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ABSTRACT. This paper deals with multiplicity results of the boundary value problem

(p(t)φ(u'))f = -p{t){λf[μ) + g(u)U <t<b

where / i s ^-sublinear (superlinear) at 0, g is ^-superlinear (sublinear) at 0 and oo, and λ

is a positive parameter. Analogous results for systems will also be established.

1. Introduction

Consider the quasilinear elliptic boundary value problem

( div(\Vu\p-2Vu) = -(λ\u\q~2u + |w|α"2w), x e Ω

\ u = 0, xedΩ,

where Ω is a bounded domain in RN with smooth boundary dΩ, 1 < q < p <
Np

α < p*, with p* = — if p < N and p* = oo if p = N, and λ is a positive
parameter.

Problem (1.1) with /? = 2 was considered in [1, 3, 5]. The general case
p > 1 has been studied in [2, 4, 7]. It was shown in [4, 7] that (1.1) has at
least two positive solutions for λ > 0 sufficiently small. These results were
extended in [2], in which, assuming Ω to be a ball, the authors proved the
existence of two positive radial solutions to (1.1) for λe(0,Λ), where Λ =
sup{/l > 0 : (1.1) has a positive radial solution}. In this paper, we shall extend
the multiplicity result in [2] to positive radial solutions of the general qua-
silinear elliptic problem

J div{(x(\Vu\2)Vu) + λf(u) + g(u) = 0, a < \x\ < b

l « = 0, \x\e{a,b}

on an annulus, where α, /, g : R+ —> R+. Since we look for radial solutions,
we shall consider the following boundary value problem
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+g(u)), a<t<b
(1-2) Ϊ

1 u(a) = u(b) = 0,
where φ is an odd increasing homeomorphism on R, f is ^-sublinear

(superlinear) at 0 and g is ^-superlinear (sublinear) at 0 and oo. Similar results

for systems will also be established. Note that the proof in [2] depends on

scaling arguments and therefore does not apply to general quasilinear term and

nonlinearities. We overcome this by first establishing a lower bound for the

sup-norm of possible solutions of (1.2) and then define a suitable operator

whose fixed points are positive solutions of (1.2). Our approach is based on

degree theoretic argument and sub-supersolutions method.

2. Existence results

We first consider the case when / is ^-sublinear at 0 and g is ^-superlinear

at 0 and oo. We shall impose the following assumptions:

(A.I) p : [a,b] —> (0, oo) is continuous

(A.2) φ is an odd, increasing homeomorphism on R, and for each c > 0,

there exists a positive number Ac > 0 such that

φ(cx) > Acφ(x)

for every x > 0.

(A.3) /, g are increasing, continuous functions on R+ such that

lim —7-7 = 00, lim —-^ = 00
κ-0 φ(ύ) "-00 φ(U)

and

u-*θφ(u)

Then we have

THEOREM 2.1. Let (A.1)-(A.3) hold. Then there exists a positive number

λ* > 0 such that (1.2) has at least two positive solutions for λ < λ*, at least one

for λ = λ* and none for λ > λ*.

We first recall the following

LEMMA 2.2. [6] Let u satisfy

((p(t)Φ(»')Y<0, a<t<b

\ u{a) = u(b) = 0.
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Then

u(t)>K\u\or(t),

where r{t) = min(r — a,b — i) and K is a positive constant. Here | . | 0

b — a
denotes the sup-norm.

The next lemma gives a priori estimates for solutions of (1.2).

LEMMA 2.3. There exist positive numbers Cχ and C, with Cχ —> oo as
λ —> oo, such that any nontrivial solution of

(2 1) I {p{ήΦ{))f ~ ~ P W M M
 +

 ^ ( M ) )'
 a < t < b

\ u{a) = u(b) = 0

satisfies

Cλ < |w|0 < C.

In the rest of the paper, we assume that 0 < po < p(i) < px for every
t e [a,b]9 f(u) = /(0) and g(u) = g(0) for u < 0. We shall denote by C*,fc =
1,2,... various constants.

