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Positive solutions for a class of nonlinear elliptic problems

D. D. Har
(Received May 12, 1997)

AssTrACT. This paper deals with multiplicity results of the boundary value problem
(p(0$())" = —p((Af (u) +g(u),a< 1< b
u(a) = 0 = u(b),

where f is ¢-sublinear (superlinear) at 0, g is ¢-superlinear (sublinear) at 0 and oo, and A
is a positive parameter. Analogous results for systems will also be established.

1. Introduction

Consider the quasilinear elliptic boundary value problem

(@) {div(|Vu|”_2Vu) = —(Au) " Pu+ u|*u), xeQ

u=0, xeof,

where Q is a bounded domain in RV with smooth boundary 62, 1 < g < p <

N
< pt, withp*=pr

parameter.

Problem (1.1) with p =2 was considered in [1, 3, 5]. The general case
p > 1 has been studied in [2, 4, 7]. It was shown in [4, 7] that (1.1) has at
least two positive solutions for A > 0 sufficiently small. These results were
extended in [2], in which, assuming Q to be a ball, the authors proved the
existence of two positive radial solutions to (1.1) for Ae (0,4), where 4 =
sup{4 > 0: (1.1) has a positive radial solution}. In this paper, we shall extend
the multiplicity result in [2] to positive radial solutions of the general qua-
silinear elliptic problem

if p<N and p*=o0 if p=N, and A is a positive

{ div(a(|Vu|*)Vu) + Af(u) + g(u) =0, a<|x|]<b
u=0, |x|e{a,b}

on an annulus, where a, f, g: Rt — R*. Since we look for radial solutions,
we shall consider the following boundary value problem
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(12) (p()p(u")) = —p()(Af () + 9(v)), a<i1<b
' u(a) = u(b) =0,

where ¢ is an odd increasing homeomorphism on R, f is ¢#-sublinear
(superlinear) at 0 and g is ¢-superlinear (sublinear) at 0 and co. Similar results
for systems will also be established. Note that the proof in [2] depends on
scaling arguments and therefore does not apply to general quasilinear term and
nonlinearities. We overcome this by first establishing a lower bound for the
sup-norm of possible solutions of (1.2) and then define a suitable operator
whose fixed points are positive solutions of (1.2). Our approach is based on
degree theoretic argument and sub-supersolutions method.

2. Existence results

We first consider the case when f is ¢-sublinear at 0 and g is ¢-superlinear
at 0 and oo. We shall impose the following assumptions:

(A.1) p:la,b] — (0,00) is continuous

(A.2) ¢ is an odd, increasing homeomorphism on R, and for each ¢ > 0,
there exists a positive number A, > 0 such that

¢(cx) = Acg(x)

for every x > 0.
(A.3) f, g are increasing, continuous functions on R* such that

f(w) o 90

—=Cx)’ —

6 % 6(u)
and

im ) .

m
w0 §(u)
Then we have

THEOREM 2.1. Let (A.1)—(A.3) hold. Then there exists a positive number
A* > 0 such that (1.2) has at least two positive solutions for . < A*, at least one
for A =A% and none for A > A*.

We first recall the following

LEMMA 2.2. [6] Let u satisfy

(p()p(¥')) <0, a<t<b
u(a) = u(b) = 0.
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Then
u(t) = Klulyr(2),

1 . . .
where r(?) i min(z —a,b —t) and K is a positive constant. Here |.|,

denotes the sup-norm.
The next lemma gives a priori estimates for solutions of (1.2).

LEMMA 2.3. There exist positive numbers C, and C, with C; — oo as
A — o0, such that any nontrivial solution of

@.1) { (p(d(u") < — p()(Af () + g(u)), a<t<b

u(a) =u(b) =0
satisfies

In the rest of the paper, we assume that 0 < py < p(¢) < p; for every
t€la,b], f(u) = f(0) and g(u) = g(0) for u < 0. We shall denote by Cy,k =
1,2,... various constants.

