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AsstrAcT. In [LS], Lusztig and Spaltenstein introduced the notion of induction of
nilpotent orbits for complex reductive groups. It is known that the induction of
representations and that of nilpotent orbits are compatible with respect to the operation
taking associated variety for complex reductive groups (cf. [BV]). In this paper, we give
a definition of induction of nilpotent orbits by 6-stable paraboric subalgebras and that
by real paraboric subalgebras for real reductive groups, and show that the generic
K-orbits in the associated varieties of certain standard (g, K)-modules can be described
by using these inductions.

0. Introduction

Let G be a complex connected reductive algebraic group and 7: G — G
a complex conjugation which defines a real form G(R) of G. Let : G — G
be a (complexified) Cartan involution of G which commutes with 7. Write
K ={ge G;6(g9) =g} and g =t + s the Cartan decomposition with respect to
0. For a closed subgroup H of G, we denote its Lie algebra by the corre-
sponding small German letter §.

In §1, to describe the g-principal (i.e. regular in g) K-orbits in the
associated varieties of certain standard (g, K)-modules, we give a para-
metrization of g-principal nilpotent K-orbits in s.

In §2, we discuss the induction of nilpotent K-orbits. For a 6O-stable
(resp. t-stable) parabolic subgroup Q = LU (resp. P = MN) with f-stable and
t-stable Levi factor L (resp. M), we define

Ind’((1,q) 1 g) : 27 1ne/ENK — 2 4/K
(resp. Ind®((m,p) 1 g) : 2¥mns/MNK 2 4/K)

as a generalization of induction of nilpotent orbits in the complex cases, where
we write 2#+/K for the set of subsets of nilpotent K-orbits in s. We describe
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the nilpotent K-orbits induced by Ind?((1,q) 1 g) from I-principal nilpotent K-
orbits. We also describe the nilpotent K-orbits induced by Ind®((m,p) T g)
from the zero orbit when P = MN is a t-stable Borel subgroup of G.

In §3, we recall the descriptions of the associated varieties of certain
standard (g, K)-modules and show that the generic K-orbits in their associated
varieties can be described by using Ind?((1,q) 7 g) and Ind®((m,p) T g). We
also show that some finite group F (cf. (3.3)) acts on the associated variety of
the standard (g, K)-module corresponding to a set of -stable data for G(R).

1. Parametrization of g-principal nilpotent K-orbits

Let G be a complex reductive algebraic group defined over R and
7:G— G a complex conjugation which defines the real form G(R) ={ge
G;t(g) =g} of G. Let §: G — G be a (complexified) Cartan involution of G
which commutes with 7. Throughout this paper, we use the following
notations. For a closed subgroup of G, its Lie algebra is denoted by the
corresponding small German letter. The involution of g, which is induced
from 1 (resp. ), is also denoted by t (resp. 0). Write K := {g € G;0(g) = g}
and g = f+ s the Cartan decomposition with respect to 8. The action of G on
g, which we always consider, is the adjoint action. For a t-stable subset 4 of
G (resp. g), we write A(R) = {x € 4;7(x) = x}. For a Cartan subalgebra § of
g, we denote by R(g,b) the root system of g with respect to ) and by g, the
root space corresponding to a root o € R(g,h). For a h-stable subspace V < g,
we write R(V,b) := {« € R(g,b); g9, = V}. If b is O-stable, we write R(V,b)x
(resp. R(V,b)g) the set of imaginary (resp. real) roots in R(V,}), ie.

R(V) b)iR = {Ot € R(va)va(a) = 0(}, R(Vv [))R = {OC € R(Vv [)),0(0() = —O(}.

The set of all nilpotent elements in g (resp. s,g(R)) is denoted by A (resp.
N, Ngmy)-  The set of orbits in A (resp. A5, 4 gr)) under the action of G
(resp. K,G(R)) is denoted by A3/G (resp. N;/K, N 4r)/G(R)).

DeriNiTION 1.1 ([AV]). (i) Let h be a O-stable Cartan subalgebra of
g. A positive system X of R(g,b) is called of large type if every simple roots
of X' is non-compact (i.e. g, < s).