PROOF OF LEMMA 2.3. Let u satisfy (2.1). A comparison argument shows
that u > v, where v is the solution of

f (p(tMv'))' = -p(t)(λf(u) + g(u)), a<t<b

\ v(a) = v(b) = 0.

Note that

y
pis)

where M is such that υ{b) = 0.
Let \v\0 = v(to) for some to e (a,b). Then v'(to) = 0 and we have

u(ή> ('<
Ja

_

Let [αi,Z>i] <= (α,Z>). If ί0 ^ -^—=—- then it follows from Lemma 2.2 that

Ho > Φi) > (βi - a)φ-^λp^-aχ) f{\u\oδ)\
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where δ = Kminaι < t < bΛή, or

(2 2] v«i ~ a) λPoΦi -a\)
K ' ' fiW\δ) ~ 2Pι

If to < — - — then by rewriting u as

u(ή>

we obtain

[φ \ W)

b-bχ) λpo(bι -

\δ) ~ 2Pι

Combining (2.2) and (2.3), we get

-a\)

f(\u\oδ)- 2Pι

where γ = max ( , — 1, and hence
\aχ -a b-bj

by (A.2). Since l i m ^ o ^ τ = 0, it follows that there exists Cλ > 0 with Q -+

oo as λ —» oo such that |w|0 > Q . Similarly, we have

(2.4) m& * Ci.

and therefore \u\0 < C for some C > 0 independent of λ. •

From Lemmas 2.2 and 2.3, we see that u is a positive solution of (1.2) iff u

satisfies

ί (/>(0*(«'))' = -/'(i)^(i,«, A) + flf(«)), β < r < 6

(2.5); \

{ u(a) = «(6) = 0,
where f(t, u, λ) = A/(max(w, Qr(ί))) and Cχ = KCχ. Without loss of gener-

ality, we assume that Cχ is nondecreasing with respect to λ. For each v e

C[a,b], we define u — A{λ,υ) to be the solution of
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r (p(ήφ(u')y = -/KocfaM)+*(»)), a < t < b
\ u{a) = u(b) = 0.

Then is can be verified that A(λ, .) : C[a,b] —> C[a,b] is completely

continuous and fixed points of A(λ, .) are solutions of (2.5)A.

Now we show the existence of a solution to (2.5)λ of λ > 0 small.

LEMMA 2.4. ΓΛere exwto α positive number λ > 0 .swcλ ίΛα/ (2.5)λ Λα̂  α

solution for λ < λ.

PROOF. Let u satisfy u = ΘA(λ,u) for some θ e [0,1] and let to e (a,b) be

such that u'{to) = 0. By integrating, we obtain

I" 1 ί Γ° p(τ)(f(τ,u,/

and so

(2.5) |iι|0 < (b - a)φ-ι{λpf(m<ιx(\u\0, Cλ) +pg(\u\0)},

where p = —(b — a).

From (A.2) and the fact that l im^o —T—r = oo, is follows that there exists

a positive number r such that ^ ^

(2.6)

Now, let A e (0,1) be such that

(2.7)

Adding (2.6) and (2.7), we obtain

φ{γ^i) > W(max(r, CO)

which implies that

(2.8) r > (* - α)φ~ι{W(joax(r, Cλ)) +pg(r)}

for λe(0,X).
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Combining (2.5) and (2.8), we deduce that |w|0 Φ r and the existence of a

fixed point of A(λ, ) follows from the Leray-Schauder fixed point Theorem.

D

The following nonexistence result is an immediate consequence of Lemma

2.3.

LEMMA 2.5. There is no positive solution to (2.5)λ for λ > 0 large enough.

Let us define A = {λ > 0 : (2.5)A has a solution} and let λ* = sup A. By

Lemmas 2.4 and 2.5, 0 < λ* < oo. By standard limiting processes, it follows

that (2.5) r has a solution uλ*.

