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ABSTRACT. We give a necessary and sufficient condition for a pseudo-Riemannian
manifold with a compatible affine connection to be protectively flat, dual-projectively
flat or conformally flat in terms of the Batlett tensor, which is derived from forth-order
derivatives of contrast function.

Introduction

In 1982, Nagaoka and Amari formulated information geometry, which has
been applied to various fields of information sciences, for example, information
theory, neural networks, system theory, and so on (cf. [2]). In information
geometry, contrast functions play an essential role. The Kullback-Leibler
divergence is an interesting example of contrast function, which is used in
statistical inference (see, [1]). A geometric divergence introduced by Kurose [8]
is also an example of contrast function. In this paper, we study the geometry
of geometric divergences in affine differential geometry.

In general, a contrast function p induces a dualistic geometrical structure
on M (cf. [4] and [8]). The second-order derivatives of a given contrast
function p of M induce a pseudo-Riemannian metric h on M. The third-order
derivatives induce two torsion-free affine connections V and V* such that these
are mutually dual with respect to h. In this case, the tensors Vh and V*h are
symmetric. Then the triplets (M,V,h) and (M,V*,h) are statistical manifolds.

The Bartlett tensor B of contrast function p, which was formulated by
Eguchi [4], is defined from forth-order derivatives of p. The anti-symmetric
part of B is the curvature tensor of the induced affine connection V. The
Bartlett tensor B and the dual Bartlett tensor B* correspond to the Bartlett
corrections in likelihood ratio tests in statistics.

In this paper, we study the Bartlett tensors of contrast functions in the
geometric divergences case. As applications, we give necessary and sufficient
conditions for a statistical manifold to be projectively flat, dual-projectively flat
or conformally flat in terms of the Bartlett tensor.

1991 Mathematics Subject Classifications: 53A15, 53A20, 53A30.
Key words and phrases: contrast function, statistical manifold, curvature tensor, affine immersion.
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Both concepts of conformal flatness of Riemannian metrics and projective

flatness of afϊine connections were introduced by Weyl. They are characterized

by vanishing of the conformal curvature tensors or the projective curvature

ones, respectively. Ivanov [7] introduced the dual-projective flatness of aίϊine

connections, which are also characterized by vanishing of the dual-projective

curvature tensors. In our recent paper [10], we introduced the conformal-

projective flatness of statistical manifolds, which is a natural generalization of

the projective flatness, the conformal flatness or the dual-projective flatness of

statistical manifolds.

In §4, we give a necessary and sufficient condition for an affine connection

to be projectively flat or dual-projectively flat in terms of the Bartlett tensor.

In §5, we determine the Bartlett tensors B in the cases of geometric divergences

as contrast functions on conformally-projectively flat statistical manifolds. We

also give a necessary and sufficient condition for a Riemannian metric to be

conformally flat.

The author wishes to express his sincere gratitude to Professor Hajime

Urakawa for his supportive encouragement.

1. Contrast functions and statistical manifolds

We assume that all the objects are smooth throughout this paper. In this

section, we recall several definitions and preliminary facts on contrast functions.

For more details, see [4].

Let M be an w-dimensional manifold. Let V be a torsion-free affine

connection and A a pseudo-Riemannian metric on M. We call (M,V,h) a

statistical manifold if Vh is symmetric. For a statistical manifold (M,7, A), we

can define another torsion-free affine connection V* by

where X, Y and Z are arbitrary vector fields on M. It is straightforward to

show that (M, F*,A) is also a statistical manifold. We say that V* is the dual

connection of V with respect to A and that (M,V*,h) is the dual statistical

manifold of (M,F,A).

Let p be a function on M x M. Identifying the tangent space

T^q)(M x M) with the direct sum of TpM®TqM, we use the following

notation:

p[Xl...Xi\Yl...yj](p):=(Xu0)...(Xi,0)(0,Yl)...fr

where p e M and X\,...,Xi, Y\,..., Yj(i,j > 0) are arbitrary vector fields on

M. We call p a contrast function of M if
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p(P-> P) — 0 f° r a n arbitrary point p e M,

2)
3) h(X, Y) := -/?[AΊ Γ] is a pseudo-Riemannian metric on M.