(i) A 6-stable Borel subalgebra b of g is called of large type if every
simple root of R(b,}) is complex (i.e. (a) # + a) or non-compact imaginary
for any @-stable Cartan subalgebra h = b. We write @QL the set of f-stable
Borel subalgebras of g of large type.

ReMARK 1.2. For a f-stable Borel subalgebra b of g, since any f-stable
Cartan subalgebras in b are conjugate under the action of BN K,b is of large
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type if and only if there exists a f-stable Cartan subalgebra ) of b such that
every simple root of R(b,}) is complex or non-compact imaginary.

ProrosTiION 1.3 ([AV, Proposition 6.25]). Let b be a 0-stable Borel
subalgebra of g and by =b a O-stable Cartan subalgebra. Then the positive
system R(b,b) g is of large type if and only if b is of large type.

To describe the g-principal K-orbits in the associated variety of X =
Xowr) (a9, H(R),6,v) (cf. §3), we consider the sets .@é and 9’4‘. Let =1+
uc g be a f-stable parabolic subalgebra with f-stable Levi subalgebra | and
nilpotent radical u. We put

L._ L,
B, ={be B kbcq forsomekeK}.

We write 9”‘{“ the set of pairs (t,2°¢) with the following properties:

(a) tis a fundamental Cartan subalgebra of g (i.e. t contains a Cartan
subalgebra of f).

(b) 2°¢ is a positive system of R(g,t),z of large type.

(c) There exists k € K such that kt = q and that kX° < R(q, kt).
Let a be a maximal abelian subspace of s [g,g] and define a finite group Fg
by

Fg := {a € exp(a); Ad(a?) = id}.

ReMARK 1.4. (i) For ae F; and k e K, since a? is contained in the
center of G, we have O(aka™!) = a~'ka = a=2(aka=")a? = aka=' and hence Fg
normalizes K.

(i) By [KR, Proposition 1], we have

Ad(K°Fg) = [4d(G))’ := {4d(g);g € G,00 Ad(g) 0 0" = 4d(g)},

where we write K° the identity component of K. It is easily verified that
[4d(G)])? = 4d(Ng(f)) and hence Ad(K°Fg) = Ad(Ng(F)) = Ad(Ng(s)). Since
Ng(f) o K, we have Ad(KFg) = Ad(Ng(t)) = Ad(Ng(s)).

A nilpotent element X € g is called g-principal if X is regular in g. We
write A3 (resp. NIV, N g(_l{’)') the set of g-principal elements in N, (resp.
Ny NgR))-

ProposITION 1.5 ([AV, Proposition 6.24]). The following conditions on 0
are equivalent.

(a) g is quasisplit (i.e. there exists a Borel subalgebra of g defined over R).

(b) NP %,

(c) B;+ .
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(d) For any O-stable Cartan subalgebra Yy of g,R(g,h),gx has a positive
system of large type.

(d') There exists a 0-stable Cartan subalgebra Yy of g such that R(g,h)x
has a positive system of large type.

By using .@gL/K and .@;‘/K, the set #377"/K of K-orbits in A7 is
parametrized as follows. For xe 4?77, we can take a normal S-triple
(h,x,y) (hel, yes) (cf. [KR]). Since 4 is a reguler semisimple element of
g,t:=3,4(h) is a O-stable Cartan subalgebra of g. Define a Borel subalgebra
bot of g by R(b,t) = {xe R(g,t);a(h) >0} and write 4 the set of simple
roots in R(b,t). Then we have 4= {xe R(g,t);a(h) =2}. Since [h,x]=
2x,x can be written as a sum

X = Zaed X

for some root vectors X, €g,\(0) and it holds that 6(X,) = —Xp) (x € 4).
Hence any roots in 4 are complex or non-compact imaginary, and thus b is of
large type. Since x € b and x is g-principal, b is the unique Borel subalgebra
containing x. Then the correspondence x — b defines a map

p: NIPIK — BL/K.