We are now ready to give the

PROOF OF THEOREM 2.1. Let 0 < λ < λ*. Since uλ* is a supersolution and

0 is a subsolution for (2.5)A, there exists a solution uχ of (2.5)^ with

0 < uχ < uλ*. We next establish the existence of a second solution. Define

Θ = {ueCι[a,b]:0<u< uv on(α, b), u'(b) > u'Γ {b)

uf(a)<uf

v(a)y(a)>0y(b)<0},

and

A = {ue C[a,b] :0 < u < uλ*}.

We claim that A(λ, .) : A -• Θ. Indeed, let u = A(λ, υ) with veA. Then

(2.9) (^(O^O)' = -P(ή(λf(max(v, Cλr{t)) + ̂ (i;))

Let ί0 e (Λ,fc) be such that w^/o) = wl*(^o). By (2.9),

which implies that w < uλ* on (ίo,6) and u'(b) > u'λ*(b). Similarly, u < uλ* on

(Λ, /O] and M'(Λ) < «^*(Λ). By Lemma 2.2, u'(ά) > 0, u'(b) < 0 and the claim is

proved. Since Θ is open, convex and uχ e Θ, we infer that

On the other hand, since solutions of (2.5)λ and bounded in the C^norm

uniformly on bounded intervals,

deg(7 -A(λ,.), B(0, R), 0) = constant,
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when R is large enough. Here i?(0, R) denotes the open ball centered at 0 with

radius R in Cι[a,b]. By Lemma 2.5, the constant is zero and therefore

dεg(I-A(λ,.),B(O,R)\θj) = -l.

Hence A(λ, .) has a fixed point uφθ, completing the proof of Theorem

2.1. •

Next, we consider the case when/is ^-superlinear at 0 and g is ^-sublinear

at 0 and oo.

Assume

(A.37) f,g are increasing continuous functions on R+ such that

and

ŵ oo φ(μ)

Then we have

THEOREM 2.6. Let (A.I), (A.2) and (A.3') hold. Then there exists a

positive number λ* such that (1.2) has at least two positive solutions for λ < λ*,

at least one for λ = λ*9 and none for λ > λ*.

The proof of Theorem 2.6 follows the same lines as that of Theorem 2.1,

with Lemma 2.3 replaced by

LEMMA 2.7. There exist positive numbers Cχ and C, with Cχ —> 0 as

λ —• oo, such that any nontrivial solution of

\ u(a) = u(b) = 0

satisfies

C < \U\O < Cχ.

Finally, we consider the following system

Γ (P(t)φ(u'))' = -p(ή(λf(v) + g(v)), a<t<b

(2.10) \ ( q ( t ) ψ ( v ' ) ) ' = -q(t){λh{u) + k ( ύ ) ) , a<t<b

{ u(a) = u(b) = 0, v(a) = v(b) = 0.

It is assumed that



8 D. D. HAI

(A.4) q : [a,b] —> (0, oo) is continuous.

(A.5) φ is an odd, increasing homeomorphism on R, and for each c > 0,

there exists a positive number Bc such that

φ{cx) > Bcφ(x)

for every x > 0.

(A.6) A,/: are increasing, continuous functions on R+ such that

, h m — ^ - = 0 0
φ[u-+0φ(u)

and

THEOREM 2.8. Let (A.1)-(A.6) hold. Then there exists a positive number

λ* > 0 such that (2.10) has at least two positive solutions for λ < λ*, at least

one for λ = λ*, and none for λ > λ*.

We first establish a result analogous to Lemma 2.3 for the system (2.10).

LEMMA 2.9. There exist positive numbers Cχ and C, with Cχ —> oo as

λ —• oo, such that any nontrivial solutions (u,v) of

(p(ήφ(u')Y < -p(t)(λf(v) + g(v)), a<t<b

(q(ήφ(v')Y < -q{ί){λh{u) + k(u)), a<t<b

u{a) = u{b) = 0, υ(a) = v(b) = 0

satisfies

PROOF. Let K\ > 0 be such that u(t) > K\\u\or(t), t e [a,b], for every u

satisfying {q{t)φ{u'))' < 0, u(ά) = u{b) = 0. As in the proof of Lemma 2.3, we

have

0) > λQf(δ\v\0) + Cιg(S\v\0),

and

Φ(γ\v\0) > λC4h{δx\u\0) + C4fc(<Ji|«|0),

where δ = Kmmaι<t<b] r(t), δ\ = K\mmaχ<t<bιr(t), [a\,b\] cz (a,b), and γ =

\ 1
max , .