Let /? be a contrast function of M and A the pseudo-Riemannian metric

induced by p. We define two torsion-free affine connections V and V* on M as

follows:

where X, Y and Z are arbitrary vector fields on M. It is easy to show that

the triplets (M,V,h) and (M, F*,A) are statistical manifolds. We say that

the statistical manifold (λf,V,h) and (M,F*,A) are induced by the contrast

function p.

We also define (1,3)-tensor fields B and 2Γ on M by the following

equations:

h(B(X, Y)Z, V) = -

*(x, γ)z) = -

where X, F, Z and F are arbitrary vector fields on M. We call B the Bartlett

tensor of contrast function /? and B* the dwα/ Bartlett tensor.

PROPOSITION 1.1. Let p be a contrast function. Let V and V* be the

induced affine connections by p. Then, the anti-symmetric part of B and B* are

the curvature tensors R of V and R* of V*, respectively, that is, the following

equations holds:

, Y)Z = B( F, X)Z - B{X, Y)Z,

R*(X, Y)Z = B*(Y, X)Z - B*(X, Y)Z.

2. Curvature tensors

In this section, we recall that definitions and preliminary facts on curvature

tensors.

2.1. Projective curvature tensors

Let M be an ^-dimensional manifold. We say that two affine connections

V and V on M are projectively equivalent if there exists a 1-form τ on M such

that
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VχY = VxY + τ(Y)X + τ(X)Y, (2.1)

where X and Y are arbitrary vector fields of M. We say that an affine

connection V is projectively flat if V is projectively equivalent to a flat affine

connection in a neighbourhood of an arbitrary point of M.

Let Ric be the Ricci tensor of V. Suppose that V is torsion-free and Ric

is symmetric. We define the projective curvature tensor Wp by

, Y)Z := R(X, Y)Z l— Ric( 7, Z)X + — ί - Ric(X, Z) 7.
« — 1 n — 1

If affine connections F and 7 are projectively equivalent, then their projective

curvature tensors coincide. For n > 3, an affine connection V is projectively

flat if and only if its projective curvature tensor WP vanishes (cf. [5]).

Let (M, V,h) and (M,V, h) be statistical manifolds. If a 1-form τ is given

by τ = dφ, where φ is a function, the relation (2.1) is known as (—l)-conformal

equivalence relation of statistical manifolds, provided h = e^h. We suppose

that n > 3. A statistical manifold (M,V,h) is (-l)-conformally flat if and

only if V is projectively flat with symmetric Ricci tensor. Kurose [9] showed

that, for a statistical manifold, if V is projectively flat then the Ricci tensor of V

is symmetric. Hence, a statistical manifold (M,V,h) is (-l)-conformally flat

if and only if V is projectively flat.

2.2. Dual-projective curvature tensors

Let (M,V,h) be an ^-dimensional statistical manifold. We say that two

affine connections V and V on M are dual-projectively equivalent if there exists a

1-form α on M such that

VχY = VxY-h{X,Y)z#, (2.2)

where X and Y are arbitrary vector fields and α # is the tangent vector field

defined by A(α#, Y) : = α ( Γ ) .

We say that an affine connection V is dual-projectively flat if V is dual-

projectively equivalent to a flat affine connection in a neighbourhood of an

arbitrary point of M.

We define the dual-projective curvature tensor Wdp by

WdP[X, Y)Z := R(X, Y)Z - h{ Y, Z)M(X) + A(JT, Z)M{ 7),

where the tensor M is given as follows:

M(X) := -Ric*(X)+-^-X. (2.3)
72 — 1
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In (2.3), we denote by γ the trace of the Ricci tensor with respect to h and by

Ric # (X) the Ricci operator defined by A(Ric#(JT), Y) := Ric(X, Y). If two

affine connections V and V are dual-projectively equivalent, then their dual-

projective curvature tensors coincide. For n > 3, an affine connection V is

dual-projectively flat if and only if its dual-projective curvature tensor Wdp of V

vanishes (cf. [7]).

