) \\vh\\ι < -r ||VA||0 (VI?A e Vh) with A independent of λ, we
obtain:

||t>A - ω ^ | | 0 < \\vh - ωH% + j \\μh - λ \ \ x + \\ω0 - ω^llo

Combining the above inequality with \\COH — <X>H\\O ^ \\ωH ~ vh\\o + IÎ Λ — ω^llo
we obtain

- O>H\\O ^ 2\\»h ~ COHWO + j \\Mh -M\ι + llωo - ω£| | 0 and hence

(3.2.7) \\ωH - ωh

H\\0 < C Inf ||t;A - ω ^ | | 0 + ^ Inf \\μh - λ\\x + | |ω 0 - ωo

Λ | |o.

Finally, using the discrete inf-sup condition: for some γ > 0

(*) S u p

11

we have (Cf. Girault-Raviart [9], Brezzi-Fortin [4])

(3.2.8) Inf \\ωH -vh\\x<C Inf \\ωH - φh\\x

X^ <PeVh

which together with inequality (3.2.7) gives (3.2.1).

Error estimate (3.2.2)
From (SP2) and {SPD), we obtain for every VH e Vh

a(ωH - ωh

H, vh) H- b(vh, λ-λh) = (ωξ - ω 0 , vh)0.

Then we get for every μheMh

b(υh, λh - μh) = a(ωH - ωh

H, υh) + (ω0 - ω%, vh)0 + b(υh, λ-μh).

Using again the discrete inf-sup condition (*) and the inclusion V <= V we
obtain

\\μh - λh\\x < C{| |ω 0 - ωo

Λ | |o + μ - ^111
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Combining the above inequality with ||Λ - λh\\x < \\λ-μh\\x -h ||μ/, - λh\\\ we
obtain

-ω#||0-f Inf \\λ — μh
μheMh

Error estimate for (λ — λh) in the space L2(Ω).
We need to generalize the classical Aubin-Nitsche's duality argument like

in [5]. We may write

||yl — /L/,||o = Sup —'-τr~ΰ ~

Since problem (SPl) is regular (Cf. [5]), any solution of the problem: find
(y,ζ)eVxM such that a(v,y) +b(v9ζ) = 0 (Vi; e V) and b(y,μ) = (φ,μ)0

(Vμ e M) where φ is given in L2(Ω), satisfies

J a(v, y) + b(υ, ζ)=0 (Vi? € V) and

Hence we obtain

(3.2.9) a(ωH - ωh

Hiy) + b(ωH - ωh

H, ζ) = 0.

On the other hand, using (SP2) and (SPD) we have

(3.2.10) a(ωH - ωh

H,yh) + 6 ( Λ , A - AΛ) = (ω0

Λ - ωo,yh)o (Vyh e FΛ)

and

(3.2.11) i ! (ωir-<4,C A )=0 ( V C Λ G M Λ ) .

Therefore, combining (3.2.9), (3.2.10) and (3.2.11) we get for all yh e Vh and all

= a(ωH -ωh

H,y- yh) -f b(ωH -ωh

H,ζ- ζh)

H- *Cv ~ yh,λ ~ h) + (ω^ - ωo,yh)o.

Next, assuming that yheZh(φ) = {υh e Vh;b(vhiμh) = (φ,μh\ (VμheMh)}
we have for all μheMh

ϊ>(y-yhA- h) = Hy -yhΛ- μ*)-

Hence we obtain, by denoting
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F{φ) = Inf {\\ωH - < 4 | | 0 \\y-yh\\0 + \\ωH - ωk

H\\x \\ζ -
yheZh(φ)
ζh,μheMh

+ I N -ωo

Λ | |o |Mlo + b - Λ l l i μ - ^ l l i + llωo -ω o

Λ | | o \\y-yh\\0},

(3.2.12) \\λ-λh\\0<C Sup ψ
φeL*(Ω) \\Ψh

and the desired inequality follows from (3.2.12) as in [5].

In order to extend the result of Theorem 5 to the case k = 1, we have:

THEOREM 6. We suppose that ψ e H4(Ω)ΠH$(Ω), ω0 e H2(Ω)ΠH^(Ω)

and COH e H2(Ω). Then we have

\\COH - e 4 | | 0 + II* - * A | | , < C{Λ||ω j ϊ | |2 + A2||ω0||2 + A||*||2 + hχl2\Ln{h)\ | | * | | 4 }

and the quantity \\ψ — \j/h\\0 is at least of the same order, where C is a constant

independent of h.

