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ABSTRACT. Let &(X) be the group consisting of all based homotopy classes of based

self-homotopy equivalences on X. In this paper we shall study and determine the group

for X = SO(4). This is one of the problems proposed by M. Arkowitz [2].

1. Introduction

For a based spaces X and Γ, let [X, Y] denote the set consisting of all the

based homotopy classes of the based maps X —> Y. If X = Y, the homotopy

set [X,X] becomes a monoid whose multiplication induced from the com-
position of maps. Let &(X] be the group consisting of all invertible elements
of the monoid [X, X] and it is called the group of self-homotopy equivalences

of X. When X is a simply connected H-space of rank <2, the group S(X) is
already determined by several authors in [8], [9], [10], [11], [12]. The author

would like to study the group £(X) for non-simply connected H-spaces X.

PROBLEM (M. Arkowitz [2]). Determine the group $(X] for non-simply
connected H-spaces of rank 2. More specially, calculate the group δ(X) for
X = RP< x SJ (with i = 3,7 and j = 1,3,1) or for X = RP< x RP* (with i =
3,7 and k = 3,1).

In this paper we shall consider this problem for the case X = SO(4) =

S3 x S0(3) = S3 x RP3.

DEFINITION 1.1. (i) Let M2(R) be the ring consisting of all 2 x 2 real

matrices and let M2(-\/2) <= M2(R) denote the subset of M2(R) consisting of all
2 x 2 matrices A of the form

A = , -ι,ι v~ι,. (where β . . e Z )

\V 2^2,1 ^2,2 /

Clearly M2(>/2) is a subring of M2(R).
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(ii) For a ring R with unit 1, let Inv(Λ) denote the group consisting of all
invertible elements r e R.

We shall prove the following results.

THEOREM 1.2. There is a short exact sequence of multiplicative groups

1 - > G4 — f ( S O ( 4 ) ) - > Inv(M2(>/2)) - > 1

where 64 denotes the certain group of order 28 32.

THEOREM 1.3. Let μ : [SO(4),SO(4)] -> End(π3(5O(4))) 6e fA
representation given by μ(f) = πτ>(f). Then the map μ induces the multiplic-
ative epίmorphism μ: [5(9(4), SO (4)] — >• MI (V2) with its kernel isomorphic to
G4.

The main part of the proof is to use the product decomposition SO(4) =
S3 x SO(3) and is to compute several homotopy groups using the composition
method [13] and classical homotopy technique [4], [5], [6], [7]. In section 2, we
shall compute several homotopy groups and homotopy sets. In section 3, we
shall give the proofs of Theorems 1.2 and 1.3.

2. Homotopy groups

In this section we consider the cofibre sequence

(2.1) S1 ** Sl -U S1 U2e2 = RP2 -1* S2 ̂  S2 ̂  ΣRP2

Let ρ:S2-* RP2 denote the double covering projection. Since 50(3) = RP3,
there is a cofibre sequence

(2.2) S2 -£+ RP2 — f S0(3) -^ 53 -^ ΣRP2 = S2 U2 e
3

and SO(3) has the cell structure

(2.3) SO(3) = RP2Upe
3 = SlU2e

2Upe\

Note the following fact:

LEMMA 2.4 ([13]).
(1) // 7 : πι(SO(2)) S wi(S') = Z{ί!> -> w3(S2) = Z{%} Jenoίeί the J-

homomorphism, then J is an isomorphism and J(ι\)=η2, where η2e
nι(S2) = Z{//2} denotes the Hopf map.

(2) Let ηn = Σn~2η2 e πn+1 (5») for n > 3. Tfcen πn+1 (S") = Z/2{ηn} for n >
3.
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(3) // we take η2 = ηn o ηn+λ e nn+2(S2), nn+2(Sn] = Z/2{η2} for n>2.

(4) Ifωeπ6(S3) denotes the Blakers-Massay element, π6(S3) = Z/12{ω}.

LEMMA 2.5.

PROOF. Let α e π^(ΣRP , S2) = Z{α} be the charactersitic map of the

top cell e3 in ΣRP2 = S2 U2 e
3 and consider the homotopy exact sequence

Z{α} = π3(ΓRP2, S2) -̂  π2(S2) - Z{/2} -̂  π2(ΓRP2) —> 0.