Let (M,V,h) and {M,V,h) be statistical manifolds. If the 1-form α is

given by α = dφ, where φ is a function, the relation (2.2) is known as

1-conformal equivalence relation of statistical manifolds, provided h = e^h.

We suppose that n > 3. A statistical manifold (M,V,fι) is 1-conformally flat if

and only if V is dual-projectively flat with symmetric Ricci tensor. Kurose [9]

showed that, for a statistical manifold, if V is dual-projectively flat then the

Ricci tensor of V is symmetric. Hence, a statistical manifold (M,V,h) is

1-conformally flat if and only if V is dual-projectively flat.

2.3. Conformal curvature tensors

Let {M,g) and {M,g) be ^-dimensional Riemannian manifolds. We say

that two Riemannian metrics g and g are conformally equivalent if there exists a

function φ on M such that

g(X,Y)=e2*g(X,Y).

We say that a Riemannian metric g is conformally flat if g is conformally

equivalent to a flat Riemannian metric in a neighbourhood of an arbitrary

point of M.

Let (M, g) be a Riemannian manifold and V the Levi-Civita connection of

g. We define the conformal curvature tensor We by

g(Wc(X, Y)Z, U) : = g(R(X, Y)Z, U)

^ , z) Ric( r,

Ric( r, z)<7(jr, u) - Ric(jr, z ) ^ r, u)}

where i? is the Riemannian curvature tensor of V and Ric the Ricci tensor of

V. If Riemannian metrics g and g on M are conformally equivalent, then their

conformal curvature tensors coincide.
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For n > 4, a Riemannian metric g is conformally flat if and only if its

conformal curvature tensor We vanishes (cf. [6]).

2.4. Conformal-projective curvature tensors

Let (M,V,h) and (M,V,h) be statistical manifolds. We say that
(M,V,h) and (M, F,A) are conformally-projectively equivalent (or generalized

conformally equivalent) if there exist two functions φ and φ on M such that

h(X, Y) = eφ+ψh{X, Y),

h(vx y, z) = A(FX r, z) - dφ{z)h{x, Y)

, z) + <ty(jr)*( r, z). (2.4)

We say that a statistical manifold (M, F, A) is conformally-projectively flat if

(Λf, V,h) is conformally-projectively equivalent to a flat statistical manifold in a

neighbourhood of an arbitrary point of M (cf. [10]).

Let V* be the dual connection of V with respect to A. We define the

conformal-projective curvature tensor WQP by

A(̂ cp(̂ r, r)z, t/): = h{R(x, γ)z, u) - - 1

(^-/χΓ-2) ' U) ~ H{X'Z)Kr' U)h

(2.5)

where the tensors A and Λ* are defined by

^ (2.6)

(2.7)

In (2.6) and (2.7), we denote by Ric and Ric* the Ricci tensors of V and V*,

respectively. If two statistical manifolds (M,V,h) and (M,V,h) are con-

formally-projectively equivalent, then their conformal-projective curvature

tensors coincide (Kurose 1995). In (2.5), if V = V*, then WQP is the conformal

curvature tensor.

For a statistical manifold (M, V,h), if V is projectively flat or dual-

projectively flat and the Ricci tensor of V is symmetric, then (M,F,A) is

conformally-projectively flat.
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3. Geometric divergences

In this section, we recall several definitions and preliminary facts on

centroaffine immersions of codimension two and on geometric divergen-

ces. For more details, see [10] and [11].

Let M be an ̂ -dimensional manifold and / an immersion from M into

RM+2. Denote by D the standard flat affine connection of Rn+2 and by η the

radial vector field of Rn+2. An immersion / : M —> R n + 2 is called a cen-

troaffine immersion of codimension two if there exists, at least locally, a vector

field ζ along / such that, at each point x e M, the tangent space Tf^Rn+2 is

decomposed as the direct sum of the span R{ηj ̂ }, the tangent space f^(TxM)

and the span R{ζx}. We call ζ a transversal vector field.