Forbe ga;, take a f-stable Cartan subalgebra t of b. Since b is f-stable,
R(b,t) dose not have any real root and t is fundamental. By Proposition 1.3,
2¢:=R(b,t)g is of large type and hence (t,2°¢)€ 9’;“. Then the corre-
spondence b — (t,2°) defines a map

V:BL/K— PLIK.

ProposITION 1.6 ([AV, Proposition A.7]). The maps ¢ : /37 /K —
g?;“/K and ¢ : ﬂ;‘ /K — Q’QL /K are bijections. Furthermore the finite group Fg
acts naturaly and transitively on the sets /7" /K, ,%gl‘/K, W:/K, and the maps
o, ¥ are Fg-equivariant.

We write O 5y € AP /K the K-orbits corresponding to (t,X€)e g’é‘ by
Proposition 1.6.

Let Q be a f-stable parabolic subgroup of G, L a 6-stable Levi subgroup of
Q and U the unipotent radical of Q. Then Q = LU. For a maximal abelian
subspace a of [[,[|Ns, we write

Fy = {ac exp(ar); Ad(@))|, = ids}, FE = {ae Fy; Ad(a?) = idy}.
Then the set
(VTP /K]y ={0eNTP/K;0Nq # T}

of g-principal K-orbits which intersect q is parametrized as follows.
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PROPOSITION 1.7.  The maps ¢, in Proposition 1.6 induce FFC-equivariant
bijections

[ASP /K], ~ BL/K ~ PL[K.

2. Induction of nilpotent orbits for real reductive groups
2.1 Induction of nilpotent orbits by f-stable parabolic subalgebras

Let Q =LU be a f-stable paraboric subgroup of G with f#-stable Levi
factor L and unipotent radical U, and write g = [+ u its Lie algebra. We put

KLZ:LOK, SLZIQS.

Let @ be a K;-orbit in A, and Oy a connected component of ¢. Since
Op +uNs <= A is irreducible and 45 is a finite union of K-orbits, there exists
a unique K-orbit @ € #,/K such that (Op+uNs)N@ is open and dense in
Op+uNs. Here we consider the Zariski topology. Any connected compo-
nent of @+ uNs can be written as kO@y+uNs for some ke K;. Then
(kOy +uns)NO = k{(Go +uNs)N@} is open and dense in kU +uNs=
k(Oy+uns). Therefore O is the unique nilpotent K-orbit in .4, such that
(O +uns)N@ is open and dense in O+ uNs.

DerFINITION 2.1. For a nilpotent Kj-orbit O € A7, /K, we write
0 = Ind’((1,0) 1 8)(0) € N:/K

the unique nilpotent K-orbit in 4} such that (¢ +uNs)N @ is open and dense
in O+uls.

REMARK 2.2. (i) Suppose that G(R) itself is a complex connected
reductive group. We can see that

G= G(R) X G(R)a 0(91,92) = (927g1)7 T(glagZ) = (627 gl)? (glvg2 € G(R))7

where g — g is the complex conjugation of G(R) corresponding to a compact
real form of G. Then we have

K=1{(9,9);9e GR)} ~GR), s={(X,-X);X eg(R)} ~g(R).
Via the map g(R) >s,X — (X,—X), we have a natural identification
@.1) N o)/ GR) S /K.

Let Q(R) = L(R)U(R) be a complex parabolic subgroup of G(R) and write
0=0R) x O(R),L=L(R) x L(R). In Lusztig-Spaltenstein [LS], the induc-
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tion of nilpotent orbits

Ind®®

((R)a®) * Y 1®)/L(R) = N yr)/G(R)

for complex Lie algebras is defined. Then it is eas11y veriﬁed that, via
the identification (2.1), Ind%((1,q) T g) coincides with Ind([(R) aR))" Therefore
Definition 2.1 is a generalization of the induction in [LS].

(i1) Tt 1s known that the induction Indg(m o(R)) of [LS] depends only on
I(R), not on g(R). But the induction of Definition 2.1 depends on the choice
of q.

Ind®((1,q) 1 ¢)(0)(0 e N, /KL) defines a map
Ind®((1,q) 18) : N5, /KL — N3/K.