Since 33(α) = 2z2, d3 is injective and π2(ZΊRP2) = Z/2{Σi}. Hence there is an

exact sequence

π4(ΓRP2,52) -^ π3(S2) -^L-> π3(ΓRP2) > 0

(i) =| =|

where [,] r denotes the relative Whitehead product (cf. [3]). Since [/2,/2] = 2η2,

(ii) 34([a, /2]r) = -[^(α), ^2] = -[2ϊ2, ^2] = -2[/2, fc] = -4 2̂

Consider the commutative diagram:

Because [/2,z2] = 2η2, h0(η2) = 13 and [η2,i2\ = 0,

/ 2 \ /3\
(iii) (2ι2) o η2 = 2η2 + I I [|2,I2] °hϋ(η2] - I I [[/2,ι2],ι2] o h{(η2)

= 2η2 + (2η2) o ι3 - 2[η2,ι2] o hι(η2) = 4rj2.

Hence it follows from the diagram (ii) and (iii) that the image of 84 is Z{4η2}.

Therefore, π3(ΓRP2) = Z/4{Σioη2}.

LEMMA 2.6.

(1) Σp = ±2(Σi o η2] e π3(ΓRP2) = π3(52 U 2 e } ) = Z/4{Σi o η2}.

(2) There is a homotopy equivalence

Γ2RP3 = Σ2SO(3) ^ Σ2RP2 v S5 = S3 U2 e
4 v S5.
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PROOF. Since Γ2RP3 = Σ2SO(3) = Γ2(RP2 (Jpe
3) = Γ2RP2 (JΣ 2pe

5 and
2η} = 0, it suffices to prove (1). It follows from the formula of James ((3.1)
of [4]) that

Σp=±ΣioJ(c(ξ)) = ±ΣioJ(2n) = ±2(Σioη2). Q

Consider the cofibre sequence

(2.7) S4 -?U* 54 -ΞX Γ3RP2 = S4 U2 e
5 -̂ > S5 -̂  S5.

Since τ/3 o2/4 = 0, there is an extension ή3 e [Z'3RP2,53] of η3 such that

(2.8) ή3oΣ3i = η3.

LEMMA 2.9.

PROOF. Since the proofs of these cases are similar, we only prove the
case k = 3. Since (2ij)* : π/(S3) — > πj(S3) is trivial for y = 4, 5, (2.7) induces
the exact sequence

(2.10) 0 - > π5(53) - Z/2{//3

2}

Since 2/4 o ̂ 4 = 0, there is a coextension ^4 e π6(S4 U2^5) of the map η4 such
that Σ3qoή4 = η5. It is known that vr = η3 o ή4 e π6(*S3)(2) = Z/4 is the
generator of 2-component ([13]). Hence the order of ή3 is the multiple of 4 or
infinite order. However, since the order of the homotopy set [S4 Ui e5, S3} is 4
by (2.10), the order of ή3 is divided by 4. Hence, from (2.8), [Σ3RP\S3] =

. Π

COROLLARY 2.11.

[Σ3SO(3), S3} * [Γ3RP2, S3} Θ π6(S3) = Z/4{η3} 0 Z/12{ω}.

Let /?3 : S3 — » RP3 = 5(9(3) denote the double covering and consider the
fibre sequence

(2.12) S3 -^ RP3 - S0(3) —^ K(Z/2, 1).

LEMMA 2.13. There is an isomorphism

fo), : [Σ3SO(3),S3] A [Γ350(3), 5(9(3)] ^ Z/40Z/12.
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PROOF. This is because the sequence (2.12) induces the exact sequence

1 - > [Γ350(3),53] ̂  [Γ350(3),50(3)] - > [Σ3SO(3),K(Z/2, !)]•= 0.

D

LEMMA 2.14.

(1) [S

(2) [S

(3) [50(3), S3] = Z{π}, w/zere π : S0(3) = RP3 -> S3 Jenoίeί ί/ze /?incA wαp to
ί/ze top cell.

(4) [50(3), 50(3)] = Z{id}.

(5) /? 3 oπ = 2 ide[50(3),50(3)].

PROOF. The assertions (1) and (2) are trivial and the other results are
well-known. See for example [7], [11]. Π

3. The multiplicative structure

In this section, we shall study the multiplicative structure of [50(4), SΌ(4)].
First, recall the general property of multiplication induced from composition of
maps. For example, if X is an H-space, the left distributive law

(3.1) (f + g)oh = f*h + goh (for f,g e [ Y , X] , h e [Z, Y})

holds, but in general, the right distributive law does not necessarily hold.
However, in our case, we can prove:

LEMMA 3.2. Let m,neZ be integers.

(1) (mπ) o (np$) = 2mn ι^.

(2) (mpi) o (nπ) = 2mn id.