For simplicity, we often omit the term "codimension two" from now on.

For a given centroaffine immersion {/,£}, the induced connection V and

the affine fundamental forms Λ, T are determined by

Dχf*Y= T{X, Y)η + f*(VxY)+h(X, Y)ζ,

the transversal connection forms μ, τ and the affine shape operator S are

determined by

Dxξ=μ(X)η-USX)+τ(X)ζ. (3.1)

Since the connection D is flat, we have fundamental equations for centroaffine

immersions of codimension two.

Gauss:

R(X, Y)Z = h( Y, Z)SX - h(X, Z)SY - T( Y, Z)X + T(X, Z) Y, (3.2)

Codazzi:

(VxT)(Y,Z)+μ(X)h(Y,Z) = (VγT)(X,Z)+μ(Y)h(X,Z),

(Vxh)(Y, Z) + τ(X)h( Y, Z) = (VYh)(X, Z) + τ{ Y)h(X, Z), (3.3)

(VXS)(Y) - τ(X)SY + μ(X) Y = (VYS)(X) - τ(Y)SX + μ( Y)X,

Ricci:

T(X,SY)-T(Y,SX) = (Vxμ){Y) - (Vγμ)(X) + τ(Y)μ(X) - τ(X)μ(Y),

h(X,SY)-h(Y,SX) = (Vxτ)(Y) - (Vγτ)(X).

We change a transversal vector field ξ to ξ = φ~ι(ξ + aη + f^U), where φ,

a and U are a nonzero function, a function and a tangent vector field on M,

respectively. Then the induced objects change as follows:
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VχY = VxY-h{X,Y)U, (3.4)

t[X, Y) = T(X, Y) - ah{X, Y), (3.5)

A(jr, Y) = φh(x, r ) , (3.6)

Ϊ(X) = τ(X) - X(logφ) + h(X, U), (3.7)

SX = φ~x{SX + τ{X)U-aX-VxU + h(X, U)U}. (3.8)

If h is nondegenerate everywhere, we say that the immersion / is non-

degenerate. When A is nondegenerate, we can take a transversal vector field ξ

such that τ vanishes because of equation (3.7). We say that {/, £} is equiaffine

if τ vanishes. In this case, Vh is symmetric because of equation (3.3), then the

triplet (M,V,h) is a statistical manifold. We say that the nondegenerate

centroaffine immersion {/,£} realizes the statistical manifold (M,F,A) in R"+ 2.

By equations (3.5), (3.6) and (3.8), we can take a function a such that

affine fundamental forms of {/,£} satisfy the following equation:

In this case, we say that {/,£} is pre-normalized.

PROPOSITION 3.1. Lei (M,V,h) be a simply connected n-dimensίonal

statistical manifold. Suppose that the Ricci tensor of V is symmetric and

n > 3. Then the fallowings hold:

(1) The connection V is projectίvely flat if and only if there exists a centroaffine

immersion {/,£} such that it realizes (M,V,h) in R"+ 2 and ξ is a parallel

vector field.

(2) The connection V is dual-projectively flat if and only if there exists a

centroaffine immersion {f,ζ} such that it realizes (M,V,h) in some affine

hyperplane of Rn+2.

(3) The statistical manifold (M,F,A) is conformally-projectively flat if and only

if there exists a centroaffine immersion {f,ξ} such that it realizes (M,V,h)

in RM + 2.

The second statement in Proposition 3.1 is Theorem 5.2 in [7] and the third one

is the main result of [10]. Then we have only to show the first statement.

In order to prove Proposition 3.1, we need the following lemmas, which

are given as Theorem 4.1 and Lemma 4.2 in [11].

LEMMA 3.2. Let (Λf, V,h) be a statistical manifold of dimension

n>3. The connection V is projectively flat if and only if S = (tτS/n)I.