We extend this to a correspondence between the set 2V-/Xt of subsets of
N, /KL and 27+/K as follows.

DerINITION 2.3. For a subset Se2¥</Kt of W, /K., we write
Ind®((1,q) 1 g)(S) the set of orbits in {Ind’((l,q) T 9)(¥);% € S} which are
maximal with respect to the closure relation. This defines a map

Ind®((1,q) 1 g) : 2 ou/Ke — 24/K

PrROPOSITION 2.4. Let Q = LU be a O-stable parabolic subgroup of G with
0-stable Levi subgroup L and unipotent radical U. Suppose that L is quasi-
split. Then the set [Ind®((1,q) T g)(AN" LZ’”/KL)]Q"” of g-principal K-orbits in
Indf((1,q) 1 g)(JVLZ”’/KL) can be written as

[Ind®((1,q) 1 @)(N 7 /KL)* " = [AEP /K],
Proor. It is clear that
(Ind®((L,q) T @)(N L7 /KL < [T /K],

Suppose that ¢ € [#F7 /K], and xeqN@. Choose a normal S-triple
(h,x,y) (hetx,yes) (cf. [KR]) and a Borel subalgebra b of g such that
xebcgq. We can also choose a Borel subalgebra b’ of g such that x, A
eb’. Since x is g-principal, a Borel subalgebra which contains x is unique.
Therefore

x,heb=b"cq.

Since h is regular in g and hef,t:=3,(h) =b is a fundamental Cartan
subalgebra of g.

Let t' be a fundamental Cartan subalgebra of I. Then R(I,t’) does not
have any real root. Since u is f-stable, R(u,t’) does not have any real root.
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Hence t' is also fundamental in g. Since t. =tNf and t. =t'NT are both
Cartan subalgebras of qNf, there exists k € QN K such that t, = kt.. Since

[ t" = 3,(t;) = 34(ktc) = k3,(tc) = kt = 3,(kh),

by taking kx € qN O instead of x, we may assume that t < L.
Let 4 be the base of R(b,t) and write

41 := AN R(L, 1), 4y = AN R(u,t).
Since [h, x] = 2x,x can be written as x = X,c4X, for suitable root vectors

X, € g,\{0}(x € 4).

If we write

Xi = Zaem X, el Xy = ZﬂeAu Xpeu,

then x = x; + x,. Since [,u are f-stable and 6(x) = —x, we have x; € s, and
xyeuNs. Since O is g-principal, ON (K x +uNs)(>x) is open dense in
K;x;+uNs. Therefore we have

0 = Kx=Ind’((1,q) 1 g)(Krx1) € Ind®((1,q) 1 g)(¥"P"/Ky)
by noticing that K;xje A L:”’/KL.

RemARK 2.5. In the setting of Proposition 2.4, for two orbits
01,0, € /7" /KL, it can happen that Ind®((1,q) T g)(¢1) and Ind®((l,q) 1
g)(0,) have different dimensions. We will exhibit such an example in the
succeeding paper.

2.2 Induction of nilpotent orbits by real parabolic subalgebras

Let P= MN be a t-stable parabolic subgroup of G with z-stable Levi
factor M and unipotent radical N.

DEFINITION 2.6. For a nilpotent orbit ¢ e A'\g)/M(R), we write
Ind®((m,p) 1 g)(0O) the set of orbits in {€ € A 4&)/G(R); (0 +n(R))NE # &}
which are maximal with respect to the closure relation.

REMARK 2.7. In the setting of Remark 2.2(i), let P(R) = M(R)N(R) be a
complex parabolic subgroup of G(R) and write P = P(R) x P(R), M = M(R)x
M(R). We can see that P and M are complexifications of P(R) and M(R)
respectively. Then for 0 € A", g)/M(R) and OeN s®)/G(R), 0 is maximal in
{€ € /4r)/GR); (O +n(R))NE # &} with respect to the closure relation if

and only if (0 +n(R))N@ is open dense in O+ n(#) (with respect to the
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Zariski topology). Therefore we have

R
Ind®((m, ) 1 6)(0) = {Ind{®y ) (O)}.
Thus we can interpret Ind®((m,p) 1 g) as a generalization of the Lusztig-

Spaltenstein induction of nilpotent orbits for complex Lie algebras.