PrROOF OF LEMMA 2.3. Let u satisfy (2.1). A comparison argument shows
that u > v, where v is the solution of

(p(9(")) = —p(t)(Af (W) + g(u), a<t<b
v(a) = v(b) = 0.
Note that

(M [ () ) + o) d
(0= ¢ { 20) }ds

a

where M is such that v(b) = 0.
Let |v], = v(t) for some #y € (a,b). Then v'(#)) =0 and we have

LI p@) S () + g(u) de
¢ 1{ 205) }ds.

u(t) = J

a

a; + b;

Let [a1,b1] = (a,b). If to = then it follows from Lemma 2.2 that

-1 {lpo(bl —a)

2= £ () .

luly = u(a1) = (a1 — a)¢
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where 6 = Kmin,, <, <p,r(t), or

|uly
(22) ¢(01 — a) S Apo(br — ay)
' f(lulgd) 2p; '

then by rewriting u as

J @) (Af () + g(u)) d7
ut) = J, { p(s) }ds’

If tp < ai + by

we obtain

|uly
(2.3) ¢(b—b1) o Apo(br — a1)
' f(lulgd) — 2pp

Combining (2.2) and (2.3), we get

$(|ulyy) > Apo(by — a1) =0,
S (Julgd ) 2p,

, and hence

where y = max(

$(1led)
F(uld) =€

by (A.2). Since lim,_, ?((x)) =0, it follows that there exists C; > 0 with C; —

o0 as A — oo such that |u|, > C;. Similarly, we have

#(|ulod)
2.4 >
24 o(14lod)
and therefore |u|, < C for some C > 0 independent of A. O

From Lemmas 2.2 and 2.3, we see that u is a positive solution of (1.2) iff u
-satisfies

(2.5)/1 { (P(t)¢(ul))l = _p(t)(j(ta u, /1) + g(u)), a<t<b

u(a) = u(b) =0,
where f(t,u,A) = Af(max(u, C;r(¢))) and C; = KC;. Without loss of gener-

ality, we assume that C; is nondecreasing with respect to 4. For each ve
Cla,b], we define u = A(4,v) to be the solution of
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(P($) = —p()(f(1,0,2) + g(v)), a<t<b
u(a) = u(b) = 0.
Then is can be verified that A(4,.): Cla,b] — Cla,b] is completely

continuous and fixed points of A(4,.) are solutions of (2.5);.
Now we show the existence of a solution to (2.5), of 4> 0 small.

LEMMA 2.4. There exists a positive number A > 0 such that (2.5); has a
solution for A < A.

PrOOF. Let u satisfy u = 64(A,u) for some 6 € [0, 1] and let ¢ € (a,b) be
such that #/(#) = 0. By integrating, we obtain

u(t) — gjt¢—1 {L’O P(T)(f(‘[, u, '1) + g(u)) dT} ds

a p(s)
t bo 3
o [ {Ep ey o de]
a p(s)
and so
(25) lulo < (b — a)¢™' {Apf (max(|uly, C2) + pa(Julo)},
where p = ﬂ(b —a).
po $(x)
From-(A.2) and the fact that lim,_, ——~ = oo, is follows that there exists
a positive number r such that 9(x)
r _
Now, let 1€ (0,1) be such that
r - ~
(27) ¢(m) > ZXﬁf(max(r, C]))

Adding (2.6) and (2.7), we obtain

r - ~ —
¢(l7———a> > Apf(max(r, C1)) + pg(r),
which implies that

(2.8) r> (b—a)¢~'{Apf (max(r, C1)) + pg(r)}
for A€ (0,2).
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Combining (2.5) and (2.8), we deduce that |u|, # r and the existence of a
fixed point of A(4,-) follows from the Leray-Schauder fixed point Theorem.
O

The following nonexistence result is an immediate consequence of Lemma
2.3.

LEMMA 2.5. There is no positive solution to (2.5), for 1 > 0 large enough.

Let us define 4 = {4 > 0:(2.5), has a solution} and let A* =sup4. By
Lemmas 2.4 and 2.5, 0 < A* < co. By standard limiting processes, it follows
that (2.5),. has a solution u;-.