LEMMA 3.3. Let k be a function on M. Assume S = kl and n > 2. Then
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the following equation holds:

dk - kτ + μ = 0.

PROOF OF PROPOSITION 3.1. Suppose that {/,£} is a centroaffine

immersion which realizes the statistical manifold (M,V,h) and ξ is a parallel

vector field. By equation (3.1), the affine shape operator 5 vanishes. Then

the Gauss equation (3.2) is

R(X, Y)Z =-T{Y,Z)X + T(X,Z)Y. (3.9)

Contracting the equation (3.9), we obtain

r(y,z) = -~Ric(y,z) . (3.io)

Substituting (3.10) into (3.9), we can show that the protective curvature tensor

vanishes. This implies that the connection V is protectively flat.

Conversely, we assume that the connection V is projectively flat. Since

the Ricci tensor of V is symmetric, the given statistical manifold (M,V,h) is

conformally-projectively flat. Hence, there exists a centroaffine immersion

{/,<?} such that it realizes (M,V,h) in Rn + 2.

By Lemma 3.2, the traceless part of affine shape operator 5 van-

ishes. Then we have S = (trS/n)I. Therefore, by equation (3.8), we may

assume 5 = 0. By Lemma 3.3, we obtain μ = 0 since 5 = 0 and τ = 0. Then

the transversal vector field ξ is parallel since Dxξ = 0. •

Let {/, ξ} : M —» R"+2 be a centroaffine immersion. Denote by Rπ+2 the

dual space of Rn+2, by η* the radial vector field of Rrt+2 - {0}, and by <, > the

pairing of RM+2 and R"+2. We assume that {/,£} is nondegenerate and

equiaffine. For a centroaffine immersion {f,ξ}, we define the conormal maps

v and w : M —> Rw+2 by

<!>(*),&> = 1, <"(*),£*> = 0, (3.11)

<v(x),ηf{x)} = 0, (w(x),ηf{x)y = 1, (3.12)

<!>(*),/;**> = 0, < > ( x ) , / ^ > = 0, (3.13)

for each x e M. The derivatives of the maps v and w are given as follows:

<fUr,ί> = o, <πur,o = - ^ n (3.14)

<!>,*, ?> = 0, <MvSr,ι/> = 0, (3.15)

, Y). (3.I6)
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The pair {v, w} is a centroaffine immersion from M into Rw+2 since h is

nondegenerate and v(x) and w(x) are linearly independent at each point x of

M. We call the pair {v, w} the dual map of {/,£}.

For the dual map {υ,w}, the objects V*,T*,h*,S*,μ* and τ* are defined

by

DXΌ*Y= T*{X, Y)η* + υ*{V*xY)+h\X, Y)w,

Dxw = μ*{X)η* - v*{S*X) + τ*(X)w.

The induced objects satisfy the following relations.

T*(X, Y) = -h{SX,Y), (3.17)

h*(X,Y)=h(X,Y), (3.18)

Zh(X, Y) = h(VzX, Y)+h(X,V*zY), (3.19)

τ*(X) = 0, (3.20)

h{S*X, Y) = -T(X, Y). (3.21)

Equation (3.19) implies that two connections V and V* are mutually dual with

respect to h.

We define a function p on M x M for {/, ί } by

where p and # are arbitrary points in M. We call the function p the geometric

divergence of {/,£}.

We now show that the geometric divergence is a contrast function of M.

PROPOSITION 3.4. The derivatives of geometric divergence are given as

follows:

p[X\Y] = -h(X,Y), (3.22)

p[XY\Z] = -h(VxY,Z), (3.23)

p[Y\XZ] = -h{Y,V*xZ), (3.24)

p[XYZ\ U] = -h(VxVYZ, U) + A( Y,Z)h(SX, U) - T( Y,Z)h(X, U), (3.25)

p[U\XYZ] = -h(U,VxV*yZ) + h(Y,Z)h(S*X, U) - T*{Y,Z)h(X, U). (3.26)