From now on, we suppose that M is #-stable. Since p(R) = m(R) + n(R)
is a real parabolic subalgebra of g(R),p(R) contains a minimal parabolic
subalgebra of g(R). Hence there exists a t-stable maximal abelian subspace a
of sN[g,g] such that a = m. As before, we write

Fg = {a € exp(a); Ad(a?) = id}.
Then we have the following.

REMARK 2.8. (i) Any element a € Fg can be written as a = exp(id) for

some A € a(R) and hence 7(a) =a'. By an argument similar to the one in

Remark 1.4 (i), F¢ normalizes both M(R) and G(R).

(i) By [KR, Proposition 2], we have 4d(Ng(g(R))) = Ad(FsG(R)).

(iii) For O e A 'wg)/M(R), write FG(0):={ae Fg;a0 = 0}. Then for
a€ Fg(0) and 0 € Ayr)/G(R), we have (0 +n(R))N O # & if and only if
(0 +n(R))N(a0) # &. Hence Ind®((m,p) 1 6)(0) is Fs(0O)-stable.

For a subset S € 2 »®/M®) of 4" ¢ /M(R), we write Ind®((m,p) T g)(S)
the set of G(R)-orbits in |, . Ind®((m,p) 1 ¢)(0) which are maximal with
respect to the closure relation. This defines a map

Ind®((m,p) 1 g) : 24 ®/M®) _, 24:®)G(R).
It is known by [S] that there exists a natural bijection
SG : Ns/K = N ym)/G(R)

which is called the Sekiguchi correspondence (for the details of the definition of
S, see [O, Theorem 1]). It is easy to see that S is Fg-equivariant. Via the
Sekiguchi correspondence, we regard Ind®((m,p) 1 g) as a map

Ind®((m,p) T g) : 2 u/Ku _, 2H/K
where we write Ky := MNK, sy = mNs.

PROPOSITION 2.9. Let H be a maximal torus of G which is both t-stable
and O-stable, and P = HN a t-stable Borel subgroup with Levi factor H and
unipotent radical N (hence G is quasisplit). Then we have

nd®((5,9) 1 9)({(0),,,}) = #T7"/K,

where (0),, is the Ky-orbit in sy consisting of 0.
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ProOF. Let 4 be the base of the positive system R(p,b) and Ag (resp. 4.)
the set of real (resp. complex) roots in 4:

dr = {tXEA;T(Ot)=0t}, 4. = {0 € 4;t(a) # o},

where the root () is defined by t(«)(h) := a(z(h)) (heh). We notice that
t(a) = —6(«) for a root a € R(g,h). Since R(p,}) is z-stable, 4 does not have
any imaginary root: 4 = AgU4.. Choose root vectors X, € g,\(0)(« € 4) such
that 7(Xy) = X, for a € 4g and 7(X,) = X;(,) for ae 4. Write x =}
Since x € n(R) = (0)yg) + n(R) and x is g-principal, we have

G(R)x € Ind®((5,p) 1 ) ({(0)yr)})

aceA

on the level of induction by real Lie algebra, where we write (0)yg, the H(R)-
orbit in h(R) consisting of 0. Since Fg = Fg((0)yx)) acts on Ind®((H,p) 1
8)({(0)yry}) by Remark 2.8(iii) and acts transitively on A4~ g(_l{’)' /G(R), we have

Ind®((h,) T 9)({(O)yg)}) 2 # 3) /G(R).

On the other hand, we notice that #5377 and 4 are defined over R, /737"
is open dense in A, and A 9_”)' e ) P Ng(R) # &. Hence A Q(R) is open
dense in A gg) = N3N g(R). Therefore we have

Ind®((5,9) 1 9)({ Oy }) = V52 /G(R).
Via the Sekiguchi correspondence, we have

Ind®((h,p) 1 9)({(0),,}) = /TP /K. q.e.d.