PROOF. In this proof we use essentially a result due to Scholz given in

[14]. As in proof of Theorem 5 we have

a(vh - ωh

H, vh - ωh

H) = a(vh - ωH, υh - ωh

H) + b(vh - ωh

H,μh - λ)

Hence we have

ιι /••• it || . \f\vn ^Hif^h 'VI . ii Ail

Ik - ω l̂lo ^ Ik - <°g|lo + „ _ωhu— + I N - ωollo

The relation above is valid for μh e M/,, in particular for μh = Pfiλ where P,
denotes the projection operator which satisfies:

f Pfr E Mh,

\ (V(v - Ph

ϋv), Vφh)0 = 0 (V Â e Mh, V» e ^ ( Ω ) ) .

Using a lemma due to Scholz [14] we get

\b(λ - Ph

oλ, vh - ωh

H)\ < C*Vh \Ln(h)\ \\Aλ\\La>(o) \\vh - ωh

H\\0 and hence

||ωir - < 4 | | 0 < C Inf ||ι;A - ωH||, + C*Vh \Ln(h)\ \\Aλ\\L*w + \\ω0 - ωo

A||o.

Using (3.2.8) we obtain

(3.2.13) \\ωH - ωh

H\\0 < C Jr f \\vh - ωH\\x + C*Vh \Ln(h)\ \\Aλ\\Lβ.(Ω)
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In the same way as in the proof of Theorem 5, we establish

(3.2.14) | μ - λ A | | 1 < c { | K - ω 0

A | | 0 + | | ω i / - ω ^ | | 0 + Inf p -

We recall that

(3.2.15) Inf | | * - μh\\λ < Ch\\φ\\2y

(3.2.16) Inf | |ωιr-»*| |,s:C%»tf| |2,

(3.2.17) l |ωo-ω o

Λ | | o<CΛ 2 | |ω o | | 2 and

(3.2.18)

Combining the inequalities (3.2.13), (3.2.14), (3.2.15), (3.2.16), (3.2.17) and
(3.2.18) we obtain the desired estimate.

4. Implementation Aspects

In practice we use the discrete version of problems (KP-i), (FP-ii) and (VP-
iii), in order to compute cofi, ω^ and φh. For this purpose we have to
compute a basis of the space XJJ.

In the following paragraph, we describe how to compute this basis. The
intersection of the closure of the elements of Th with Γ form a partition of
the latter, say Σh> i n t o straight segments. We denote by NH the number
of segments of Σh. We have Σh = U (KDΓ). We denote by Γu

KeTh

i= l,...,Nh the elements of ^ Λ , numbered in a certain manner. Let us
associate with Σh ^ e s P a c e Sh defined by

Sh = {ve C°(Γ); vιΓi e

We denote by {^}^A the basis of Sh defined by

where Eh is the numbered set of all the nodes having been used to define the
degrees of freedom of VH, that lie on Γ.

Now we consider the function χiβXπiΩ) such that χif = σ, on Γ,
1 < / < kNh This function can be approximated by χϊ, namely, the solution
of the problem:
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FindχΊ e Vh,σi such that

ϊ,Vvh)o = O (yvheMh).

Note that χj! e Xfc, and moreover {χ^}^\ defines a basis of Xfj.

The following algorithm describes how to compute ω§, ω^ and φh.

Algorithm:

Step 1

For i = 1,..., kNh compute γj>\

f Find χ! e Vh,σi such that

Step 2

Compute ω^ by solving the problem

Find CUQ e Mh such that

»o»^Λ)o = " ( c u r l / ' <Ph)o (V^Λ e Mh).

Step 3 ^

In order to compute ω^ = Σ ^tXn w e solve the linear system:

solve AX = b with i=λ

Uj = (XnXj)o

Step 4

Compute ψh:

( Find \j/h e V^go such that

where

Vh,g = {vh e FΛ;υ h = \\hg on Γ} with ΠΛflf(P) = g(P) (VP e ̂ Λ ) .

5. Further Remarks

1) It may seem unpractical a priori to use a finite dimensional space of

test functions which are (approximately) harmonic such as Xfj, to solve the



The Stokes problem in (ψ - ώ) formulation 393

Stokes problem. Note however that our aim is to solve the Navier-Stokes
equations. In this context the computation of a basis for Xfa together with the
matrix associated with Step 3 represents just a small amount of the whole
computational effort of the numerical solution. These computations followed
by the factorization of the above mentioned matrix are actually just a pre-
processing to be done once for all at the beginning of the iterative solution as
described in [8].