PROOF. By the definition of geometric divergences, we have
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(7,0)(Z,0)(0, U)p(p,q) = (Y,0χv.U9,f.Zp>

= <υ,Uq, T(Y,Z)ηf{p)+ft(VγZ)p

(X,0)(Y,0)(Z,0)(0, U)p(p,q) = (X,OKv.Uq,T(Y,Z)ηf{p)+f.(VγZ)p

+ h(γ,z)ξpy

= <υ.Uq,XT(Y,Z)ηf{p) + T(Y,Z)f*Xp

+ T(X,VγZ)ηf{p)+ft(VxVγZ)p

+ h(X,VγZ)ξp

+ Xh{ Y, Z)ξp + h{ Y, Z){μ(X)ηf(p) - f.SX}}.

Set p = q. From equations (3.11)—(3.16), we have equations (3.22), (3.23) and
(3.25).

Similarly, we have

, Y)(0,Z)p(p,q) = (0, YKvtZq,ftUpy,

+ h*(Y,Z)w(q)JtUpy,

(U,0)(0,X)(0, Y)(0,Z)p(p,q) = (O,X)iT'(Y,Z)η*v(g) + vt(VrZ)q

+ h*(Y,Z)w(q),ftUpy

= (XT*(Y,Z)ηυ{q) + T*(Y,Z)vtXq

+ T*(X,VγZ)ηv{q) + vt(V*xV*γZ)p

+ h*(X,VγZ)w(q) + Xh*(Y,Z)w(q)

+ h*(Y,Z){μ*(X)ηv{q)-vtS*X},ftUpy.

Setting p = q, we have equations (3.24) and (3.26). •

By the above arguments and Proposition 3.1, we have the following
corollary. This has been proved as Theorem 5.3 in [10].

COROLLARY 3.5. Let (M, V, h) be a simply connected conformally-
projectively flat statistical manifold of dimension n { > 3) and {/,ξ} a cen-
troaffine immersion which realizes the statistical manifold (M,V,h) into
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R"+ 2. Then there exists a contrast function p which induces the statistical

manifold (M,V,h). Moreover, p is given as the geometric divergence of {/,£}.

4. Projectively flat or dual-projectively flat cases

In this section, we give a condition on the Bartlett tensor B of contrast

function that an affine connection on a statistical manifold be projectively flat

or dual-projectively flat.

THEOREM 4.1. Let (M,V,h) be a simply connected n-dimensional statistical

manifold and (M, F*,Λ) its dual statistical manifold. We denote by Ric and

Ric* the Ricci tensors ofV and V*, respectively. Suppose that n>3 and Ric is

symmetric. Then the connection V is projectively flat if and only if there exists a

contrast function which induces the statistical manifold (M,V,h) and the Bartlett

tensor B is given by

B(X, Y)Z = l— Ric( Y, Z)X, (4.1)
n — i

or equiυalently, B* is given by

B* (X,Y)Z=-h(Y,Z){-(Ric*)* (X)+^-x\,
< n — l J

where γ is the trace of Ricci tensor with respect to h and (Ric*)# is the Ricci

operator defined by Λ((Ric*)#pQ, Y) := Ric*(Jf, Y).

We note that if the Bartlett tensor B satisfies equation (4.1), the difference

between the curvature tensor R of V to the anti-symmetric part of B is the

projective curvature tensor, that is, the projective curvature tensor Wp is given

by

, Y)Z = R(X, Y)Z + B(X, Y)Z - B{ 7, X)Z.

Similarly, the dual-projective curvature tensor Wdp is given by

, Y)Z = R*{X, Y)Z + B*(X, Y)Z - B*{Y,X)Z.

PROOF OF THEOREM 4.1. Suppose that the tensor B is given by

,Y)Z=-(n-l)~ιRic(Y,Z)X. By the defin

curvature tensor and Proposition 1.1, we calculate

B(X,Y)Z=-(n-l)~ιRic(Y,Z)X. By the definition of the projective

WF{X, Y)Z = R(X, Y)Z ί— Ric( 7, Z)X + —i-r Ric(Z, Z) Y
n — 1 n — 1

= R(X, Y)Z + B(X, Y)Z - B{ Y, X)Z

= 0,
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where Wp is the projective curvature tensor of V. This implies that the

connection V is projectively flat.