3. Induction of nilpotent orbits and associated varieties of standard (g, K)-
modules

3.1 Standard (g, K)-modules

In this section, we show that the generic K-orbits in the associated varieties
of certain standard (g, K)-modules can be described by induction of nilpotent
orbits. We first describe the standard (g, K)-modules Xgg)(a, H(R),d,v)
according to Vogan [V1].

Let H be a @-stable and t-stable maximal torus of G and H = H H; the
Cartan decomposition (i.e. H. = HNK,H; = {he H;0(h) = h™'}).

Let {,) be a non-degenerate G-invariant symmetric bilinear form on g
which is real valued on g(R) such that f and s are orthgonal with respect to
XS >|f(R) is negative definite and >|5(R) is positive definite. The bilinear
form on g*, which is induced from ¢, ), is also denoted by {,). For a h-stable
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subspace V =g, we write py = (3 ,cpyyp ®)/2. Let us consider a set
(9, H(R),d,v) of f-stable data for G(R) which is a quadruple such that

(a) g=I14u is a f-stable parabolic subalgebra of g with #-stable and
z-stable Levi factor [.

(b) The connected subgroup L of G corresponding to I is quasisplit and
has a maximally split Cartan subgroup H < L.

(c) ¢ is a character of H.(R) which is fine with respect to L(R) (cf. [V1,
Definition 4.3.8]).

(d) v is a character of Hy(R).

(e) Write AL :=dde b, for the differential of J, and A6 =2t +pueh, <
h*. Then <a, A% >0 for e R(u,b).
Choose a 7-stable Borel subgroup P; = HN of L such that v is negative with
respect to ny (i.e. Rea,v) <0 for o € R(ny,h)). The standard (g, K)-module
corresponding to (q, H(R),d,v) is

Xor) (9, H(R),6,v) = X (0,0 ®v) = ()™ " (Indy R (0 ® v)).

Let A1 (r)(0) be the set of fine L(R) N K(R)-types u such that § occurs in u|y g,
([V1, Definition 4.3.15]). It is known that there is a bijection between A g)(J)
and the set Agr)(q, H(R),d) of lambda-lowest K(R)-types in X(q,0 ®v).
Any me Agr)(q, H(R),0) occurs in X(q,0 ® v) with multiplicity one and
defines an irreducible submodule X(g,0 ® v)(n) which contains the lambda-
lowest K(R)-type n. It is known that any irreducible (g, K)-module is iso-
morphic to some X(q,6 ® v)(n).

Standard (g, K)-module is also described as follows. Let m >} be the
Levi subalgebra defined by R(m,b) = R(g,h),g and M the connected group
corresponding to m. Let g, = b+ uy be the f-stable Borel subalgebra of m
defined by R(qu,b) = {2 € R(m,b);<a,A°> > 0}. Take a t-stable parabolic
subalgebra p =m+n of g with Levi factor m as in [V1, 6.6.14]. Then the
standard (g, K)-module can be written as

Xer)(a, H(R),0,v) = Indy) (22 )™ 041 (5 @ v)).

Here we note that R(u, b))z = R(uu,b) is a positive system of the root system
R(g7 b)iR'

REMARK 3.1. Write n:=ng+u,b:=p,+u=5h+n,C_qp, = (/\ “Png)’
(one dimensional H(R)-module) and C,,, := (positive square root of |2pn| :
H(R) — R*). These one dimensional H(R)-modules can be seen as
(b, H.)-modules. We write Cs;g, the H(R)-module -corresponding to
0®v:HR) — C* and E,) the genuine one dimensional (b, (H.)” ®))-module
induced from (b, H.)-module Ey,r = /\ "?(g/b)" (for the definition of E,),
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see [AV, Definition 8.11]). C4:= (Csgy ® C_pn, ® Cipn,|) ® E,) can be seen
as a genuine (b, (H.)”®)-module. Then b and C, are in good position ([AV,
Definition 8.18]). Furthermore the stndard representation I(B,C,) defined in
[AV, Definition 8.18] coincides with Xgr)(q, H(R),d,v).