PROOF. It follows from (3.1) that it suffces to prove the assertions (1)
and (2) when m — 1 . So from now on, assume m—\. Note that π o p3 =
2 *3; in fact, since π o /?3 e π^(S3) = Zjzs}, we can take π o p3 = y ι3 for some

y e Z. Since 13 = Σi2, y - Pi = Pι° (y^)- Hence using (2.14) and (3.1), we get
y = 2, because

y p3=p3o (yι3) =p3o(πo p3) = (p3 o π) o p3 = (2 - id) o p3 = 2p3.

Since π* : 7^(50(3)) — » ^(S3) is a homomorphism,

π o («/>3) = π*(np3) = n - π*(/?3) = n(πop3) = n - (2z3) = n (2Σι2) = 2n-ii

and the assertion (1) holds.
Since p3 o (nπ) e [50(3), 50(3)] = Z{id}, we can write /?3 o (nπ) = x id

for some x e Z. Then similarly,
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x p3 = (x id)op3 = 03 o (n π)) op3=p3o ((n - π) o p3) = p3 o (In ι3)

= 03) o (In Σι2) = 2n (p3 o z3) = 2n p3.

Hence x = 2n and the assertion (2) is also proved. Π

Next, recall the following elementary result due to A. J. Sieradski.

THEOREM 3.3 (Sieradski [11]). Let X\ and X2 be homotopy associative H-
spaces. If the homotopy set [X\ v X2,X\ ^X2] is trivial, there is a short exact
sequence of multiplicative group

1 > [Xι Λ X2, Xι x X2] ̂  f(X\ x X2) > GL2(Aij) > 1

where Atj = [X^Xj] for i,j= 1,2, GL2(Atj) denotes the multiplicative group
consisting of all invertible elements of the ring

\V w V V xx V] \Λ ( Λ \ Π^l'^l] ί^l'^lλ[Xi vX2,Xι xX2\ = M 2 ( Λ f j ) = { rγ γλ lγ γ ] \
\[X2,Xι\ [X2,X2\J

and q : X\ x X2 -^ X\ A X2 denotes the projection map.

Now we shall prove Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.2. Note that SΌ(4) = S3 x SO(3) and we take
(X\, X2) — (iS3,5Ό(3)). It follows from the celluar approximation theorem
that the homotopy set [5O(3),Γ35Ό(3)] and π3(Γ35Ό(3)) are trivial. Hence
[S3 vSO(3),S3 /\SO(3)} =0. So, using Theorem 3.3 and Lemma 2.14, there
is a short exact sequence

(3.4) 1 > G4 Ά *(SO(4)) , GL2(^/?7-) > 1

where we take G4 = [Σ3SO(3),S?>xSO(3}} = [Σ^SO(3),S3} 0 [Σ3SO(3),SO(3)}.
It follows from lemma 2.14 that G4 ^ (Z/4 ® Z/12) θ (Z/4 θ Z/12). Hence
the order of G$ is 28 32. The multiplicative structure of 64 may be different
from the group (Z/4 0 Z/12) φ (Z/4 φ Z/12).

Next we determine the group structure of GL2(Ajj). For this puφose,
consider the ring

([X^Xi] [Xι,X2}\ = ( [S\Si] (S\SO(3)}
2{ l'J> VfeJΓi] [X2,X2]J V[^(3),53] [S0(3),

Let A,BeM2(Aij) be elements

l , l / 3 a\,2P3\ D

2Λn α2,2idj' *
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Then using (3.2), the product A - B, which is induced from the composite of
maps, is equal to

/ 01, 1*3 0ι,2/>3\ (b\Λl* t>l,2P3\

_ / (01 , l f t l , l+2f l i , 2 f t2 , l )«3 (01, i f t l , 2 +01, 2*2,2^3 \

V (02,1*1,1 + 02,2^2, ι)π (2α2, 1*1,2 + 02,2ft2,2)id/

Define the additive map ^ : M2(yl/)7) — > M2(\/2) by

/ fli,i >/2αιΛ , u ^v
\ /~ (where 0/,,/eZ).
\\/202,ι 02,2 /

Then it follows from (1.1) and the above computation that φ : M2(/ίί J )
A M2(\/2) is a ring isomorphism. Hence GL2(yiί )7 ) = Inv(M2(Λz j)) ̂

Inv(M2(>/2)). So (3.4) reduces to the exact sequence

1 - > G4 — ̂ (50(4)) - > Inv(M2(\/2)) - > 1

and this completes the proof of Theorem 1.2. Π

PROOF OF THEOREM 1.3. Consider the representation

μ :

given by //(/) = ττ3(/). Since each Λ/j = [JG, A}] and π3(S6>(4)) are torsion
free, μ([SΌ(4),SΌ(4)]) — M2(yl/j ) and the assertion follows from Theorem

1.2. ' Π
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