2) The matrix A, in Step 3, is full and symmetric positive definite,
therefore the linear system AX = b can be solved by the Cholesky method.
We can also use an iterative method like conjugate gradient for this kind of
matrix.

However from our experience, the Cholesky method appeared to be
particularly well adapted to the solution of AX = b. Actually several
numerical results have been obtained in the case k= \. All of them illustrate
a good performance of the methodology [8, 13].

3) Similar techniques based on the use of the variational approach
introduced in [10] are given in [1], [2], [3] and [12].

4) Finally let us point out the relationship between the three-field mixed
method introduced in this paper and the two-field one considered by Ciarlet &
Raviart for k > 1 in [7], whose study was improved and extended by Scholz in
[14] to the case of piecewise linear approximations.

Let us consider the solution of a single Stokes problem, with homogeneous
velocity boundary conditions for simplicity. Choosing in (SPD) a test function
vh = χh e Xjj, it is readily seen that:

Moreover

(<4, φh)0 + K , φh)0 ~ (Vφh, Vφh)0 = 0 (Vφh 6 Mh).

Then, since Vh is clearly the direct sum of Xg and Λf/,, we have:

(<4, vh)0 + {ωl vh)0 - (Vφhi Vvh)0 = 0 (Vi* e Vh).

This means that in the case of equal order approximations of all the unknown
functions, the uncoupled three-unknown problem we studied here is compu-
tationally equivalent to the coupled two-unknown mixed problem of Ciarlet &
Raviart [7] for k > 1, and Scholz [14] for k = 1. Actually, the same conclusion
applies to the case of nonhomogeneous boundary conditions, provided that a
suitable modification is performed in the expression of the right hand side b(

appearing in Step 3 described in the previous section.
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As a consequence, the same error estimates as those obtained by the third
author, which incidentally can be extended to the case where k > 1, apply to
the present methodology and conversely. However, as pointed out in the first
remark of this section, the uncoupled procedure adopted here is aimed at being
used to solve the Navier-Stokes equations, and in this case both techniques will
function differently. We are persuaded that in this case our approach is
globally superior, and for more details on its implementation we refer to
Ghadi [8].

Another advantage of the present approach is the fact that it lends itself
naturally to a set of approximation spaces of the unknown fields other than
equal order. As shown in [12], a significant improvement in accuracy can be
expected from well-chosen combinations of discretizations. We elaborate a
little more on such possibilities in the next section.

6. Numerical Experiments

Just to illustrate the approach mentioned at the end of the previous
section, we conclude this paper with a brief study of that class of methods.
More specifically we first describe the corresponding approximate problem, and
then we give numerical results obtained in the framework of a particular test-
problem. Among these we include the equal order method with k = 1, for
which convergence results were given in this paper.

As a by-product, we try to determine experimentally rates of convergence,
that have not been formally derived, such as those of the stream function and
vorticity in the L°°-norm, or yet stream function errors in the L2-norm.
Additionally, this allows us to compare the experimented approximation
schemes, in the light of both computational effort and accuracy.

The class of approximation methods that we consider are defined as
follows: Let Ω be approximated by the union of the elements of its trian-
gulation 7), in the usual way, and dK denote the boundary of a triangle
KeTh. For a given integer ί > k we define the spaces,

V[ = {υh e Hι(Ω); vm e Pι{K) {MK e Th),vh\L e Pk{L) (VL e dKΠΓ)}

and M{=V[ϊ\Hl(Ω).
Now we first determine ωβ satisfying (POΛ) and next the pair (ω#, λh),

followed by \j/h, by solving successively:

Find (ωh

H, λh) e V[ x M[ such that

(SPD') { (ωh

H,vh)0 + (Vvh,Vλh)0 = -(ω o V Λ )o (Vt;Λ e Vι

h)

= 0 (VμheMι

h).
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and for j > k,

[
\

Find φh e Mi such that
*

Like (SPD), (SPD() has a unique solution. Note however that we don't
necessarily have λ/, = — φf,. Anyway, instead of (SPD*) we solve:

f Find ωl e Jf^ such that
(CPD() I

where

*% = {X"H 6 Vh\ (xΉ,Mk)ι = 0 (VμAeMA')}.

Remark that the determination of a basis of Z ^ followed by the
computation of the matrix associated with problem (CPD1) goes like Step 1 of
§4. Note that it is also a kNh x kNf, matrix here.