3.2. Induction of nilpotent orbits and associated varieties of standard (g, K)-
modules

For a finitely generated (g,K)-module X, we write Ass(X) < g* the
associated variety of X (for the definition of Ass(X), see [V2]). By the
identification g ~ g*(x — {x,-») which is induced by the G-invariant bilinear
form ¢,) on g, we see that Ass(X) is a subset of g. Then Ass(X) is a K-
invariant subset of g. It is known that if X has a finite composition series,
then Ass(X) = A5 (cf. [V2]). We write Ass(X)%? the set of g-principal
elements in Ass(X) and Ass(X)® 7" /K that of K-orbits in Ass(X)%7.

ProposITION 3.2 ([AV, Proposition A.9]). Suppose that g is quasi-
split. Let (b, T(R),0,v) be a set of O-stable data for G(R) such that b is a
O-stable Borel subalgebra of large type. Write X¢ := R(b,t)gz. Then (t,—-2°) €
g}é and we have

Ass(Xgr)(b, T(R),6,v)) = Ot _x).

THEOREM 3.3 ([AV, Theorem A.10]). Suppose that g is quasisplit. Let H
be a 0-stable and t-stable maximal torus of G, (9, HR),5,v) (a=1+u,hcl)a
set of O-stable data for G(R) and X := Xsr)(q, H(R),0,v) the corresponding
standard (g, K)-module. Write

2 := R(u,b) g = {x € R(g,b)g; <2, A°> > 0}.

(1) If X is not of large type, Ass(X)*"" = &.

(ii) Suppose that X is of large type. Let Q' = L'U’ be a O-stable par-
abolic subgroup of G such that L' > H, and that X is contained in the set of
roots of Yy in u' (hence L' is quasisplit). Then we have

Ass(X)SP|K = {O_5<); (1, Z°) € 2L}
In particular, Ass(X)* " /K depends only on (b,2).
Under the assumption of Theorem 3.3(ii), we have
Ass(X)*P /K = [AT7 /K] g
by Theorem 3.3(ii) and Proposition 1.7 where we write (q’)” the parabolic
subalgebra corresponding to —R(q’,h). For a subset & < A,/K, we write
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&8P the set of g-principal K-orbits in &. Then, by Proposition 2.4 and
Proposition 2.9, we obtain the following:

THEOREM 3.4. Under the assumption of Theorem 3.3(ii), we have

(3.1)  Ass(X)*? /K = [NEP /K] - = Ind®((U, (a')7) T @)(NE 7" /KL

Syt

= [Ind®((I', (a")7) T ¢) o Ind®((b, p/) 1 1')({(0),, NI*™"
where we write Pr» = HNy, a t-stable Borel subgroup of L'.

ReEMARK 3.5. (i) In the setting of Theorem 3.3(ii), if 2 is not of large
type, it can be shown that

I /K] gy = (1, (0)) T )N 7 /K" = 2.

Therefore (3.1) holds even when X' is not of large type. We will show this in
the succeeding paper.
(i) For a standard (g, K)-module

X = Xg)(a, H(R),3,v) = (2™ " (1nd, R 0 @ v))

in 3.1, write Y := IndIfL(gg) (0®v). We can see that Y itself is a standard
(I, LN K)-module corresponding to the data (I, H(R),s,v) for L(R). By
Theorem 3.4, we have Ass(Y) = A 1ns and hence Ass(Y) is stable under the
action of F;. On the other hand, if 2 = R(u,b)z is of large type, the
subgroup F® of Fy acts on Ass(X)*”/K = [#$7""/K],- by Proposition 1.7.

(iii) The dual group Rs of the R-group R; in [V1] is a quotient of
Fr ([V1, Lemma 4.3.46]). Since R; acts transitively on the set Arwr)(0) of
lowest LNK-types of Y ([V1, Theorem 4.3.16]), Fr also acts on Apg)(d)
transitively. Since there is a natural 1-1 correspondence between Ay g)(d)
and the set Agr)(q, H(R),0) of lambda lowest K-types of X, Fp acts on
Agr(q, H(R),0) transitively.