Similarly, if B*(X,Y) Z =-{n-\)~xh{Y,Z) {-(Ric*)#(JT) +

γ(n— l)~ιX}, then the dual-projective curvature tensor Wdp of V* van-

ishes. This implies that the connection V* is dual-projectively flat. Hence,

the connection V is projectively flat.

Conversely, suppose that (M,V,h) is a simply connected statistical

manifold and V is projectively flat. By Proposition 3.1, there exists a non-

degenerate equiaffine centroaffine immersion {/, £} which realizes (M,V,h)

into Rw+2. Since Ric is symmetric, (M,V,h) is conformally-projectively flat.

By Corollary 3.5, a contrast function p is given as the geometric divergence of

{/,£}••

where v is the conormal map of {/, ξ}. Denote by S the afίine shape operator

of {/,£} and by T the affine fundamental form in the direction of/. Since

the connection V is projectively flat, by Proposition 3.1, we have S = 0 and

T(Y,Z) = -(n - I ) " 1 Ric(F,Z). By the definition of the Bartlett tensor and

equation (3.25), we have

which is the desired result since h is nondegenerate.

From equations (3.17) and (3.26), we have

h(B*(X, Y)Z, U) = -h{Y,Z)h(S*X, U). (4.2)

The dual map {v, w} of {/, ξ} is a centroaffine immersion. Contracting the

Gauss equation of the dual map, using T* = 0, we have

Ric*(Z, Y) =tτS*h(Y,Z)-h(S*Y,Z), (4.3)

(4.4)

where γ* is the trace of Ric* wich respect to h. From the Gauss equation and

equations (3.17)—(3.21), γ and 7* coincide. Substituting (4.4) to (4.3), we have

S*Y= - ( R i c * ) # r + — ! — Y. (4.5)

By equations (4.2) and (4.5), we have the desired result. •

THEOREM 4.2. Let (M, V, h) be a simply connected n-dίmensίonal statistical

manifold and (M, F*,Λ) its dual statistical manifold. We denote by Ric and
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Ric* the Ricci tensors ofV and V*, respectively. Suppose that n > 3 and Ric is

symmetric. Then the connection V is dual-projectively flat if and only if there

exists a contrast function which induces the given statistical manifold (M, F, h)

and the Bartlett tensor B is given by

{ ^ } (4.6)

where γ is the trace of Ricci tensor with respect to h and Ric # is the Ricci

operator defined by h(Ric# (X), Y) := Ric(X, Y), or equivalently, B* is given by

B*(X, Y)Z= τ Ric*(Y,Z)X. (4.7)
n — 1

PROOF. It is analogous to Theorem 4.1. The tensor B in Theorem 4.2

corresponds to the tensor B* in Theorem 4.1 since the given connection V is

dual-projectively flat. •

We note that if the Bartlett tensor B satisfies equation (4.6), the difference

between the curvature tensor R of V to the anti-symmetric part of B is the

dual-projective curvature tensor. If the dual Bartlett tensor B* satisfies

equation (4.7), the difference between the curvature tensor R* of V* to the anti-

symmetric part of B* is the projective curvature tensor.

5. Conformally-projectively flat case

In this section, we determine the Bartlett tensor B of contrast function on a

conformally-projectively flat statistical manifold in the case the contrast

function is given as a geometric divergence. We also give a condition on the

Bartlett tensor B of contrast function that a Riemannian metric be conformally

flat.

THEOREM 5.1. Let (M,V,h) be a simply connected n-dimensional con-

formally-projectively flat statistical manifold and (M,F*,A) its dual statistical

manifold. Let Ric and Ric* be the Ricci tensors of V and V*, respectively.