Vέϊi -a b-bιj
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If |w|0 > Mo then φ(γ\v\0) > λC^h{δ\\υ\0), and hence

which implies \v\0 > C\,χ > 0. Similarly, if |w|0 < |ι?|0 then \u\0 > Cι,χ > 0. In

either case, |w|0, \v\0 > Cχ where Q —> oo as Λ, -^ oo. The uniform bounds for

u,v can be derived in a similar manner. •

For (δ,δ) e C[α,6] x C[Λ,6], Let (w,ϋ) = B(λ,ύ,v) be the solution of

), α < t< b

(2.11), I { q ί t m υ ' ) ) 1 = -q{t){h{tru,λ)+k{u)), a<t<b

where /(*, δ, A) = λ/(max(S, Cλr(ή), h(t, δ, A) = AA(max(δ, Qr(i)), Q =

min(AΓ,AΓi)C/ι and Q is given by Lemma 2.9. Then (w,ι;) is a solution of

(2.11), iff (w, f) is a positive solution of (2.10).

The next Lemma gives existence of solutions to (2.11), for λ > 0 small.

LEMMA 2.10. ΓAere exists λ > 0 swc/i ί/iαί (2.11), to α solution for λ < λ.

PROOF OF LEMMA 2.10. Let (μ,υ) be a solution of (w, ι>) = ΘB(λ,u,υ) for

some ^ e (0,1). Suppose that 0 < qo < q{t) < q\ for every t e [a, b\. Then we

have

Mo < (b - a)φ-ι{λpf(m&x(\v\0, Cλ)) +pg{\v\0)}

and

l»lo ^ (* - a)ψ-ι{λqh(mnx(\u\0, Cλ)) + qk(\u\0)},

_ P\{b-a) _ q\(b-a)
where p = £-!-^ -, q = — -.

Po qo
Let |(κ,t>)|o = max( | i ι | 0 , \v\0). If |w|0 > | ϋ | 0 then

while if \u\0 < \v\0, we have
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Choose r > 0 so that

and let 1 e (0,1) be such that

Φ(-r^—) > 2λpf(max(r, C,)), ψ(-r^—) > 2λqh(max(r, C,)).
\o — a/ \o — as

Then it is easy to see that |(w, v)\0 φ r for λ < λ, and the Lemma follows
from the Leray-Schauder fixed point Theorem. •

PROOF OF THEOREM 2.8. We shall only give a sketch of proof since
the details are similar to that of Theorem 2.1. Define A = {λ > 0 :
(2.11)^ has a solution} and let λ* = sup A. By Lemmas 2.9 and 2.10, 0 <
λ* < oo. By standard limiting processes (2.1 l ) r has a solution (uλ*,vλ*). Let
λ e (0, A*), then there exists a solution (uχ,vχ) of (2.1 l)λ with 0 < uχ < uλ* and
0<vλ <vv.

Let

= Uu,v(9= Uu,v)eCι[a,b] x C1^,*] : 0 < u < uΓi0 < v < vv,

du Λ d(uχ* — ύ) „ dv
— > 0 , - ^ L > 0 , — >
o« 5« ^/ί

* — t;) Λ . Ί
5 L > 0 at α,6 k

where « denotes the unit outer normal of (a,b). Then Θ is open, convex in
Cι[a,b] x C1^,b] and ( M ^ A ) G 0. As in the proof of Theorem 2.1, we obtain

deg(/-2»μ, .),Λ(0,Λ)\β,0) = - l ,

for large î , where ^(0, .R) denotes the open ball centered at 0 with radius R in
Cι[a,b] x C1^,ft], and the existence of a second solution follows. •
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