Now, seeking to remain realistic, we only checked the a priori most
promising schemes (i.e. with /, j = k or /, j = k + 1), in which the polynomials
of the highest degree involved are quadratic (/,/ < 2). Moreover one should
keep in mind that the ultimate goal of such schemes, is the solution of the
incompressible Navier-Stokes equations by a straightforward modification of
the procedure presented in this paper (Cf. [8]). That is why for all the schemes
experimented, the zero trace component of the vorticity ω is represented by
piecewise linear functions. Indeed most of the computational effort necessary
for solving these non linear equations by our method, is related to the solution
of an advection-diffusion equation for coo, since the corresponding matrix is the
only one that changes at every iteration (Cf. [8]).

The test-problem we solved is:

ψ = (1 -χ\-x\γ and Ω = {(xux2) e R2\x\ + x\ < 1}.

As pointed out before, the above test-problem was solved by means of the
above scheme with k = 1 and ί9 j e {1,2}. This yields four classes of methods
denoted in the sequel by the Pi — Pj methods. Note that, as already pointed
out in the previous section, the Pi — Pi method is nothing but the mixed
method analysed in §3.

Incidentally, due to symmetry, the computational domain taken for our
test is only the quarter of disk defined by JCI > 0 and X2 > 0. In doing so the
boundary conditions on the lines given by x\ = 0 and X2 = 0 are respectively:

dψ dω , dψ δω
ΊΓ~ = T~ = ° a n d IT- = T~ = °
OX\ OX\ 0X2 0X2
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Note that this symmetry allows us to restrict the computation of the basis
functions of the space X^1 necessary to compute ω#, to those associated with
the nodes situated on the curved boundary of the quarter of the disk. As a
matter of fact, these functions must satisfy homogeneous Neumann boundary
conditions on the above straight lines (Cf. [8]).

Finally, before presenting the numerical results, we mention a word about
the meshes used in the test. A quasi-uniform family of meshes depending on a
single integer parameter p was generated. Each mesh of the family, which has
p2 + 2/7 + 1 linear interpolation nodes and 4p2 + Ap + 1 quadratic interpolation
nodes, is constructed in such a way that the polar coordinates of its vertices

are either (0, 0) or I —, -—) for m = 1,2,...,/? and q = 0,1,. . . , 2m. In all

the cases the chosen values of p are of the form 2n, for n ranging from 2 up
to 6.

The numerical results are summarized in Tables 1 through 3. In Table 1
we display the error of computed values of ω measured in the ZΛnorm and in
the L°°-norm, for *f = 1 and / = 2, respectively. In Tables 2 and 3 the errors of
the approximate stream function expressed in the norms of L2(Ω) and L°°(ί2),
respectively, are given for the four experimented schemes.

As seen from the displayed values, in this test the schemes based on a
quadratic approximation of COH in the interior of Ω, showed much more
accurate than the case where this vorticity component is approximated by
piecewise linear functions. Indeed, the observed order of convergence for the
vorticity in the former case is one in the L°°-norm and two in the L2-norm.

On the other hand, the sequence of linear approximate vorticities does not
even converge in the Z,°°-norm, while it seems to converge linearly in the L2-
norm. As for the stream function, one observes in Table 2, convergence rates
are slightly worse than quadratic for both schemes Pi - Pi and Pi - P2,
whereas it is slightly better than quadratic for the Pi — P\ and Pi — Pι-
schemes. Also one infers from Table 2 that the P/ — P2-scheme is more
accurate than the P/ — Pi-scheme for ί = 1 for ί — 2, in terms of this norm, as
expected. As for the L00-errors of the approximate stream function, from
Table 3 the three schemes Pi — Pi, P\—Pι and Pι — P\ appear to have
comparable convergence rates, better than linear but worse than quad-
ratic. On the other hand the Pi — P2-scheme is undoubtedly superior with
respect to this norm, since its observed convergence rate is a little better than
quadratic. Notice that here, curiously enough, the P2 — Pi-scheme performs
no better than the Pi — Pi-scheme, which in turn is quite naturally less accurate
than the Pi — P2 -scheme. This seems to be a convincing argument to rule out
the P2 — Pi-scheme, as it is more costly than the other two, at least as far as
vorticity computations are concerned.
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We will extend shortly the above comparative study to the case of other
classes of domains and boundary conditions. Moreover we intend to further
exploit natural extensions of the schemes defined in this section, to the solution
of the Navier-Stokes equations.

Table 1. Errors of ω measured in the 1? and the L00-norms.