Suppose that G(R) is connected, semisimple and has a compact Cartan
subgroup T(R). Let b=1-+u be a #-stable Borel subalgebra of g with Levi
factor t and nilpotent radical u. Let (b, T(R),0) be a set of f-stable data for
G(R) which contains b and T(R), and write

X = Xgm (b, T(R),6) = (28)4™®"(5)

the corresponding standard (g, K)-module. Then A% =dd+ pu is regular,
R(b,1) = {a € R(g,1); (a0, A°) > 0} and X is the (g, K)-module of the discrete
series representation with Harish-Chandra parameter 4¢. Write u~ the nil-
potent radical of the opposite Borel subalgebra b~ of b. Then the following
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fact seems to be well known to experts. A proof based on a work of Hotta-
Parthasarathy is given in Yamashita [Y]. A brief sketch of a proof can be
found in Binegar-Zierau [BZ].

THEOREM 3.6 (Yamashita [Y, Theorem 1]). In the above setting, we have
Ass(X) = K(u™ Ns).

This is the closure of the unique K-orbit in N, whose intersection with u™ Ns is
open dense in u~ Ns.

In the above setting, clearly the unique K-orbit in /5, whose intersection
with u~ N's is open dense in u™ Ns, is Ind’((1,b7) 1 g)((0),,). Hence we have
the following.

ProposiTiON 3.7.  Ass(X) = Ind%((1,b7) 1 g)((0),,,)-

3.3 The action of F on the associated varieties of the standard (g, K )-modules
Let (q,H(R),0,v) and P, = HN be as in 3.1, and write
X = X (0, HR),5,v) = (2D " (Indp, 2, (6 ® v))
the corresponding standard (g, K)-module. Define ﬁnlte groups F; and Ff by
Fr := {a e exp(b,N[1)); Ad(a?)|, = idi}, Ff = {a€ F; Ad(a%) = id}.

We will show that the action of K on X can be extended to that of KFS and
that X has a structure of (g, KF)-module. Consequently Ass(X) is stable
under the action of KFF.

For a subgroup S of G normalized by FZ, we write

5] := FSS = SFF = (SUFES).

Then S is a normal subgroup of [S]S of finite index. We notice that the
subgroups G(R),K,K(R),L(R),LNK,L(R)NK(R),H(R), H.(R) and P.(R) =
H.(R)H,(R)N.(R) are all normalized by Ff. [G(R)]f is a real reductive
linear group in the sense of [V1, Chap. 0], [K(R)] ; 1s a maximal compact
subgroup of [G(R)]Y and Nig R)]L( q) = [L(R)]Y. For the character ¢ of H.(R),
we can take a character § of [H.(R )]G such that 4] a.®) =9. Then d is fine
with respect to [L(R)] and (q,[H(R)]S,5,v) is a set of f-stable data for
[G(R)]. On the other hand, [P.(R )]L = (FPH,.(R))Hs(R)NL(R) is a minimal
parabolic subgroup of [L(R)]S and v is negative with respect to Nz (R). Hence
we obtain the standard (g, KF)-module

— (%g)dim(uﬂf)( d[L R)]G(6 ® V))
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By the construction of standard (g,K)-module, it is verified that X is iso-
morphic to X as (g, K)-modules. The associated variety 4ss(X) coincides with
Ass(X) and hence Ass(X) is stable under the action of KFS = [K]f.

PROPOSITION 3.8. For the standard (g, K)-module
X = Xom)(a, H(R),,v) = (#2)"™ "0 (Ind () (6 ® v))

corresponding to a set (q,H(R),0,v) of O-stable data for G(R), the associated
variety Ass(X) is stable under the action of KFF = [K]f

REMARK 3.9. In the above setting, if ~ = R(g, D)z is of large type (hence
g is quasisplit) and 6 is of inner type, we can show that the action of F¢ on
Ass(X)* /K # & is transitive. We will prove this in the succeeding paper.
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