We are now ready to give the

PrOOF OF THEOREM 2.1. Let 0 < A < A*. Since u,- is a supersolution and
0 is a subsolution for (2.5),, there exists a solution u; of (2.5); with
0 <u; <u;-. We next establish the existence of a second solution. Define

0 ={ueC'a,b]:0 <u<u; on(a,b),u'(b) > u-(b)
u'(a) < uj.(a),u’(a) > 0,u'(b) < 0},
and
Ad={ueCla,bl:0<u<u:}.
We claim that A(4,.): 4 — 0. Indeed, let u = 4A(4,v) with ve 4. Then

(2.9) (p()$(u")" = —p(1)(Af (max(v, Car(1)) + ¢(v))
> — p(1)(Af (max(uz-, Cy-r(2)) + g(uz))
= —p(O)(Af (u+) + g(u;+))
= (p(09(;-)) + p(1) (A" = A) f ().
Let 1) € (a,b) be such that u'(t) = u}.(t0). By (2.9),
PO)(@(') — $(u}-)) > 0 on (10,],

which implies that u < u;+ on (#,b) and u'(b) > u}.(b). Similarly, u < u;+ on
(a, 1] and u'(a) < uj.(a). By Lemma 2.2, u'(a) > 0, u'(b) < 0 and the claim is
proved. Since O is open, convex and u; € @, we infer that

deg(l — A(4, .),0,0) = 1.

On the other hand, since solutions of (2.5), and bounded in the C'-norm
uniformly on bounded intervals,

deg(I — A(4, .),B(0, R),0) = constant,
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when R is large enough. Here B(0, R) denotes the open ball centered at 0 with
radius R in Cl[a,b]. By Lemma 2.5, the constant is zero and therefore

deg(I — A(4, .), B(0,R)\0,0) = —1.

Hence A(4,.) has a fixed point u¢ @, completing the proof of Theorem
2.1. O

Next, we consider the case when f'is ¢-superlinear at 0 and g is ¢-sublinear
at 0 and oo.

Assume
(A.3") f,g are increasing continuous functions on R* such that
. f(u) . g(u)
lim=——~ =0, lim=—== 00
w0 gu) T plw)
and
im 9 _
ull»ngo (u) 0.

Then we have

THEOREM 2.6. Let (A.1), (A.2) and (A.3") hold. Then there exists a
positive number A* such that (1.2) has at least two positive solutions for 1 < A*,
at least one for A= A", and none for A > A*.

The proof of Theorem 2.6 follows the same lines as that of Theorem 2.1,
with Lemma 2.3 replaced by

LemMMmA 2.7. There exist positive numbers C; and C, with C; — 0 as
A — o0, such that any nontrivial solution of

(p()(")" = —p(1)(Af (u) + g(u))
u(a) =u(b) =0
satisfies
C<lulp <G

Finally, we consider the following system
(p(t)p())" = —p()(Af (v) +9(v)), a<t<b
(g (") = —q(2)(Ah(u) + k(u)), a<t<b
u(a) =u(b) =0, v(a)=r0v(b)=0.

It is assumed that.

(2.10)

<
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(A4) gq:la,b] — (0,00) is continuous.
(A.5) ¢ is an odd, increasing homeomorphism on R, and for each ¢ > 0,
there exists a positive number B, such that

Y (ex) = By (x)

for every x > 0.
(A.6) h,k are increasing, continuous functions on R such that

. h(u) . M:
ra O R
and
. k(u)
e =

THEOREM 2.8. Let (A.1)—(A.6) hold. Then there exists a positive number
A* > 0 such that (2.10) has at least two positive solutions for A < A*, at least
one for A= A%, and none for A > A*.

We first establish a result analogous to Lemma 2.3 for the system (2.10).

LEMMA 2.9. There exist positive numbers C, and C, with C; — o0 as
A — o0, such that any nontrivial solutions (u,v) of

(p(Np()" < —p()(Af () +9(v)), a<t<b
(@@ (")) < —q(1)(Ah(u) + k(u)), a<t<b
u(a) =u(b) =0, wv(a)=0(b) =0
satisfies

C) < |uly, |uly < C.