P

4
8

16
32
64

Pι(ωH)

L2

0.51710E+0
0.35881E+0
0.21580E+0
0.11840E+0
0.62018E-1

L00

0.27740E+1
0.42971E+1
0.52419E+1
0.57613E+1
0.60335E+1

Pi(ωH)

L2

0.12472E+0
0.31432E-1
0.78783E-2
0.19726E-2
0.51367E-3

U°

0.79930E+0
0.35572E+0
0.16812E+0
0.81426E-1
0.39922E-1

Table 2. Error of ψ measured in the L2-norm.

P

4
8

16
32
64

Pi-Pi

0.93352E-2
0.34280E-2
0.10889E-2
0.30935E-3
0.82610E-4

Pi-Pi

0.71399E-2
0.28937E-2
0.95361E-3
0.27499E-3
0.73942E-4

Pi-Pi

0.64203E-2
0.16378E-2
0.40990E-3
0.99790E-4
0.19992E-4

Pi-Pi

0.35488E-2
0.85130E-3
0.21137E-3
0.49285E-4
0.94694E-5

P

4

8
16
32
64

Table 3. Error of ψ measured in the U°

Pi-Pi

0.18554E-1
0.64413E-2
0.19308E-2
0.53312E-3
0.14032E-3

Pi-Pi

0.12003E-1
0.49587E-2
0.16408E-2
0.47077E-3
0.12597E-3

Pi-Pi

0.16707E-1
0.62592E-2
0.20595E-2
0.64751E-3
0.23178E-3

-norm.

Pi-Pi

0.60973E-2
0.13729E-2
0.33232E-3
0.76616E-4
0.18339E-4

References

[ 1 ] Y. Achdou, R. Glowinski and O. Pironneau, Tuning of the mesh of mixed method for the
stream function and vorticity formulation of the Navier-Stokes equations, Numer. Math. 63
(1992), 145-163.

[2] M. Amara, Une methode optimale de classe C° d'approximation du bilaplacien, Compt.
Rend. Acad. Sci. Paris 319 Serie I (1994), 1327-1330.



398 F. GHADI et al.

[ 3 ] C. Bernardi, V. Girault and Y. Maday, Mixed spectral element approximation of the

Navier-Stokes equations in the stream-function and vorticity formulation, IMA. J. Numer.

Analy. 12 (1992), 565-608.

[ 4 ] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag,

Berlin, 1991.

[ 5 ] F. Brezzi and P. A. Raviart, Mixed finite element methods for 4th order elliptic equa-

tions, Topics in Numerical Analysis III, J.J.H. Miller ed, pp. 33-56, Academic Press,

London, 1976.

[ 6 ] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland publishing

company, Amsterdam New-York Oxford, 1976.

[ 7 ] P. G. Ciarlet and P. A. Raviart, A mixed Finite Element Method for the Biharmonic

Equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations, C.

De Boor ed., Proc. Symp. Math. Res. Center Univ. Wisconsin, Academic Press, New-York,

pp. 125-145, 1974.

[ 8 ] F. A. Ghadi, Resolution par la methode des elements finis des equations de Navier-Stokes

en formulation fonction de courant tourbillon, These de Γuniversite de Saint-Etienne France,

1994.

[ 9 ] V. Girault and P. A. Raviart, Finite element methods for the Navier-Stokes equations,

Springer-Verlag, Berlin Heidelberg New-York, 1986.

[10] V. Ruas, Variational approaches to the two-dimensional Stokes system in terms of the

vorticity, Mech. Research Commun. 18 (6) (1991), 359-366.

[11] V. Ruas, On formulations of vorticity systems for a viscous incompressible flow with

numerical applications, Z. angew. Math. Mech. 74, 1 (1994), 43-55.

[12] V. Ruas, Approximating harmonic bases for a decoupled solution of viscous flow problems

in ψ-ω formulation, Z. angew. Math. Mech. 75, 1 (1995), 407-408.

[13] V. Ruas and F. A. Ghadi, Numerical solution of the incompressible Navier-Stokes

Equations by optimally approximating the stream-function and the vorticity, Proc. the eight

Intern, conf. on Finite Element Methods in Flow Problems, Barcelona, pp. 156-165,

Pineridge Press, 1993.

[14] R. Scholz, Mixed method for 4th order problems using linear finite element, R.A.I.R.O.

Analyse Numerique/Numerical Analysis 12 (1978), 85-90.

Universite Ibnou Zohr

Facultέ des Sciences. Agadir. Morocco

Universitέ de Saint-Etienne*

Faculte des Sciences, St-Etienne. France

Universite Ibnou Zohr

Faculte des Sciences. Agadir. Morocco

•Current address: Laboratoire de Modelisation en Mecanique/UPMC, Tour 66, 4e etage, 75252

PARIS CEDEX 05. FRANCE