Suppose that n>3 and Ric is symmetric. We denote by {/,£} a centroaffine

immersion which realizes (M,V,h) into Rn+2 and by {v,w} the dual map of

{/,£}. If the geometric divergence p is given as p(p,q) = (y{q),f{p) - /(#)>

then the Bartlett tensor B is

h(B(X, Y)Z, U) = l—{h{Y,Z)A{X, U)+A*(Y,Z)h(X, U)}
n — λ



Geometry of contrast functions 189

or equivalently, B* is

h(B*(X, Y)Z, U) = l—{h(Y,Z)A*(X, U) + A(Y,Z)h(X, U)}

+ (n-l)(n-2)h{Y'Z)h{X'U)'

where the tensors A and A* are defined by

A(Y,Z):=-{Ric(Y,Z) + (n-l)Ric*(Y,Z)}, (5.2)
n

{ ( ) ( , ) ( , ) } , (5.3)

and y is the trace of Ricci tensor with respect to h.

PROOF. By Proposition 3.1, there exists a nondegenerate equiaffine cen-

troaffine immersion {/, ξ} : M —> Rw + 2. From equations (3.4)-(3.7), we may

assume that {/, ξ} is pre-normalized. By the assumption, the geometric

divergence is given by

p(p,q) = <υ(q),f(p)-f(q)>,

where v is the conormal map of {/,ξ}. Contracting the Gauss equations of

{/,ξ} and the dual map {v, w} of {/,ξ}, we get

), (5.4)

Ric*(r,Z) = ΐrS*h(Y,Z) - h(S*Y,Z) - (n - 1)Γ*(F,Z). (5.5)

Since {/, ξ} is a pre-normalized centroaffine immersion, we have

2(n - X)\xS = γ = γ* = 2(n - l)trS\ (5.6)

where γ and γ* are the trace of Ric and Ric* with respect to Λ, respec-

tively. Substituting equation (5.6) to (5.4) and (5.5), using (3.17) and (3.21),

we calculate

Ric(r,Z) = J_ h(Y,Z)-h(SY,Z) - (n -

Ric*(r,Z) = 2{J_ι)h(Y,Z) + (n - \)h(SY,Z) + T(Y,Z).

We also calculate
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Hence, we obtain

(5.7)

(5.8)

By equations (3.24), (5.7) and (5.8), we obtain the desired result. Similarly, we

can also obtain the condition of tensor B*. •

We note that if the Bartlett tensor B satisfies equation (5.1), the difference

between the curvature tensor R of V to the anti-symmetric part of B is the

conformal-projective curvature tensor.

Let (M, g) be a Riemannian manifold. Suppose that V° is the Levi-Civita

connection of g. In this case, (M,V°,g) is a statistical manifold. If g is

conformally flat, then (M, V°,g) is conformally-projectively flat. In the fol-

lowing corollary, we give a condition on the Bartlett tensor B of contrast

function that a Riemannian metric be conformally flat.

COROLLARY 5.2. Let (M, g) be a simply connected Riemannian manifold of

dimension n ( > 4). Then g is conformally flat if and only if there exists a

contrast function which induces the given Riemannian manifold (M, g) and the

Bartlett tensor B is given by

h(B(X, Y)Z, U) = l— {g( Y,Z) Ric(JT, U) + Ric( Y, Z)g(X, U)}
n — 2

where Ric is the Ricci tensor of V° and γ is the trace of Ricci tensor with respect

to g.

PROOF. Since the Levi-Civita connection is self-dual, we easily obtain the

Bartlett tensor B from Theorem 5.1. Conversely, suppose that the tensor B is

given by (5.9). Then the conformal curvature tensor We is given by

, Y)Z = R(X, Y)Z + B(X, Y)Z - B{ Y, X)Z,

where R is the Riemannian curvature tensor of V. Hence, the conformal
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curvature tensor vanishes. This implies that the given metric g is conformally

flat since n > 4. •

In Theorems 4.1, 4.2, 5.1 and Corollary 5.2, even if M is not simply

connected, there exists a contrast function at least locally.
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