Proor. Let K; >0 be such that u(t) > Kil|u|yr(?), t € [a,b], for every u
satisfying (¢(1)y(u4'))’ <0, u(a) = u(b) =0. As in the proof of Lemma 2.3, we
have

P(ylul) = AC1f(9]vly) + C1g(d]vlp),
and
Y(ylvly) = ACah(01]ulg) + Cak(S1]uly),

where 0 = Kming, <;<p, r(t), 01 = Kjming, <,<p, (t), [a1,b1] = (a,b), and y =

al—a’b—bl )
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If |u|y = |v]y then Y(y|v|y) = ACsh(d1|v]y), and hence

¥ (S1]vlp)
h(S1]v])

which implies |v|, > C; ; > 0. Similarly, if |u|, < |v], then |u|y > C;, > 0. In
either case, |uy,|v|, = C; where C; — o0 as A — co. The uniform bounds for
u,v can be derived in a similar manner. [J

> 1Cs,

For (&,9) € Cla,b] x Cla,b], Let (u,v) = B(A,u1,0) be the solution of

(p(p(")" = —p(1)(f(1,5,4) +4(?)), a<t<b
(2.11), (@@ (") = —q(t)(h(t,a,2) + k(@)), a<t<b

u(a) = u(b) = 0,v(a) = v(b) =0,
where  f(t,D,A) = Af (max(p, C;r(?)),  h(t,it, A) = Ah(max(i, C;r(t)), C;=
min(K, K;)C; and C; is given by Lemma 2.9. Then (u,v) is a solution of

(2.11), iff (u,v) is a positive solution of (2.10).
The next Lemma gives existence of solutions to (2.11), for A > 0 small.

LEMMA 2.10. There exists A > 0 such that (2.11) , has a solution for A < A.

ProoF oF LEMMA 2.10. Let (u,v) be a solution of (u,v) = 6B(4,u,v) for
some 6 e (0,1). Suppose that 0 < gy < ¢(t) < ¢ for every ¢ € [a,b]. Then we
have

luly < (b~ a)¢™' {Apf (max(|vly, C1)) + Pg(lv]o)}

and

lolo < (6 — @)y~ {Agh(max(july, C)) + gk(lulo)},

__pb—a) __ qb—a)
where p = , §= .
P Po 1 90

Let |(4,0)l = max(ulg, [oly). If [uly > [ol, then

$(342) < dp s (max(ul C2) +palul)

while if |u|, < |v]y, we have

o (522) < ghtmax(lly C2) + k(o)
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Choose r > 0 so that
r _ r _
¢(b—a> > 2pg(r), ‘p(b—a) > 2qk(r),
and let 1e (0,1) be such that
r 7 ~ r ~ -
¢(b — a) > 2)pf (max(r, Cy)), W(m) > 2Agh(max(r, Cy)).

Then it is easy to see that |(u,v)|, # r for A < 4, and the Lemma follows
from the Leray-Schauder fixed point Theorem. []

Proor oF THEOREM 2.8. We shall only give a sketch of proof since
the details are similar to that of Theorem 2.1. Define 4={1>0:
(2.11), has a solution} and let A* =sup4. By Lemmas 2.9 and 2.10, 0 <
A" < oo. By standard limiting processes (2.11),;. has a solution (u;-,v;:). Let
A€ (0,4%), then there exists a solution (u;,v;) of (2.11), with 0 < u; < u;+ and
0<v; <y

Let

0= {(u,v) € C'a,b] x Ca,b] : 0 < u < u;+,0 < v < vye,

ou o(uy — u) ov o(vyr — )
an>0, n >O,%>O,a—n>0ata,b y

where n denotes the unit outer normal of (a,b). Then @ is open, convex in
C'la,b] x C'{a,b] and (u;,v;) € @. As in the proof of Theorem 2.1, we obtain

deg(I — B(4, .), B(0,R)\O,0) = —1,

for large R, where B(0, R) denotes the open ball centered at 0 with radius R in
C'la,b] x C'[a,b], and the existence of a second solution follows. d
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